501
|
Dysregulation of the autophagy-endolysosomal system in amyotrophic lateral sclerosis and related motor neuron diseases. Neurol Res Int 2012; 2012:498428. [PMID: 22852081 PMCID: PMC3407648 DOI: 10.1155/2012/498428] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/14/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of incurable motor neuron diseases (MNDs) characterized by a selective loss of upper and lower motor neurons in the brain and spinal cord. Most cases of ALS are sporadic, while approximately 5–10% cases are familial. More than 16 causative genes for ALS/MNDs have been identified and their underlying pathogenesis, including oxidative stress, endoplasmic reticulum stress, excitotoxicity, mitochondrial dysfunction, neural inflammation, protein misfolding and accumulation, dysfunctional intracellular trafficking, abnormal RNA processing, and noncell-autonomous damage, has begun to emerge. It is currently believed that a complex interplay of multiple toxicity pathways is implicated in disease onset and progression. Among such mechanisms, ones that are associated with disturbances of protein homeostasis, the ubiquitin-proteasome system and autophagy, have recently been highlighted. Although it remains to be determined whether disease-associated protein aggregates have a toxic or protective role in the pathogenesis, the formation of them results from the imbalance between generation and degradation of misfolded proteins within neuronal cells. In this paper, we focus on the autophagy-lysosomal and endocytic degradation systems and implication of their dysfunction to the pathogenesis of ALS/MNDs. The autophagy-endolysosomal pathway could be a major target for the development of therapeutic agents for ALS/MNDs.
Collapse
|
502
|
Uusi-Rauva K, Kyttälä A, van der Kant R, Vesa J, Tanhuanpää K, Neefjes J, Olkkonen VM, Jalanko A. Neuronal ceroid lipofuscinosis protein CLN3 interacts with motor proteins and modifies location of late endosomal compartments. Cell Mol Life Sci 2012; 69:2075-89. [PMID: 22261744 PMCID: PMC11114557 DOI: 10.1007/s00018-011-0913-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/08/2011] [Accepted: 12/29/2011] [Indexed: 01/17/2023]
Abstract
CLN3 is an endosomal/lysosomal transmembrane protein mutated in classical juvenile onset neuronal ceroid lipofuscinosis, a fatal inherited neurodegenerative lysosomal storage disorder. The function of CLN3 in endosomal/lysosomal events has remained elusive due to poor understanding of its interactions in these compartments. It has previously been shown that the localisation of late endosomal/lysosomal compartments is disturbed in cells expressing the most common disease-associated CLN3 mutant, CLN3∆ex7-8 (c.462-677del). We report here that a protracted disease causing mutant, CLN3E295K, affects the properties of late endocytic compartments, since over-expression of the CLN3E295K mutant protein in HeLa cells induced relocalisation of Rab7 and a perinuclear clustering of late endosomes/lysosomes. In addition to the previously reported disturbances in the endocytic pathway, we now show that the anterograde transport of late endosomal/lysosomal compartments is affected in CLN3 deficiency. CLN3 interacted with motor components driving both plus and minus end microtubular trafficking: tubulin, dynactin, dynein and kinesin-2. Most importantly, CLN3 was found to interact directly with active, guanosine-5'-triphosphate (GTP)-bound Rab7 and with the Rab7-interacting lysosomal protein (RILP) that anchors the dynein motor. The data presented in this study provide novel insights into the role of CLN3 in late endosomal/lysosomal membrane transport.
Collapse
Affiliation(s)
- Kristiina Uusi-Rauva
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | - Aija Kyttälä
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | - Rik van der Kant
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Jouni Vesa
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda Neuroscience and Genetics Research Center, Los Angeles, CA 90095-7088 USA
| | - Kimmo Tanhuanpää
- Light Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Anu Jalanko
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| |
Collapse
|
503
|
Longatti A, Lamb CA, Razi M, Yoshimura SI, Barr FA, Tooze SA. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 2012; 197:659-75. [PMID: 22613832 PMCID: PMC3365497 DOI: 10.1083/jcb.201111079] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/25/2012] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain-containing Rab guanosine triphosphatase-activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)-positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.
Collapse
Affiliation(s)
- Andrea Longatti
- Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | | | - Minoo Razi
- Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, England, UK
| | - Sharon A. Tooze
- Cancer Research UK London Research Institute, WC2A 3PF London, England, UK
| |
Collapse
|
504
|
Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, Xiao R, Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012; 287:23615-25. [PMID: 22619176 DOI: 10.1074/jbc.m112.379164] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the heart, autophagy has been implicated in cardioprotection and ischemia-reperfusion tolerance, and the dysregulation of autophagy is associated with the development of heart failure. Mitochondrial dynamic proteins are profoundly involved in autophagic processes, especially the initiation and formation of autophagosomes, but it is not clear whether they play any role in cardiac autophagy. We previously reported that mitofusin 2 (MFN2), a mitochondrial outer membrane protein, serves as a major determinant of cardiomyocyte apoptosis mediated by oxidative stress. Here, we reveal a novel and essential role of MFN2 in mediating cardiac autophagy. We found that specific deletion of MFN2 in cardiomyocytes caused extensive accumulation of autophagosomes. In particular, the fusion of autophagosomes with lysosomes, a critical step in autophagic degradation, was markedly retarded without altering the formation of autophagosomes and lysosomes in response to ischemia-reperfusion stress. Importantly, MFN2 co-immunoprecipitated with RAB7 in the heart, and starvation further increased it. Knockdown of MFN2 by shRNA prevented, whereas re-expression of MFN2 restored, the autophagosome-lysosome fusion in neonatal cardiomyocytes. Hearts from cardiac-specific MFN2 knock-out mice had abnormal mitochondrial and cellular metabolism and were vulnerable to ischemia-reperfusion challenge. Our study defined a novel and essential role of MFN2 in the cardiac autophagic process by mediating the maturation of autophagy at the phase of autophagosome-lysosome fusion; deficiency of MFN2 caused multiple molecular and functional defects that undermined cardiac reserve and gradually led to cardiac vulnerability and dysfunction.
Collapse
Affiliation(s)
- Ting Zhao
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Abstract
Autophagy is an evolutionarily conserved catabolic pathway that has multiple roles in carcinogenesis and cancer therapy. It can inhibit the initiation of tumorigenesis through limiting cytoplasmic damage, genomic instability and inflammation, and the loss of certain autophagy genes can lead to cancer. Conversely, autophagy can also assist cells in dealing with stressful metabolic environments, thereby promoting cancer cell survival. In fact, some cancers rely on autophagy to survive and progress. Furthermore, tumour cells can exploit autophagy to cope with the cytotoxicity of certain anticancer drugs. By contrast, it appears that certain therapeutics require autophagy for the effective killing of cancer cells. Despite these dichotomies, it is clear that autophagy has an important, if complex, role in cancer. This is further exemplified by the fact that autophagy is connected with major cancer networks, including those driven by p53, mammalian target of rapamycin (mTOR), RAS and glutamine metabolism. In this Commentary, we highlight recent advances in our understanding of the role that autophagy has in cancer and discuss current strategies for targeting autophagy for therapeutic gain.
Collapse
Affiliation(s)
- Emma Y Liu
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | |
Collapse
|
506
|
Aronson LI, Davies FE. DangER: protein ovERload. Targeting protein degradation to treat myeloma. Haematologica 2012; 97:1119-30. [PMID: 22580998 DOI: 10.3324/haematol.2012.064923] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myeloma is a malignancy of the antibody-producing plasma cells and, as such, these cells synthesize large quantities of unfolded or misfolded immunoglobulin. The build-up of excess protein triggers a number of downstream signal transduction cascades, including endoplasmic reticulum stress and autophagy. As a result, myeloma cells are uniquely reliant on these and other protein handling pathways for their survival. Strategies aimed at targeting this vulnerability have proved successful with the proteasome inhibitor, bortezomib, already licensed for clinical use. In addition to the proteasome, various other points within the protein handling pathways are also the subject of drug discovery projects, with some already progressing into clinical trials. These include compounds directed against heat shock proteins, the unfolded protein response and pathways both upstream and downstream of the proteasome. More recently, the role of autophagy has been recognized in myeloma. In this review, we discuss the various pathways used by myeloma cells for survival, with particular emphasis on the emerging role and conundrum of autophagy, as well as highlighting pre-clinical research on novel inhibitors targeting protein handling pathways.
Collapse
Affiliation(s)
- Lauren I Aronson
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, Institute of CancerResearch, England,, Sutton, Surrey, SM2 5NG, UK
| | | |
Collapse
|
507
|
Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, Pan Y, Li XJ. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 2012; 8:812-25. [PMID: 22622204 DOI: 10.4161/auto.19471] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H 2O 2-induced viability loss, which specifically evokes an autophagic response. Exposed to H 2O 2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Pharmacology. School of Basic Medical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
508
|
Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S, Nakagawa I. The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection. Cell Microbiol 2012; 14:1149-65. [PMID: 22452336 DOI: 10.1111/j.1462-5822.2012.01792.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autophagy mediates the degradation of cytoplasmic contents in the lysosome and plays a significant role in immunity. Here we identified the small GTPases Rab9A and Rab23 as novel autophagy regulators during Group A streptococcus (GAS) infection. Rab9A was recruited to GAS-containing autophagosome-like vacuoles (GcAVs) after autophagosomal maturation and its activity was required for GcAV enlargement and eventual lysosomal fusion. GcAV enlargement appeared to be related to homotypic fusion of GcAVs with Rab9A. Rab23 was recruited to GAS-capturing forming autophagosomes. Knockdown of Rab23 expression decreased both LC3- and Atg5-positive GAS formation and caused the accumulation of LC3-positive structures that did not associate with intracellular GAS. It was suggested, therefore, that Rab23 is required for GcAV formation and is involved in GAS targeting of autophagic vacuoles. Furthermore, knockdown of Rab9A or Rab23 expression impaired the degradation of intracellular GAS. Therefore, our data reveal that the Rab9A and Rab23 GTPases play crucial roles in autophagy of GAS. However, neither Rab9A nor Rab23 were localized to starvation-induced autophagosomes. Not only Rab9A but also Rab23 was dispensable for starvation-induced autophagosome formation. These findings demonstrate that specific Rab proteins function at distinct steps during autophagy in response to GAS infection.
Collapse
Affiliation(s)
- Takashi Nozawa
- Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
509
|
Sir D, Kuo CF, Tian Y, Liu HM, Huang EJ, Jung JU, Machida K, Ou JHJ. Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem 2012; 287:18036-43. [PMID: 22496373 DOI: 10.1074/jbc.m111.320085] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies indicated that hepatitis C virus (HCV) perturbs the autophagic pathway to induce the accumulation of autophagosomes in cells. To understand the role of autophagosomes in the HCV life cycle, we established a stable Huh7 hepatoma cell line that contained an HCV subgenomic RNA replicon and also expressed a GFP-LC3 fusion protein. The GFP-LC3 protein is localized to autophagosomes during autophagy and served as a convenient marker for autophagosomes. Our results indicate that the silencing of the expression of LC3 or Atg7, two protein factors critical for the formation of autophagosomes, suppresses the replication of HCV RNA. Confocal microscopy studies revealed the localization of HCV NS5A and NS5B proteins, which are two important components of the HCV RNA replication complex, and nascent HCV RNA to autophagosomes. The association of the HCV RNA replication complex with the autophagosomal membranes was further confirmed by co-immunoprecipitation and immunoelectron microscopy studies. Interestingly, inhibition of Class III PI3K activity had no effect on the autophagosomes induced by HCV. These results indicate that HCV induces autophagosomes via a Class III PI3K-independent pathway and uses autophagosomal membranes as sites for its RNA replication.
Collapse
Affiliation(s)
- Donna Sir
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
510
|
Lim J, Lee Y, Kim HW, Rhyu IJ, Oh MS, Youdim MBH, Yue Z, Oh YJ. Nigericin-induced impairment of autophagic flux in neuronal cells is inhibited by overexpression of Bak. J Biol Chem 2012; 287:23271-82. [PMID: 22493436 DOI: 10.1074/jbc.m112.364281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bak is a prototypic pro-apoptotic Bcl-2 family protein expressed in a wide variety of tissues and cells. Recent studies have revealed that Bcl-2 family proteins regulate apoptosis as well as autophagy. To investigate whether and how Bak exerts a regulatory role on autophagy-related events, we treated independent cell lines, including MN9D neuronal cells, with nigericin, a K(+)/H(+) ionophore. Treatment of MN9D cells with nigericin led to an increase of LC3-II and p62 levels with concomitant activation of caspase. Ultrastructural examination revealed accumulation of autophagic vacuoles and swollen vacuoles in nigericin-treated cells. We further found that the LC3-II accumulated as a consequence of impaired autophagic flux and the disrupted degradation of LC3-II in nigericin-treated cells. In this cell death paradigm, both transient and stable overexpression of various forms of Bak exerted a protective role, whereas it did not inhibit the extent of nigericin-mediated activation of caspase-3. Subsequent biochemical and electron microscopic studies revealed that overexpressed Bak maintained autophagic flux and reduced the area occupied by swollen vacuoles in nigericin-treated cells. Similar results were obtained in nigericin-treated non-neuronal cells and another proton ionophore-induced cell death paradigm. Taken together, our study indicates that a protective role for Bak during ionophore-induced cell death may be closely associated with its regulatory effect on maintenance of autophagic flux and vacuole homeostasis.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Biology, Yonsei University College of Life Science and Biotechnology, 134 Shinchon-dong Seodaemoon-gu, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
511
|
Abstract
Serratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens. We have demonstrated the involvement of the PhoP/PhoQ system in the adaptation of this bacterium to growth on scarce environmental Mg(2+), at acidic pH, and in the presence of polymyxin B. We have also shown that these environmental conditions constitute signals that activate the PhoP/PhoQ system. We have found that the two S. marcescens mgtE orthologs present a conserved PhoP-binding motif and demonstrated that mgtE1 expression is PhoP dependent, reinforcing the importance of PhoP control in magnesium homeostasis. Finally, we have demonstrated that phoP expression is activated intracellularly and that a phoP mutant strain is defective in survival inside epithelial cells. We have shown that the Serratia PhoP/PhoQ system is involved in prevention of the delivery to degradative/acidic compartments.
Collapse
|
512
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
513
|
Bug M, Meyer H. Expanding into new markets--VCP/p97 in endocytosis and autophagy. J Struct Biol 2012; 179:78-82. [PMID: 22450227 DOI: 10.1016/j.jsb.2012.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
The AAA-ATPase p97 (also called VCP for Valosin-containing protein) is essential for a number of cellular processes as diverse as ER-associated degradation, DNA damage response, and cell cycle control. Mechanistically, p97 cooperates with its cofactor Ufd1-Npl4 in these processes to segregate polyubiquitinated misfolded or regulatory client proteins from intracellular structures for subsequent degradation by the proteasome. Recent work now connects p97, independently of Ufd1-Npl4, to endosomal trafficking and autophagy. Interestingly, these pathways also deliver proteins for degradation, albeit by the lysosome. While monoubiquitination and alternative p97-cofactors, including UBXD1, have been associated with these activities, the underlying molecular mechanism(s) are still unclear or controversial. In this review, we aim to summarize the available data and discuss mechanistic models.
Collapse
Affiliation(s)
- Monika Bug
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | | |
Collapse
|
514
|
Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol Cell 2012; 45:629-41. [PMID: 22342342 DOI: 10.1016/j.molcel.2011.12.036] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 10/03/2011] [Accepted: 12/22/2011] [Indexed: 11/16/2022]
Abstract
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.
Collapse
Affiliation(s)
- Dandan Chen
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
515
|
Abstract
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.
Collapse
|
516
|
Baek KH, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 2012; 41:3245-63. [PMID: 22293658 DOI: 10.1039/c2cs15328a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
517
|
Kung CP, Budina A, Balaburski G, Bergenstock MK, Murphy M. Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr 2012; 21:71-100. [PMID: 21967333 DOI: 10.1615/critreveukargeneexpr.v21.i1.50] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a stress-induced cell survival program whereby cells under metabolic, proteotoxic, or other stress remove dysfunctional organelles and/or misfolded/polyubiquitylated proteins by shuttling them via specialized structures called autophagosomes to the lysosome for degradation. The end result is the release of free amino acids and metabolites for use in cell survival. For tumor cells, autophagy is a double-edged sword: autophagy genes are frequently mono-allelically deleted, silenced, or mutated in human tumors, resulting in an environment of increased oxidative stress that is conducive to DNA damage, genomic instability, and tumor progression. As such, autophagy is tumor suppressive. In contrast, it is important to note that although tumor cells have reduced levels of autophagy, they do not eliminate this pathway completely. Furthermore, the exposure of tumor cells to an environment of increased metabolic and other stresses renders them reliant on basal autophagy for survival. Therefore, autophagy inhibition is an active avenue for the identification of novel anti-cancer therapies. Not surprisingly, the field of autophagy and cancer has experienced an explosion of research in the past 10 years. This review covers the basic mechanisms of autophagy, discusses its role in tumor suppression and cancer therapy, and posits emerging questions for the future.
Collapse
Affiliation(s)
- Che-Pei Kung
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
518
|
Lipids in autophagy: constituents, signaling molecules and cargo with relevance to disease. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1133-45. [PMID: 22269166 DOI: 10.1016/j.bbalip.2012.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 01/12/2023]
Abstract
The balance between protein and lipid biosynthesis and their eventual degradation is a critical component of cellular health. Autophagy, the catabolic process by which cytoplasmic material becomes degraded in lysosomes, can be induced by various physiological stimuli to maintain cellular homeostasis. Autophagy was for a long time considered a non-selective bulk process, but recent data have shown that unwanted components such as aberrant protein aggregates, dysfunctional organelles and invading pathogens can be selectively eliminated by autophagy. Recently, also intracellular lipid droplets were described as specific autophagic cargo, indicating that autophagy plays a role in lipid metabolism and storage (Singh et al., 2009 [1]). Moreover, over the past several years, it has become increasingly evident that lipids and lipid-modifying enzymes play important roles in the autophagy process itself, both at the level of regulation of autophagy and as membrane constituents required for formation of autophagic vesicles. In this review, we will discuss the interplay between lipids and autophagy, as well as the role of lipid-binding proteins in autophagy. We also comment on the possible implications of this mutual interaction in the context of disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
519
|
Cook KL, Shajahan AN, Clarke R. Autophagy and endocrine resistance in breast cancer. Expert Rev Anticancer Ther 2012; 11:1283-94. [PMID: 21916582 DOI: 10.1586/era.11.111] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The American Cancer Society estimates that over 200,000 new breast cancer cases are diagnosed annually in the USA alone. Of these cases, the majority are invasive breast cancers and almost 70% are estrogen receptor-α positive. Therapies targeting the estrogen receptor-α are widely applied and include selective estrogen receptor modulators such as tamoxifen, a selective estrogen receptor downregulator such as Fulvestrant (Faslodex; FAS, ICI 182,780), or one of the third-generation aromatase inhibitors including letrozole or anastrozole. While these treatments reduce breast cancer mortality, many estrogen receptor-α-positive tumors eventually recur, highlighting the clinical significance of endocrine therapy resistance. The signaling leading to endocrine therapy resistance is poorly understood; however, preclinical studies have established an important role for autophagy in the acquired resistance phenotype. Autophagy is a cellular degradation process initiated in response to stress or nutrient deprivation, which attempts to restore metabolic homeostasis through the catabolic lysis of aggregated proteins, unfolded/misfolded proteins or damaged subcellular organelles. The duality of autophagy, which can be either pro-survival or pro-death, is well known. However, in the context of endocrine therapy resistance in breast cancer, the inhibition of autophagy can potentiate resensitization of previously antiestrogen resistant breast cancer cells. In this article, we discuss the complex and occasionally contradictory roles of autophagy in cancer and in resistance to endocrine therapies in breast cancer.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Oncology and Lombardi Comprehensive Cancer Center W405A Research Building, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
520
|
Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 2011; 13:7-12. [PMID: 22166994 DOI: 10.1038/nrm3249] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The autophagosome is the central organelle in macroautophagy, a vacuolar lysosomal catabolic pathway that degrades cytoplasmic material to fuel starving cells and eliminates intracellular pathogens. Macroautophagy has important physiological roles during development, ageing and the immune response, and its cytoprotective function is compromised in various diseases. A set of autophagy-related (ATG) proteins is hierarchically recruited to the phagophore, the initial membrane template in the construction of the autophagosome. However, recent findings suggest that macroautophagy can also occur in the absence of some of these key autophagy proteins, through the unconventional biogenesis of canonical autophagosomes. Such alternatives to the evolutionarily conserved scheme might provide additional therapeutic opportunities.
Collapse
Affiliation(s)
- Patrice Codogno
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris-Sud 11, Châtenay-Malabry, France
| | | | | |
Collapse
|
521
|
Marceau F, Bawolak MT, Lodge R, Bouthillier J, Gagné-Henley A, Gaudreault RC, Morissette G. Cation trapping by cellular acidic compartments: beyond the concept of lysosomotropic drugs. Toxicol Appl Pharmacol 2011; 259:1-12. [PMID: 22198553 DOI: 10.1016/j.taap.2011.12.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/26/2023]
Abstract
"Lysosomotropic" cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.
Collapse
Affiliation(s)
- François Marceau
- Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2.
| | | | | | | | | | | | | |
Collapse
|
522
|
Abstract
Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.
Collapse
|
523
|
Sphingolipid-based drugs selectively kill cancer cells by down-regulating nutrient transporter proteins. Biochem J 2011; 439:299-311. [PMID: 21767261 DOI: 10.1042/bj20110853] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer cells are hypersensitive to nutrient limitation because oncogenes constitutively drive glycolytic and TCA (tricarboxylic acid) cycle intermediates into biosynthetic pathways. As the anaplerotic reactions that replace these intermediates are fueled by imported nutrients, the cancer cell's ability to generate ATP becomes compromised under nutrient-limiting conditions. In addition, most cancer cells have defects in autophagy, the catabolic process that provides nutrients from internal sources when external nutrients are unavailable. Normal cells, in contrast, can adapt to the nutrient stress that kills cancer cells by becoming quiescent and catabolic. In the present study we show that FTY720, a water-soluble sphingolipid drug that is effective in many animal cancer models, selectively starves cancer cells to death by down-regulating nutrient transporter proteins. Consistent with a bioenergetic mechanism of action, FTY720 induced homoeostatic autophagy. Cells were protected from FTY720 by cell-permeant nutrients or by reducing nutrient demand, but blocking apoptosis was ineffective. Importantly, AAL-149, a FTY720 analogue that lacks FTY720's dose-limiting toxicity, also triggered transporter loss and killed patient-derived leukaemias while sparing cells isolated from normal donors. As they target the metabolic profile of cancer cells rather than specific oncogenic mutations, FTY720 analogues such as AAL-149 should be effective against many different tumour types, particularly in combination with drugs that inhibit autophagy.
Collapse
|
524
|
DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21:966-74. [PMID: 22055344 DOI: 10.1016/j.devcel.2011.08.016] [Citation(s) in RCA: 382] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 07/01/2011] [Accepted: 08/19/2011] [Indexed: 01/13/2023]
Abstract
Osteoclasts resorb bone via the ruffled border, whose complex folds are generated by secretory lysosome fusion with bone-apposed plasma membrane. Lysosomal fusion with the plasmalemma results in acidification of the resorptive microenvironment and release of CatK to digest the organic matrix of bone. The means by which secretory lysosomes are directed to fuse with the ruffled border are enigmatic. We show that proteins essential for autophagy, including Atg5, Atg7, Atg4B, and LC3, are important for generating the osteoclast ruffled border, the secretory function of osteoclasts, and bone resorption in vitro and in vivo. Further, Rab7, which is required for osteoclast function, localizes to the ruffled border in an Atg5-dependent manner. Thus, autophagy proteins participate in polarized secretion of lysosomal contents into the extracellular space by directing lysosomes to fuse with the plasma membrane. These findings are in keeping with a putative link between autophagy genes and human skeletal homeostasis.
Collapse
Affiliation(s)
- Carl J DeSelm
- Department of Pathology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
525
|
Caillet M, Janvier K, Pelchen–Matthews A, Delcroix-Genête D, Camus G, Marsh M, Berlioz-Torrent C. Rab7A is required for efficient production of infectious HIV-1. PLoS Pathog 2011; 7:e1002347. [PMID: 22072966 PMCID: PMC3207927 DOI: 10.1371/journal.ppat.1002347] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/16/2011] [Indexed: 01/24/2023] Open
Abstract
Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle. Human immunodeficiency virus (HIV) propagation requires the assistance of host cell factors at all stages of the infection cycle. HIV exploits components of the cellular membrane sorting machinery for its assembly, budding and release. Rab GTPases are key regulators of membrane-trafficking events, including exocytosis and endocytosis, in eukaryotic cells. Here we show that the late endosome associated Rab7A plays a major role in HIV-1 replication. We find that Rab7A regulates the production of infectious HIV-1 particles at two critical stages. First, Rab7A is required for efficient Env processing and, thus, for the incorporation of mature HIV-1 envelope glycoproteins into virions. Second, Rab7A contributes to the mechanism that counteracts the restriction imposed on HIV-1 release by the cellular restriction factor BST2/Tetherin that physically tethers viral particles to the plasma membrane of infected cells. Altogether these data highlight new roles for a major player of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Marina Caillet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Katy Janvier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Annegret Pelchen–Matthews
- Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Delphine Delcroix-Genête
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Grégory Camus
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mark Marsh
- Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Clarisse Berlioz-Torrent
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
526
|
Takagi-Akiba M, Asanuma K, Tanida I, Tada N, Oliva Trejo JA, Nonaka K, Asanuma E, Kominami E, Ueno T, Tomino Y. Doxorubicin-induced glomerulosclerosis with proteinuria in GFP-GABARAP transgenic mice. Am J Physiol Renal Physiol 2011; 302:F380-9. [PMID: 22049402 DOI: 10.1152/ajprenal.00502.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a process of cellular degradation, and its dysfunction elicits many pathological symptoms. However, the contribution of autophagy to kidney glomerular function has not been fully clarified. We previously reported that LC3, a promising executor of autophagy, played an important role in recovery from podocyte damage in an experimental nephrosis model (Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y. FASEB J 17: 1165-1167, 2003). γ-Aminobutyric acid A receptor-associated protein (GABARAP), has recently been characterized as another homolog of LC3, although its precise role in autophagy remains unclear. We recently generated green fluorescent protein (GFP)-GABARAP transgenic mice, in which GFP-GABARAP is abundantly expressed in glomerular podocytes. We found that the transgenic mice showed no obvious phenotype, and podocytes isolated from these mice manifested autophagic activity almost equivalent to that of wild-type mice when measured in vitro. Surprisingly, a single injection of doxorubicin caused a greater increase in proteinuria and sclerotic glomeruli in transgenic mice compared with wild-type mice. Under these conditions, neither GFP-GABARAP nor endogenous GABARAP appeared to be recruited to autophagosomes, and both remained in the cytosol. Moreover, the cytosolic GFP-GABARAP was significantly colocalized with p62 to form aggregates. These results indicate that the GFP-GABARAP/p62 complex is responsible for impairment of glomerular function and that it retards recovery from the effects of doxorubicin.
Collapse
Affiliation(s)
- Miyuki Takagi-Akiba
- Div. of Nephrology, Dept. of Internal Medicine, Juntendo Univ., Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011; 7:1273-94. [PMID: 21997368 DOI: 10.4161/auto.7.11.17661] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers--even those who work in the field--to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
528
|
Cianciola NL, Carlin CR, Kelley TJ. Molecular pathways for intracellular cholesterol accumulation: common pathogenic mechanisms in Niemann-Pick disease Type C and cystic fibrosis. Arch Biochem Biophys 2011; 515:54-63. [PMID: 21924233 PMCID: PMC3192251 DOI: 10.1016/j.abb.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
It has been less than two decades since the underlying genetic defects in Niemann-Pick disease Type C were first identified. These defects impair function of two proteins with a direct role in lipid trafficking, resulting in deposition of free cholesterol within late endosomal compartments and a multitude of effects on cell function and clinical manifestations. The rapid pace of research in this area has vastly improved our overall understanding of intracellular cholesterol homeostasis. Excessive cholesterol buildup has also been implicated in clinical manifestations associated with a number of genetically unrelated diseases including cystic fibrosis. Applying knowledge about anomalous cell signaling behavior in cystic fibrosis opens prospects for identifying similar previously unrecognized disease pathways in Niemann-Pick disease Type C. Recognition that Niemann-Pick disease Type C and cystic fibrosis both impair cholesterol regulatory pathways also provides a rationale for identifying common therapeutic targets.
Collapse
Affiliation(s)
- Nicholas L. Cianciola
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
- Case Western Reserve University Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| | - Thomas J. Kelley
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970
| |
Collapse
|
529
|
The association of autophagy with polyethylenimine-induced cytotoxity in nephritic and hepatic cell lines. Biomaterials 2011; 32:8613-25. [DOI: 10.1016/j.biomaterials.2011.07.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022]
|
530
|
Abdulrahman BA, Khweek AA, Akhter A, Caution K, Kotrange S, Abdelaziz DHA, Newland C, Rosales-Reyes R, Kopp B, McCoy K, Montione R, Schlesinger LS, Gavrilin MA, Wewers MD, Valvano MA, Amer AO. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 2011; 7:1359-70. [PMID: 21997369 DOI: 10.4161/auto.7.11.17660] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited lethal disease of Caucasians which results in multi organ dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR ΔF508 mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1β. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type macrophages but not in ΔF508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-ΔF508 (ΔF508) macrophages than in WT macrophages. An autophagosome is a compartment that engulfs non-functional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and ΔF508 macrophages. However, autophagy dysfunction is more pronounced in ΔF508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, Rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Center for Microbial Interface Biology, Department of Microbial Infection, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Postfertilization Autophagy of Sperm Organelles Prevents Paternal Mitochondrial DNA Transmission. Science 2011; 334:1144-7. [DOI: 10.1126/science.1211878] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
532
|
Abstract
(Macro)autophagy provides a membrane-dependent mechanism for the sequestration, transport, and lysosomal turnover of subcellular components, including proteins and organelles. In this capacity, autophagy maintains basal cellular homeostasis and healthy organelle populations such as mitochondria. During starvation, autophagy prolongs cell survival by recycling metabolic precursors from intracellular macromolecules. Furthermore, autophagy represents an inducible response to chemical and physical cellular stress. Increasing evidence suggests that autophagy, and its regulatory proteins, may critically influence vital cellular processes such as programmed cell death, cell proliferation, inflammation, and innate immune functions and thereby may play a critical role in the pathogenesis of human disease. The function of autophagy in disease pathogenesis remains unclear and may involve either impaired or accelerated autophagic activity or imbalances in the activation of autophagic proteins. This review examines the roles of autophagy in the pathogenesis of pulmonary diseases, with emphasis on pulmonary vascular disease and acute and chronic lung diseases.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
533
|
Chua CEL, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011; 68:3349-58. [PMID: 21687989 PMCID: PMC11114630 DOI: 10.1007/s00018-011-0748-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 12/19/2022]
Abstract
Macroautophagy, the process by which cytosolic components and organelles are engulfed and degraded by a double-membrane structure, could be viewed as a specialized, multistep membrane transport process. As such, it intersects with the exocytic and endocytic membrane trafficking pathways. A number of Rab GTPases which regulate secretory and endocytic membrane traffic have been shown to play either critical or accessory roles in autophagy. The biogenesis of the pre-autophagosomal isolation membrane (or phagophore) is dependent on the functionality of Rab1. A non-canonical, Atg5/Atg7-independent mode of autophagosome generation from the trans-Golgi or endosome requires Rab9. Other Rabs, such as Rab5, Rab24, Rab33, and Rab7 have all been shown to be required, or involved at various stages of autophagosomal genesis and maturation. Another small GTPase, RalB, was very recently demonstrated to induce isolation membrane formation and maturation via its engagement of the exocyst complex, a known Rab effector. We summarize here what is now known about the involvement of Rabs in autophagy, and discuss plausible mechanisms with future perspectives.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Bin Qi Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| |
Collapse
|
534
|
Folkersen L, Wågsäter D, Paloschi V, Jackson V, Petrini J, Kurtovic S, Maleki S, Eriksson MJ, Caidahl K, Hamsten A, Michel JB, Liska J, Gabrielsen A, Franco-Cereceda A, Eriksson P. Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: the ASAP study. Mol Med 2011; 17:1365-73. [PMID: 21968790 DOI: 10.2119/molmed.2011.00286] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/20/2011] [Indexed: 01/12/2023] Open
Abstract
Thoracic aortic aneurysm (TAA) is a common complication in patients with a bicuspid aortic valve (BAV), the most frequent congenital heart disorder. For unknown reasons TAA occurs at a younger age, with a higher frequency in BAV patients than in patients with a tricuspid aortic valve (TAV), resulting in an increased risk for aortic dissection and rupture. To investigate the increased TAA incidence in BAV patients, we obtained tissue biopsy samples from nondilated and dilated aortas of 131 BAV and TAV patients. Global gene expression profiles were analyzed from controls and from aortic intima-media and adventitia of patients (in total 345 samples). Of the genes found to be differentially expressed with dilation, only a few (<4%) were differentially expressed in both BAV and TAV patients. With the use of gene set enrichment analysis, the cell adhesion and extracellular region gene ontology sets were identified as common features of TAA in both BAV and TAV patients. Immune response genes were observed to be particularly overexpressed in the aortic media of dilated TAV samples. The divergent gene expression profiles indicate that there are fundamental differences in TAA etiology in BAV and TAV patients. Immune response activation solely in the aortic media of TAV patients suggests that inflammation is involved in TAA formation in TAV but not in BAV patients. Conversely, genes were identified that were only differentially expressed with dilation in BAV patients. The result has bearing on future clinical studies in which separate analysis of BAV and TAV patients is recommended.
Collapse
Affiliation(s)
- Lasse Folkersen
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Frankel LB, Wen J, Lees M, Høyer-Hansen M, Farkas T, Krogh A, Jäättelä M, Lund AH. microRNA-101 is a potent inhibitor of autophagy. EMBO J 2011; 30:4628-41. [PMID: 21915098 PMCID: PMC3243595 DOI: 10.1038/emboj.2011.331] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR-101-mediated inhibition of autophagy can sensitize breast cancer cells to 4-hydroxytamoxifen (4-OHT)-mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR-101 as a key regulator of autophagy.
Collapse
Affiliation(s)
- Lisa B Frankel
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
536
|
Abstract
Autophagy is a homeostatic, catabolic degradation process whereby cellular proteins and organelles are engulfed by autophagosomes, digested in lysosomes, and recycled to sustain cellular metabolism. Autophagy has dual roles in cancer, acting as both a tumor suppressor by preventing the accumulation of damaged proteins and organelles and as a mechanism of cell survival that can promote the growth of established tumors. Tumor cells activate autophagy in response to cellular stress and/or increased metabolic demands related to rapid cell proliferation. Autophagy-related stress tolerance can enable cell survival by maintaining energy production that can lead to tumor growth and therapeutic resistance. As shown in preclinical models, inhibition of autophagy restored chemosensitivity and enhanced tumor cell death. These results established autophagy as a therapeutic target and led to multiple early phase clinical trials in humans to evaluate autophagy inhibition using hydroxychloroquine in combination with chemotherapy or targeted agents. Targeting autophagy in cancer will provide new opportunities for drug development, because more potent and specific inhibitors of autophagy are needed. The role of autophagy and its regulation in cancer cells continues to emerge, and studies aim to define optimal strategies to modulate autophagy for therapeutic advantage.
Collapse
Affiliation(s)
- Zhineng J Yang
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
537
|
Serratia marcescens is able to survive and proliferate in autophagic-like vacuoles inside non-phagocytic cells. PLoS One 2011; 6:e24054. [PMID: 21901159 PMCID: PMC3162031 DOI: 10.1371/journal.pone.0024054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell.
Collapse
|
538
|
Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 2011; 85:10561-71. [PMID: 21835792 DOI: 10.1128/jvi.00173-11] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy has been shown to facilitate replication or production of hepatitis C virus (HCV); nevertheless, how HCV induces autophagy remains unclear. Here, we demonstrate that HCV nonstructural protein 4B (NS4B) alone can induce autophagy signaling; amino acid residues 1 to 190 of NS4B are sufficient for this induction. Further studies showed that the phosphorylation levels of S6K and 4E-BP1 were not altered, suggesting that the mTOR/S6 kinase pathway and mTOR/4E-BP1 pathway did not contribute to NS4B- or HCV-induced autophagy. Inhibition of Rab5 function by silencing Rab5 or overexpressing dominant-negative Rab5 mutant (S34N) resulted in significant reduction of NS4B- or HCV-induced autophagic vesicle formation. Moreover, the autophagy induction was impaired by inhibition of class III phosphoinositide 3-kinase (PI 3-kinase) Vps34 function. Finally, the coimmunoprecipitation assay indicated that NS4B formed a complex with Rab5 and Vps34, supporting the notion that Rab5 and Vps34 are involved in NS4B-induced autophagy. Taken together, these results not only reveal a novel role of NS4B in autophagy but also offer a clue to the mechanism of HCV-induced autophagy.
Collapse
|
539
|
Wong ASL, Cheung ZH, Ip NY. Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1490-7. [PMID: 21787863 DOI: 10.1016/j.bbadis.2011.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/27/2011] [Accepted: 07/08/2011] [Indexed: 01/01/2023]
Abstract
Macroautophagy maintains cellular homeostasis through targeting cytoplasmic contents and organelles into autophagosomes for degradation. This process begins with the assembly of protein complexes on isolation membrane to initiate the formation of autophagosome, followed by its nucleation, elongation and maturation. Fusion of autophagosomes with lysosomes then leads to degradation of the cargo. In the past decade, significant advances have been made on the identification of molecular players that are implicated in various stages of macroautophagy. Post-translational modifications of macroautophagy regulators have also been demonstrated to be critical for the selective targeting of cytoplasmic contents into autophagosomes. In addition, recent demonstration of distinct macroautophagy regulators has led to the identification of different subtypes of macroautophagy. Since deregulation of macroautophagy is implicated in diseases including neurodegenerative disorders, cancers and inflammatory disorders, understanding the molecular machinery of macroautophagy is crucial for elucidating the mechanisms by which macroautophagy is deregulated in these diseases, thereby revealing new potential therapeutic targets and strategies. Here we summarize current knowledge on the regulation of mammalian macroautophagy machineries and their disease-associated deregulation.
Collapse
Affiliation(s)
- Alan S L Wong
- Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Meuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kawloon, Hongkong, China
| | | | | |
Collapse
|
540
|
Wu WKK, Coffelt SB, Cho CH, Wang XJ, Lee CW, Chan FKL, Yu J, Sung JJY. The autophagic paradox in cancer therapy. Oncogene 2011; 31:939-53. [PMID: 21765470 DOI: 10.1038/onc.2011.295] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy, hallmarked by the formation of double-membrane bound organelles known as autophagosomes, is a lysosome-dependent pathway for protein degradation. The role of autophagy in carcinogenesis is context dependent. As a tumor-suppressing mechanism in early-stage carcinogenesis, autophagy inhibits inflammation and promotes genomic stability. Moreover, disruption of autophagy-related genes accelerates tumorigenesis in animals. However, autophagy may also act as a pro-survival mechanism to protect cancer cells from various forms of cellular stress. In cancer therapy, adaptive autophagy in cancer cells sustains tumor growth and survival in face of the toxicity of cancer therapy. To this end, inhibition of autophagy may sensitize cancer cells to chemotherapeutic agents and ionizing radiation. Nevertheless, in certain circumstances, autophagy mediates the therapeutic effects of some anticancer agents. Data from recent studies are beginning to unveil the apparently paradoxical nature of autophagy as a cell-fate decision machinery. Taken together, modulation of autophagy is a novel approach for enhancing the efficacy of existing cancer therapy, but its Janus-faced nature may complicate the clinical development of autophagy modulators as anticancer therapeutics.
Collapse
Affiliation(s)
- W K K Wu
- Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
541
|
Bucci C, Bakke O, Progida C. Rab7b and receptors trafficking. Commun Integr Biol 2011; 3:401-4. [PMID: 21057625 DOI: 10.4161/cib.3.5.12341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 12/31/2022] Open
Abstract
Rab proteins are key-regulators of intracellular membrane trafficking. Rab7b is a recently identified Rab protein that may downregulate TLR4 and TLR9-mediated inflammatory responses. Rab7b, believed to have similar function as Rab7, controls however vesicular trafficking from endosomes to the TGN. It is localized to late endosomes/lysosomes as well as the TGN. Rab7b interferes with enzymes delivery to lysosomes and with the retrograde Shiga toxin transport to the Golgi. Furthermore, Rab7b depletion alters CI-MPR and TGN46 trafficking. In conclusion, Rab7b, by regulating the transport from late endosomes to the TGN, is fundamental for trafficking of several receptors, opening for a revised scenario for its influence on signaling of Toll-like Receptors (TLRs) and other receptors.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA); University of Salento; Lecce, Italy
| | | | | |
Collapse
|
542
|
Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells. J Virol 2011; 85:9651-4. [PMID: 21752910 DOI: 10.1128/jvi.00316-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Picornaviruses rearrange cellular membranes to form cytosolic replication sites. In the case of poliovirus and several other picornaviruses, these membranes are derived from subversion of the cellular autophagy pathway. We also reported observation of autophagosome-like structures during infection by two human rhinoviruses (HRVs), HRV-2 and HRV-14 (W. T. Jackson et al., PLoS Biol. 3:e156, 2005). Another group reported that HRV-2 does not induce autophagosomes or respond to changes in cellular autophagy (M. Brabec-Zaruba, U. Berka, D. Blaas, and R. Fuchs, J. Virol. 81:10815-10817, 2007). In this study, we tested HRV-2-infected cells for activation of autophagic signaling and changes in virus growth in response to changes in autophagy levels. Our data indicate that HRV-2 induces and subverts the autophagic machinery to promote its own replication.
Collapse
|
543
|
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. ACTA ACUST UNITED AC 2011; 192:839-53. [PMID: 21383079 PMCID: PMC3051816 DOI: 10.1083/jcb.201008107] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GAP activity of OATL1, which is recruited to autophagosomes by Atg8, regulates autophagosome–lysosome fusion. Macroautophagy is a bulk degradation system conserved in all eukaryotic cells. A ubiquitin-like protein, Atg8, and its homologues are essential for autophagosome formation and act as a landmark for selective autophagy of aggregated proteins and damaged organelles. In this study, we report evidence demonstrating that OATL1, a putative Rab guanosine triphosphatase–activating protein (GAP), is a novel binding partner of Atg8 homologues in mammalian cells. OATL1 is recruited to isolation membranes and autophagosomes through direct interaction with Atg8 homologues and is involved in the fusion between autophagosomes and lysosomes through its GAP activity. We further provide evidence that Rab33B, an Atg16L1-binding protein, is a target substrate of OATL1 and is involved in the fusion between autophagosomes and lysosomes, the same as OATL1. Because both its GAP activity and its Atg8 homologue–binding activity are required for OATL1 to function, we propose a model that OATL1 uses Atg8 homologues as a scaffold to exert its GAP activity and to regulate autophagosomal maturation.
Collapse
Affiliation(s)
- Takashi Itoh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
544
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2011; 43:17-28. [PMID: 20732422 PMCID: PMC2998573 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
545
|
Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42:731-43. [PMID: 21700220 PMCID: PMC3124681 DOI: 10.1016/j.molcel.2011.04.024] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 03/14/2011] [Accepted: 04/25/2011] [Indexed: 12/11/2022]
Abstract
Autophagy, a catabolic pathway that delivers cellular components to lysosomes for degradation, can be activated by stressful conditions such as nutrient starvation and endoplasmic reticulum (ER) stress. We report that thapsigargin, an ER stressor widely used to induce autophagy, in fact blocks autophagy. Thapsigargin does not affect autophagosome formation but leads to accumulation of mature autophagosomes by blocking autophagosome fusion with the endocytic system. Strikingly, thapsigargin has no effect on endocytosis-mediated degradation of epidermal growth factor receptor. Molecularly, while both Rab7 and Vps16 are essential regulatory components for endocytic fusion with lysosomes, we found that Rab7 but not Vps16 is required for complete autophagy flux, and that thapsigargin blocks recruitment of Rab7 to autophagosomes. Therefore, autophagosomal-lysosomal fusion must be governed by a distinct molecular mechanism compared to general endocytic fusion.
Collapse
Affiliation(s)
| | - Pui-Mun Wong
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Noor Gammoh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| |
Collapse
|
546
|
Chen J, Ma Z, Jiao X, Fariss R, Kantorow WL, Kantorow M, Pras E, Frydman M, Pras E, Riazuddin S, Riazuddin SA, Hejtmancik JF. Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am J Hum Genet 2011; 88:827-838. [PMID: 21636066 DOI: 10.1016/j.ajhg.2011.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022] Open
Abstract
Congenital cataracts (CCs), responsible for about one-third of blindness in infants, are a major cause of vision loss in children worldwide. Autosomal-recessive congenital cataracts (arCC) form a clinically diverse and genetically heterogeneous group of disorders of the crystalline lens. To identify the genetic cause of arCC in consanguineous Pakistani families, we performed genome-wide linkage analysis and fine mapping and identified linkage to 3p21-p22 with a summed LOD score of 33.42. Mutations in the gene encoding FYVE and coiled-coil domain containing 1 (FYCO1), a PI(3)P-binding protein family member that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport, were identified in 12 Pakistani families and one Arab Israeli family in which arCC had previously been mapped to the overlapping CATC2 region. Nine different mutations were identified, including c.3755 delC (p.Ala1252AspfsX71), c.3858_3862dupGGAAT (p.Leu1288TrpfsX37), c.1045 C>T (p.Gln349X), c.2206C>T (p.Gln736X), c.2761C>T (p.Arg921X), c.2830C>T (p.Arg944X), c.3150+1 G>T, c.4127T>C (p.Leu1376Pro), and c.1546C>T (p.Gln516X). Fyco1 is expressed in the mouse embryonic and adult lens and peaks at P12d. Expressed mutant proteins p.Leu1288TrpfsX37 and p.Gln736X are truncated on immunoblots. Wild-type and p.L1376P FYCO1, the only missense mutant identified, migrate at the expected molecular mass. Both wild-type and p. Leu1376Pro FYCO1 proteins expressed in human lens epithelial cells partially colocalize to microtubules and are found adjacent to Golgi, but they primarily colocalize to autophagosomes. Thus, FYCO1 is involved in lens development and transparency in humans, and mutations in this gene are one of the most common causes of arCC in the Pakistani population.
Collapse
Affiliation(s)
- Jianjun Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanda Lee Kantorow
- Department of Biomedical Science, Florida Atlantic University, room 207, Biomedical building, 777 Glades Rd. Boca Raton, FL, USA
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, room 207, Biomedical building, 777 Glades Rd. Boca Raton, FL, USA
| | - Eran Pras
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel; affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Frydman
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel; affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elon Pras
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel; affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; Allama Iqbal Medical College, Lahore 54550, Pakistan
| | - S Amer Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan; The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
547
|
Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy. BMC Biol 2011; 9:38. [PMID: 21635740 PMCID: PMC3121655 DOI: 10.1186/1741-7007-9-38] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/02/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autophagy mediates lysosomal degradation of cytosolic components. Recent work has associated autophagic dysfunction with pathologies, including cancer and cardiovascular disease. To date, the identification of clinically-applicable drugs that modulate autophagy has been hampered by the lack of standardized assays capable of precisely reporting autophagic activity. RESULTS We developed and implemented a high-content, flow-cytometry-based screening approach for rapid, precise, and quantitative measurements of pharmaceutical control over autophagy. Our assay allowed for time-resolved individual measurements of autolysosome formation and degradation, and endolysosomal activities under both basal and activated autophagy conditions. As proof of concept, we analyzed conventional autophagy regulators, including cardioprotective compounds aminoimidazole carboxamide ribonucleotide (AICAR), rapamycin, and resveratrol, and revealed striking conditional dependencies of rapamycin and autophagy inhibitor 3-methyladenine (3-MA). To identify novel autophagy modulators with translational potential, we screened the Prestwick Chemical Library of 1,120 US Food and Drug Administration (FDA)-approved compounds for impact on autolysosome formation. In all, 38 compounds were identified as potential activators, and 36 as potential inhibitors of autophagy. Notably, amongst the autophagy enhancers were cardiac glycosides, from which we selected digoxin, strophanthidin, and digoxigenin for validation by standard biochemical and imaging techniques. We report the induction of autophagic flux by these cardiac glycosides, and the concentrations allowing for specific enhancement of autophagic activities without impact on endolysosomal activities. CONCLUSIONS Our systematic analysis of autophagic and endolysosomal activities outperformed conventional autophagy assays and highlights the complexity of drug influence on autophagy. We demonstrate conditional dependencies of established regulators. Moreover, we identified new autophagy regulators and characterized cardiac glycosides as novel potent inducers of autophagic flux.
Collapse
Affiliation(s)
- Phillip Hundeshagen
- Division of Theoretical Bioinformatics, German Cancer Research Center and Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
548
|
Abstract
Autophagy (macroautophagy), or the degradation of large numbers of cytoplasmic components, is induced by extracellular and intracellular signals, including oxidative stress, ceramide, and endoplasmic reticulum stress. This dynamic process involves membrane formation and fusion, including autophagosome formation, autophagosome-lysosome fusion, and the degradation of intra-autophagosomal contents by lysosomal hydrolases. Autophagy is associated with tumorigenesis, neurodegenerative diseases, cardiomyopathy, Crohn's disease, fatty liver, type II diabetes, defense against intracellular pathogens, antigen presentation, and longevity. Among the proteins and multimolecular complexes that contribute to autophagosome formation are the PI(3)-binding proteins, the PI3-phosphatases, the Rab proteins, the Atg1/ULK1 protein-kinase complex, the Atg9•Atg2-Atg18 complex, the Vps34-Atg6/beclin1 class III PI3-kinase complex, and the Atg12 and Atg8/LC3 conjugation systems. Two ubiquitin-like modifications, the Atg12 and LC3 conjugations, are essential for membrane elongation and autophagosome formation. Recent findings have revealed that processes of selective autophagy, including pexophagy, mitophagy, ERphagy (reticulophagy), and the p62-dependent degradation of ubiquitin-positive aggregates, are physiologically important in various disease states, whereas "classical" autophagy is considered nonselective degradation. Processes of selective autophagy require specific Atg proteins in addition to the "core" Atg complexes. Finally, methods to monitor autophagic activity in mammalian cells are described.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjyuku, Japan.
| |
Collapse
|
549
|
Czaja MJ. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology 2011; 140:1895-908. [PMID: 21530520 PMCID: PMC3690365 DOI: 10.1053/j.gastro.2011.04.038] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/18/2011] [Indexed: 12/13/2022]
Abstract
Autophagy is a lysosomal pathway that degrades and recycles intracellular organelles and proteins to maintain energy homeostasis during times of nutrient deprivation and to remove damaged cell components. Recent studies have identified new functions for autophagy under basal and stressed conditions. In the liver and pancreas, autophagy performs the standard functions of degrading mitochondria and aggregated proteins and regulating cell death. In addition, autophagy functions in these organs to regulate lipid accumulation in hepatic steatosis, trypsinogen activation in pancreatitis, and hepatitis virus replication. This review discusses the effects of autophagy on hepatic and pancreatic physiology and the contribution of this degradative process to diseases of these organs. The discovery of novel functions for this lysosomal pathway has increased our understanding of the pathophysiology of diseases in the liver and pancreas and suggested new possibilities for their treatment.
Collapse
Affiliation(s)
- Mark J Czaja
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
550
|
Morselli E, Galluzzi L, Kepp O, Mariño G, Michaud M, Vitale I, Maiuri MC, Kroemer G. Oncosuppressive functions of autophagy. Antioxid Redox Signal 2011; 14:2251-69. [PMID: 20712403 DOI: 10.1089/ars.2010.3478] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macroautophagy (herein referred to as autophagy) constitutes a phylogenetically old mechanism leading to the lysosomal degradation of cytoplasmic structures. At baseline levels, autophagy exerts homeostatic functions by ensuring the turnover of potentially harmful organelles and long-lived aggregate-prone proteins. Moreover, the autophagic flow can be dramatically upregulated in response to a plethora of stressful conditions, including glucose, amino acid, oxygen, or growth factor deprivation, accumulation of unfolded proteins in the endoplasmic reticulum, and invasion by intracellular pathogens. In some experimental settings, stress-induced autophagy has been shown to contribute to programmed cell death. Nevertheless, autophagy most often confers cytoprotection by providing cells with new metabolic substrates or by ridding them of noxious intracellular entities including protein aggregates and invading organisms. Thus, autophagy has been implicated in an ever-increasing number of human diseases including cancer. Autophagy inhibition accelerates the demise of tumor cells that are subjected to chemo- or radiotherapy, thereby constituting an interesting target for the development of anticancer strategies. However, several oncosuppressor proteins and oncoproteins have been recently shown to stimulate and inhibit the autophagic flow, respectively, suggesting that autophagy exerts bona fide tumor-suppressive functions. In this review, we will discuss the mechanisms by which autophagy may prevent oncogenesis.
Collapse
|