501
|
Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, Tschumperlin D, Zou H, Huang WC, Urrutia R, Shah VH, Kang N. P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology 2018; 154:2209-2221.e14. [PMID: 29454793 PMCID: PMC6039101 DOI: 10.1053/j.gastro.2018.02.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) contribute to desmoplasia and stiffness of liver metastases by differentiating into matrix-producing myofibroblasts. We investigated whether stiffness due to the presence of tumors increases activation of HSCs into myofibroblasts and their tumor-promoting effects, as well as the role of E1A binding protein p300, a histone acetyltransferase that regulates transcription, in these processes. METHODS HSCs were isolated from liver tissues of patients, mice in which the p300 gene was flanked by 2 loxP sites (p300F/F mice), and p300+/+ mice (controls). The HSCs were placed on polyacrylamide gels with precisely defined stiffness, and their activation (differentiation into myofibroblasts) was assessed by immunofluorescence and immunoblot analyses for alpha-smooth muscle actin. In HSCs from mice, the p300 gene was disrupted by cre recombinase. In human HSCs, levels of p300 were knocked down with small hairpin RNAs or a mutant form of p300 that is not phosphorylated by AKT (p300S1834A) was overexpressed. Human HSCs were also cultured with inhibitors of p300 (C646), PI3K signaling to AKT (LY294002), or RHOA (C3 transferase) and effects on stiffness-induced activation were measured. RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to identify HSC genes that changed expression levels in response to stiffness. We measured effects of HSC-conditioned media on proliferation of HT29 colon cancer cells and growth of tumors following subcutaneous injection of these cells into mice. MC38 colon cancer cells were injected into portal veins of p300F/Fcre and control mice, and liver metastases were measured. p300F/Fcre and control mice were given intraperitoneal injections of CCl4 to induce liver fibrosis. Liver tissues were collected and analyzed by immunofluorescence, immunoblot, and histology. RESULTS Substrate stiffness was sufficient to activate HSCs, leading to nuclear accumulation of p300. Disrupting p300 level or activity blocked stiffness-induced activation of HSCs. In HSCs, substrate stiffness activated AKT signaling via RHOA to induce phosphorylation of p300 at serine 1834; this caused p300 to translocate to the nucleus, where it up-regulated transcription of genes that increase activation of HSCs and metastasis, including CXCL12. MC38 cells, injected into portal veins, formed fewer metastases in livers of p300F/Fcre mice than control mice. Expression of p300 was increased in livers of mice following injection of CCl4; HSC activation and collagen deposition were reduced in livers of p300F/Fcre mice compared with control mice. CONCLUSIONS In studies of mice, we found liver stiffness to activate HSC differentiation into myofibroblasts, which required nuclear accumulation of p300. p300 increases HSC expression of genes that promote metastasis.
Collapse
Affiliation(s)
- Changwei Dou
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Department of Hepatobiliary Surgery, Zhejiang provincial People's Hospital, Hangzhou, China
| | - Zhikui Liu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Hongbin Zhang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Chen Chen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Usman Yaqoob
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jialing Wen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taiwan, R.O.C
| | - Raul Urrutia
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,To whom correspondence should be addressed: Ningling Kang, Ph.D., Hormel Institute, 801 16th Ave NE Austin MN 55912. Fax: (507) 437-9606. Phone: (507) 437-9680. . Vijay Shah, M.D., Mayo Clinic, 200 1st ST SW Rochester MN 55915. Fax: (507) 255-6318. Phone: (507) 255-6028.
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
502
|
Oh RS, Haak AJ, Smith KMJ, Ligresti G, Choi KM, Xie T, Wang S, Walters PR, Thompson MA, Freeman MR, Manlove LJ, Chu VM, Feghali-Bostwick C, Roden AC, Schymeinsky J, Pabelick CM, Prakash YS, Vassallo R, Tschumperlin DJ. RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J Cell Sci 2018; 131:jcs.209932. [PMID: 29678906 DOI: 10.1242/jcs.209932] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Myofibroblasts play key roles in wound healing and pathological fibrosis. Here, we used an RNAi screen to characterize myofibroblast regulatory genes, using a high-content imaging approach to quantify α-smooth muscle actin stress fibers in cultured human fibroblasts. Screen hits were validated on physiological compliance hydrogels, and selected hits tested in primary fibroblasts from patients with idiopathic pulmonary fibrosis. Our RNAi screen led to the identification of STAT3 as an essential mediator of myofibroblast activation and function. Strikingly, we found that STAT3 phosphorylation, while responsive to exogenous ligands on both soft and stiff matrices, is innately active on a stiff matrix in a ligand/receptor-independent, but ROCK- and JAK2-dependent fashion. These results demonstrate how a cytokine-inducible signal can become persistently activated by pathological matrix stiffening. Consistent with a pivotal role for this pathway in driving persistent fibrosis, a STAT3 inhibitor attenuated murine pulmonary fibrosis when administered in a therapeutic fashion after bleomycin injury. Our results identify novel genes essential for the myofibroblast phenotype, and point to STAT3 as an important target in pulmonary fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
- Raymond S Oh
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Karry M J Smith
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tiao Xie
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula R Walters
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A Thompson
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle R Freeman
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Logan J Manlove
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivian M Chu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jürgen Schymeinsky
- Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Christina M Pabelick
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Y S Prakash
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
503
|
αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell Tissue Res 2018; 374:165-175. [PMID: 29725768 PMCID: PMC6132645 DOI: 10.1007/s00441-018-2842-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Mechanosensing of fibroblasts plays a key role in the development of fibrosis. So far, no effective treatments are available to treat this devastating disorder. Spectrins regulate cell morphology and are potential mechanosensors in a variety of non-erythroid cells, but little is known about the role of spectrins in fibroblasts. We investigate whether αII- and βII-spectrin are required for the phenotypic properties of adult human dermal (myo)fibroblasts. Knockdown of αII- or βII-spectrin in fibroblasts did not affect cell adhesion, cell size and YAP nuclear/cytosolic localization. We further investigated whether αII- and βII-spectrin play a role in the phenotypical switch from fibroblasts to myofibroblasts under the influence of the pro-fibrotic cytokine TGFβ1. Knockdown of spectrins did not affect myofibroblast formation, nor did we observe changes in the organization of αSMA stress fibers. Focal adhesion assembly was unaffected by spectrin deficiency, as was collagen type I mRNA expression and protein deposition. Wound closure was unaffected as well, showing that important functional properties of myofibroblasts are unchanged without αII- or βII-spectrin. In fact, fibroblasts stimulated with TGFβ1 demonstrated significantly lower endogenous mRNA levels of αII- and βII-spectrin. Taken together, despite the diverse roles of spectrins in a variety of other cells, αII- and βII-spectrin do not regulate cell adhesion, cell size and YAP localization in human dermal fibroblasts and are not required for the dermal myofibroblast phenotypical switch.
Collapse
|
504
|
Han S, Pang MF, Nelson CM. Substratum stiffness tunes proliferation downstream of Wnt3a in part by regulating integrin-linked kinase and frizzled-1. J Cell Sci 2018; 131:jcs.210476. [PMID: 29588395 DOI: 10.1242/jcs.210476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
The Wnt/β-catenin pathway controls a variety of cellular behaviors, aberrant activation of which are associated with tumor progression in several types of cancer. The same cellular behaviors are also affected by the mechanical properties of the extracellular matrix (ECM) substratum, which induces signaling through integrins and integrin-linked kinase (ILK). Here, we examined the role of substratum stiffness in the regulation of cell proliferation downstream of Wnt3a. We found that treatment with Wnt3a increased proliferation of cells cultured on stiff substrata, with compliances characteristic of breast tumors, but not of cells on soft substrata, with compliances comparable to that of normal mammary tissue. Depleting ILK rendered cells unresponsive to Wnt3a on both substrata. Ectopic expression of ILK permitted Wnt3a to induce proliferation of cells on both microenvironments, although proliferation on soft substrata remained lower than that on stiff substrata. We further showed that ILK regulates expression of the Wnt receptor frizzled-1 (Fzd1), suggesting the presence of a positive feedback loop between Wnt3a, ILK and Fzd1. These findings suggest that tissue mechanics regulates the cellular response to Wnt under physiological and pathological microenvironmental conditions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Siyang Han
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mei-Fong Pang
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA .,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
505
|
Mammoto A, Muyleart M, Kadlec A, Gutterman D, Mammoto T. YAP1-TEAD1 signaling controls angiogenesis and mitochondrial biogenesis through PGC1α. Microvasc Res 2018; 119:73-83. [PMID: 29680477 DOI: 10.1016/j.mvr.2018.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/11/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023]
Abstract
Mitochondria contribute to key processes of cellular function, while mitochondrial dysfunction is implicated in metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, in which angiogenesis - the formation of new blood capillaries - is dysregulated. The Hippo signaling transducer, Yes-associated protein (YAP1) binds to the TEA domain (TEAD1) transcription factor and controls angiogenesis. YAP1 also regulates glucose metabolism through peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC1α), a major player controlling mitochondrial biogenesis. However, the role of YAP1-TEAD1-PGC1α signaling in mitochondrial structure, cellular metabolism, and angiogenesis in endothelial cells (ECs) remains unclear. We now find that knockdown of TEAD1 decreases the expression of PGC1α and suppresses mitochondrial biogenesis, glycolysis, and oxygen consumption in ECs. A YAP1 mutant construct, YAP1S127A, which stimulates binding of YAP1 to TEAD1, upregulates the expression of PGC1α, induces mitochondrial biogenesis, and increases oxygen consumption and glycolytic flux in ECs; in contrast, YAP1S94A, which fails to bind to TEAD1, attenuates these effects. PGC1α knockdown inhibits YAP1S127A-induced EC sprouting in vitro and vascular morphogenesis in the fibrin gel subcutaneously implanted on mice, while overexpression of PGC1α reverses vascular morphogenesis suppressed by YAP1S94A. These results suggest that YAP1-TEAD1 signaling induces mitochondrial biogenesis in ECs and stimulates angiogenesis through PGC1α. Modulation of YAP1-TEAD1-PGC1α signaling in ECs may provide a novel intervention for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Megan Muyleart
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew Kadlec
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tadanori Mammoto
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
506
|
Jang JW, Kim MK, Bae SC. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases 2018; 11:280-288. [PMID: 29457552 DOI: 10.1080/21541248.2018.1435986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) (YAP/TAZ) are transcriptional coactivators that regulate genes involved in proliferation and transformation by interacting with DNA-binding transcription factors. Remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, and metastasis. The oncogenic activity of YAP/TAZ is inhibited by the Hippo cascade, an evolutionarily conserved pathway that is governed by two kinases, mammalian Ste20-like kinases 1/2 (MST1/2) and Large tumor suppressor kinase 1/2 (LATS1/2), corresponding to Drosophila's Hippo (Hpo) and Warts (Wts), respectively. One of the most influential aspects of YAP/TAZ biology is that these factors are transducers of cell structural features, including polarity, shape, and cytoskeletal organization. In turn, these features are intimately related to the cell's ability to attach to other cells and to the surrounding extracellular matrix (ECM), and are also influenced by the cell's microenvironment. Thus, YAP/TAZ respond to changes that occur at the level of whole tissues. Notably, small GTPases act as master organizers of the actin cytoskeleton. Recent studies provided convincing genetic evidence that small GTPase signaling pathways activate YAP/TAZ, while the Hippo pathway inhibits them. Biochemical studies showed that small GTPases facilitate the YAP-Tea domain transcription factor (TEAD) interaction by inhibiting YAP phosphorylation in response to serum stimulation, while the Hippo pathway facilitates the YAP-RUNX3 interaction by increasing YAP phosphorylation. Therefore, small GTPase pathways activate YAP/TAZ by switching its DNA-binding transcription factors. In this review, we summarize the relationship between the Hippo pathway and small GTPase pathways in the regulation of YAP/TAZ.
Collapse
Affiliation(s)
- Ju-Won Jang
- Department of Biochemistry, College of Medicine, Chungbuk National University , Cheongju, South Korea
| | - Min-Kyu Kim
- Department of Biochemistry, College of Medicine, Chungbuk National University , Cheongju, South Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine, Chungbuk National University , Cheongju, South Korea
| |
Collapse
|
507
|
Zhao X, Sun J, Su W, Shan H, Zhang B, Wang Y, Shabanova A, Shan H, Liang H. Melatonin Protects against Lung Fibrosis by Regulating the Hippo/YAP Pathway. Int J Mol Sci 2018; 19:ijms19041118. [PMID: 29642520 PMCID: PMC5979295 DOI: 10.3390/ijms19041118] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial pneumonia with high mortality. Melatonin, a hormone predominantly secreted by the pineal gland, has been reported to participate in the process of IPF. However, the mechanisms underlying the effect of melatonin in pulmonary fibrosis have not been elucidated to date. This study was designed to evaluate the anti-fibrotic role of melatonin in pulmonary fibrosis and to elucidate the potential mechanisms. We observed that melatonin markedly attenuated bleomycin (BLM)-induced experimental lung fibrosis in mice and inhibited TGF-β1-induced fibrogenesis in lung fibroblasts. Additionally, we determined that luzindole, a melatonin receptor inhibitor, reduced the anti-fibrotic effect of melatonin. Further studies showed that melatonin alleviated the translocation of YAP1 from cytoplasm to nucleus, a key downstream effector of the Hippo pathway, in vivo and in vitro by interacting with its receptor. Taken together, our results suggest that melatonin prevents lung fibrosis by inhibiting YAP1 and indicate that melatonin replacement could be a novel strategy for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Bowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Yining Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Azaliia Shabanova
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
- Department of Outpatient and Emergency Pediatric, Bashkir State Medical University, Ground Floor, Teatralnaya Street, 2a, 450000 Ufa, Russia.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
508
|
Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, Zanotti S, Moretti M. Tackling muscle fibrosis: From molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev 2018. [PMID: 29518415 DOI: 10.1016/j.addr.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle fibrosis represents the end stage consequence of different diseases, among which muscular dystrophies, leading to severe impairment of muscle functions. Muscle fibrosis involves the production of several growth factors, cytokines and proteolytic enzymes and is strictly associated to inflammatory processes. Moreover, fibrosis causes profound changes in tissue properties, including increased stiffness and density, lower pH and oxygenation. Up to now, there is no therapeutic approach able to counteract the fibrotic process and treatments directed against muscle pathologies are severely impaired by the harsh conditions of the fibrotic environment. The design of new therapeutics thus need innovative tools mimicking the obstacles posed by the fibrotic environment to their delivery. This review will critically discuss the role of in vivo and 3D in vitro models in this context and the characteristics that an ideal model should possess to help the translation from bench to bedside of new candidate anti-fibrotic agents.
Collapse
|
509
|
Jaffar J, Yang SH, Kim SY, Kim HW, Faiz A, Chrzanowski W, Burgess JK. Greater cellular stiffness in fibroblasts from patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29516782 DOI: 10.1152/ajplung.00030.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease involving degenerative breathing capacity. Fibrotic disease is driven by dysregulation in mechanical forces at the organ, tissue, and cellular level. While it is known that, in certain pathologies, diseased cells are stiffer than healthy cells, it is not known if fibroblasts derived from patients with IPF are stiffer than their normal counterparts. Using IPF patient-derived cell cultures, we measured the stiffness of individual lung fibroblasts via high-resolution force maps using atomic force microscopy. Fibroblasts from patients with IPF were stiffer and had an augmented cytoskeletal response to transforming growth factor-β1 compared with fibroblasts from donors without IPF. The results from this novel study indicate that the increased stiffness of lung fibroblasts of IPF patients may contribute to the increased rigidity of fibrotic lung tissue.
Collapse
Affiliation(s)
- Jade Jaffar
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Austrailia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital , Melbourne , Australia.,Department of Immunology and Pathology, Monash University , Melbourne , Australia
| | - Soung-Hee Yang
- Department of Nanobiomedical Science and Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering and College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Sally Yunsun Kim
- Faculty of Pharmacy, The University of Sydney Nano Institute, The University of Sydney , Sydney , Australia
| | - Hae-Won Kim
- Department of Nanobiomedical Science and Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering and College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Alen Faiz
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Austrailia.,The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,The University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Wojciech Chrzanowski
- Department of Nanobiomedical Science and Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Faculty of Pharmacy, The University of Sydney Nano Institute, The University of Sydney , Sydney , Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Austrailia.,The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Discipline of Pharmacology, The University of Sydney , Sydney , Australia
| |
Collapse
|
510
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
511
|
Zhang X, Fan Q, Li Y, Yang Z, Yang L, Zong Z, Wang B, Meng X, Li Q, Liu J, Li H. Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget 2018; 8:29785-29794. [PMID: 28076850 PMCID: PMC5444703 DOI: 10.18632/oncotarget.14523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
In this study, we examined the expression of core proteins of the Hippo signaling pathway in hepatocellular carcinoma (HCC) cells treated with transforming growth factor-β 1(TGF-β1) and investigated the relationship between TGF-β1 and the Hippo signaling pathway, in order to better understand their roles in HCC and their potential implications for cancer therapy. We prove that the Hippo signaling pathway is involved in the TGF-β1-induced inhibition of the growth of HCC cells. Large tumor suppressor expression (LATS1) was overexpression and yes association protein 1(YAP1) translocated from the nucleus to the cytoplasm in HCC cells treated with TGF-β1. Overexpression of LATS1 and the nucleocytoplasmic translocation of YAP1 play an anti-oncogenetic role in the occurrence and development of liver cancer. Our findings provide new insight into strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China.,Department of Oncology, Tumour Angiogenesis and Microenvironment Laboratory (TAML), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P. R. China
| | - Zhaoguo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Zhihong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, P. R. China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, P. R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, P. R. China
| | - Qin Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
512
|
Yeo MK, Park HS, Park YH, Lee CS, Yoo G, Park DI, Lee JE, Moon JY, Jung SS, Kim JO, Kang D, Cho HJ, Kang MW, Kim JW, Kim SS, Chung C. Expression Pattern of the Hippo Pathway Effector TAZ in Cellular and Fibrotic Nonspecific Interstitial Pneumonia. Chin Med J (Engl) 2018; 131:626-628. [PMID: 29483403 PMCID: PMC5850685 DOI: 10.4103/0366-6999.226059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Yeon Hee Park
- Department of Internal Medicine, Daejeonst Mary's Hospital, College of Medicine, Catholic University, Daejeon 34943, South Korea
| | - Choong-Sik Lee
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Geon Yoo
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Dong Il Park
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Jae Young Moon
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Sung Soo Jung
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Ju Ock Kim
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Dahyun Kang
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu, Daejeon 35015, South Korea
| | - Hyun Jin Cho
- Department of Thoracic Surgery, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Min-Woong Kang
- Department of Thoracic Surgery, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jin-Whan Kim
- Department of Radiology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Song-Soo Kim
- Department of Radiology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Chaeuk Chung
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University, 282, Munhwaro, Jung-gu; Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Jung-guMunhwa-ro 266, Daejeon 35015, South Korea
| |
Collapse
|
513
|
Horowitz JC. Releasing Tensin. Am J Respir Cell Mol Biol 2018; 56:417-418. [PMID: 28362149 DOI: 10.1165/rcmb.2016-0417ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jeffrey C Horowitz
- 1 Division of Pulmonary and Critical Care Medicine University of Michigan Medical School Ann Arbor, Michigan
| |
Collapse
|
514
|
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018; 217:1571-1587. [PMID: 29467174 PMCID: PMC5940296 DOI: 10.1083/jcb.201701039] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Broders-Bondon et al. review the pathological mechanical properties of tumor tissues and how abnormal mechanical signals result in oncogenic biochemical signals during tumor progression. Cancer has been characterized as a genetic disease, associated with mutations that cause pathological alterations of the cell cycle, adhesion, or invasive motility. Recently, the importance of the anomalous mechanical properties of tumor tissues, which activate tumorigenic biochemical pathways, has become apparent. This mechanical induction in tumors appears to consist of the destabilization of adult tissue homeostasis as a result of the reactivation of embryonic developmental mechanosensitive pathways in response to pathological mechanical strains. These strains occur in many forms, for example, hypervascularization in late tumors leads to high static hydrodynamic pressure that can promote malignant progression through hypoxia or anomalous interstitial liquid and blood flow. The high stiffness of tumors directly induces the mechanical activation of biochemical pathways enhancing the cell cycle, epithelial–mesenchymal transition, and cell motility. Furthermore, increases in solid-stress pressure associated with cell hyperproliferation activate tumorigenic pathways in the healthy epithelial cells compressed by the neighboring tumor. The underlying molecular mechanisms of the translation of a mechanical signal into a tumor inducing biochemical signal are based on mechanically induced protein conformational changes that activate classical tumorigenic signaling pathways. Understanding these mechanisms will be important for the development of innovative treatments to target such mechanical anomalies in cancer.
Collapse
Affiliation(s)
- Florence Broders-Bondon
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Thanh Huong Nguyen Ho-Bouldoires
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| |
Collapse
|
515
|
Abstract
PURPOSE OF REVIEW Organ fibrosis is a lethal component of scleroderma. The hallmark of scleroderma fibrosis is extensive extracellular matrix (ECM) deposition by activated myofibroblasts, specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. The purpose of this review is to discuss novel mechanistic insight into myofibroblast activation in scleroderma. RECENT FINDINGS Matrix stiffness, traditionally viewed as an end point of organ fibrosis, is now recognized as a critical regulator of tissue fibrogenesis that hijacks the normal physiologic wound-healing program to promote organ fibrosis. Here, we discuss how matrix stiffness orchestrates fibrosis by controlling three fundamental pro-fibrotic mechanisms: (a) mechanoactivation of myofibroblasts, (b) integrin-mediated latent transforming growth factor beta 1 (TGF-β1) activation, and (c) activation of non-canonical TGF-β1 signaling pathways. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of scleroderma. Future research on mechanobiology of scleroderma may lead to important clinical applications such as improved diagnosis and treatment of patients with scleroderma and other fibrotic-related diseases.
Collapse
|
516
|
Constrictive Bronchiolitis in Cystic Fibrosis Adolescents with Refractory Pulmonary Decline. Ann Am Thorac Soc 2018; 13:2174-2183. [PMID: 27684511 DOI: 10.1513/annalsats.201412-594oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Refractory lung function decline in association with recurrent pulmonary exacerbations is a common, yet poorly explained finding in cystic fibrosis (CF). To investigate the histopathologic mechanisms of pulmonary deterioration during adolescence and early adulthood, we reviewed clinically-indicated lung biopsy specimens obtained during a period of persistent decline. OBJECTIVES To determine if peribronchiolar remodeling is prominent in lung biopsy specimens obtained in adolescents with CF refractory to conventional therapy. METHODS Six adolescents with CF (mean age, 16.2 y; mean FEV1, 52% predicted at biopsy) with significant pulmonary deterioration over 12-24 months (mean FEV1 decline of 14% predicted/year) despite aggressive intervention underwent computed tomography imaging and ultimately lung biopsy to aid clinical management. In addition to routine clinical evaluation, histopathologic investigation included staining for transforming growth factor-β (TGF-β, a genetic modifier of CF lung disease), collagen deposition (a marker of fibrosis), elastin (to evaluate for bronchiectasis), and α-smooth muscle actin (to identify myofibroblasts). MEASUREMENTS AND MAIN RESULTS All computed tomography scans demonstrated a mix of bronchiectasis and hyperinflation that was variable across lung regions and within patients. Lung biopsy revealed significant peribronchiolar remodeling, particularly in patients with more advanced disease, with near complete obliteration of the peribronchiolar lumen (constrictive bronchiolitis). Myofibroblast differentiation (a TGF-β-dependent process) was prominent in specimens with significant airway remodeling. CONCLUSIONS Constrictive bronchiolitis is widely present in the lung tissue of adolescents with CF with advanced disease and may contribute to impaired lung function that is refractory to conventional therapy (antibiotics, antiinflammatories, and mucolytics). TGF-β-dependent myofibroblast differentiation is prominent in areas of active fibrogenesis and may foster small airway remodeling in CF lung disease.
Collapse
|
517
|
Chen P, Luo Q, Huang C, Gao Q, Li L, Chen J, Chen B, Liu W, Zeng W, Chen Z. Pathogenesis of non-alcoholic fatty liver disease mediated by YAP. Hepatol Int 2018; 12:26-36. [PMID: 29330836 DOI: 10.1007/s12072-017-9841-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/27/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to investigate the mechanism of the interaction between Yes-associated protein (YAP) and transforming growth factor-β (TGF-β)/Smad signaling pathways in the development of non-alcoholic fatty liver disease (NAFLD). METHODS Serum samples of monkeys with biopsy-proven NAFLD and healthy normal monkeys were used to measure fasting plasma glucose (FPG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG) and albumin (ALB) with the BECKMAN CX5 PRO. Hematoxylin-eosin staining (H&E) was used for pathologic analysis, Masson trichrome staining was used to assess for fibrosis staging, and Oil Red O staining was used to detect lipid droplet deposition. According to an NAFLD activity score of < 4 points and > 4 points, the samples were divided into groups: the steatosis group and fibrosing NASH group. Furthermore, monkeys with a fibrosis stage < 2 were assigned to the mild fibrosis group, while monkeys with fibrosis stage ≥ 2 were assigned to the significant fibrosis group. Moreover, the fibrosis stage was subdivided as follows: stages 1a, 1c and 2-3. Immunohistochemistry and real-time quantitative PCR were used to quantify protein and gene expression, respectively. RESULTS In the present study, 54 monkeys with NAFLD and 23 normal monkeys were recruited. Serum FPG and TG levels were higher in fibrosing NASH monkeys compared with simple steatosis and normal monkeys, and differences between simple steatosis and normal monkeys were not statistically significant (p > 0.05). YAP increased in NAFLD, which mainly localized in the nuclei of hepatocytes, perivascular cells and bile duct cells; the accumulation of YAP correlated with the severity of hepatocyte injury. Compared with normal monkeys, the expression of TGF-β, α-smooth muscle actin (α-SMA), Drosophila mothers against decapentaplegic protein 3 (Smad3) and connective tissue growth factor (CTGF) in the liver of simple steatosis monkeys significantly increased (p < 0.01). Compared with simple steatosis monkeys, the expression of TGF-β, α-SMA, Smad3 and CTGF in fibrosing NASH significantly increased (p < 0.01). However, the expression of Drosophila mothers against decapentaplegic protein 7 (Smad7) in the liver of fibrosing NASH monkeys significantly decreased (p < 0.01). With the severity of liver fibrosis, the expression of TGF-β, α-SMA, Smad3 and CTGF gradually increased, and the difference was statistically significant (p < 0.01). However, there was no significant difference in the expression of Smad3 between fibrosis stage 1a and 1c. Compared with normal monkeys, the expression of Smad7 in the liver of monkeys with fibrosis significantly decreased (p < 0.01), but was significantly higher at fibrosis stage 1c than at fibrosis stage 1a and 2. CONCLUSION The YAP and TGF-β signaling pathways and the interaction between them promote the development and progression of NAFLD.
Collapse
Affiliation(s)
- Ping Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qi Gao
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Like Li
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingfei Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bing Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Wen Zeng
- Sichuan Primed Biological Technology Co., Ltd/National Experimental Macaque Reproduce Laboratory, Ya'an, 625014, Sichuan, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
518
|
Anorga S, Overstreet JM, Falke LL, Tang J, Goldschmeding RG, Higgins PJ, Samarakoon R. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. FASEB J 2018; 32:2644-2657. [PMID: 29298862 DOI: 10.1096/fj.201700722r] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), nuclear transducers of the Hippo pathway, are mostly silent in adult organs, aberrant activation of YAP/TAZ promotes tumorigenesis and abnormal tissue repair. The extent of involvement of TAZ in chronic kidney disease (CKD) is unknown. In our study, increased TAZ nuclear accumulation and expression in the tubulointerstitium was readily evident in 3 models of renal injury including obstructive, aristolochic acid (AA), and diabetic nephropathy, correlating with fibrosis progression. Stable TAZ overexpression in human kidney (HK)-2 epithelial cells promoted connective tissue growth factor (CTGF), fibronectin, vimentin, and p21 expression, epithelial dedifferentiation, and growth inhibition, in part, via Sma mothers against decapentaplegic homologue (SMAD)-3-dependent CTGF induction. CTGF secretion by TAZ-overexpressing epithelium also triggered proliferative defects in nonengineered HK-2 cells confirming a nonautonomous role of TAZ ( via a paracrine mechanism) in orchestrating kidney epithelial cell-cell communication. Renal tubular-specific induction of TGF-β1 in mice and TGF-β1 stimulation of HK-2 cells resulted in TAZ protein up-regulation. TAZ stable silencing in HK-2 cells abrogated TGF-β1-induced expression of target genes without affecting SMAD3 phosphorylation, which is also crucial for fibrotic reprogramming. Thus, TAZ was activated in fibrosis through TGF-β1-dependent mechanisms and sustained TAZ signaling promotes epithelial maladaptive repair. TAZ is also a novel non-SMAD downstream effector of renal TGF-β1 signaling, establishing TAZ as a new antifibrosis target for treatment of CKD.-Anorga, S., Overstreet, J. M., Falke, L. L., Tang, J., Goldschmeding, R. G., Higgins, P. J., Samarakoon, R. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype.
Collapse
Affiliation(s)
- Sandybell Anorga
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, New York, USA
| | - Jessica M Overstreet
- Division of Nephrology and Hypertension, Vanderbilt Medical School, Nashville, Tennessee, USA
| | - Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, New York, USA
| | - Roel G Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, New York, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, New York, USA
| |
Collapse
|
519
|
Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci Transl Med 2018; 10:10/422/eaao0475. [DOI: 10.1126/scitranslmed.aao0475] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Tissues stiffen during aging and during the pathological progression of cancer, fibrosis, and cardiovascular disease. Extracellular matrix stiffness is emerging as a prominent mechanical cue that precedes disease and drives its progression by altering cellular behaviors. Targeting extracellular matrix mechanics, by preventing or reversing tissue stiffening or interrupting the cellular response, is a therapeutic approach with clinical potential. Major drivers of changes to the mechanical properties of the extracellular matrix include phenotypically converted myofibroblasts, transforming growth factor β (TGFβ), and matrix cross-linking. Potential pharmacological interventions to overcome extracellular matrix stiffening are emerging clinically. Aside from targeting stiffening directly, alternative approaches to mitigate the effects of increased matrix stiffness aim to identify and inhibit the downstream cellular response to matrix stiffness. Therapeutic interventions that target tissue stiffening are discussed in the context of their limitations, preclinical drug development efforts, and clinical trials.
Collapse
|
520
|
Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest 2018; 128:85-96. [PMID: 29293095 PMCID: PMC5749503 DOI: 10.1172/jci93562] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell loss alters a tissue's optimal function and awakens evolutionarily adapted healing mechanisms to reestablish homeostasis. Although adult mammalian organs have a limited regeneration potential, the liver stands out as one remarkable exception. Following injury, the liver mounts a dynamic multicellular response wherein stromal cells are activated in situ and/or recruited from the bloodstream, the extracellular matrix (ECM) is remodeled, and epithelial cells expand to replenish their lost numbers. Chronic damage makes this response persistent instead of transient, tipping the system into an abnormal steady state known as fibrosis, in which ECM accumulates excessively and tissue function degenerates. Here we explore the cellular and molecular switches that balance hepatic regeneration and fibrosis, with a focus on uncovering avenues of disease modeling and therapeutic intervention.
Collapse
|
521
|
Chen PC, Lee WY, Ling HH, Cheng CH, Chen KC, Lin CW. Activation of fibroblasts by nicotine promotes the epithelial-mesenchymal transition and motility of breast cancer cells. J Cell Physiol 2018; 233:4972-4980. [DOI: 10.1002/jcp.26334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Pin-Cyuan Chen
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Wen-Ying Lee
- Department of Cytopathology; Chi Mei Medical Center; Tainan Taiwan
- Department of Pathology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Hsiang-Hsi Ling
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
- Center for Cell Therapy and Regeneration Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
522
|
Abstract
Intratumoral fibrosis results from the deposition of a cross-linked collagen matrix by cancer-associated fibroblasts (CAFs). This type of fibrosis has been shown to exert mechanical forces and create a biochemical milieu that, together, shape intratumoral immunity and influence tumor cell metastatic behavior. In this Review, we present recent evidence that CAFs and tumor cells are regulated by provisional matrix molecules, that metastasis results from a change in the type of stromal collagen cross-link, and that fibrosis and inflammation perpetuate each other through proteolytic and chemotactic mediators released into the tumor stroma. We also discuss aspects of the emerging biology that have potential therapeutic value.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Sciences and School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
523
|
Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 2018; 128:45-53. [PMID: 29293088 DOI: 10.1172/jci93557] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is dynamically tuned to optimize physiological function. Its major properties, including composition and mechanics, profoundly influence cell biology. Cell-ECM interactions operate through an integrated set of sensor and effector circuits that use several classes of receptors and signal transduction pathways. At the single-cell level, the ECM governs differentiation, metabolism, motility, orientation, proliferation, and survival. At the cell population level, the ECM provides higher-order guidance that is essential for physiological function. When pathological changes in the ECM lead to impairment of organ function, we use the term "fibrosis." In this Review, we differentiate fibrosis initiation from progression and focus primarily on progressive lung fibrosis impairing organ function. We present a working model to explain how the altered ECM is not only a consequence but also a driver of fibrosis. Additionally, we advance the concept that fibrosis progression occurs in a fibrogenic niche that is composed of a fibrogenic ECM that nurtures fibrogenic mesenchymal progenitor cells and their fibrogenic progeny.
Collapse
|
524
|
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128:74-84. [PMID: 29293092 DOI: 10.1172/jci93561] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue injury disrupts the mechanical homeostasis that underlies normal tissue architecture and function. The failure to resolve injury and restore homeostasis gives rise to progressive fibrosis that is accompanied by persistent alterations in the mechanical environment as a consequence of pathological matrix deposition and stiffening. This Review focuses on our rapidly growing understanding of the molecular mechanisms linking the altered mechanical environment in injury, repair, and fibrosis to cellular activation. In particular, our focus is on the mechanisms by which cells transduce mechanical signals, leading to transcriptional and epigenetic responses that underlie both transient and persistent alterations in cell state that contribute to fibrosis. Translation of these mechanobiological insights may enable new approaches to promote tissue repair and arrest or reverse fibrotic tissue remodeling.
Collapse
Affiliation(s)
| | | | - Moira B Hilscher
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
525
|
Kim P, Chu N, Davis J, Kim DH. Mechanoregulation of Myofibroblast Fate and Cardiac Fibrosis. ADVANCED BIOSYSTEMS 2018; 2:1700172. [PMID: 31406913 PMCID: PMC6690497 DOI: 10.1002/adbi.201700172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During myocardial infarction, myocytes die and are replaced by a specialized fibrotic extracellular matrix, otherwise known as scarring. Fibrotic scarring presents a tremendous hemodynamic burden on the heart, as it creates a stiff substrate, which resists diastolic filling. Fibrotic mechanisms result in permanent scarring which often leads to hypertrophy, arrhythmias, and a rapid progression to failure. Despite the deep understanding of fibrosis in other tissues, acquired through previous investigations, the mechanisms of cardiac fibrosis remain unclear. Recent studies suggest that biochemical cues as well as mechanical cues regulate cells in myocardium. However, the steps in myofibroblast transdifferentiation, as well as the molecular mechanisms of such transdifferentiation in vivo, are poorly understood. This review is focused on defining myofibroblast physiology, scar mechanics, and examining current findings of myofibroblast regulation by mechanical stress, stiffness, and topography for understanding fibrotic disease dynamics.
Collapse
Affiliation(s)
- Peter Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Nick Chu
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
526
|
Haak AJ, Tan Q, Tschumperlin DJ. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol 2017; 73:64-76. [PMID: 29274939 DOI: 10.1016/j.matbio.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/09/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The composition and mechanical properties of the extracellular matrix are dramatically altered during the development and progression of pulmonary fibrosis. Recent evidence indicates that these changes in matrix composition and mechanics are not only end-results of fibrotic remodeling, but active participants in driving disease progression. These insights have stimulated interest in identifying the components and physical aspects of the matrix that contribute to cell activation and disease initiation and progression. This review summarizes current knowledge regarding the biomechanics and dynamics of the ECM in mouse models and human IPF, and discusses how matrix mechanical and compositional changes might be non-invasively assessed, therapeutically targeted, and biologically restored to resolve fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States.
| |
Collapse
|
527
|
Asaoka Y, Furutani-Seiki M. YAP mediated mechano-homeostasis - conditioning 3D animal body shape. Curr Opin Cell Biol 2017; 49:64-70. [PMID: 29253723 DOI: 10.1016/j.ceb.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/28/2017] [Indexed: 01/27/2023]
Abstract
Cells of terrestrial animals are constantly exposed to external forces including gravity. However, the complex 3D structure of the body and its organs form without being flattened. A century ago, the mathematical biologist D'Arcy Thompson predicted in 'On Growth and Form' that terrestrial animal body shapes are entirely conditioned by gravity [1], but the prediction remained to be proved due to the lack of an appropriate animal model. In this review, we outline a new mechanism of morphogenesis which ensures the generation of vertebrate 3D body shape that can withstand gravity and in which Hippo-YAP signaling acts as a mechano-effector controlling mechano-homeostasis. We will highlight the recent papers that advanced the field and discuss the impact of this previously unrecognized function of YAP-mediated signaling on the established concept of organogenesis, tissue homeostasis and disease.
Collapse
Affiliation(s)
- Yoichi Asaoka
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, Japan
| | - Makoto Furutani-Seiki
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Japan.
| |
Collapse
|
528
|
Lagares D, Santos A, Grasberger PE, Liu F, Probst CK, Rahimi RA, Sakai N, Kuehl T, Ryan J, Bhola P, Montero J, Kapoor M, Baron M, Varelas X, Tschumperlin DJ, Letai A, Tager AM. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med 2017; 9:eaal3765. [PMID: 29237758 PMCID: PMC8520471 DOI: 10.1126/scitranslmed.aal3765] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/28/2017] [Accepted: 10/30/2017] [Indexed: 08/26/2023]
Abstract
Persistent myofibroblast activation distinguishes pathological fibrosis from physiological wound healing, suggesting that therapies selectively inducing myofibroblast apoptosis could prevent progression and potentially reverse established fibrosis in diseases such as scleroderma, a heterogeneous autoimmune disease characterized by multiorgan fibrosis. We demonstrate that fibroblast-to-myofibroblast differentiation driven by matrix stiffness increases the mitochondrial priming (proximity to the apoptotic threshold) of these activated cells. Mitochondria in activated myofibroblasts, but not quiescent fibroblasts, are primed by death signals such as the proapoptotic BH3-only protein BIM, which creates a requirement for tonic expression of the antiapoptotic protein BCL-XL to sequester BIM and ensure myofibroblast survival. Myofibroblasts become particularly susceptible to apoptosis induced by "BH3 mimetic" drugs inhibiting BCL-XL such as ABT-263. ABT-263 displaces BCL-XL binding to BIM, allowing BIM to activate apoptosis on stiffness-primed myofibroblasts. Therapeutic blockade of BCL-XL with ABT-263 (navitoclax) effectively treats established fibrosis in a mouse model of scleroderma dermal fibrosis by inducing myofibroblast apoptosis. Using a BH3 profiling assay to assess mitochondrial priming in dermal fibroblasts derived from patients with scleroderma, we demonstrate that the extent of apoptosis induced by BH3 mimetic drugs correlates with the extent of their mitochondrial priming, indicating that BH3 profiling could predict apoptotic responses of fibroblasts to BH3 mimetic drugs in patients with scleroderma. Together, our findings elucidate the potential efficacy of targeting myofibroblast antiapoptotic proteins with BH3 mimetic drugs in scleroderma and other fibrotic diseases.
Collapse
Affiliation(s)
- David Lagares
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Alba Santos
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Paula E Grasberger
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Fei Liu
- Molecular and Integrative Physiological Sciences Program, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Clemens K Probst
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rod A Rahimi
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Norihiko Sakai
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Division of Nephrology and Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Tobias Kuehl
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Bhola
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joan Montero
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network and Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Murray Baron
- Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Daniel J Tschumperlin
- Molecular and Integrative Physiological Sciences Program, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew M Tager
- Fibrosis Research Center and Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
529
|
Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017; 18:758-770. [PMID: 28951564 PMCID: PMC6192510 DOI: 10.1038/nrm.2017.87] [Citation(s) in RCA: 915] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence suggests that mechanical signals emanating from the cell's microenvironment are fundamental regulators of cell behaviour. Moreover, at the macroscopic scale, the influence of forces, such as the forces generated by blood flow, muscle contraction, gravity and overall tissue rigidity (for example, inside of a tumour lump), is central to our understanding of physiology and disease pathogenesis. Still, how mechanical cues are sensed and transduced at the molecular level to regulate gene expression has long remained enigmatic. The identification of the transcription factors YAP and TAZ as mechanotransducers started to fill this gap. YAP and TAZ read a broad range of mechanical cues, from shear stress to cell shape and extracellular matrix rigidity, and translate them into cell-specific transcriptional programmes. YAP and TAZ mechanotransduction is critical for driving stem cell behaviour and regeneration, and it sheds new light on the mechanisms by which aberrant cell mechanics is instrumental for the onset of multiple diseases, such as atherosclerosis, fibrosis, pulmonary hypertension, inflammation, muscular dystrophy and cancer.
Collapse
Affiliation(s)
- Tito Panciera
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| |
Collapse
|
530
|
Jiang L, Sun L, Edwards G, Manley M, Wallace DP, Septer S, Manohar C, Pritchard MT, Apte U. Increased YAP Activation Is Associated With Hepatic Cyst Epithelial Cell Proliferation in ARPKD/CHF. Gene Expr 2017; 17:313-326. [PMID: 28915934 PMCID: PMC5705408 DOI: 10.3727/105221617x15034976037343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal recessive polycystic kidney disease/congenital hepatic fibrosis (ARPKD/CHF) is a rare but fatal genetic disease characterized by progressive cyst development in the kidneys and liver. Liver cysts arise from aberrantly proliferative cholangiocytes accompanied by pericystic fibrosis and inflammation. Yes-associated protein (YAP), the downstream effector of the Hippo signaling pathway, is implicated in human hepatic malignancies such as hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma, but its role in hepatic cystogenesis in ARPKD/CHF is unknown. We studied the role of the YAP in hepatic cyst development using polycystic kidney (PCK) rats, an orthologous model of ARPKD, and in human ARPKD/CHF patients. The liver cyst wall epithelial cells (CWECs) in PCK rats were highly proliferative and exhibited expression of YAP. There was increased expression of YAP target genes, Ccnd1 (cyclin D1) and Ctgf (connective tissue growth factor), in PCK rat livers. Extensive expression of YAP and its target genes was also detected in human ARPKD/CHF liver samples. Finally, pharmacological inhibition of YAP activity with verteporfin and short hairpin (sh) RNA-mediated knockdown of YAP expression in isolated liver CWECs significantly reduced their proliferation. These data indicate that increased YAP activity, possibly through dysregulation of the Hippo signaling pathway, is associated with hepatic cyst growth in ARPKD/CHF.
Collapse
Affiliation(s)
- Lu Jiang
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lina Sun
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Genea Edwards
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Manley
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P. Wallace
- †Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- §Department of Gastroenterology, Children’s Mercy Hospital, Kansas City, KS, USA
| | - Chirag Manohar
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
531
|
Vallée A, Lecarpentier Y, Vallée JN. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. Int J Mol Sci 2017; 18:ijms18122537. [PMID: 29186898 PMCID: PMC5751140 DOI: 10.3390/ijms18122537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β) signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 86021 Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 86021 Poitiers, France.
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80025 Amiens, France.
| |
Collapse
|
532
|
Watt KI, Harvey KF, Gregorevic P. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Front Physiol 2017; 8:942. [PMID: 29225579 PMCID: PMC5705614 DOI: 10.3389/fphys.2017.00942] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field.
Collapse
Affiliation(s)
- Kevin I Watt
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Kieran F Harvey
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.,Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
533
|
Landry NM, Cohen S, Dixon IMC. Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic Res Cardiol 2017; 113:1. [PMID: 29101484 DOI: 10.1007/s00395-017-0659-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
Tissue development and homeostasis are dependent upon the concerted synthesis, maintenance, and degradation of extracellular matrix (ECM) molecules. Cardiac fibrosis is now recognized as a primary contributor to incidence of heart failure, particularly heart failure with preserved ejection fraction, wherein cardiac filling in diastole is compromised. Periostin is a cell-associated protein involved in cell fate determination, proliferation, tumorigenesis, and inflammatory responses. As a non-structural component of the ECM, secreted 90 kDa periostin is emerging as an important matricellular factor in cardiac mesenchymal tissue development. In addition, periostin's role as a mediator in cell-matrix crosstalk has also garnered attention for its association with fibroproliferative diseases in the myocardium, and for its association with TGF-β/BMP signaling. This review summarizes the phylogenetic history of periostin, its role in cardiac development, and the major signaling pathways influencing its expression in cardiovascular pathology. Further, we provide a synthesis of the current literature to distinguish the multiple roles of periostin in cardiac health, development and disease. As periostin may be targeted for therapeutic treatment of cardiac fibrosis, these insights may shed light on the putative timing for application of periostin-specific therapies.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada
| | - Smadar Cohen
- Regenerative Medicine and Stem Cell Research Center, Ilse Katz Institute for Nanoscale Science and Technology, Beersheba, Israel.,Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada. .,Laboratory of Molecular Cardiology, St. Boniface Hospital Albrechtsen Research Centre, R3010-351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
534
|
Garlíková Z, Silva AC, Rabata A, Potěšil D, Ihnatová I, Dumková J, Koledová Z, Zdráhal Z, Vinarský V, Hampl A, Pinto-do-Ó P, Nascimento DS. Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk. Tissue Eng Part C Methods 2017; 24:1-13. [PMID: 28895470 DOI: 10.1089/ten.tec.2017.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Collapse
Affiliation(s)
- Zuzana Garlíková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Ana Catarina Silva
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal .,6 Gladstone Institutes, University of California San Francisco , San Francisco, California
| | - Anas Rabata
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - David Potěšil
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Ivana Ihnatová
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Jana Dumková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zuzana Koledová
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zbyněk Zdráhal
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Vladimír Vinarský
- 2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Aleš Hampl
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Perpétua Pinto-do-Ó
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal
| | - Diana Santos Nascimento
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal
| |
Collapse
|
535
|
Lecarpentier Y, Schussler O, Claes V, Vallée A. The Myofibroblast: TGFβ-1, A Conductor which Plays a Key Role in Fibrosis by Regulating the Balance between PPARγ and the Canonical WNT Pathway. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEP), Meaux, France
| | - Olivier Schussler
- Department of Cardiovascular Surgery, Cardiovascular Research Laboratory, HUG/CMU, Geneva, Switzerland
| | - Victor Claes
- Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
| |
Collapse
|
536
|
TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci 2017; 18:ijms18102157. [PMID: 29039786 PMCID: PMC5666838 DOI: 10.3390/ijms18102157] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Fibrotic diseases are characterized by net accumulation of extracellular matrix proteins in affected organs leading to their dysfunction and ultimate failure. Myofibroblasts have been identified as the cells responsible for the progression of the fibrotic process, and they originate from several sources, including quiescent tissue fibroblasts, circulating CD34⁺ fibrocytes and the phenotypic conversion of various cell types into activated myofibroblasts. Several studies have demonstrated that endothelial cells can transdifferentiate into mesenchymal cells through a process termed endothelial- mesenchymal transition (EndMT) and that this can give rise to activated myofibroblasts involved in the development of fibrotic diseases. Transforming growth factor β (TGF-β) has a central role in fibrogenesis by modulating the fibroblast phenotype and function, inducing myofibroblast transdifferentiation and promoting matrix accumulation. In addition, TGF-β by inducing EndMT may further contribute to the development of fibrosis. Despite extensive investigation of the pathogenesis of fibrotic diseases, no effective treatment strategies are available. Delineation of the mechanisms responsible for initiation and progression of fibrotic diseases is crucial for the development of therapeutic strategies for the treatment of the disease. In this review, we summarize the role of the TGF-β signaling pathway and EndMT in the development of fibrotic diseases and discuss their therapeutic potential.
Collapse
|
537
|
Hippo signalling in intestinal regeneration and cancer. Curr Opin Cell Biol 2017; 48:17-25. [DOI: 10.1016/j.ceb.2017.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022]
|
538
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
539
|
Du YE, Tu G, Yang G, Li G, Yang D, Lang L, Xi L, Sun K, Chen Y, Shu K, Liao H, Liu M, Hou Y. MiR-205/YAP1 in Activated Fibroblasts of Breast Tumor Promotes VEGF-independent Angiogenesis through STAT3 Signaling. Theranostics 2017; 7:3972-3988. [PMID: 29109792 PMCID: PMC5667419 DOI: 10.7150/thno.18990] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment contributes to tumor angiogenesis. However, the role of the activated cancer associated-fibroblasts (CAFs) in angiogenesis is still unclear. Here we report that miR-205/YAP1 signaling in the activated stromal fibroblasts plays a critical role in VEGF-independent angiogenesis in breast tumor. Methods: miR-205 expression was assessed by quantitative real-time polymerase chain reaction (qRT-PCR); YAP1 expression by qRT-PCR, western blotting and immunohistochemistry; IL11 and IL15 expression by qRT-PCR, western blotting and ELISA. Tube formation and three-dimensioned sprouting assays in vitro, and orthotopic Xenografts in vivo were conducted as angiogenesis experiments. The mechanism of miR-205/YAP1-mediated tumor angiogenesis was analyzed via overexpression and shRNA, siRNA, or antibody neutralization experiments in combination with anti-VEGF antibody or Axitinib. Results: miR-205/YAP1 signaling axis activates breast normal fibroblasts (NFs) into CAFs, promotes tubule formation and sprouting of Human Umbilical Vein Endothelial Cells (HUVECs). Rescue of miR-205 in CAFs blunts angiogenesis processes. YAP1, a target of miR-205, does not regulate VEGF expression but specifically enhances IL11 and IL15 expressions, maintaining tumor angiogenesis even in the presence of Axitinib or after exhaustion of VEGF by neutralizing VEGF antibody. IL11 and IL15 released from CAFs activate STAT3 signaling in HUVECs. Blockage of IL11 and IL15 expression in CAFs results in the inactivation of STAT3-signaling in HUVECs and repression of the CAF-induced angiogenesis. The blunt angiogenesis halts the invasion and metastasis of breast cancer cells in vivo. Conclusions: These results provide a novel insight into breast CAF-induced tumor angiogenesis in a VEGF-independent manner.
Collapse
|
540
|
Toyama T, Looney AP, Baker BM, Stawski L, Haines P, Simms R, Szymaniak AD, Varelas X, Trojanowska M. Therapeutic Targeting of TAZ and YAP by Dimethyl Fumarate in Systemic Sclerosis Fibrosis. J Invest Dermatol 2017; 138:78-88. [PMID: 28870693 DOI: 10.1016/j.jid.2017.08.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Systemic sclerosis (scleroderma, SSc) is a devastating fibrotic disease with few treatment options. Fumaric acid esters, including dimethyl fumarate (DMF, Tecfidera; Biogen, Cambridge, MA), have shown therapeutic effects in several disease models, prompting us to determine whether DMF is effective as a treatment for SSc dermal fibrosis. We found that DMF blocks the profibrotic effects of transforming growth factor-β (TGFβ) in SSc skin fibroblasts. Mechanistically, we found that DMF treatment reduced nuclear localization of transcriptional coactivator with PDZ binding motif (TAZ) and Yes-associated protein (YAP) proteins via inhibition of the phosphatidylinositol 3 kinase/protein kinase B (Akt) pathway. In addition, DMF abrogated TGFβ/Akt1 mediated inhibitory phosphorylation of glycogen kinase 3β (GSK3β) and a subsequent β-transducin repeat-containing proteins (βTRCP) mediated proteasomal degradation of TAZ, as well as a corresponding decrease of TAZ/YAP transcriptional targets. Depletion of TAZ/YAP recapitulated the antifibrotic effects of DMF. We also confirmed the increase of TAZ/YAP in skin biopsies from patients with diffuse SSc. We further showed that DMF significantly diminished nuclear TAZ/YAP localization in fibroblasts cultured on a stiff surface. Importantly, DMF prevented bleomycin-induced skin fibrosis in mice. Together, our work demonstrates a mechanism of the antifibrotic effect of DMF via inhibition of Akt1/GSK3β/TAZ/YAP signaling and confirms a critical role of TAZ/YAP in mediating the profibrotic responses in dermal fibroblasts. This study supports the use of DMF as a treatment for SSc dermal fibrosis.
Collapse
Affiliation(s)
- Tetsuo Toyama
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnieszka P Looney
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Paul Haines
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Robert Simms
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aleksander D Szymaniak
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
541
|
Dieffenbach PB, Haeger CM, Coronata AMF, Choi KM, Varelas X, Tschumperlin DJ, Fredenburgh LE. Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. Am J Physiol Lung Cell Mol Physiol 2017; 313:L628-L647. [PMID: 28642262 PMCID: PMC5625262 DOI: 10.1152/ajplung.00173.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH) and plays a critical role in PH pathophysiology. Our laboratory has recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiological feedback loop by which arterial stiffening promotes further cellular remodeling behaviors (Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AM, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinković A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. JCI Insight 1: e86987, 2016). Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The present work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1, a.k.a., TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately threefold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The ability to interrupt this critical mechanobiological feedback loop and enhance local prostaglandin activity via manipulation of YAP/TAZ signaling presents a highly attractive novel strategy for the treatment of PH.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Christina Mallarino Haeger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anna Maria F Coronata
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| |
Collapse
|
542
|
Penumatsa KC, Toksoz D, Warburton RR, Kharnaf M, Preston IR, Kapur NK, Khosla C, Hill NS, Fanburg BL. Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 313:L752-L762. [PMID: 28775095 DOI: 10.1152/ajplung.00170.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022] Open
Abstract
Tissue matrix remodeling and fibrosis leading to loss of pulmonary arterial and right ventricular compliance are important features of both experimental and clinical pulmonary hypertension (PH). We have previously reported that transglutaminase 2 (TG2) is involved in PH development while others have shown it to be a cross-linking enzyme that participates in remodeling of extracellular matrix in fibrotic diseases in general. In the present studies, we used a mouse model of experimental PH (Sugen 5416 and hypoxia; SuHypoxia) and cultured primary human cardiac and pulmonary artery adventitial fibroblasts to evaluate the relationship of TG2 to the processes of fibrosis, protein cross-linking, extracellular matrix collagen accumulation, and fibroblast-to-myofibroblast transformation. We report here that TG2 expression and activity as measured by serotonylated fibronectin and protein cross-linking activity along with fibrogenic markers are significantly elevated in lungs and right ventricles of SuHypoxic mice with PH. Similarly, TG2 expression and activity, protein cross-linking activity, and fibrogenic markers are significantly increased in cultured cardiac and pulmonary artery adventitial fibroblasts in response to hypoxia exposure. Pharmacological inhibition of TG2 activity with ERW1041E significantly reduced hypoxia-induced cross-linking activity and synthesis of collagen 1 and α-smooth muscle actin in both the in vivo and in vitro studies. TG2 short interfering RNA had a similar effect in vitro. Our results suggest that TG2 plays an important role in hypoxia-induced pulmonary and right ventricular tissue matrix remodeling in the development of PH.
Collapse
Affiliation(s)
- Krishna C Penumatsa
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Rod R Warburton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Mousa Kharnaf
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Ioana R Preston
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Navin K Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts; and
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Barry L Fanburg
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts;
| |
Collapse
|
543
|
Liang M, Yu M, Xia R, Song K, Wang J, Luo J, Chen G, Cheng J. Yap/Taz Deletion in Gli + Cell-Derived Myofibroblasts Attenuates Fibrosis. J Am Soc Nephrol 2017; 28:3278-3290. [PMID: 28768710 DOI: 10.1681/asn.2015121354] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
In damaged kidneys, increased extracellular matrix (ECM) and tissue stiffness stimulate kidney fibrosis through incompletely characterized molecular mechanisms. The transcriptional coactivators yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) function as mechanosensors in cancer cells and have been implicated in the regulation of myofibroblasts in the kidney. We hypothesized that the development of kidney fibrosis depends on Yap-induced activation and proliferation of kidney fibroblasts. In mice, Yap expression increased in renal fibroblasts after unilateral ureteral obstruction (UUO), in association with worsening of interstitial fibrosis. In cultured fibroblasts, inhibition of Yap/Taz signaling blocked TGF-β1-induced fibroblast-to-myofibroblast transformation and ECM production, whereas constitutive activation of Yap promoted fibroblast transformation and ECM production even in the absence of TGF-β1. Moreover, in the absence of TGF-β1, fibroblasts seeded on a stiffened ECM transformed into myofibroblasts in a process dependent on the activation of Yap. In mice with UUO, the Yap inhibitor verteporfin reduced interstitial fibrosis. Furthermore, Gli1+ cell-specific knockout of Yap/Taz in mice suppressed UUO-induced ECM deposition, myofibroblast accumulation, and interstitial fibrosis. In a UUO-release model, induction of Gli1+ cell-specific Yap/Taz knockout partially reversed the development of interstitial fibrosis. Thus, in the kidney, Yap is a tissue mechanosensor that can be activated by ECM and transforms fibroblasts into myofibroblasts; the interaction of Yap/Taz and ECM forms a feed-forward loop resulting in kidney fibrosis. Identifying mechanisms that interrupt this profibrotic cycle could lead to the development of anti-fibrosis therapy.
Collapse
Affiliation(s)
- Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; and.,Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Michael Yu
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Ruohan Xia
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Ke Song
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Jun Wang
- Molecular Physiology, Baylor College of Medicine, Houston, Texas
| | - Jinlong Luo
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Guang Chen
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Jizhong Cheng
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| |
Collapse
|
544
|
Miranda MZ, Bialik JF, Speight P, Dan Q, Yeung T, Szászi K, Pedersen SF, Kapus A. TGF-β1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. J Biol Chem 2017; 292:14902-14920. [PMID: 28739802 DOI: 10.1074/jbc.m117.780502] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Hippo pathway transcriptional coactivators TAZ and YAP and the TGF-β1 (TGFβ) effector Smad3 regulate a common set of genes, can physically interact, and exhibit multilevel cross-talk regulating cell fate-determining and fibrogenic pathways. However, a key aspect of this cross-talk, TGFβ-mediated regulation of TAZ or YAP expression, remains uncharacterized. Here, we show that TGFβ induces robust TAZ but not YAP protein expression in both mesenchymal and epithelial cells. TAZ levels, and to a lesser extent YAP levels, also increased during experimental kidney fibrosis. Pharmacological or genetic inhibition of Smad3 did not prevent the TGFβ-induced TAZ up-regulation, indicating that this canonical pathway is dispensable. In contrast, inhibition of p38 MAPK, its downstream effector MK2 (e.g. by the clinically approved antifibrotic pirferidone), or Akt suppressed the TGFβ-induced TAZ expression. Moreover, TGFβ elevated TAZ mRNA in a p38-dependent manner. Myocardin-related transcription factor (MRTF) was a central mediator of this effect, as MRTF silencing/inhibition abolished the TGFβ-induced TAZ expression. MRTF overexpression drove the TAZ promoter in a CC(A/T-rich)6GG (CArG) box-dependent manner and induced TAZ protein expression. TGFβ did not act by promoting nuclear MRTF translocation; instead, it triggered p38- and MK2-mediated, Nox4-promoted MRTF phosphorylation and activation. Functionally, higher TAZ levels increased TAZ/TEAD-dependent transcription and primed cells for enhanced TAZ activity upon a second stimulus (i.e. sphingosine 1-phosphate) that induced nuclear TAZ translocation. In conclusion, our results uncover an important aspect of the cross-talk between TGFβ and Hippo signaling, showing that TGFβ induces TAZ via a Smad3-independent, p38- and MRTF-mediated and yet MRTF translocation-independent mechanism.
Collapse
Affiliation(s)
- Maria Zena Miranda
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and
| | - Janne Folke Bialik
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Pam Speight
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Qinghong Dan
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Tony Yeung
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Katalin Szászi
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Departments of Surgery and
| | - Stine F Pedersen
- the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - András Kapus
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, .,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and.,Departments of Surgery and
| |
Collapse
|
545
|
Ma H, Killaars AR, DelRio FW, Yang C, Anseth KS. Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials 2017; 131:131-144. [PMID: 28390245 PMCID: PMC5452973 DOI: 10.1016/j.biomaterials.2017.03.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
Abstract
Valvular interstitial cells (VICs) are key regulators of the heart valve's extracellular matrix (ECM), and upon tissue damage, quiescent VIC fibroblasts become activated to myofibroblasts. As the behavior of VICs during disease progression and wound healing is different compared to healthy tissue, we hypothesized that the organization of the matrix mechanics, which results from depositing of collagen fibers, would affect VIC phenotypic transition. Specifically, we investigated how the subcellular organization of ECM mechanical properties affects subcellular localization of Yes-associated protein (YAP), an early marker of mechanotransduction, and α-smooth muscle actin (α-SMA), a myofibroblast marker, in VICs. Photo-tunable hydrogels were used to generate substrates with different moduli and to create organized and disorganized patterns of varying elastic moduli. When porcine VICs were cultured on these matrices, YAP and α-SMA activation were significantly increased on substrates with higher elastic modulus or a higher percentage of stiff regions. Moreover, VICs cultured on substrates with a spatially disorganized elasticity had smaller focal adhesions, less nuclear localized YAP, less α-SMA organization into stress fibers and higher proliferation compared to those cultured on substrates with a regular mechanical organization. Collectively, these results suggest that disorganized spatial variations in mechanics that appear during wound healing and fibrotic disease progression may influence the maintenance of the VIC fibroblast phenotype, causing more proliferation, ECM remodeling and matrix deposition.
Collapse
Affiliation(s)
- Hao Ma
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Anouk R Killaars
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Materials Science and Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Frank W DelRio
- Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Chun Yang
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
546
|
Leung JY, Wilson HL, Voltzke KJ, Williams LA, Lee HJ, Wobker SE, Kim WY. Sav1 Loss Induces Senescence and Stat3 Activation Coinciding with Tubulointerstitial Fibrosis. Mol Cell Biol 2017; 37:e00565-16. [PMID: 28320873 PMCID: PMC5452723 DOI: 10.1128/mcb.00565-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/21/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF) is recognized as a final phenotypic manifestation in the transition from chronic kidney disease (CKD) to end-stage renal disease (ESRD). Here we show that conditional inactivation of Sav1 in the mouse renal epithelium resulted in upregulated expression of profibrotic genes and TIF. Loss of Sav1 induced Stat3 activation and a senescence-associated secretory phenotype (SASP) that coincided with the development of tubulointerstitial fibrosis. Treatment of mice with the YAP inhibitor verteporfin (VP) inhibited activation of genes associated with senescence, SASPs, and activation of Stat3 as well as impeded the development of fibrosis. Collectively, our studies offer novel insights into molecular events that are linked to fibrosis development from Sav1 loss and implicate VP as a potential pharmacological inhibitor to treat patients at risk for developing CKD and TIF.
Collapse
Affiliation(s)
- Janet Y Leung
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harper L Wilson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin J Voltzke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lindsay A Williams
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sara E Wobker
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
547
|
Stearns-Reider KM, D'Amore A, Beezhold K, Rothrauff B, Cavalli L, Wagner WR, Vorp DA, Tsamis A, Shinde S, Zhang C, Barchowsky A, Rando TA, Tuan RS, Ambrosio F. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 2017; 16:518-528. [PMID: 28371268 PMCID: PMC5418187 DOI: 10.1111/acel.12578] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2017] [Indexed: 12/13/2022] Open
Abstract
Age‐related declines in skeletal muscle regeneration have been attributed to muscle stem cell (MuSC) dysfunction. Aged MuSCs display a fibrogenic conversion, leading to fibrosis and impaired recovery after injury. Although studies have demonstrated the influence of in vitro substrate characteristics on stem cell fate, whether and how aging of the extracellular matrix (ECM) affects stem cell behavior has not been investigated. Here, we investigated the direct effect of the aged muscle ECM on MuSC lineage specification. Quantification of ECM topology and muscle mechanical properties reveals decreased collagen tortuosity and muscle stiffening with increasing age. Age‐related ECM alterations directly disrupt MuSC responses, and MuSCs seeded ex vivo onto decellularized ECM constructs derived from aged muscle display increased expression of fibrogenic markers and decreased myogenicity, compared to MuSCs seeded onto young ECM. This fibrogenic conversion is recapitulated in vitro when MuSCs are seeded directly onto matrices elaborated by aged fibroblasts. When compared to young fibroblasts, fibroblasts isolated from aged muscle display increased nuclear levels of the mechanosensors, Yes‐associated protein (YAP)/transcriptional coactivator with PDZ‐binding motif (TAZ), consistent with exposure to a stiff microenvironment in vivo. Accordingly, preconditioning of young fibroblasts by seeding them onto a substrate engineered to mimic the stiffness of aged muscle increases YAP/TAZ nuclear translocation and promotes secretion of a matrix that favors MuSC fibrogenesis. The findings here suggest that an age‐related increase in muscle stiffness drives YAP/TAZ‐mediated pathogenic expression of matricellular proteins by fibroblasts, ultimately disrupting MuSC fate.
Collapse
Affiliation(s)
- Kristen M. Stearns-Reider
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Kaufmann Medical Building, Suite 201, 3471 Fifth Avenue Pittsburgh PA 15213 USA
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
| | - Antonio D'Amore
- Department of Surgery; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
| | - Kevin Beezhold
- Department of Environmental and Occupational Health; University of Pittsburgh; 100 Technology Drive, Suite 328 Pittsburgh PA 15219 USA
| | - Benjamin Rothrauff
- Center for Cellular and Molecular Engineering; Department of Orthopaedic Surgery; University of Pittsburgh; 450 Technology Drive, Bridgeside Point II, Suite 221 Pittsburgh PA 15219 USA
| | - Loredana Cavalli
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Kaufmann Medical Building, Suite 201, 3471 Fifth Avenue Pittsburgh PA 15213 USA
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Department of Surgery; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Center for Vascular Remodeling and Regeneration; Center for Bioengineering (CNBIO); University of Pittsburgh; 300 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
| | - David A. Vorp
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Department of Surgery; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Center for Vascular Remodeling and Regeneration; Center for Bioengineering (CNBIO); University of Pittsburgh; 300 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Department of Bioengineering; University of Pittsburgh; 213 Center for Bioengineering, 300 Technology Drive Pittsburgh PA 15219 USA
| | - Alkiviadis Tsamis
- Department of Engineering; University of Leicester; 127 Michael Atiyah Building, University Road Leicester LE1 7RH UK
| | - Sunita Shinde
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Kaufmann Medical Building, Suite 201, 3471 Fifth Avenue Pittsburgh PA 15213 USA
| | - Changqing Zhang
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Kaufmann Medical Building, Suite 201, 3471 Fifth Avenue Pittsburgh PA 15213 USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health; University of Pittsburgh; 100 Technology Drive, Suite 328 Pittsburgh PA 15219 USA
| | - Thomas A. Rando
- Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences; Stanford University School of Medicine; Stanford CA 94305 USA
- RR&D Center; VA Palo Alto Health Care System; Palo Alto CA 94304 USA
| | - Rocky S. Tuan
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Center for Cellular and Molecular Engineering; Department of Orthopaedic Surgery; University of Pittsburgh; 450 Technology Drive, Bridgeside Point II, Suite 221 Pittsburgh PA 15219 USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation; University of Pittsburgh; Kaufmann Medical Building, Suite 201, 3471 Fifth Avenue Pittsburgh PA 15213 USA
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; 450 Technology Drive, Suite 300 Pittsburgh PA 15219 USA
- Department of Bioengineering; University of Pittsburgh; 213 Center for Bioengineering, 300 Technology Drive Pittsburgh PA 15219 USA
| |
Collapse
|
548
|
Abstract
The appearance of the first animal species on earth coincides with the emergence of transforming growth factor β (TGFβ) pathways. The evolution of these animals into more complex organisms coincides with a progressively increased TGFβ repertoire through gene duplications and divergence, making secreted TGFβ molecules the largest family of morphogenetic proteins in humans. It is therefore not surprising that TGFβ pathways govern numerous aspects of human biology from early embryonic development to regeneration, hematopoiesis, neurogenesis, and immunity. Such heavy reliance on these pathways is reflected in the susceptibility to minor perturbations in pathway components that can lead to dysregulated signaling and a diverse range of human pathologies such as cancer, fibrosis, and developmental disorders. Attempts to comprehensively resolve these signaling cascades are complicated by the long-recognized paradoxical role the pathway plays in cell biology. Recently, several groups have probed examples of the disparate aspects of TGFβ biology in a variety of animal models and uncovered novel context-dependent regulatory mechanisms. Here, we briefly review recent advancements and discuss their overall impact in directing future TGFβ research.
Collapse
Affiliation(s)
- Arshad Ayyaz
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Liliana Attisano
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
549
|
Herum KM, Lunde IG, McCulloch AD, Christensen G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J Clin Med 2017; 6:jcm6050053. [PMID: 28534817 PMCID: PMC5447944 DOI: 10.3390/jcm6050053] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac fibrosis, the excessive accumulation of extracellular matrix (ECM), remains an unresolved problem in most forms of heart disease. In order to be successful in preventing, attenuating or reversing cardiac fibrosis, it is essential to understand the processes leading to ECM production and accumulation. Cardiac fibroblasts are the main producers of cardiac ECM, and harbor great phenotypic plasticity. They are activated by the disease-associated changes in mechanical properties of the heart, including stretch and increased tissue stiffness. Despite much remaining unknown, an interesting body of evidence exists on how mechanical forces are translated into transcriptional responses important for determination of fibroblast phenotype and production of ECM constituents. Such mechanotransduction can occur at multiple cellular locations including the plasma membrane, cytoskeleton and nucleus. Moreover, the ECM functions as a reservoir of pro-fibrotic signaling molecules that can be released upon mechanical stress. We here review the current status of knowledge of mechanotransduction signaling pathways in cardiac fibroblasts that culminate in pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Kate M Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
| |
Collapse
|
550
|
Carthy JM. TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders. J Cell Physiol 2017; 233:98-106. [PMID: 28247933 DOI: 10.1002/jcp.25879] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
The myofibroblast is a highly specialized cell type that plays a critical role during normal tissue wound healing, but also contributes pathologically to chronic inflammatory conditions such as fibrosis and cancer. As fibrotic conditions continue to be a major burden to the public health system, novel therapies that target the function of myofibroblasts may show promise in the clinic. The cytokine transforming growth factor β (TGFβ) is the most potent known inducer of myofibroblast differentiation and thus represents a powerful target to modify myofibroblast function during disease. This review focuses on our current understanding of the key signaling pathways activated by TGFβ during myofibroblast differentiation.
Collapse
Affiliation(s)
- Jonathon M Carthy
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|