501
|
Deshaies RJ. Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr Opin Genet Dev 1997; 7:7-16. [PMID: 9024629 DOI: 10.1016/s0959-437x(97)80103-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The budding yeast cell cycle oscillates between states of low and high cyclin B/cyclin-dependent kinase (CLB/CDK) activity. Remarkably, the two transitions that link these states are governed by ubiquitin-mediated proteolysis. The transition from low to high CLB activity is triggered by degradation of the CLB/CDK inhibitor SIC1, and the complementary excursion is propelled by the proteolytic destruction of CLBs. The extracellular environment controls this two-state circuit by regulating G1 cyclin/CDK activity, which is directly required for SIC1 proteolysis. Thus, stable oscillations of chromosome replication and segregation in budding yeast are propagated by the interplay between protein phosphorylation and protein degradation.
Collapse
Affiliation(s)
- R J Deshaies
- Division of Biology, California Institute of Technology, Pasadena California, 91125 USA.
| |
Collapse
|
502
|
Kaufman PD, Kobayashi R, Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 1997; 11:345-57. [PMID: 9030687 DOI: 10.1101/gad.11.3.345] [Citation(s) in RCA: 317] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo, nucleosomes are formed rapidly on newly synthesized DNA after polymerase passage. Previously, a protein complex from human cells, termed chromatin assembly factor-I (CAF-I), was isolated that assembles nucleosomes preferentially onto SV40 DNA templates that undergo replication in vitro. Using a similar assay, we now report the purification of CAF-I from the budding yeast Saccharomyces cerevisiae. Amino acid sequence data from purified yeast CAF-I led to identification of the genes encoding each subunit in the yeast genome data base. The CAC1 and CAC2 (chromatin assembly complex) genes encode proteins similar to the p150 and p60 subunits of human CAF-I, respectively. The gene encoding the p50 subunit of yeast CAF-I (CAC3) is similar to the human p48 CAF-I subunit and was identified previously as MSI1, a member of a highly conserved subfamily of WD repeat proteins implicated in histone function in several organisms. Thus, CAF-I has been conserved functionally and structurally from yeast to human cells. Genes encoding the CAF-I subunits (collectively referred to as CAC genes) are not essential for cell viability. However, deletion of any CAC gene causes an increase in sensitivity to ultraviolet radiation, without significantly increasing sensitivity to gamma rays. This is consistent with previous biochemical data demonstrating the ability of CAF-I to assemble nucleosomes on templates undergoing nucleotide excision repair. Deletion of CAC genes also strongly reduces silencing of genes adjacent to telomeric DNA; the CAC1 gene is identical to RLF2 (Rap1p localization factor-2), a gene required for the normal distribution of the telomere-binding Rap1p protein within the nucleus. Together, these data suggest that CAF-I plays a role in generating chromatin structures in vivo.
Collapse
Affiliation(s)
- P D Kaufman
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | | | |
Collapse
|
503
|
Paulovich AG, Margulies RU, Garvik BM, Hartwell LH. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 1997; 145:45-62. [PMID: 9017389 PMCID: PMC1207783 DOI: 10.1093/genetics/145.1.45] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously shown that a checkpoint dependent on MEC1 and RAD53 slows the rate of S phase progression in Saccharomyces cerevisiae in response to alkylation damage. Whereas wild-type cells exhibit a slow S phase in response to damage, mec1-1 and rad53 mutants replicate rapidly in the presence or absence of DNA damage. In this report, we show that other genes (RAD9, RAD17, RAD24) involved in the DNA damage checkpoint pathway also play a role in regulating S phase in response to DNA damage. Furthermore, RAD9, RAD17, and RAD24 fall into two groups with respect to both sensitivity to alkylation and regulation of S phase. We also demonstrate that the more dramatic defect in S phase regulation in the mec1-1 and rad53 mutants is epistatic to a less severe defect seen in rad9 delta, rad 17 delta, and rad24 delta. Furthermore, the triple rad9 delta rad17 delta rad24 delta mutant also has a less severe defect than mec1-1 or rad53 mutants. Finally, we demonstrate the specificity of this phenotype by showing that the DNA repair and/or checkpoint mutants mgt1 delta, mag1 delta, apn1 delta, rev3 delta, rad18 delta, rad16 delta, dun1-delta 100, sad4-1, tel1 delta, rad26 delta, rad51 delta, rad52-1, rad54 delta, rad14 delta, rad1 delta, pol30-46, pol30-52, mad3 delta, pds1 delta/esp2 delta, pms1 delta, mlh1 delta, and msh2 delta are all proficient at S phase regulation, even though some of these mutations confer sensitivity to alkylation.
Collapse
Affiliation(s)
- A G Paulovich
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
504
|
Lydall D, Weinert T. Use of cdc13-1-induced DNA damage to study effects of checkpoint genes on DNA damage processing. Methods Enzymol 1997; 283:410-24. [PMID: 9251038 DOI: 10.1016/s0076-6879(97)83034-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D Lydall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
505
|
Virta-Pearlman V, Morris DK, Lundblad V. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev 1996; 10:3094-104. [PMID: 8985179 DOI: 10.1101/gad.10.24.3094] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Saccharomyces cerevisiae, deletion of the EST1 gene results in phenotypes identical to those displayed by a deletion of a known component of telomerase (the yeast telomerase RNA), arguing that EST1 is also critical for telomerase function. In this study, we show that the Estl protein binds to yeast G-rich telomeric oligonucleotides in vitro. Binding is specific for single-stranded substrates and requires a free 3' terminus, consistent with the properties expected for a protein bound to the 3' single-stranded G-rich extension present at the telomere. Assessment of the in vivo function of this single-stranded DNA-binding protein has shown that EST1 acts in the same pathway of telomere replication as the TLC1 telomerase RNA, by several different genetic criteria: est1 tlc1 double mutant strains show no enhancement of phenotype relative to either single mutant strain, and EST1 dominant mutations have an effect on telomeric silencing similar to that displayed by TLC1 previously. We propose that Est1 is a telomere end-binding protein that is required to mediate recognition of the end of the chromosome by telomerase.
Collapse
Affiliation(s)
- V Virta-Pearlman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
506
|
Abstract
Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions and ensure that critical events such as DNA replication and chromosome segregation are completed with high fidelity. In addition, checkpoints respond to damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair. Checkpoint loss results in genomic instability and has been implicated in the evolution of normal cells into cancer cells. Recent advances have revealed signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage. Checkpoint pathways have components shared among all eukaryotes, underscoring the conservation of cell cycle regulatory machinery.
Collapse
Affiliation(s)
- S J Elledge
- Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
507
|
Abstract
A combination of classical genetic, biochemical, and molecular biological approaches have generated a rather detailed understanding of the structure and function of Saccharomyces telomeres. Yeast telomeres are essential to allow the cell to distinguish intact from broken chromosomes, to protect the end of the chromosome from degradation, and to facilitate the replication of the very end of the chromosome. In addition, yeast telomeres are a specialized site for gene expression in that the transcription of genes placed near them is reversibly repressed. A surprisingly large number of genes have been identified that influence either telomere structure or telomere function (or both), although in many cases the mechanism of action of these genes is poorly understood. This article reviews the recent literature on telomere biology and highlights areas for future research.
Collapse
Affiliation(s)
- V A Zakian
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| |
Collapse
|
508
|
Abstract
Many genes required for the S-phase and DNA-damage checkpoints have been identified in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This year many checkpoint genes have been sequenced, providing new information about the mechanism of checkpoint control. Several of these genes are conserved between the two yeasts but others are species-specific.
Collapse
Affiliation(s)
- E Stewart
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
509
|
Lin JJ, Zakian VA. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 1996; 93:13760-5. [PMID: 8943008 PMCID: PMC19417 DOI: 10.1073/pnas.93.24.13760] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saccharomyces telomeres consist of approximately 300 bp of C1-3A/TG1-3 DNA. Cells lacking the activity of the essential gene CDC13 display a cell cycle arrest mediated by the DNA damage sensing, RAD9 cell cycle checkpoint, presumably because they exhibit strand-specific loss of telomeric and telomere-adjacent DNA [Garvik, B., Carson, M. & Hartwell, L. (1995) Mol. Celi. Biol. 15,6128-6138]. Cdc13p expressed in Escherichia coli or overexpressed in yeast bound specifically to single-strand TG1-3 DNA. The specificity of binding displayed by Cdc13p in vitro indicates that in vivo it could bind to both the short, constitutive single-strand TG1-3 tails thought to be present at telomeres at most times in the cell cycle as well as to the long single-strand TG1-3 tails that are intermediates in telomere replication. Genes located near yeast telomeres are transcriptionally repressed, a phenomenon known as telomere position effect. Cells overexpressing a mutant form of Cdc13p had reduced telomere position effect at high temperatures. These data suggest that Cdc13p functions by binding directly to telomeric DNA, thereby limiting its accessibility to degradation and transcription as well as masking it from factors that detect damaged DNA.
Collapse
Affiliation(s)
- J J Lin
- Department of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | |
Collapse
|
510
|
Dionne I, Wellinger RJ. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc Natl Acad Sci U S A 1996; 93:13902-7. [PMID: 8943033 PMCID: PMC19463 DOI: 10.1073/pnas.93.24.13902] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current models of telomere replication predict that due to the properties of the polymerases implicated in semiconservative replication of linear DNA, the two daughter molecules have one end that is blunt and one end with a short 3' overhang. Telomerase is thought to extend the short 3' overhang to produce long single-stranded overhangs. Recently, such overhangs, or TG1-3 tails, were shown to occur on both telomeres of replicated linear plasmids in yeast. Moreover, indirect evidence suggested that the TG1-3 tails also occurred in a yeast strain lacking telomerase. We report herein a novel in-gel hybridization technique to probe telomeres for single-stranded DNA. Using this method, it is shown directly that in yeast strains lacking the TLC1 gene encoding the yeast telomerase RNA, TG1-3 single-stranded DNA was generated on chromosomal and plasmid telomeres. The single-stranded DNA only appeared in S phase and was sensitive to digestion with a single-strand-specific exonuclease. These data demonstrate that during replication of telomeres, TG1-3 tails can be generated in a way that is independent of telomerase-mediated strand elongation. In wild-type strains, these TG1-3 tails could subsequently serve as substrates for telomerase and telomere binding proteins on all telomeres.
Collapse
Affiliation(s)
- I Dionne
- Faculté de Médicine, Départment de Microbiologie et Infectiologie, Université de Sherbrooke, QC, Canada
| | | |
Collapse
|
511
|
Affiliation(s)
- V Lundblad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
512
|
Lydall D, Nikolsky Y, Bishop DK, Weinert T. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 1996; 383:840-3. [PMID: 8893012 DOI: 10.1038/383840a0] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In budding yeast, meiotic recombination occurs at about 200 sites per cell and involves DNA double-strand break (DSB) intermediates. Here we provide evidence that a checkpoint control requiring the mitotic DNA-damage checkpoint genes RAD17, RAD24 and MEC1 ensures that meiotic recombination is complete before the first meiotic division (MI). First, RAD17, RAD24 and MEC1 are required for the meiotic arrest caused by blocking the repair of DSBs with a mutation in the recA homologue DMC1. Second, mec1 and rad24 single mutants (DMC1+) appear to undergo MI before all recombination events are complete. Curiously, the mitosis-specific checkpoint gene RAD9 is not required for meiotic arrest of dmc1 mutants. This shows that although mitotic and meiotic control mechanisms are related, they differ significantly. Rad17 and Rad24 proteins may contribute directly to formation of an arrest signal by association with single-strand DNA in mitosis and meiosis.
Collapse
Affiliation(s)
- D Lydall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
513
|
Navas TA, Sanchez Y, Elledge SJ. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 1996; 10:2632-43. [PMID: 8895664 DOI: 10.1101/gad.10.20.2632] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In response to DNA damage and replication blocks, yeast cells arrest at distinct points in the cell cycle and induce the transcription of genes whose products facilitate DNA repair. Examination of the inducibility of RNR3 in response to UV damage has revealed that the various checkpoint genes can be arranged in a pathway consistent with their requirement to arrest cells at different stages of the cell cycle. While RAD9, RAD24, and MEC3 are required to activate the DNA damage checkpoint when cells are in G1 or G2, POL2 is required to sense UV damage and replication blocks when cells are in S phase. The phosphorylation of the essential central transducer, Rad53p, is dependent on POL2 and RAD9 in response to UV damage, indicating that RAD53 functions downstream of both these genes. Mutants defective for both pathways are severely deficient in Rad53p phosphorylation and RNR3 induction and are significantly more sensitive to DNA damage and replication blocks than single mutants alone. These results show that POL2 and RAD9 function in parallel branches for sensing and transducing the UV DNA damage signal. Each of these pathways subsequently activates the central transducers Mec1p/Esr1p/Sad3p and Rad53p/Mec2p/Sad1p, which are required for both cell-cycle arrest and transcriptional responses.
Collapse
Affiliation(s)
- T A Navas
- Verna and Mars McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
514
|
Nugent CI, Hughes TR, Lue NF, Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 1996; 274:249-52. [PMID: 8824190 DOI: 10.1126/science.274.5285.249] [Citation(s) in RCA: 468] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The CDC13 gene has previously been implicated in the maintenance of telomere integrity in Saccharomyces cerevisiae. With the use of two classes of mutations, here it is shown that CDC13 has two discrete roles at the telomere. The cdc13-2est mutation perturbs a function required in vivo for telomerase regulation but not in vitro for enzyme activity, whereas cdc13-1ts defines a separate essential role at the telomere. In vitro, purified Cdc13p binds to single-strand yeast telomeric DNA. Therefore, Cdc13p is a telomere-binding protein required to protect the telomere and mediate access of telomerase to the chromosomal terminus.
Collapse
Affiliation(s)
- C I Nugent
- Department of Molecular and Human Genetics and Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
515
|
Abstract
Telomeres cap and protect the ends of chromosomes from degradation and illegitimate recombination. The termini of a linear template cannot, however, be completely replicated by conventional DNA-dependent DNA polymerases, and thus in the absence of a mechanisms to counter this effect, telomeres of eukaryotic cells shorten every round of DNA replication. In humans and possibly other higher eukaryotes, telomere shortening may have been adopted to limit the life span of somatic cells. Human somatic cells have a finite proliferative capacity and enter a viable growth arrested state called senescence. Life span appears to be governed by cell division, not time. The regular loss of telomeric DNA could therefore serve as a mitotic clock in the senescence programme, counting cell divisions. In most eukaryotic organisms, however, telomere shortening can be countered by the de novo addition of telomeric repeats by the enzyme telomerase. Cells which are "immortal' such as the human germ line or tumour cell lines, established mouse cells, yeast and ciliates, all maintain a stable telomere length through the action of telomerase. Abolition of telomerase activity in such cells nevertheless results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Therefore, loss of terminal DNA sequences may limit cell life span by two mechanisms: by acting as a mitotic clock and by denuding chromosomes of protective telomeric DNA necessary for cell viability.
Collapse
Affiliation(s)
- C M Counter
- Whitehead Institute for Biomedical Research (Weinberg Lab), Nine Cambridge Center, MA 02142-1479, USA.
| |
Collapse
|
516
|
Longhese MP, Neecke H, Paciotti V, Lucchini G, Plevani P. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res 1996; 24:3533-7. [PMID: 8836179 PMCID: PMC146145 DOI: 10.1093/nar/24.18.3533] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The rfa1-M2 and rfa1-M4 Saccharomyces cerevisiae mutants, which are altered in the 70 kDa subunit of replication protein A (RPA) and sensitive to UV and methyl methane sulfonate (MMS), have been analyzed for possible checkpoint defects. The G1/S and intra-S DNA damage checkpoints are defective in the rfa1-M2 mutant, since rfa1-M2 cells fail to properly delay cell cycle progression in response to UV irradiation in G1 and MMS treatment during S phase. Conversely, the G2/M DNA damage checkpoint and the S/M checkpoint are proficient in rfa1-M2 cells and all the checkpoints tested are functional in the rfa1-M4 mutant. Preventing S phase entry by alpha-factor treatment after UV irradiation in G1 does not change rfa1-M4 cell lethality, while it allows partial recovery of rfa1-M2 cell viability. Therefore, the hypersensitivity to UV and MMS treatments observed in the rfa1-M4 mutant might only be due to impairment of RPA function in DNA repair, while the rfa1-M2 mutation seems to affect both the DNA repair and checkpoint functions of Rpa70.
Collapse
Affiliation(s)
- M P Longhese
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | | | |
Collapse
|
517
|
Skopp R, Wang W, Price C. rTP: a candidate telomere protein that is associated with DNA replication. Chromosoma 1996; 105:82-91. [PMID: 8753697 DOI: 10.1007/bf02509517] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this paper we describe the isolation and characterization of rTP, the replication Telomere Protein, formerly known as the telomere protein homolog. The rTP was initially identified because of its homology to the gene for the Oxytricha telomere-binding protein alpha-subunit. The protein encoded by the rTP gene has extensive amino acid sequence identity to the DNA-binding domain of the telomere-binding proteins from both Euplotes crassus and Oxytricha nova. We have now identified the protein encoded by the rTP gene and have shown that it differs from the telomere-binding protein in its abundance, solubility and intracellular location. To learn more about the function of rTP, we determined when during the Euplotes life cycle the gene is transcribed. The transcript was detectable only in nonstarved vegetative cells and during the final stages of macronuclear development. Since the peak transcript level coincided with the rounds of replication that take place toward the end of macronuclear development, it appeared that rTP might be involved in DNA replication. Immunolocalization experiments provided support for this hypothesis as antibodies to rTP specifically stain the replication bands. Replication bands are the sites of DNA replication in Euplotes macronuclei. Our results suggest that rTP may be a new telomere replication factor.
Collapse
Affiliation(s)
- R Skopp
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
518
|
McEachern MJ, Blackburn EH. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev 1996; 10:1822-34. [PMID: 8698241 DOI: 10.1101/gad.10.14.1822] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Deletion of the telomerase RNA gene (TER1) in the yeast Kluyveromyces lactis results in gradual loss of telomeric repeats and progressively declining cell growth capability (growth senescence). We show that this initial growth senescence is characterized by abnormally large, defectively dividing cells and is delayed when cells initially contain elongated telomeres. However, cells that survive the initial catastrophic senescence emerge relatively frequently, and their subsequent growth without telomerase is surprisingly efficient. Survivors have lengthened telomeres, often much longer than wild type, but that are still subject to gradual shortening. Production of these postsenescence survivors is strongly dependent on the RAD52 gene. We propose that shortened, terminal telomeric repeat tracts become uncapped, promoting recombinational repair between them to regenerate lengthened telomeres in survivors. This process, which we term telomere cap-prevented recombination (CPR) may be a general alternative telomere maintenance pathway in eukaryotes.
Collapse
Affiliation(s)
- M J McEachern
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | |
Collapse
|
519
|
Longhese MP, Fraschini R, Plevani P, Lucchini G. Yeast pip3/mec3 mutants fail to delay entry into S phase and to slow DNA replication in response to DNA damage, and they define a functional link between Mec3 and DNA primase. Mol Cell Biol 1996; 16:3235-44. [PMID: 8668138 PMCID: PMC231317 DOI: 10.1128/mcb.16.7.3235] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The catalytic DNA primase subunit of the DNA polymerase alpha-primase complex is encoded by the essential PRI1 gene in Saccharomyces cerevisiae. To identify factors that functionally interact with yeast DNA primase in living cells, we developed a genetic screen for mutants that are lethal at the permissive temperature in a cold-sensitive pril-2 genetic background. Twenty-four recessive mutations belonging to seven complementation groups were identified. Some mutants showed additional phenotypes, such as increased sensitivity to UV irradiation, methyl methanesulfonate, and hydroxyurea, that were suggestive of defects in DNA repair and/or checkpoint mechanisms. We have cloned and characterized the gene of one complementation group, PIP3, whose product is necessary both for delaying entry into S phase or mitosis when cells are UV irradiated in G1 or G2 phase and for lowering the rate of ongoing DNA synthesis in the presence of methyl methanesulfonate. PIP3 turned out to be the MEC3 gene, previously identified as a component of the G2 DNA damage checkpoint. The finding that Mec3 is also required for the G1- and S-phase DNA damage checkpoints, together with the analysis of genetic interactions between a mec3 null allele and several conditional DNA replication mutations at the permissive temperature, suggests that Mec3 could be part of a mechanism coupling DNA replication with repair of DNA damage, and DNA primase might be involved in this process.
Collapse
Affiliation(s)
- M P Longhese
- Dipartimento di Genetica e di Biologia dei Micorganismi, Università degli Studi di Milano, Italy
| | | | | | | |
Collapse
|
520
|
Abstract
The study of eukaryotic telomeres at the molecular level began with the discovery of short, tandem repeats at Tetrahymena chromosome ends. In the following two decades, major insights about telomere structure and function have come from investigations of telomerase, the DNA polymerase that synthesizes these repeats. In the past year, three areas of telomerase research have been particularly intense: assays of telomerase activity, isolation of telomerase components, and studies of the regulation of telomerase and telomere length in vivo.
Collapse
Affiliation(s)
- K Collins
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA.
| |
Collapse
|
521
|
Abstract
One of the central requirements for eukaryotic chromosome stability is the maintenance of the simple sequence tracts at telomeres. In this study, we use genetic and physical assays to reveal the nature of a novel mechanism by which telomere length is controlled. This mechanism, telomeric rapid deletion (TRD), is capable of reducing elongated telomeres to wild-type tract length in an apparently single-division process. The deletion of telomeres to wild-type lengths is stimulated by the hpr1 mutation, suggesting that TRD in these cells is the consequence of an intrachromatid pathway. Paradoxically, TRD is also dependent on the lengths of the majority of nonhomologous telomeres in the cell. Defects in the chromatin-organizing protein Sir3p increase the rate of hpr1-induced rapid deletion and specifically change the spectrum of rapid deletion events. We propose a model in which interactions among telosomes of nonhomologous chromosomes form higher order complexes that restrict the access of the intrachromatid recombination machinery to telomeres. This mechanism of size control is distinct from that mediated through telomerase and is likely to maintain telomere length within a narrow distribution.
Collapse
Affiliation(s)
- B Li
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
522
|
Abstract
The strand of telomeric DNA that runs 5'-3' toward a chromosome end is typically G rich. Telomerase-generated G tails are expected at one end of individual DNA molecules. Saccharomyces telomeres acquire TG1-3 tails late in S phase. Moreover, the telomeres of linear plasmids can interact when the TG1-3 tails are present. Molecules that mimic the structures predicted for telomere replication intermediates were generated in vitro. These in vitro generated molecules formed telomere-telomere interactions similar to those on molecules isolated from yeast, but only if both ends that interacted had a TG1-3 tail. Moreover, TG1-3 tails were generated in vivo in cells lacking telomerase. These data suggest a new step in telomere maintenance, cell cycle-regulated degradation of the C1-3A strand, which can generate a potential substrate for telomerase and telomere-binding proteins at every telomere.
Collapse
Affiliation(s)
- R J Wellinger
- Department of Microbiology, Faculty of Medicine, Université de Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
523
|
Siede W, Nusspaumer G, Portillo V, Rodriguez R, Friedberg EC. Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 1996; 24:1669-75. [PMID: 8649984 PMCID: PMC145842 DOI: 10.1093/nar/24.9.1669] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutants of the yeast Saccharomyces cerevisiae defective in the RAD17 gene are sensitive to ultraviolet (UV) and gamma radiation and manifest a defect in G2 arrest following radiation treatment. We have cloned the RAD17 gene by complementation of the UV sensitivity of a rad17-1 mutant and identified an ORF of 1.2 kb encoding a predicted gene product of 45.4 kDa with homology to the Schizosaccharomyces pombe rad1+ gene product and to Ustilago maydis Rec1, a known 3'->5'exonuclease. The RAD17 transcript is cell cycle regulated, with maximum steady-state levels during late G1. The rad17-1 mutation represents a missense mutation that maps to a conserved region of the gene. A rad17 disruption mutant grows normally and manifests levels of UV sensitivity similar that of the rad17-1 strain. As previously observed with other genes involved in G2 arrest (such as RAD9 and RAD24), RAD17 regulates radiation-induced G1 checkpoints at at least two possible arrest stages. One is equivalent to or upstream of START, the other at or downstream of the Cdc4 execution point. However, the temperature sensitivity of the cell cycle mutant dna1-1 (a G1 arrest mutant) is not influenced by inactivation of RAD17.
Collapse
Affiliation(s)
- W Siede
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, 75235, USA
| | | | | | | | | |
Collapse
|
524
|
Lydall D, Weinert T. From DNA damage to cell cycle arrest and suicide: a budding yeast perspective. Curr Opin Genet Dev 1996; 6:4-11. [PMID: 8791492 DOI: 10.1016/s0959-437x(96)90003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic checkpoint control genes are important for cell cycle delay, DNA repair and cell suicide after DNA is damaged. Recent studies in budding yeast show how the participation of checkpoint control proteins in DNA metabolism could lead to all three of these outcomes.
Collapse
Affiliation(s)
- D Lydall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
525
|
Abstract
Yeast checkpoint control genes were found to affect processing of DNA damage as well as cell cycle arrest. An assay that measures DNA damage processing in vivo showed that the checkpoint genes RAD17, RAD24, and MEC3 activated an exonuclease that degrades DNA. The degradation is probably a direct consequence of checkpoint protein function, because RAD17 encodes a putative 3'-5' DNA exonuclease. Another checkpoint gene, RAD9, had a different role: It inhibited the degradation by RAD17, RAD24, and MEC3. A model of how processing of DNA damage may be linked to both DNA repair and cell cycle arrest is proposed.
Collapse
Affiliation(s)
- D Lydall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|