551
|
Li J, Ye L, Cook DR, Wang X, Liu J, Kolson DL, Persidsky Y, Ho WZ. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages. J Neuroinflammation 2011; 8:15. [PMID: 21324129 PMCID: PMC3046894 DOI: 10.1186/1742-2094-8-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/15/2011] [Indexed: 12/12/2022] Open
Abstract
Background Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS) contributes to neuronal injury. Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS) production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA) oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and of ROS. In contrast, BBI pretreatment (1-100 μg/ml) of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml), had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml) had no effect on N-methyl-D-aspartic acid (NMDA)-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.
Collapse
Affiliation(s)
- Jieliang Li
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
552
|
Inflammatory cytokine and chemokine expression is differentially modulated acutely in the dorsal root ganglion in response to different nerve root compressions. Spine (Phila Pa 1976) 2011; 36:197-202. [PMID: 20714281 DOI: 10.1097/brs.0b013e3181ce4f4d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Inflammatory proteins were quantified in bilateral dorsal root ganglions (DRGs) at 1 hour and 1 day using a multiplexed assay after 2 different unilateral nerve root compression injuries. OBJECTIVE To quantify cytokines and a chemokine in the DRG after nerve root compression with and without a chemical injury to determine contributing inflammatory factors in the DRG that may mediate radicular nociception in clinically relevant nerve root pathologies. SUMMARY OF BACKGROUND DATA Inflammatory cytokines are known to relate to the behavioral hypersensitivity induced after injuries to the nerve root. However, the relative expression of these proteins in the DRG after cervical nerve root compression are not known. METHODS The right C7 nerve root underwent transient compression (10 gf) or transient compression with a chemical irritation (10 gf + chr). The chemical injury was also given alone (chr), and the nerve root was exposed (sham), providing 2 types of controls. Mechanical allodynia was measured to assess behavioral outcomes. Interleukin (IL)-1b, IL-6, tumor necrosis factor-a, and macrophage inflammatory protein 3 (MIP3) were quantified in bilateral DRGs at 1 hour and 1 day using a multiplexed assay. RESULTS Ipsilateral allodynia at day 1 after 10 gf + chr was significantly increased over both 10 gf and chr (P < 0.049). Cytokines and MIP3 were not statistically increased over sham at 1 hour. By day 1 after 10 gf + chr, all proteins (IL-1β, IL-6, tumor necrosis factor-a, MIP3) were significantly increased over both normal and sham in the ipsilateral DRG (P < 0.036), and the cytokines were also significantly increased over chr (P < 0.029). Despite allodynia at day 1, cytokines at that time were not increased over normal or sham after either 10 gf or chr. CONCLUSION Nerve root compression alone may not be sufficient to induce early increases in proinflammatory cytokines in the DRG after radiculopathy and this early protein response may not be directly responsible for nociception in this type of injury.
Collapse
|
553
|
Chastain EML, Duncan DS, Rodgers JM, Miller SD. The role of antigen presenting cells in multiple sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:265-74. [PMID: 20637861 PMCID: PMC2970677 DOI: 10.1016/j.bbadis.2010.07.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a debilitating T cell mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity.
Collapse
Affiliation(s)
- Emily M L Chastain
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | |
Collapse
|
554
|
Henn A, Kirner S, Leist M. TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. THE JOURNAL OF IMMUNOLOGY 2011; 186:3237-47. [PMID: 21282508 DOI: 10.4049/jimmunol.1002787] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precedent inflammatory episodes may drastically modify the function and reactivity of cells. We investigated whether priming of astrocytes by microglia-derived cytokines alters their subsequent reaction to pathogen-associated danger signals not recognized in the quiescent state. Resting primary murine astrocytes expressed little TLR2, and neither the TLR2/6 ligand fibroblast-stimulating lipopeptide-1 (FSL1) nor the TLR1/2 ligand Pam(3)CysSK(4) (P3C) triggered NF-κB translocation or IL-6 release. We made use of single-cell detection of NF-κB translocation as easily detectable and sharply regulated upstream indicator of an inflammatory response or of c-Jun phosphorylation to measure restimulation events in astrocytes under varying conditions. Cells prestimulated with IL-1β, with a TLR3 ligand, with a complete cytokine mix consisting of TNF-α, IL-1β, and IFN-γ, or with media conditioned by activated microglia responded strongly to FSL1 or P3C stimulation, whereas the sensitivity of the NF-κB response to other pattern recognition receptors was unchanged. This sensitization to TLR2 ligands was associated with an initial upregulation of TLR2, displayed a "memory" window of several days, and was largely independent of the length of prestimulation. The altered signaling led to altered function, as FSL1 or P3C triggered the release of IL-6, CCL-20, and CXCL-2 in primed cells, but not in resting astrocytes. These data confirmed the hypothesis that astrocytes exposed to activated microglia assume a different functional phenotype involving longer term TLR2 responsiveness, even after the initial stimulation by inflammatory mediators has ended.
Collapse
Affiliation(s)
- Anja Henn
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
555
|
Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB. The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: Protein distribution and the glial response. J Biomed Mater Res A 2011; 96:595-607. [PMID: 21254391 DOI: 10.1002/jbm.a.33011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 10/09/2010] [Accepted: 11/01/2010] [Indexed: 12/18/2022]
Abstract
Tailored delivery of neurotrophic factors (NFs) is a critical challenge that continues to inhibit strategies for guidance of axonal growth in vivo. Of particular importance is the ability to recreate innervation of distant brain regions by transplant tissue, for instance rebuilding the nigrostriatal track, one focus in Parkinson's disease research. Many strategies have utilized polymer drug delivery to target NF release in space and time, but combinatorial approaches are needed to deliver multiple NFs at relevant therapeutic times and locations without toxic side effects. Here we engineered a paradigm of PLGA microparticles entrapped within a degradable PEG-based hydrogel device to locally release two different types of NFs with two different release profiles. Hydrogel/microparticle devices were developed and analyzed for their ability to release GDNF in the caudal area of the brain, near the substantia nigra, or BDNF in the rostral area, near the striatum. The devices delivered their respective NFs in a region localized to within 100 μm of the bridge, but not exclusively to the targeted rostral or caudal ends. BDNF was slowly released over a 56-day period, whereas a bolus of GDNF was released around 28 days. The timed delivery of NFs from implanted devices significantly reduced the microglial response relative to sham surgeries. Given the coordinated drug delivery ability and reduced localized inflammatory response, this multifaceted PEG hydrogel/PLGA microparticle strategy may be a useful tool for further development in combining tissue engineering and drug delivery, and recreating the nigrostriatal track.
Collapse
Affiliation(s)
- Kyle J Lampe
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
556
|
Shih YT, Chen IJ, Wu YC, Lo YC. San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:429384. [PMID: 19339484 PMCID: PMC3135633 DOI: 10.1093/ecam/nep025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 03/03/2009] [Indexed: 12/30/2022]
Abstract
San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix and Rhei rhizoma, is a traditional Chinese herbal medicine used to treat gastritis, gastric bleeding and peptic ulcers. This study investigated the neuroprotective effects of SHXT on microglia-mediated neurotoxicity using co-cultured lipopolysaccharide (LPS)-activated microglia-like BV-2 cells with neuroblastoma SH-SY5Y cells. Effects of SHXT on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity were also examined in SH-SY5Y cells. Results indicated SHXT inhibited LPS-induced inflammation of BV-2 cells by downregulation of iNOS, NO, COX-2, PGE2, gp91phox, iROS, TNF-α, IL-1β, inhibition of IκBα degradation and upregulation of HO-1. In addition, SHXT increased cell viability and down regulated nNOS, COX-2 and gp91phox of SH-SY5Y cells co-cultured with LPS activated BV-2 cells. SHXT treatment increased cell viability and mitochondria membrane potential (MMP), decreased expression of nNOS, COX-2, gp91phox and iROS, and inhibited IκBα degradation in 6-OHDA-treated SH-SY5Y cells. SHXT also attenuated LPS activated BV-2 cells- and 6-OHDA-induced cell death in differentiated SH-SY5Y cells with db-cAMP. Furthermore, SHXT-inhibited nuclear translocation of p65 subunit of NF-κB in LPS treated BV-2 cells and 6-OHDA treated SH-SY5Y cells. In conclusion, SHXT showed protection from activated microglia- and 6-OHDA-induced neurotoxicity by attenuating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
557
|
Tan SW, Ramasamy R, Abdullah M, Vidyadaran S. Inhibitory effects of palm α-, γ- and δ-tocotrienol on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Cell Immunol 2011; 271:205-9. [DOI: 10.1016/j.cellimm.2011.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
558
|
Iwama S, Sugimura Y, Suzuki H, Suzuki H, Murase T, Ozaki N, Nagasaki H, Arima H, Murata Y, Sawada M, Oiso Y. Time-dependent changes in proinflammatory and neurotrophic responses of microglia and astrocytes in a rat model of osmotic demyelination syndrome. Glia 2010; 59:452-62. [PMID: 21264951 DOI: 10.1002/glia.21114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/29/2010] [Indexed: 01/27/2023]
Abstract
Osmotic demyelination syndrome (ODS) is a serious demyelinating disease in the central nervous system usually caused by rapid correction of hyponatremia. In an animal model of ODS, we previously reported microglial accumulation expressing proinflammatory cytokines. Microglia and astrocytes secreting proinflammatory cytokines and neurotrophic factors are reported to be involved in the pathogenesis of demyelinative diseases. Therefore, to clarify the role of microglial and astrocytic function in ODS, we examined the time-dependent changes in distribution, morphology, proliferation, and mRNA/protein expression of proinflammatory cytokines, neurotrophic factors, and matrix metalloproteinase (MMP) in microglia and astrocytes 2 days (early phase) and 5 days (late phase) after the rapid correction of hyponatremia in ODS rats. The number of microglia time dependently increased at demyelinative lesion sites, proliferated, and expressed tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and MMP2, 9, and 12 at the early phase. Microglia also expressed leukemia inhibitory factor (a neurotrophic factor) and phagocytosed myelin debris at the late phase. The number of astrocytes time dependently increased around demyelinative lesions, extended processes to lesions, proliferated, and expressed nerve growth factor and glial cell line-derived neurotrophic factor at the late phase. Moreover, treatment with infliximab, a monoclonal antibody against TNF-α, significantly attenuated neurological impairments. Our results suggest that the role of microglia in ODS is time dependently shifted from detrimental to protective and that astrocytes play a protective role at the late phase. Modulation of excessive proinflammatory responses in microglia during the early phase after rapid correction may represent a therapeutic target for ODS.
Collapse
Affiliation(s)
- Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
559
|
Shueb RH, Papadimitriou J, Urosevic N. Fatal persistence of West Nile virus subtype Kunjin in the brains of flavivirus resistant mice. Virus Res 2010; 155:455-61. [PMID: 21167228 DOI: 10.1016/j.virusres.2010.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 11/26/2022]
Abstract
Flaviviruses cause febrile illnesses in humans that may progress to encephalitis and death. Both viral and host factors determine the level of virus replication and outcome of infection. In mice, genetically determined resistance conferred by the flavivirus resistance locus (Flv) is responsible for the restricted flavivirus replication and prevention of disease development. Majority of flaviviruses express significant virulence, replicate to high titers and cause high mortality in susceptible mice, while congenic resistant mice endure the infection, show significantly reduced levels of virus replication and remain healthy. In contrast, infection with West Nile virus subtype Kunjin (KUNV) causes morbidity and fatal outcomes even in mice that are naturally resistant to flaviviruses. There are two possible mechanisms that could account for such an unforeseen virulence of KUNV in resistant mice: (a) an abrogation of Flv-controlled natural resistance leading to high virus replication, or (b) massive virus-induced immunopathology in the brain. To identify the cause(s) of fatality of KUNV infection, disease progression, virus replication and brain histopathology were studied in parallel in resistant and congenic susceptible mice. While KUNV replicated to high titers causing early fatalities in susceptible mice, it showed only reduced replication associated with the delayed morbidity in resistant mice indicating no abrogation of the Flv resistance. No evidence of excessive immune cell infiltration and tissue damage following KUNV infection were found. However, incomplete KUNV clearance not previously described was perceived as an important source of pathogenesis in resistant mice.
Collapse
Affiliation(s)
- Rafidah H Shueb
- Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawly, Western Australia, Australia
| | | | | |
Collapse
|
560
|
Fang KM, Wang YL, Huang MC, Sun SH, Cheng H, Tzeng SF. Expression of macrophage inflammatory protein-1α and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: involvement of ATP and P2X₇ receptor. J Neurosci Res 2010; 89:199-211. [PMID: 21162127 DOI: 10.1002/jnr.22538] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 01/21/2023]
Abstract
Chemokines can be produced by gliomas, which mediate the infiltration of microglia, a characteristic feature of glioma-associated neuropathogenesis. ATP that is released at a high level from glioma has been reported to play a regulatory role in chemokine production in cultured glioma cells. The objective of this study was to define the potential role of extracellular ATP in the regulation of macrophage inflammatory protein-1α (MIP-1α) and monocyte chemoattractant protein-1(MCP-1) expression in glioma-associated microglia/macrophages. The results showed that Iba1(+) and ED1(+) microglia existed in the tumor at 3 and 7 day after injection of C6 glioma cells into the rat cerebral cortex (dpi). ED1(+) microglia/macrophages or Iba1(+) microglia in the glioma were also colocalized to MIP-1α- and MCP-1-expressing cells. In vitro study indicated that treatment with ATP and BzATP (an agonist for ATP ionotropic receptor P2X₇R) caused an increase in the intracellular levels of microglial MIP-1α and MCP-1. By using an extracellular Ca(2+) chelator (EGTA) and P2X₇R antagonists, oxidized ATP (oxATP) and brilliant blue G (BBG), we demonstrated that BzATP-induced production of MIP-1α and MCP-1 levels was due to P2X₇R activation and Ca(2+) -dependent regulation. Coadministration of C6 glioma cells and oxATP into the rat cerebral cortex resulted in a reduction of MIP-1α- and MCP-1-expressing microglia/macrophages. We suggest, based on the results from in vivo and in vitro studies, that a massive amount of ATP molecules released in the glioma tumor site may act as the regulator with P2X₇R signaling that increases MIP-1α and MCP-1 expression in tumor-infiltrating microglia/macrophages.
Collapse
Affiliation(s)
- Kuan-Min Fang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
561
|
Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RF, Brites D. Features of bilirubin-induced reactive microglia: From phagocytosis to inflammation. Neurobiol Dis 2010; 40:663-75. [DOI: 10.1016/j.nbd.2010.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/26/2010] [Accepted: 08/11/2010] [Indexed: 01/05/2023] Open
|
562
|
Seki Y, Suzuki SO, Masui K, Harada S, Nakamura S, Kanba S, Iwaki T. A simple and high-yield method for preparation of rat microglial cultures utilizing Aclar plastic film. Neuropathology 2010; 31:215-22. [PMID: 21092060 DOI: 10.1111/j.1440-1789.2010.01163.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microglia are implicated in both neuroprotection and neurodegeneration, and are a key area of interest with respect to various CNS diseases. Until now, primary microglia prepared by various isolation methods have been widely used to investigate their role in CNS diseases. However, there are some problems with the current isolation methods, such as the numbers of animals required in order to obtain sufficient numbers of microglial cells due to low yields, and also the long periods of culture required. We herein describe a simple, high-yield method for isolating not only primary microglia, but also immortalized microglial cells. Our method allows for the isolation of an almost pure population of microglia with only two steps. First, a primary mixed neural culture was prepared from the brains of 3-day-old postnatal rats. Next, primary microglia were collected for 2 h by adhesion to Aclar plastic film. The average yield by this method was approximately 50 times higher than that of the conventional shaking method. Immortalized microglial cells could also be prepared based on this procedure. A plasmid vector encoding the SV40 large T antigen was transfected into the mixed neural culture using a calcium phosphate precipitation method. Then, proliferating immortalized microglia were collected after several weeks in a similar fashion. Several clones were obtained by limited dilution and one of the immortalized cell lines was designated SMK. The SMK cells exhibited markers specific for the microglia lineage, including Iba-1, CD11b, CD45, CD68, major histocompatibility complex (MHC) class I and MHC class II, but not for the astrocyte-specific markers, GFAP and glutamate aspartate transporter. SMK also showed phagocytic activity. In conclusion, this method resulted in a high-yield preparation of microglial cultures with ease and reproducibility.
Collapse
Affiliation(s)
- Yoshihiro Seki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
563
|
Early influx of macrophages determines susceptibility to experimental allergic encephalomyelitis in Dark Agouti (DA) rats. J Neuroimmunol 2010; 232:68-74. [PMID: 21109309 DOI: 10.1016/j.jneuroim.2010.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/20/2010] [Accepted: 10/07/2010] [Indexed: 12/24/2022]
Abstract
Experimental allergic encephalomyelitis (EAE) is characterized by inflammatory infiltrates of myelin antigen(s) specific T cells and consecutive demyelination. Injection of encephalitogen into the footpads induces disease in genetically susceptible Dark Agouti rats (DA) but not in Albino Oxford (AO) rats although mild inflammatory infiltrates are observed in both strains early after disease induction. In addition, only DA rats develop disease when cells from (AO×DA) F(1) hybrids are passively transferred into sub-lethally radiated AO and DA parent hosts. The aim of the study was therefore to examine the participation of accessory cells, macrophages, dendritic cells and microglia in EAE development at the level of the target tissue in these two strains using specific membrane markers. We demonstrate here that in the induction phase of EAE in DA rats, macrophages (CD68(+); CD45(hi)CD11b(+)) are the first detectable infiltrating cells in the subpial regions of the spinal cord but were not found in AO rats. During the same period, resident microglial cells which are of the ramified variety are observed in both DA and AO rats. In DA rats at the peak of disease, when profuse influx of T cells is seen, macrophages and dendritic cells appear in the parenchyma of the CNS. In addition, at that time, microglial cells are activated. FACS analyses also reveal a significant increase in CD45(hi)CD11c(+) dendritic cells and CD45(hi)D11b(+) macrophages compared with levels in naïve and immunized AO rats. During resolution of disease in DA rats, the expression of microglia and macrophage markers is comparable with those in naïve non-immunized DA and immunized AO rats. We conclude that an initial influx of macrophages is indispensible for the development of EAE in DA rats. The presence of dendritic cells and myeloid dendritic cells at the peak of disease supports the role of these cells in EAE especially in relapses and chronicity. The activation pattern of microglia in DA rats does not indicate their role as antigen presenting cells in disease induction since they are ramified at the induction phase and only become activated after the overwhelming influx of T cells.
Collapse
|
564
|
Shen CH, Tsai RY, Shih MS, Lin SL, Tai YH, Chien CC, Wong CS. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 2010; 112:454-9. [PMID: 21081778 DOI: 10.1213/ane.0b013e3182025b15] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the present study we examined the effect of the tumor necrosis factor (TNF)-α antagonist etanercept on the antinociceptive effect of morphine in morphine-tolerant rats. METHODS Male Wistar rats were implanted with 2 intrathecal catheters, and 1 was connected to a mini-osmotic pump for either morphine (15 μg/h) or saline (1 μL/h) infusion for 5 days. On day 5, either etanercept (5 μg, 25 μg, and 50 μg/10 μL) or saline (10 μL) was injected via the other catheter after morphine infusion was discontinued. Three hours later, morphine (15 μg/10 μL, intrathecally) was given and tail-flick latency was measured to evaluate the antinociceptive effect of morphine. Rats were then killed and their spinal cords were removed for quantitative real-time polymerase chain reaction and immunohistochemistry to measure proinflammatory cytokines expression. RESULTS We found that acute etanercept (50 μg) treatment preserved a significant antinociceptive effect of morphine in morphine-tolerant rats. In addition, the expression of TNFα mRNA was increased by 2.5-fold, interleukin (IL)-1β mRNA increased by 13-fold and IL-6 mRNA by 111-fold in the dorsal spinal cord of morphine-tolerant rats. The increase in TNFα, IL-1β, and IL-6 mRNA expression was blocked by 50 μg etanercept pretreatment. The immunohistochemistry analysis revealed that 50 μg etanercept suppressed proinflammatory cytokines expression and neuroinflammation in the microglia. CONCLUSIONS The present study demonstrates that etanercept restores the antinociceptive effect of morphine in morphine-tolerant rats by inhibition of proinflammatory cytokine TNF-α, IL-1β, and IL-6 expression and spinal neuroinflammation. The results suggest that etanercept could also be an adjuvant therapy for morphine tolerance, which extends the effectiveness of opioids in clinical pain management.
Collapse
Affiliation(s)
- Ching-Hui Shen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
565
|
Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 2010; 107:20518-22. [PMID: 21041647 DOI: 10.1073/pnas.1014557107] [Citation(s) in RCA: 540] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cognitive decline following surgery in older individuals is a major clinical problem of uncertain mechanism; a similar cognitive decline also follows severe infection, chemotherapy, or trauma and is currently without effective therapy. A variety of mechanisms have been proposed, and exploring the role of inflammation, we recently reported the role of IL-1β in the hippocampus after surgery in mice with postoperative cognitive dysfunction. Here, we show that TNF-α is upstream of IL-1 and provokes its production in the brain. Peripheral blockade of TNF-α is able to limit the release of IL-1 and prevent neuroinflammation and cognitive decline in a mouse model of surgery-induced cognitive decline. TNF-α appears to synergize with MyD88, the IL-1/TLR superfamily common signaling pathway, to sustain postoperative cognitive decline. Taken together, our results suggest a unique therapeutic potential for preemptive treatment with anti-TNF antibody to prevent surgery-induced cognitive decline.
Collapse
|
566
|
Voisin P, Bouchaud V, Merle M, Diolez P, Duffy L, Flint K, Franconi JM, Bouzier-Sore AK. Microglia in close vicinity of glioma cells: correlation between phenotype and metabolic alterations. FRONTIERS IN NEUROENERGETICS 2010; 2:131. [PMID: 21031160 PMCID: PMC2965014 DOI: 10.3389/fnene.2010.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/14/2010] [Indexed: 01/22/2023]
Abstract
Microglia are immune cells within the central nervous system. In brain-developing tumors, gliomas are able to silence the defense and immune functions of microglia, a phenomenon which strongly contributes to tumor progression and treatment resistance. Being activated and highly motile, microglia infiltrate tumors and secrete macrophagic chemoattractant factors. Thereafter, the tumor cells shut down their immune properties and stimulate the microglia to release tumor growth-promoting factors. The result of such modulation is that a kind of symbiosis occurs between microglia and tumor cells, in favor of tumor growth. However, little is known about microglial phenotype and metabolic modifications in a tumoral environment. Co-cultures were performed using CHME5 microglia cells grown on collagen beads or on coverslips and placed on monolayer of C6 cells, limiting cell/cell contacts. Phagocytic behavior and expression of macrophagic and cytoskeleton markers were monitored. Respiratory properties and energetic metabolism were also studied with regard to the activated phenotype of microglia. In co-cultures, transitory modifications of microglial morphology and metabolism were observed linked to a concomitant transitory increase of phagocytic properties. Therefore, after 1 h of co-culture, microglia were activated but when longer in contact with tumor cells, phagocytic properties appear silenced. Like the behavior of the phenotype, microglial respiration showed a transitory readjustment although the mitochondria maintained their perinuclear relocation. Nevertheless, the energetic metabolism of the microglia was altered, suggesting a new energetic steady state. The results clearly indicate that like the depressed immune properties, the macrophagic and metabolic status of the microglia is quickly driven by the glioma environment, despite short initial phagocytic activation. Such findings question the possible contribution of diffusible tumor factors to the microglial metabolism.
Collapse
Affiliation(s)
- Pierre Voisin
- RMSB Center, Centre National de la Recherche Scientifique/Université Victor Segalen Bordeaux 2 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
567
|
Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Day TA, Walker FR. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 2010; 24:1058-68. [PMID: 20153418 DOI: 10.1016/j.bbi.2010.02.001] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/22/2010] [Accepted: 02/05/2010] [Indexed: 02/06/2023] Open
Abstract
The current study, in parallel experiments, evaluated the impact of chronic psychological stress on physiological and behavioural measures, and on the activation status of microglia in 15 stress-responsive brain regions. Rats were subjected, for 14 days, to two 30 min sessions of restraint per day, applied at random times each day. In one experiment the effects of stress on sucrose preference, weight gain, core body temperature, and struggling behaviour during restraint, were determined. In the second experiment we used immunohistochemistry to investigate stress-induced changes in ionized calcium-binding adaptor molecule-1 (Iba1), a marker constitutively expressed by microglia, and major histocompatibility complex-II (MHC-II), a marker often expressed on activated microglia, in a total of 15 stress-responsive nuclei. We also investigated cellular proliferation in these regions using Ki67 immunolabelling, to check for the possibility of microglial proliferation. Collectively, the results we obtained showed that chronic stress induced a significant increase in anhedonia, a decrease in weight gain across the entire observation period, a significant elevation in core body temperature during restraint, and a progressive decrease in struggling behaviour within and over sessions. With regard to microglial activation, chronic stress induced a significant increase in the density of Iba1 immunolabelling (nine of 15 regions) and the number of Iba1-positive cells (eight of 15 regions). Within the regions that exhibited an increased number of Iba1-positive cells after chronic stress, we found no evidence of a between group difference in the number of MHC-II or Ki67 positive cells. In summary, these results clearly demonstrate that chronic stress selectively increases the number of microglia in certain stress-sensitive brain regions, and also causes a marked transition of microglia from a ramified-resting state to a non-resting state. These findings are consistent with the view that microglial activation could play an important role in controlling and/or adapting to stress.
Collapse
Affiliation(s)
- Ross J Tynan
- School of Biomedical Sciences & Pharmacy, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | | | |
Collapse
|
568
|
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics 2010; 7:366-77. [PMID: 20880501 PMCID: PMC2948548 DOI: 10.1016/j.nurt.2010.07.002] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/26/2010] [Accepted: 07/01/2010] [Indexed: 01/12/2023] Open
Abstract
Microglia are the primary mediators of the immune defense system of the CNS and are integral to the subsequent inflammatory response. The role of microglia in the injured CNS is under scrutiny, as research has begun to fully explore how postinjury inflammation contributes to secondary damage and recovery of function. Whether microglia are good or bad is under debate, with strong support for a dual role or differential activation of microglia. Microglia release a number of factors that modulate secondary injury and recovery after injury, including pro- and anti-inflammatory cytokines, chemokines, nitric oxide, prostaglandins, growth factors, and superoxide species. Here we review experimental work on the complex and varied responses of microglia in terms of both detrimental and beneficial effects. Addressed in addition are the effects of microglial activation in two examples of CNS injury: spinal cord and traumatic brain injury. Microglial activation is integral to the response of CNS tissue to injury. In that light, future research is needed to focus on clarifying the signals and mechanisms by which microglia can be guided to promote optimal functional recovery.
Collapse
Affiliation(s)
- David J. Loane
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, 21201 Baltimore, Maryland
| | - Kimberly R. Byrnes
- grid.265436.00000000104215525Room B2048, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814 Bethesda, MD
| |
Collapse
|
569
|
Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010; 7:354-65. [PMID: 20880500 PMCID: PMC2951017 DOI: 10.1016/j.nurt.2010.05.014] [Citation(s) in RCA: 738] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 12/14/2022] Open
Abstract
Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurodegenerative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson's disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype.
Collapse
Affiliation(s)
- Melinda E. Lull
- grid.224260.00000000404588737Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Sanger Hall, Room 9-048, 1101 E. Marshall St., Box 980709, 23298-0709 Richmond, VA
| | - Michelle L. Block
- grid.224260.00000000404588737Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Sanger Hall, Room 9-048, 1101 E. Marshall St., Box 980709, 23298-0709 Richmond, VA
| |
Collapse
|
570
|
Sanberg PR, Eve DJ, Willing AE, Garbuzova-Davis S, Tan J, Sanberg CD, Allickson JG, Cruz LE, Borlongan CV. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells. Cell Transplant 2010; 20:85-94. [PMID: 20887684 DOI: 10.3727/096368910x532855] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.
Collapse
Affiliation(s)
- Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, Israf DA, Vidyadaran S. Bone marrow-derived mesenchymal stem cells modulate BV2 microglia responses to lipopolysaccharide. Int Immunopharmacol 2010; 10:1532-40. [PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (p<.05). Co-culturing MSC with BV2 cells at different ratios revealed interesting dynamics in NO production. A high number of MSC significantly increases NO in co-cultures whilst a lower number reduces NO. The increased NO levels in co-cultures may be MSC-derived, as we also show that activated BV2 cells stimulate MSC to produce NO. Cell-cell interaction is not a requirement for this effect as soluble factors released by activated BV2 cells alone do stimulate MSC to produce high levels of NO. Although NO is implicated as a mediator for T cell proliferation, it does not appear to play a major role in the suppression of microglia proliferation. Additionally, MSC reduced the expression of the microglial co-stimulator molecule, CD40. Collectively, these regulatory effects of MSC on microglia offer insight into the potential moderating properties of MSC on inflammatory responses within the CNS.
Collapse
Affiliation(s)
- Yin Yin Ooi
- Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400UPM Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
572
|
Chen S, Hui H, Zhang D, Xue Y. The combination of morphine and minocycline may be a good treatment for intractable post-herpetic neuralgia. Med Hypotheses 2010; 75:663-5. [PMID: 20826057 DOI: 10.1016/j.mehy.2010.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/01/2010] [Indexed: 01/17/2023]
Abstract
Post-herpetic neuralgia (PHN) is a devastating complication of shingles. The treatment of PHN with traditional pharmaceutical agents has various side effects. Therefore, the treatment of intractable PHN is often very time consuming, mainly because the available treatments often lead to intolerable side effects before the efficient dose can be reached. Opioids such as morphine and oxycodone are the most widely used drugs for the alleviation for severe chronic pain. A number of high quality studies demonstrated that opioids are effective in relieving neuropathic pain including PHN. Yet concerns of misuse, abuse and tolerance of opioids have, however, severely influenced their contribution to neuropathic pain, especially the tolerance that resulted in a loss of drug effect or the necessity for escalating doses to produce pain relief. The glia cells, particularly microglia and astrocytes are thought to play an important role in central sensitization. It is known that activated microglia cells produce NO, cytokines, and cyclooxygenase. All of these chemicals regulate synaptic transmissions in the central nervous system. Additionally, glia modulations showed antiallodynic and antihyperalgesic properties in various experimental pain models. Minocycline, a semisynthetic, second-generation tetracycline can potently inhibit microglial activation and proliferation. Also, the growing body of recent evidence indicates that minocycline attenuates morphine tolerance in neuropathic mice with a mechanism related to microglia. The combination of morphine and minocycline has synergetic effect. This can prevent the development of intractable PHN and attenuate morphine antinociceptive tolerance and further improve the efficacy of morphine and therefore reducing its dosage and side effects. We thereby hypothesize that the combination of morphine and minocycline may produce a duel effect of morphine antinociceptive and minocycline selectively inhibiting the activation of microglia.
Collapse
Affiliation(s)
- Suchang Chen
- Department of Pain Management, Guangdong Medical College, Affiliated Shenzhen Nanshan Hospital, Taoyuan Road Number 89, Nanshan Area, Shenzhen, Guangdong Province 518052, China
| | | | | | | |
Collapse
|
573
|
Azemi E, Gobbel GT, Cui XT. Seeding neural progenitor cells on silicon-based neural probes. J Neurosurg 2010; 113:673-81. [DOI: 10.3171/2010.1.jns09313] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Object
Chronically implanted neural electrode arrays have the potential to be used as neural prostheses in patients with various neurological disorders. While these electrodes perform well in acute recordings, they often fail to function reliably in clinically relevant chronic settings because of glial encapsulation and the loss of neurons. Surface modification of these implants may provide a means of improving their biocompatibility and integration within host brain tissue. The authors proposed a method of improving the brain-implant interface by seeding the implant's surface with a layer of neural progenitor cells (NPCs) derived from adult murine subependyma. Neural progenitor cells may reduce the foreign body reaction by presenting a tissue-friendly surface and repair implant-induced injury and inflammation by releasing neurotrophic factors. In this study, the authors evaluated the growth and differentiation of NPCs on laminin-immobilized probe surfaces and explored the potential impact on transplant survival of these cells.
Methods
Laminin protein was successfully immobilized on the silicon surface via covalent binding using silane chemistry. The growth, adhesion, and differentiation of NPCs expressing green fluorescent protein (GFP) on laminin-modified silicon surfaces were characterized in vitro by using immunocytochemical techniques. Shear forces were applied to NPC cultures in growth medium to evaluate their shearing properties. In addition, neural probes seeded with GFP-labeled NPCs cultured in growth medium for 14 days were implanted in murine cortex. The authors assessed the adhesion properties of these cells during implantation conditions. Moreover, the tissue response around NPC-seeded implants was observed after 1 and 7 days postimplantation.
Results
Significantly improved NPC attachment and growth was found on the laminin-immobilized surface compared with an unmodified control before and after shear force application. The NPCs grown on the laminin-immobilized surface showed differentiation potential similar to those grown on polylysine-treated well plates, as previously reported. Viable (still expressing GFP) NPCs were found on and in proximity to the neural implant after 1 and 7 days postimplantation. Preliminary examinations indicated that the probe's NPC coating might reduce the glial response at these 2 different time points.
Conclusions
The authors' findings suggest that NPCs can differentiate and strongly adhere to laminin-immobilized surfaces, providing a stable matrix for these cells to be implanted in brain tissue on the neural probe's surface. In addition, NPCs were found to improve the astrocytic reaction around the implant site. Further in vivo work revealing the mechanisms of this effect could lead to improvement of biocompatibility and chronic recording performance of neural probes.
Collapse
Affiliation(s)
- Erdrin Azemi
- 1Departments of Bioengineering and
- 3Center for the Neural Basis of Cognition; and
| | - Glenn T. Gobbel
- 2Neurological Surgery, University of Pittsburgh
- 4McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Xinyan Tracy Cui
- 1Departments of Bioengineering and
- 3Center for the Neural Basis of Cognition; and
- 4McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
574
|
Centrally administered pertussis toxin inhibits microglia migration to the spinal cord and prevents dissemination of disease in an EAE mouse model. PLoS One 2010; 5:e12400. [PMID: 20811645 PMCID: PMC2928301 DOI: 10.1371/journal.pone.0012400] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) models are important vehicles for studying the effect of infectious elements such as Pertussis toxin (PTx) on disease processes related to acute demyelinating encephalomyelitis (ADEM) or multiple sclerosis (MS). PTx has pleotropic effects on the immune system. This study was designed to investigate the effects of PTx administered intracerebroventricularly (icv) in preventing downstream immune cell infiltration and demyelination of the spinal cord. Methods and Findings EAE was induced in C57BL/6 mice with MOG35–55. PTx icv at seven days post MOG immunization resulted in mitigation of clinical motor symptoms, minimal T cell infiltration, and the marked absence of axonal loss and demyelination of the spinal cord. Integrity of the blood brain barrier was compromised in the brain whereas spinal cord BBB integrity remained intact. PTx icv markedly increased microglia numbers in the brain preventing their migration to the spinal cord. An in vitro transwell study demonstrated that PTx inhibited migration of microglia. Conclusion Centrally administered PTx abrogated migration of microglia in EAE mice, limiting the inflammatory cytokine milieu to the brain and prevented dissemination of demyelination. The effects of PTx icv warrants further investigation and provides an attractive template for further study regarding the pleotropic effects of infectious elements such as PTx in the pathogenesis of autoimmune disorders.
Collapse
|
575
|
Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer's Disease: Studies in an S100B Overexpressing Mouse Model. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827311 PMCID: PMC2933893 DOI: 10.1155/2010/153657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/01/2010] [Accepted: 07/02/2010] [Indexed: 12/17/2022] Open
Abstract
S100B promotes development and maturation in the mammalian brain. However, prolonged or extensive exposure can lead to neurodegeneration. Two important functions of S100B in this regard, are its role in the development and plasticity of the serotonergic neurotransmitter system, and its role in the cascade of glial changes associated with neuroinflammation. Both of these processes are therefore accelerated towards degeneration in disease processes wherein S100B is increased, notably, Alzheimer's disease (AD) and Down syndrome (DS).
In order to study the role of S100B in this context, we have examined S100B overexpressing transgenic mice. Similar to AD and DS, the transgenic animals show a profound change in serotonin innervation. By 28 weeks of age, there is a significant loss of terminals in the hippocampus. Similarly, the transgenic animals show neuroinflammatory changes analogous with AD and DS. These include decreased numbers of mature, stable astroglial cells, increased numbers of activated microglial cells and increased microglial expression of the cell surface receptor RAGE. Eventually, the S100B transgenic animals show neurodegeneration and the appearance of hyperphosphorylated tau structures, as seen in late stage DS and AD. The role of S100B in these conditions is discussed.
Collapse
|
576
|
Ensinger EM, Boekhoff TMA, Carlson R, Beineke A, Rohn K, Tipold A, Stein VM. Regional topographical differences of canine microglial immunophenotype and function in the healthy spinal cord. J Neuroimmunol 2010; 227:144-52. [PMID: 20728950 DOI: 10.1016/j.jneuroim.2010.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/07/2010] [Accepted: 07/20/2010] [Indexed: 11/26/2022]
Abstract
Differences in the regulation of surface molecule expression and functional activity of microglia, the resident immune effector elements of the central nervous system (CNS), might give important insights into understanding the predilection sites of some diseases within the CNS. Therefore, canine microglial cells in relation to different topographical regions within the healthy CNS were evaluated ex vivo from the brain, cervical, and thoracolumbar spinal cord using density gradient centrifugation and flow cytometry in a homogenous dog population. Immunophenotypical characterization showed physiological regional differences for B7-1, CD14, CD44, CD1c, CD18, CD11b, and CD11c. Both, phagocytosis and ROS generation revealed differences between the brain, cervical, and thoracolumbar spinal cord. Our results emphasize that microglia displays physiological topographical regional differences within the CNS. The dog seems to be an ideal model to further investigate the role of microglia in focal pathological conditions of the spinal cord.
Collapse
Affiliation(s)
- Eva-Maria Ensinger
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, D-30559 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
577
|
Bjugstad KB, Lampe K, Kern DS, Mahoney M. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: An analysis of the glial response across space and time. J Biomed Mater Res A 2010; 95:79-91. [DOI: 10.1002/jbm.a.32809] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
578
|
Irla M, Küpfer N, Suter T, Lissilaa R, Benkhoucha M, Skupsky J, Lalive PH, Fontana A, Reith W, Hugues S. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. ACTA ACUST UNITED AC 2010; 207:1891-905. [PMID: 20696698 PMCID: PMC2931160 DOI: 10.1084/jem.20092627] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although plasmacytoid dendritic cells (pDCs) express major histocompatibility complex class II (MHCII) molecules, and can capture, process, and present antigens (Ags), direct demonstrations that they function as professional Ag-presenting cells (APCs) in vivo during ongoing immune responses remain lacking. We demonstrate that mice exhibiting a selective abrogation of MHCII expression by pDCs develop exacerbated experimental autoimmune encephalomyelitis (EAE) as a consequence of enhanced priming of encephalitogenic CD4+ T cell responses in secondary lymphoid tissues. After EAE induction, pDCs are recruited to lymph nodes and establish MHCII-dependent myelin-Ag–specific contacts with CD4+ T cells. These interactions promote the selective expansion of myelin-Ag–specific natural regulatory T cells that dampen the autoimmune T cell response. pDCs thus function as APCs during the course of EAE and confer a natural protection against autoimmune disease development that is mediated directly by their ability to present of Ags to CD4+ T cells in vivo.
Collapse
Affiliation(s)
- Magali Irla
- Department of Pathology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
579
|
Yao Y, Tsirka SE. The C terminus of mouse monocyte chemoattractant protein 1 (MCP1) mediates MCP1 dimerization while blocking its chemotactic potency. J Biol Chem 2010; 285:31509-16. [PMID: 20682771 DOI: 10.1074/jbc.m110.124891] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The extracellular protease plasmin cleaves mouse MCP1 (monocyte chemoattractant protein 1) at lysine 104, releasing a 50-amino acid C-terminal domain. The cleavage event increases the chemotactic activity of MCP1 and, by doing so, promotes the progression of excitotoxic injury in the central nervous system in pathological settings. The mechanism through which the cleavage event enhances MCP1-mediated chemoattraction is unknown; to investigate it, we use wild-type and mutant forms of recombinant MCP1. Full-length MCP1 (FL-MCP1) is secreted by cells as a dimer or multimer. We show that a mutant truncated at the C terminus, K104Stop-MCP1, does not dimerize, revealing that the C terminus mediates the interaction. MCP1 interacts with the monocyte/microglia receptor CCR2. The interaction is critical to the function of MCP1 because CCR2(-/-) microglia do not undergo chemotaxis in response to MCP1 stimulation. We show that stimulation of microglia with FL-MCP1 or K104Stop-MCP1 triggers CCR2 internalization, whereas a mutant form unable to be cleaved at lysine 104 (K104A-MCP1) is relatively ineffective in this assay, suggesting that the C-terminal region interferes with the MCP1-CCR2 interaction. Moreover, FL-MCP1 and K104Stop-MCP1 stimulation leads to activation of Rac1, a small GTPase involved in cell migration. Conversely, MCP1-stimulated microglial migration is blocked by the Rac1 inhibitor, NSC23766, demonstrating the requirement for Rac1 effector pathways in this response. Taken together, we propose a model for MCP1 localization, activation, and function based on the initial presence and then removal of its C terminus, coupled with a requisite downstream signaling pathway from CCR2 stimulation to Rac1 activation.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
580
|
Jones RP. Can time-related patterns in diagnosis for hospital admission help identify common root causes for disease expression? Med Hypotheses 2010; 75:148-54. [DOI: 10.1016/j.mehy.2010.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/29/2022]
|
581
|
Liu J, Zhao X, Cao J, Xue Q, Feng X, Liu X, Zhang F, Yu B. Differential roles of PKA and Epac on the production of cytokines in the endotoxin-stimulated primary cultured microglia. J Mol Neurosci 2010; 45:186-93. [PMID: 20640531 DOI: 10.1007/s12031-010-9426-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022]
Abstract
To further understand the anti-inflammatory effect of adenosine cyclic 3',5'-monophosphate (cAMP), we examined the effect of protein kinase A (PKA) and cAMP-responsive guanine nucleotide exchange factor (Epac) on the transcription and production of cytokines and on the activity of mitogen-activated protein kinases (MAPK) p38 and glycogen synthase kinase-3β (GSK-3β) in endotoxin-treated rat primary cultured microglia. The PKA specific agonist N6-benzoyladenosine-3,5-cAMP (6-Bnz-cAMP) not only inhibited the transcription and production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) but also enhanced the transcription and expression of IL-10, while the Epac selective analog 8-(4-chlorophenylthio)-2-O-methyladenosine-3,5-cAMP (8-pCPT-2'-O-Me-cAMP) merely repressed the TNF-α expression. Western blots assays indicated that 6-Bnz-cAMP significantly inhibited lipopolysaccharide-induced activation of both p38 and GSK-3β in a dose-dependent manner; in contrast, 8-pCPT-2'-O-Me-cAMP only slightly repressed GSK-3β activity at large doses. Pretreatment with H-89, a specific PKA antagonist, could completely reverse the effect of 6-Bnz-cAMP on cytokines expressions and kinases activities but had no effect on the performance of 8-pCPT-2'-O-Me-cAMP. Our findings indicate that PKA and Epac exert differential effect on the expression of inflammatory cytokines such as TNF-α, IL-1β, and IL-10, possibly owing to the different effects on the downstream effectors, MAPK p38, and GSK-3β.
Collapse
Affiliation(s)
- Jian Liu
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
582
|
Nakamichi K, Kitani H, Takayama-Ito M, Morimoto K, Kurane I, Saijo M. Celastrol suppresses morphological and transcriptional responses in microglial cells upon stimulation with double-stranded RNA. Int J Neurosci 2010; 120:252-7. [PMID: 20374071 DOI: 10.3109/00207451003615763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the pivotal role of microglia in the immune system of the brain, a growing body of evidence suggests that excessive microglial activation provokes neuronal and glial damage, leading to neurodegenerative and neuroinflammatory disorders. Celastrol, a triterpene, is a potent anti-inflammatory and antioxidant compound derived from perennial creeping plants belonging to the Celastraceae family. In the current study, we have analyzed the effect of celastrol on morphological and transcriptional responses in microglial MG6 cells upon stimulation with double-stranded RNA, a strong activator of innate immune cells. In the presence of celastrol, morphological changes were inhibited in double-stranded RNA-stimulated microglia. It was also found that the treatment of microglia with celastrol led to a significant decrease in the double-stranded RNA-induced expression of proinflammatory cytokines and chemokines. These data demonstrate that celastrol inhibits morphological and transcriptional responses during microglial activation.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
583
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
584
|
Benakis C, Bonny C, Hirt L. JNK inhibition and inflammation after cerebral ischemia. Brain Behav Immun 2010; 24:800-11. [PMID: 19903520 DOI: 10.1016/j.bbi.2009.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022] Open
Abstract
The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.
Collapse
Affiliation(s)
- Corinne Benakis
- Department of Neurology, University Hospital (CHUV), Lausanne, Switzerland
| | | | | |
Collapse
|
585
|
Kim EA, Hahn HG, Kim KS, Kim TU, Choi SY, Cho SW. Suppression of glutamate-induced excitotoxicity by 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride in rat glial cultures. Cell Mol Neurobiol 2010; 30:807-15. [PMID: 20198420 PMCID: PMC11498866 DOI: 10.1007/s10571-010-9508-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/15/2010] [Indexed: 01/22/2023]
Abstract
We have screened new drugs with a view to developing effective drugs against glutamate-induced excitotoxicity. In the present work, we show effects of a new drug, 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against glutamate-induced excitotoxicity in primary rat glial cultures. Pretreatment of glial cells with 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride for 2 h significantly protected glial cells against glutamate-induced excitotoxicity in a time- and dose-dependent manner with an optimum concentration of 100 microM. The drug significantly reduced production of proinflammatory cytokines, tumor necrosis factor-alpha, and interlukin-1beta in glutamate-induced excitotoxicity. The drug also prevented glutamate-induced intracellular Ca2+ influx and reduced the subsequent overproduction of nitric oxide and reactive oxygen species. Furthermore, the drug preserved the mitochondrial potential and inhibited the overproduction of cytochrome c. In addition, the drug effectively attenuated the protein level changes of beta-catenin and glycogen synthase kinase-3beta. These results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride effectively protected primary cultures of rat glial cells against glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 222-701 Korea
| | - Hoh-Gyu Hahn
- Division of Life Sciences, Korea Institute of Science and Technology, Seoul, 136-791 Korea
| | - Key-Sun Kim
- Center for Neural Science, Korea Institute of Science and Technology, Seoul, 136-791 Korea
| | - Tae Ue Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 222-701 Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, 200-702 Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 138-736 Korea
| |
Collapse
|
586
|
Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, Columba-Cabezas S, Aricò E, Aloisi F, Agresti C. Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci 2010; 45:234-44. [PMID: 20600925 DOI: 10.1016/j.mcn.2010.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/20/2010] [Accepted: 06/22/2010] [Indexed: 02/07/2023] Open
Abstract
Fine regulation of the innate immune response following brain injury or infection is important to avoid excessive activation of microglia and its detrimental consequences on neural cell viability and function. To get insights on the molecular networks regulating microglia activation, we analyzed expression, regulation and functional relevance of tumor necrosis factor receptors (TNFR) 2 in cultured mouse microglia. We found that microglia upregulate TNFR2 mRNA and protein and shed large amounts of soluble TNFR2, but not TNFR1, in response to pro-inflammatory stimuli and through activation of TNFR2 itself. By microarray analysis, we demonstrate that TNFR2 stimulation in microglia regulates expression of genes involved in immune processes, including molecules with anti-inflammatory and neuroprotective function like granulocyte colony-stimulating factor, adrenomedullin and IL-10. In addition, we identify IFN-γ as a regulator of the balance between pro- and anti-inflammatory/neuroprotective factors induced by TNFR2 stimulation. These data indicate that, through TNFR2, microglia may contribute to the counter-regulatory response activated in neuropathological conditions.
Collapse
Affiliation(s)
- Caterina Veroni
- Departments of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
587
|
Ebert S, Goos M, Rollwagen L, Baake D, Zech WD, Esselmann H, Wiltfang J, Mollenhauer B, Schliebs R, Gerber J, Nau R. Recurrent systemic infections with Streptococcus pneumoniae do not aggravate the course of experimental neurodegenerative diseases. J Neurosci Res 2010; 88:1124-36. [PMID: 19859962 DOI: 10.1002/jnr.22270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurological symptoms of patients suffering from neurodegenerative diseases such as Alzheimer's dementia (AD), Parkinson's disease (PD), or amyotrophic lateral sclerosis (ALS) often worsen during infections. We assessed the disease-modulating effects of recurrent systemic infections with the most frequent respiratory pathogen, Streptococcus pneumoniae, on the course of AD, PD, and ALS in mouse models of these neurodegenerative diseases [transgenic Tg2576 mice, (Thy1)-[A30P]alpha SYN mice, and Tg(SOD1-G93A) mice]. Mice were repeatedly challenged intraperitoneally with live S. pneumoniae type 3 and treated with ceftriaxone for 3 days. Infection caused an increase of interleukin-6 concentrations in brain homogenates. The clinical status of (Thy1)-[A30P]alpha SYN mice and Tg(SOD1-G93A) mice was monitored by repeated assessment with a clinical score. Motor performance was controlled by the tightrope test and the rotarod test. In Tg2576 mice, spatial memory and learning deficits were assessed in the Morris water maze. In none of the three mouse models onset or course of the disease as evaluated by the clinical tests was affected by the recurrent systemic infections performed. Levels of alpha-synuclein in brains of (Thy1)-[A30P]alpha SYN mice did not differ between infected animals and control animals. Plaque sizes and concentrations of A beta 1-40 and A beta 1-42 were not significantly different in brains of infected and uninfected Tg2576 mice. In conclusion, onset and course of disease in mouse models of three common neurodegenerative disorders were not influenced by repeated systemic infections with S. pneumoniae, indicating that the effect of moderately severe acute infections on the course of neurodegenerative diseases may be less pronounced than suspected.
Collapse
Affiliation(s)
- Sandra Ebert
- Department of Neurology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
588
|
Linnartz B, Wang Y, Neumann H. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis 2010; 2010. [PMID: 20721346 PMCID: PMC2915791 DOI: 10.4061/2010/587463] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/13/2010] [Indexed: 11/20/2022] Open
Abstract
Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein-β1, and complement receptor-3 (CD11b/CD18) signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM-) signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.
Collapse
Affiliation(s)
- Bettina Linnartz
- Neural Regeneration, Institute of Reconstructive Neurobiology, University Hospital Bonn, University Bonn, 53127 Bonn, Germany
| | | | | |
Collapse
|
589
|
|
590
|
T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer's disease. PLoS One 2010; 5:e10830. [PMID: 20520819 PMCID: PMC2877087 DOI: 10.1371/journal.pone.0010830] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/03/2010] [Indexed: 01/07/2023] Open
Abstract
Patients with Alzheimer's disease (AD) exhibit substantial accumulation of amyloid-β (Aβ) plaques in the brain. Here, we examine whether Aβ vaccination can facilitate the migration of T lymphocytes to specifically target Aβ plaques and consequently enhance their removal. Using a new mouse model of AD, we show that immunization with Aβ, but not with the encephalitogenic proteolipid protein (PLP), results in the accumulation of T cells at Aβ plaques in the brain. Although both Aβ-reactive and PLP-reactive T cells have a similar phenotype of Th1 cells secreting primarily IFN-γ, the encephalitogenic T cells penetrated the spinal cord and caused experimental autoimmune encephalomyelitis (EAE), whereas Aβ T cells accumulated primarily at Aβ plaques in the brain but not the spinal cord and induced almost complete clearance of Aβ. Furthermore, while a single vaccination with Aβ resulted in upregulation of the phagocytic markers triggering receptors expressed on myeloid cells-2 (TREM2) and signal regulatory protein-β1 (SIRPβ1) in the brain, it caused downregulation of the proinflammatory cytokines TNF-α and IL-6. We thus suggest that Aβ deposits in the hippocampus area prioritize the targeting of Aβ-reactive but not PLP-reactive T cells upon vaccination. The stimulation of Aβ-reactive T cells at sites of Aβ plaques resulted in IFN-γ-induced chemotaxis of leukocytes and therapeutic clearance of Aβ.
Collapse
|
591
|
Kosloski LM, Ha DM, Hutter JAL, Stone DK, Pichler MR, Reynolds AD, Gendelman HE, Mosley RL. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J Neurochem 2010; 114:1261-76. [PMID: 20524958 DOI: 10.1111/j.1471-4159.2010.06834.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed.
Collapse
Affiliation(s)
- Lisa M Kosloski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | |
Collapse
|
592
|
Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M, Ma D, Monaco C, Feldmann M, Maze M. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care 2010; 14:R88. [PMID: 20470406 PMCID: PMC2911722 DOI: 10.1186/cc9019] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/16/2010] [Accepted: 05/14/2010] [Indexed: 11/13/2022] Open
Abstract
Introduction The impact of pro-inflammatory cytokines on neuroinflammation and cognitive function after lipopolysaccharide (LPS) challenge remains elusive. Herein we provide evidence that there is a temporal correlation between high-mobility group box 1 (HMGB-1), microglial activation, and cognitive dysfunction. Disabling the interleukin (IL)-1 signaling pathway is sufficient to reduce inflammation and ameliorate the disability. Methods Endotoxemia was induced in wild-type and IL-1R-/- mice by intra peritoneal injection of E. Coli LPS (1 mg/kg). Markers of inflammation were assessed both peripherally and centrally, and correlated to behavioral outcome using trace fear conditioning. Results Increase in plasma tumor necrosis factor-α (TNFα) peaked at 30 minutes after LPS challenge. Up-regulation of IL-1β, IL-6 and HMGB-1 was more persistent, with detectable levels up to day three. A 15-fold increase in IL-6 and a 6.5-fold increase in IL-1β mRNA at 6 hours post intervention (P < 0.001 respectively) was found in the hippocampus. Reactive microgliosis was observed both at days one and three, and was associated with elevated HMGB-1 and impaired memory retention (P < 0.005). Preemptive administration of IL-1 receptor antagonist (IL-1Ra) significantly reduced plasma cytokines and hippocampal microgliosis and ameliorated cognitive dysfunction without affecting HMGB-1 levels. Similar results were observed in LPS-challenged mice lacking the IL-1 receptor to those seen in LPS-challenged wild type mice treated with IL-1Ra. Conclusions These data suggest that by blocking IL-1 signaling, the inflammatory cascade to LPS is attenuated, thereby reducing microglial activation and preventing the behavioral abnormality.
Collapse
Affiliation(s)
- Niccolò Terrando
- Department of Anesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
593
|
Wang J, Li J, Sheng X, Zhao H, Cao XD, Wang YQ, Wu GC. Beta-adrenoceptor mediated surgery-induced production of pro-inflammatory cytokines in rat microglia cells. J Neuroimmunol 2010; 223:77-83. [PMID: 20452680 DOI: 10.1016/j.jneuroim.2010.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/25/2010] [Accepted: 04/13/2010] [Indexed: 12/17/2022]
Abstract
Immunological changes initiated by major operative injury may result in inflammatory responses in both peripheral and central nervous system, which may lead to organ dysfunction. Recent studies indicate that beta-adrenergic receptors (beta-ARs) may mediate production of pro-inflammatory cytokines in the brain. In the present study propranolol (beta-AR antagonist), but not prazosin (alpha1-AR antagonist), antagonized surgical trauma induced pro-inflammatory cytokine production in microglia cells isolated from rats. beta-AR activation in the absence of pro-inflammatory stimuli increased IL-1beta, TNF-alpha and IL-6 mRNA and protein expressions in the primary microglia cell culture. Isoproterenol (beta-AR agonist) treatment induced a time- and concentration-dependent increase of IL-1beta in cells. Both ERK1/2 and P38 MAPK inhibitor, but not PKA and JNK1/2 inhibitor abrogated isoproterenol-induced IL-1beta and IL-6 production in microglia cells. In conclusion, the results suggest that beta-ARs possess pro-inflammatory properties by modulating the functions of microglia cell.
Collapse
Affiliation(s)
- Jun Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
594
|
Bachstetter AD, Jernberg J, Schlunk A, Vila JL, Hudson C, Cole MJ, Shytle RD, Tan J, Sanberg PR, Sanberg CD, Borlongan C, Kaneko Y, Tajiri N, Gemma C, Bickford PC. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS One 2010; 5:e10496. [PMID: 20463965 PMCID: PMC2864748 DOI: 10.1371/journal.pone.0010496] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative influence of TNFalpha to reduce neural stem cell proliferation. These results support the hypothesis that a diet enriched with spirulina and other nutraceuticals may help protect the stem/progenitor cells from insults.
Collapse
Affiliation(s)
- Adam D. Bachstetter
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jennifer Jernberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Andrea Schlunk
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jennifer L. Vila
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Charles Hudson
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| | - Michael J. Cole
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - R. Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jun Tan
- Department of Psychiatry, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Paul R. Sanberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Cyndy D. Sanberg
- NaturaTherapeutics, Incorporated, Tampa, Florida, United States of America
| | - Cesario Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Carmelina Gemma
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veterans Administration Hospital, Research Service, Tampa, Florida, United States of America
| |
Collapse
|
595
|
Expression of Hydroxyindole-O-Methyltransferase Enzyme in the Human Central Nervous System and in Pineal Parenchymal Cell Tumors. J Neuropathol Exp Neurol 2010; 69:498-510. [DOI: 10.1097/nen.0b013e3181db7d3c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
596
|
Homsi S, Piaggio T, Croci N, Noble F, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M. Blockade of Acute Microglial Activation by Minocycline Promotes Neuroprotection and Reduces Locomotor Hyperactivity after Closed Head Injury in Mice: A Twelve-Week Follow-Up Study. J Neurotrauma 2010; 27:911-21. [DOI: 10.1089/neu.2009.1223] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shadi Homsi
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Tomaso Piaggio
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Nicole Croci
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Florence Noble
- Laboratoire de Neuropsychopharmacologie des addictions (INSERM U705, CNRS UMR 7157), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Michel Plotkine
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Catherine Marchand-Leroux
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Mehrnaz Jafarian-Tehrani
- Laboratoire de Pharmacologie de la Circulation Cérébrale (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
597
|
Abstract
BACKGROUND The discovery that glial activation plays a critical role in the modulation of neuronal functions and affects the spinal processing of nociceptive signalling has brought new understanding on the mechanisms underlying central sensitization involved in chronic pain facilitation. Spinal glial activation is now considered an important component in the development and maintenance of allodynia and hyperalgesia in various models of chronic pain, including neuropathic pain and pain associated with peripheral inflammation. In addition, spinal glial activation is also involved in some forms of visceral hyperalgesia. PURPOSE We discuss the signalling pathways engaged in central glial activation, including stress pathways, and the neuron-glia bidirectional relationships involved in the modulation of synaptic activity and pain facilitation. In this expanding field of research, the characterization of the mechanisms by which glia affect spinal neuro-transmission will increase our understanding of central pain facilitation, and has the potential for the development of new therapeutic agents for common chronic pain conditions.
Collapse
Affiliation(s)
- S Bradesi
- Center for Neurobiology of Stress, Department of Medicine, David Geffen School of Medicine at UCLA, VAGLA HC, Los Angeles, CA, USA.
| |
Collapse
|
598
|
Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J, Deng C, Yenari MA. Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol 2010; 230:27-34. [PMID: 20406638 DOI: 10.1016/j.expneurol.2010.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 01/16/2023]
Abstract
Statins have been widely used for the treatment of a variety of conditions beyond their original role in lowering cholesterol. Since statins have relatively few side effects, they have been recognized as useful medicine to ameliorate neurodegenerative disorders. Current studies on the applications of statins have demonstrated their neuroprotective and clinical significance among neurodegenerative diseases like cerebral ischemic stroke, vascular dementia, Alzheimer's disease, and Parkinson's disease, though the neuroprotective mechanisms are not completely understood. This review will discuss recent development in the use of statins in slowing down the progression of these neurodegenerative diseases. It will summarize the potential mechanisms for statin-mediated neuroprotective effects in neurodegenerative diseases. In detail, this review discuss the roles of statins in lowering cholesterol, reducing reactive oxygen species, impairing β-amyloid production and serum apolipoprotein E levels, enhancing the levels of endothelial nitric oxide synthase and cerebral blood flow, and modulating cognitive related receptors and matrix metalloproteases. Finally, different alterations of various receptors in brain regions following statin treatment and their correlations with cognitive dysfunction in Parkinson's disease will also be reviewed, as well as the potential for therapy in ameliorating the progression of Parkinson's disease. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
599
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
600
|
Olivieri KC, Agopian KA, Mukerji J, Gabuzda D. Evidence for adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes. AIDS Res Hum Retroviruses 2010; 26:495-500. [PMID: 20377428 DOI: 10.1089/aid.2009.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) infection of the central nervous system frequently causes HIV-associated neurocognitive disorders (HAND). The role of HIV Nef and other accessory proteins in HAND pathogenesis is unclear. To determine whether HIV nef undergoes adaptive selection in brain, we cloned 100 nef sequences (n = 30 brain and n = 70 lymphoid) from four patients with AIDS and HIV-associated dementia (HAD). Normalized nonsynonymous substitutions were more frequent at the divergence of lymphoid and brain sequences, indicating stronger adaptive selection in brain compared to lymphoid tissue. Brain-specific nonsynonymous substitutions were found within an NH(3)-terminal CTL epitope, the PACS1 binding motif, or positions predicted to be important for activation of the myeloid-restricted Src family tyrosine kinase Hck. These results suggest that adaptive selection of HIV nef in brain may reflect altered requirements for efficient replication in macrophages and brain-specific immune selection pressures.
Collapse
Affiliation(s)
- Kevin C. Olivieri
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristin A. Agopian
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joya Mukerji
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|