551
|
Souto-Maior AM, Runquist D, Hahn-Hägerdal B. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 2009; 143:119-23. [PMID: 19560495 DOI: 10.1016/j.jbiotec.2009.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 03/13/2009] [Accepted: 06/18/2009] [Indexed: 11/28/2022]
Abstract
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast.
Collapse
Affiliation(s)
- Ana Maria Souto-Maior
- Departamento de Antibióticos, UFPE, Cidade Universitária, 50.670-901 Recife-PE, Brazil
| | | | | |
Collapse
|
552
|
Almeida JRM, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl Microbiol Biotechnol 2009; 84:751-61. [PMID: 19506862 DOI: 10.1007/s00253-009-2053-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
Abstract
Industrial Saccharomyces cerevisiae strains able to utilize xylose have been constructed by overexpression of XYL1 and XYL2 genes encoding the NADPH-preferring xylose reductase (XR) and the NAD(+)-dependent xylitol dehydrogenase (XDH), respectively, from Pichia stipitis. However, the use of different co-factors by XR and XDH leads to NAD(+) deficiency followed by xylitol excretion and reduced product yield. The furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural inhibit yeast metabolism, prolong the lag phase, and reduce the ethanol productivity. Recently, genes encoding furaldehyde reductases were identified and their overexpression was shown to improve S. cerevisiae growth and fermentation rate in HMF containing media and in lignocellulosic hydrolysate. In the current study, we constructed a xylose-consuming S. cerevisiae strain using the XR/XDH pathway from P. stipitis. Then, the genes encoding the NADH- and the NADPH-dependent HMF reductases, ADH1-S110P-Y295C and ADH6, respectively, were individually overexpressed in this background. The performance of these strains, which differed in their co-factor usage for HMF reduction, was evaluated under anaerobic conditions in batch fermentation in absence or in presence of HMF. In anaerobic continuous culture, carbon fluxes were obtained for simultaneous xylose consumption and HMF reduction. Our results show that the co-factor used for HMF reduction primarily influenced formation of products other than ethanol, and that NADH-dependent HMF reduction influenced product formation more than NADPH-dependent HMF reduction. In particular, NADH-dependent HMF reduction contributed to carbon conservation so that biomass was produced at the expense of xylitol and glycerol formation.
Collapse
Affiliation(s)
- João R M Almeida
- Department of Applied Microbiology, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | | | | | | | | |
Collapse
|
553
|
Iwase A, Hideno A, Watanabe K, Mitsuda N, Ohme-Takagi M. A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls. J Biotechnol 2009; 142:279-84. [PMID: 19497342 DOI: 10.1016/j.jbiotec.2009.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
Bioethanol might be produced more economically and with less ecological impact (with reduced exploitation of food crops) if we could increase the production of glucose from the cellulosic materials in plant cell walls. However, plant cell walls are relatively resistant to enzymatic and physicochemical hydrolysis and, therefore, it is necessary to develop methods for reducing such resistance. Changes in plant cell wall materials, by genetic engineering, that render them more easily hydrolyzable to glucose might be a valuable approach to this problem. We showed previously that, in Arabidopsis, NAC secondary wall thickening-promoting factor1 (NST1) and NST3 are key regulators of secondary wall formation. We report here that transgenic Arabidopsis plants that expressed a chimeric repressor derived from NST1 produced cell wall materials that were twice as susceptible to both enzymatic and physicochemical hydrolysis as those from wild-type plants. The yields of glucose from both fresh and dry biomass were increased in the chimeric repressor lines. Use of the NST1 chimeric repressor might enhance production of glucose from plant cell walls, by changing the nature of the cell walls themselves.
Collapse
Affiliation(s)
- Akira Iwase
- Gene Regulation Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | |
Collapse
|
554
|
Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F. New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 2009; 20:372-80. [DOI: 10.1016/j.copbio.2009.05.009] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/29/2022]
|
555
|
Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 2009; 27:398-405. [PMID: 19481826 DOI: 10.1016/j.tibtech.2009.03.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/18/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Strategies for improving fermentative ethanol production have focused almost exclusively on the development of processes based on the utilization of the carbohydrate fraction of lignocellulosic material. These so-called 'second-generation' technologies require metabolically engineered production strains that possess a high degree of catabolic versatility and are homoethanologenic. It has been suggested that the production of ethanol at higher temperatures would facilitate process design, and as a result the engineered progeny of Geobacillus thermoglucosidasius, Thermoanerobacterium saccharolyticum and Thermoanerobacter mathranii now form the platform technology of several new biotechnology companies. This review highlights the milestones in the development of these production strains, with particular focus on the development of reliable methods for cell competency, gene deletion or upregulation.
Collapse
|
556
|
Albers E, Larsson C. A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 2009; 36:1085-91. [DOI: 10.1007/s10295-009-0592-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 05/04/2009] [Indexed: 11/30/2022]
|
557
|
Yomano LP, York SW, Shanmugam KT, Ingram LO. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 2009; 31:1389-98. [PMID: 19458924 PMCID: PMC2721133 DOI: 10.1007/s10529-009-0011-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 11/28/2022]
Abstract
The use of lignocellulose as a source of sugars for bioproducts requires the development of biocatalysts that maximize product yields by fermenting mixtures of hexose and pentose sugars to completion. In this study, we implicate mgsA encoding methylglyoxal synthase (and methylglyoxal) in the modulation of sugar metabolism. Deletion of this gene (strain LY168) resulted in the co-metabolism of glucose and xylose, and accelerated the metabolism of a 5-sugar mixture (mannose, glucose, arabinose, xylose and galactose) to ethanol.
Collapse
Affiliation(s)
- L P Yomano
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
558
|
Krahulec S, Klimacek M, Nidetzky B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J 2009; 4:684-94. [DOI: 10.1002/biot.200800334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
559
|
Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 2009; 75:4315-23. [PMID: 19429550 DOI: 10.1128/aem.00567-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180, designated strain EMFR9. Based on mRNA expression levels in the parent and mutant in response to furfural challenge, genes encoding 12 oxidoreductases were found to vary by more than twofold (eight were higher in EMFR9; four were higher in the parent). All 12 genes were cloned. When expressed from plasmids, none of the eight genes in the first group increased furfural tolerance in the parent (LY180). Expression of three of the silenced genes (yqhD, dkgA, and yqfA) in EMFR9 was found to decrease furfural tolerance compared to that in the parent. Purified enzymes encoded by yqhD and dkgA were shown to have NADPH-dependent furfural reductase activity. Both exhibited low K(m) values for NADPH (8 microM and 23 microM, respectively), similar to those of biosynthetic reactions. Furfural reductase activity was not associated with yqfA. Deleting yqhD and dkgA in the parent (LY180) increased furfural tolerance, but not to the same extent observed in the mutant EMFR9. Together, these results suggest that the process of reducing furfural by using an enzyme with a low K(m) for NADPH rather than a direct inhibitory action is the primary cause for growth inhibition by low concentrations of furfural.
Collapse
|
560
|
Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M. Adsorption-enhanced hydrolysis of beta-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5068-5075. [PMID: 19397353 DOI: 10.1021/la8040506] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The reaction mechanism of the hydrolysis of cellulose by a carbon-based solid acid, amorphous carbon containing graphene sheets bearing SO(3)H, COOH, and phenolic OH groups, has been investigated in detail through the hydrolysis of water-soluble beta-1,4-glucan. Whereas a range of solid strong Brønsted acid catalysts (inorganic oxides with acidic OH groups, SO(3)H-bearing resins, and the carbon-based solid acid) can hydrolyze the beta-1,4-glycosidic bonds in cellobiose (the shortest water-soluble beta-1,4-glucan), the tested solid acids except for the carbon material, consisting of conventional solid acids, cannot function as effective catalysts for the hydrolysis of cellohexaose (a long-chain water-soluble beta-1,4-glucan). However, the carbon material exhibits remarkable catalytic performance for the hydrolysis of cellohexaose: the turnover frequency (TOF) of SO(3)H groups in the carbon material exceeds ca. 20 times those of the conventional solid acids, reaching that of sulfuric acid, which is the most active catalyst. Experimental results revealed that inorganic oxides with acidic OH groups are not acidic enough to decompose the hydrogen and beta-1,4-glycosidic bonds in cellohexaose molecules aggregated by strong hydrogen bonds as well as cellulose and that the SO(3)H groups of the resins that do not adsorb beta-1,4-glucan are unable to attack the hydrogen and beta-1,4-glycosidic bonds in cellohexaose molecules effectively. In contrast, the carbon material is capable of adsorbing beta-1,4-glucan by phenolic OH or COOH groups in the carbon material, and SO(3)H groups bonded to the carbon therefore function as effective active sites for both decomposing the hydrogen bonds and hydrolyzing the beta-1,4-glycosidic bonds in the adsorbed long-chain water-soluble beta-1,4-glucan aggregate. These results suggest that the synergetic combination of high densities of the functional groups bonded to amorphous carbon causes the efficient hydrolysis of beta-1,4-glucan, including cellulose, on the carbon material.
Collapse
Affiliation(s)
- Masaaki Kitano
- Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| | | | | | | | | | | | | |
Collapse
|
561
|
Kumar S, Singh SP, Mishra IM, Adhikari DK. Recent Advances in Production of Bioethanol from Lignocellulosic Biomass. Chem Eng Technol 2009. [DOI: 10.1002/ceat.200800442] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
562
|
Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Appl Microbiol Biotechnol 2009; 84:261-9. [DOI: 10.1007/s00253-009-1946-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
|
563
|
Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw. Bioprocess Biosyst Eng 2009; 33:195-205. [DOI: 10.1007/s00449-009-0313-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
564
|
Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 2009; 83:1-18. [PMID: 19300995 DOI: 10.1007/s00253-009-1940-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/09/2023]
Abstract
Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm-substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal-bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production.
Collapse
|
565
|
Monavari S, Galbe M, Zacchi G. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:6. [PMID: 19291286 PMCID: PMC2661319 DOI: 10.1186/1754-6834-2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids. RESULTS Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical) in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration). Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2%) from pressed slurry than from filtered slurry (77.6%). CONCLUSION Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum-filtered solids. However, pressing in combination with not washing the material between the two steps enhanced the sugar yield of the enzymatic digestion step. Hence, it is suggested that the unwashed slurry be pressed to as high a dry matter content as possible between the two acid hydrolysis stages in order to achieve high final sugar yields.
Collapse
Affiliation(s)
- Sanam Monavari
- Department of Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Guido Zacchi
- Department of Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
566
|
Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 2009; 75:2366-74. [PMID: 19251882 DOI: 10.1128/aem.02479-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant Aspergillus niger strain expressing the Hypocrea jecorina endoglucanase Cel7B was grown on spent hydrolysates (stillage) from sugarcane bagasse and spruce wood. The spent hydrolysates served as excellent growth media for the Cel7B-producing strain, A. niger D15[egI], which displayed higher endoglucanase activities in the spent hydrolysates than in standard medium with a comparable monosaccharide content (e.g., 2,100 nkat/ml in spent bagasse hydrolysate compared to 480 nkat/ml in standard glucose-based medium). In addition, A. niger D15[egI] was also able to consume or convert other lignocellulose-derived compounds, such as acetic acid, furan aldehydes, and phenolic compounds, which are recognized as inhibitors of yeast during ethanolic fermentation. The results indicate that enzymes can be produced from the stillage stream as a high-value coproduct in second-generation bioethanol plants in a way that also facilitates recirculation of process water.
Collapse
|
567
|
Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M, Brown SD. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 2009; 10:34. [PMID: 19154596 PMCID: PMC2651186 DOI: 10.1186/1471-2164-10-34] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 01/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zymomonas mobilis ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. RESULTS In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (glk, zwf, pgl, pgk, and eno) and gene pdc, encoding a key enzyme leading to ethanol production, were at least 30-fold more abundant under anaerobic conditions in the stationary phase based on quantitative-PCR results. We also identified differentially expressed ZM4 genes predicted by The Institute for Genomic Research (TIGR) that were not predicted in the primary annotation. CONCLUSION High oxygen concentrations present during Z. mobilis fermentations negatively influence fermentation performance. The maximum specific growth rates were not dramatically different between aerobic and anaerobic conditions, yet oxygen did affect the physiology of the cells leading to the buildup of metabolic byproducts that ultimately led to greater differences in transcriptomic profiles in stationary phase.
Collapse
Affiliation(s)
- Shihui Yang
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Bengtsson O, Jeppsson M, Sonderegger M, Parachin NS, Sauer U, Hahn-Hägerdal B, Gorwa-Grauslund MF. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 2009; 25:835-47. [PMID: 19061191 DOI: 10.1002/yea.1638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Four recombinant Saccharomyces cerevisiae strains with enhanced xylose growth (TMB3400, C1, C5 and BH42) were compared with two control strains (TMB3399, TMB3001) through genome-wide transcription analysis in order to identify novel targets for inverse metabolic engineering. A subset of 13 genes with changed expression levels in all improved strains was selected for further analysis. Thirteen validation strains and two reference strains were constructed to investigate the effect of overexpressing or deleting these genes in xylose-utilizing S. cerevisiae. Improved aerobic growth rates on xylose were observed in five cases. The strains overexpressing SOL3 and TAL1 grew 19% and 24% faster than their reference strain, and the strains carrying deletions of YLR042C, MNI1 or RPA49 grew 173%, 62% and 90% faster than their reference strain.
Collapse
Affiliation(s)
- Oskar Bengtsson
- Department of Applied Microbiology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
569
|
Cáceres-Farfán M, Lappe P, Larqué-Saavedra A, Magdub-Méndez A, Barahona-Pérez L. Ethanol production from henequen (Agave fourcroydes Lem.) juice and molasses by a mixture of two yeasts. BIORESOURCE TECHNOLOGY 2008; 99:9036-9039. [PMID: 18524573 DOI: 10.1016/j.biortech.2008.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 04/02/2008] [Accepted: 04/05/2008] [Indexed: 05/26/2023]
Abstract
In the fermentation process of henequen (Agave fourcroydes Lem.) leaf juice, complemented with industrial molasses, the use of an inoculum comprising two yeasts: Kluyveromyces marxianus (isolated from the henequen plant) and Saccharomyces cerevisiae (commercial strain) was studied. An ethanol production of 5.22+/-1.087% v/v was obtained. Contrary to expected, a decrease on ethanol production was observed with the use of the K. marxianus strain. The best results were obtained when a mixture of 25% K. marxianus and 75% S. cerevisiae or S. cerevisiae alone were used with an initial inoculum concentration of 3x10(7)cellmL(-1). Furthermore, it was possible to detect a final concentration of approximately 2-4gL(-1) of reducing sugars that are not metabolized by the yeasts for the ethanol production. These results show that although the use of a mixture of yeasts can be of interest for the production of alcoholic beverages, it can be the opposite in the case of ethanol production for industrial purposes where manipulation of two strains can raise the production costs.
Collapse
Affiliation(s)
- Mirbella Cáceres-Farfán
- Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico
| | | | | | | | | |
Collapse
|
570
|
Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD. Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 2008; 29:2543-64. [PMID: 18470966 PMCID: PMC2882059 DOI: 10.1002/jcc.21004] [Citation(s) in RCA: 433] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present an all-atom additive empirical force field for the hexopyranose monosaccharide form of glucose and its diastereomers allose, altrose, galactose, gulose, idose, mannose, and talose. The model is developed to be consistent with the CHARMM all-atom biomolecular force fields, and the same parameters are used for all diastereomers, including both the alpha- and beta-anomers of each monosaccharide. The force field is developed in a hierarchical manner and reproduces the gas-phase and condensed-phase properties of small-molecule model compounds corresponding to fragments of pyranose monosaccharides. The resultant parameters are transferred to the full pyranose monosaccharides, and additional parameter development is done to achieve a complete hexopyranose monosaccharide force field. Parametrization target data include vibrational frequencies, crystal geometries, solute-water interaction energies, molecular volumes, heats of vaporization, and conformational energies, including those for over 1800 monosaccharide conformations at the MP2/cc-pVTZ//MP2/6-31G(d) level of theory. Although not targeted during parametrization, free energies of aqueous solvation for the model compounds compare favorably with experimental values. Also well-reproduced are monosaccharide crystal unit cell dimensions and ring pucker, densities of concentrated aqueous glucose systems, and the thermodynamic and dynamic properties of the exocyclic torsion in dilute aqueous systems. The new parameter set expands the CHARMM additive force field to allow for simulation of heterogeneous systems that include hexopyranose monosaccharides in addition to proteins, nucleic acids, and lipids.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., HSF II-629, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
571
|
Enzymatic Hydrolysis and Fermentation of Pretreated Cashew Apple Bagasse with Alkali and Diluted Sulfuric Acid for Bioethanol Production. Appl Biochem Biotechnol 2008; 155:407-17. [DOI: 10.1007/s12010-008-8432-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 11/03/2008] [Indexed: 11/26/2022]
|
572
|
Haney LJ, Coors JG, Lorenz AJ, Raman DR, Anex RP, Scott MP. Development of a fluorescence-based method for monitoring glucose catabolism and its potential use in a biomass hydrolysis assay. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:17. [PMID: 19019221 PMCID: PMC2602992 DOI: 10.1186/1754-6834-1-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND The availability and low cost of lignocellulosic biomass has caused tremendous interest in the bioconversion of this feedstock into liquid fuels. One measure of the economic viability of the bioconversion process is the ease with which a particular feedstock is hydrolyzed and fermented. Because monitoring the analytes in hydrolysis and fermentation experiments is time consuming, the objective of this study was to develop a rapid fluorescence-based method to monitor sugar production during biomass hydrolysis, and to demonstrate its application in monitoring corn stover hydrolysis. RESULTS Hydrolytic enzymes were used in conjunction with Escherichia coli strain CA8404 (a hexose and pentose-consuming strain), modified to produce green fluorescent protein (GFP). The combination of hydrolytic enzymes and a sugar-consuming organism minimizes feedback inhibition of the hydrolytic enzymes. We observed that culture growth rate as measured by change in culture turbidity is proportional to GFP fluorescence and total growth and growth rate depends upon how much sugar is present at inoculation. Furthermore, it was possible to monitor the course of enzymatic hydrolysis in near real-time, though there are instrumentation challenges in doing this. CONCLUSION We found that instantaneous fluorescence is proportional to the bacterial growth rate. As growth rate is limited by the availability of sugar, the integral of fluorescence is proportional to the amount of sugar consumed by the microbe. We demonstrate that corn stover varieties can be differentiated based on sugar yields in enzymatic hydrolysis reactions using post-hydrolysis fluorescence measurements. Also, it may be possible to monitor fluorescence in real-time during hydrolysis to compare different hydrolysis protocols.
Collapse
Affiliation(s)
| | - James G Coors
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron J Lorenz
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - D Raj Raman
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Robert P Anex
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - M Paul Scott
- Corn Insects and Crop Genetics Research Unit, ARS, USDA, USA
| |
Collapse
|
573
|
|
574
|
Taylor M, Tuffin M, Burton S, Eley K, Cowan D. Microbial responses to solvent and alcohol stress. Biotechnol J 2008; 3:1388-97. [PMID: 18956369 DOI: 10.1002/biot.200800158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Taylor
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
575
|
Chew TL, Bhatia S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. BIORESOURCE TECHNOLOGY 2008; 99:7911-22. [PMID: 18434141 DOI: 10.1016/j.biortech.2008.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 05/15/2023]
Abstract
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
Collapse
Affiliation(s)
- Thiam Leng Chew
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | | |
Collapse
|
576
|
Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:16. [PMID: 18947407 PMCID: PMC2579915 DOI: 10.1186/1754-6834-1-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/23/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. RESULTS The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively. CONCLUSION The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.
Collapse
Affiliation(s)
- Maurizio Bettiga
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
577
|
Winkelhausen E, Velickova E, Amartey SA, Kuzmanova S. Production of bioalcohols by yeasts from Saccharomyces and Candida genera. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
578
|
Ferreira S, Duarte A, Queiroz J, Domingues F. Experimental design for enzymatic hydrolysis of Cistus ladanifer. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
579
|
|
580
|
Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 2008; 74:6554-62. [PMID: 18791032 DOI: 10.1128/aem.01143-08] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Hypocrea jecorina, Xyr1 (xylanase regulator 1) is the main transcription activator of hydrolase-encoding genes, such as xyn1, xyn2, bxl1, cbh1, cbh2, egl1, and bgl1. Even though Xyr1 mediates the induction signal for all these genes derived from various inducing carbon sources and compounds, xyr1 transcription itself is not inducible by any of these substances. However, cultivation on glucose as the carbon source provokes carbon catabolite repression of xyr1 transcription mediated by Cre1. In addition, xyr1 transcription is repressed by the specific transcription factor Ace1. Moreover, Xyr1 is permanently available in the cell, and no de novo synthesis of this factor is needed for a first induction of xyn1 transcription. The constitutive expression of xyr1 leads to a significant elevation/deregulation of the xyn1, xyn2, and bxl1 transcription compared to what is seen for the parental strain. Overall, the corresponding xylanolytic enzyme activities are clearly elevated in a constitutively xyr1-expressing strain, emphasizing this factor as an auspicious target for genetically engineered strain improvement.
Collapse
|
581
|
Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO. Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 2008; 30:2097-103. [DOI: 10.1007/s10529-008-9821-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/23/2008] [Accepted: 08/11/2008] [Indexed: 11/29/2022]
|
582
|
Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. J Am Chem Soc 2008; 130:12787-93. [DOI: 10.1021/ja803983h] [Citation(s) in RCA: 829] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Satoshi Suganuma
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Kiyotaka Nakajima
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Masaaki Kitano
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Daizo Yamaguchi
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hideki Kato
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Shigenobu Hayashi
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Michikazu Hara
- Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan, and Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
583
|
Marzialetti T, Valenzuela Olarte MB, Sievers C, Hoskins TJC, Agrawal PK, Jones CW. Dilute Acid Hydrolysis of Loblolly Pine: A Comprehensive Approach. Ind Eng Chem Res 2008. [DOI: 10.1021/ie800455f] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teresita Marzialetti
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100
| | - Mariefel B. Valenzuela Olarte
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100
| | - Travis J. C. Hoskins
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100
| | - Pradeep K. Agrawal
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100
| |
Collapse
|
584
|
Abstract
Termites eat and digest wood, but how do they do it? Combining advanced genomics and proteomics techniques, researchers have now shown that microbes found in the termites' hindguts possess just the right tools.
Collapse
Affiliation(s)
- Samuel Chaffron
- Institute of Molecular Biology and Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse, 8057 Zurich, Switzerland
| | | |
Collapse
|
585
|
Zhou B, Martin GJO, Pamment NB. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 2008; 100:627-33. [PMID: 18306427 DOI: 10.1002/bit.21800] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recombinant Escherichia coli B strain KO11, containing chromosomally-integrated genes for ethanol production, was developed for use in lignocellulose-to-ethanol bioconversion processes but suffers from instability in continuous culture and a low ethanol tolerance compared to yeast. Here we report the ability cell immobilization to improve its phenotypic stability and ethanol tolerance during continuous culture on a 50 g/L xylose feed. Experiments conducted in a vertical tubular fermentor operated as a liquid-fluidized bed with the cells immobilized on porous glass microspheres were compared to control experiments in the same reactor operated as a chemostat without the support particles. Without cell immobilization the ethanol yield fell sharply following start-up, declining to 60% of theoretical after only 8-9 days of continuous fermentation. While immobilizing the cells did not prevent this decline, it delayed its onset and slowed its rate. With immobilization, a stable high ethanol yield (>85%) was maintained for at least 10 days, thereafter declining slowly, but remaining above 70% even after up to 40 days of fermentation. The ethanol tolerance of E. coli KO11 cells was substantially increased by immobilization on the glass microspheres. In ethanol tolerance tests, immobilized cells released from the microspheres had survival rates 2.3- to 15-fold higher than those of free cells isolated from the same broth. Immobilization is concluded to be an effective means of increasing ethanol tolerance in E. coli KO11. While immobilization was only partially effective in combating its phenotypic instability, further improvements can be expected following optimization of the immobilization conditions.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
586
|
Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
587
|
Pirkov I, Albers E, Norbeck J, Larsson C. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab Eng 2008; 10:276-80. [PMID: 18640286 DOI: 10.1016/j.ymben.2008.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/04/2008] [Accepted: 06/25/2008] [Indexed: 11/18/2022]
Abstract
The non-ethylene producing yeast, Saccharomyces cerevisiae, was transformed into an ethylene producer by introducing the ethylene forming enzyme from the plant pathogenic bacterium Pseudomonas syringae. Cultivation of the metabolically engineered strain was performed in well-controlled bioreactors as aerobic batch cultures with an on-line monitoring of ethylene production. The highest productivity was obtained during the respiro-fermentative growth on glucose but there was also a significant rate of formation during the subsequent phase of ethanol respiration. Furthermore, investigations were performed whether substitution of the original nitrogen source, NH(4)(+), for glutamate could improve productivity and yield of ethylene even more. The rationale being that one of the substrates for the enzyme is 2-oxoglutarate and this compound can be formed from glutamate in a single reaction. Indeed, there was a substantial improvement in the rate of production and the final yield of ethylene was almost three times higher when NH(4)(+) was replaced by glutamate.
Collapse
Affiliation(s)
- I Pirkov
- Department of Chemical and Biological Engineering-Molecular Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | | | | | | |
Collapse
|
588
|
Leandro MJ, Spencer-Martins I, Gonçalves P. The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology (Reading) 2008; 154:1646-1655. [DOI: 10.1099/mic.0.2007/015511-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maria José Leandro
- Centro de Recursos Microbiológicos (CREM), Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Isabel Spencer-Martins
- Centro de Recursos Microbiológicos (CREM), Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Gonçalves
- Centro de Recursos Microbiológicos (CREM), Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
589
|
Modig T, Almeida JRM, Gorwa-Grauslund MF, Lidén G. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 2008; 100:423-9. [PMID: 18438882 DOI: 10.1002/bit.21789] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of tolerant microorganisms is needed for the efficient fermentation of inhibitory lignocellulose hydrolysates. In the current work, the fermentation performance of six selected strains of Saccharomyces cerevisiae in dilute-acid spruce hydrolysate was compared using two different modes of fermentation; either single pulse addition of hydrolysate to exponentially growing cells or continuous feeding of the same amount of hydrolysate in a controlled fed-batch fermentation was made. All strains performed better in fed-batch mode than when all hydrolysate was added at once. However, the difference between strain performances varied significantly in the two fermentation modes. Large differences were observed between strains during the fed-batch experiments in the in vitro ability to reduce the furan compounds furfural and 5-hydroxymethyl furfural (HMF). A common feature among the strains was the induction of NADPH-coupled reduction of furfural and HMF, with the exception of strain CBS 8066. This strain also performed relatively poorly in both batch and fed-batch fermentations. Strain TMB3000--previously isolated from spent sulphite liquor fermentation--was by far the most efficient strain with respect to specific fermentation rate in both pulse addition and fed-batch mode. This strain was the only strain showing a significant constitutive NADH-coupled in vitro reduction of HMF. The ability to induce NADPH-coupled reduction together with the level of the apparently constitutive NADH-coupled reduction appeared to be key factors for selecting a suitable strain for fed-batch conversion of lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Tobias Modig
- Department of Chemical Engineering, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
590
|
Laadan B, Almeida JRM, Rådström P, Hahn-Hägerdal B, Gorwa-Grauslund M. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 2008; 25:191-8. [PMID: 18302314 DOI: 10.1002/yea.1578] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We report on the identification and characterization of a mutated alcohol dehydrogenase 1 from the industrial Saccharomyces cerevisiae strain TMB3000 that mediates the NADH-dependent reduction of 5-hydroxymethylfurfural (HMF) to 2,5-bis-hydroxymethylfuran. The co-factor preference distinguished this alcohol dehydrogenase from the previously reported NADPH-dependent S. cerevisiae HMF alcohol dehydrogenase Adh6. The amino acid sequence revealed three novel mutations (S109P, L116S and Y294C) that were all predicted at the vicinity of the substrate binding site, which could explain the unusual substrate specificity. Increased biomass production and HMF conversion rate were achieved in a CEN.PK S. cerevisiae strain overexpressing the mutated ADH1 gene.
Collapse
Affiliation(s)
- Boaz Laadan
- Department of Applied Microbiology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
591
|
Larsen J, Østergaard Petersen M, Thirup L, Wen Li H, Krogh Iversen F. The IBUS Process – Lignocellulosic Bioethanol Close to a Commercial Reality. Chem Eng Technol 2008. [DOI: 10.1002/ceat.200800048] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
592
|
Doran-Peterson J, Cook DM, Brandon SK. Microbial conversion of sugars from plant biomass to lactic acid or ethanol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:582-592. [PMID: 18476865 DOI: 10.1111/j.1365-313x.2008.03480.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Concerns for our environment and unease with our dependence on foreign oil have renewed interest in converting plant biomass into fuels and 'green' chemicals. The volume of plant matter available makes lignocellulose conversion desirable, although no single isolated organism has been shown to depolymerize lignocellulose and efficiently metabolize the resulting sugars into a specific product. This work reviews selected chemicals and fuels that can be produced from microbial fermentation of plant-derived cell-wall sugars and directed engineering for improvement of microbial biocatalysts. Lactic acid and ethanol production are highlighted, with a focus on engineered Escherichia coli.
Collapse
Affiliation(s)
- Joy Doran-Peterson
- Microbiology Department, 1000 Cedar Street, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
593
|
Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T. Cell-wall structural changes in wheat straw pretreated for bioethanol production. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:5. [PMID: 18471316 PMCID: PMC2375870 DOI: 10.1186/1754-6834-1-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 04/16/2008] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility. RESULTS The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. CONCLUSION Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.
Collapse
Affiliation(s)
- Jan B Kristensen
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
| | - Lisbeth G Thygesen
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
| | - Claus Felby
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
| | - Henning Jørgensen
- Forest and Landscape Denmark, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark
| | - Thomas Elder
- Utilization of Southern Forest Products, USDA-Forest Service, Southern Research Station, Shreveport Highway, Pineville, LA 71360, USA
| |
Collapse
|
594
|
Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:3. [PMID: 18471310 PMCID: PMC2375868 DOI: 10.1186/1754-6834-1-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 04/15/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. RESULTS Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. CONCLUSION Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.
Collapse
Affiliation(s)
- Ayako Endo
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Toshihide Nakamura
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Akira Ando
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Ken Tokuyasu
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Jun Shima
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
595
|
Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 2008; 26:228-35. [PMID: 18367275 DOI: 10.1016/j.tibtech.2008.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Enzymatic conversion of structural polysaccharides in plant biomass is a key issue in the development of second generation ('lignocellulosic') bioethanol. The efficiency of this process depends in part on the ability of enzymes to disrupt crystalline polysaccharides, thus gaining access to single polymer chains. Recently, new insights into how enzymes accomplish this have been obtained from studies on enzymatic conversion of chitin. First, chitinolytic microorganisms were shown to produce non-hydrolytic accessory proteins that increase enzyme efficiency. Second, it was shown that a processive mechanism, which is generally considered favorable because it improves substrate accessibility, might in fact slow down enzymes. These findings suggest new focal points for the development of enzyme technology for depolymerizing recalcitrant polysaccharide biomass. Improving substrate accessibility should be a key issue because this might reduce the need for using processive enzymes, which are intrinsically slow and abundantly present in current commercial enzyme preparations for biomass conversion. Furthermore, carefully selected substrate-disrupting accessory proteins or domains might provide novel tools to improve substrate accessibility and thus contribute to more efficient enzymatic processes.
Collapse
Affiliation(s)
- Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway.
| | | | | | | |
Collapse
|
596
|
Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:9. [PMID: 18346277 PMCID: PMC2315639 DOI: 10.1186/1475-2859-7-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/17/2008] [Indexed: 11/23/2022] Open
Abstract
Background Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation into fuel ethanol has oftentimes relied on insertion of a heterologous pathway that consists of xylose reductase (XR) and xylitol dehydrogenase (XDH) and brings about isomerization of xylose into xylulose via xylitol. Incomplete recycling of redox cosubstrates in the catalytic steps of the NADPH-preferring XR and the NAD+-dependent XDH results in formation of xylitol by-product and hence in lowering of the overall yield of ethanol on xylose. Structure-guided site-directed mutagenesis was previously employed to change the coenzyme preference of Candida tenuis XR about 170-fold from NADPH in the wild-type to NADH in a Lys274→Arg Asn276→Asp double mutant which in spite of the structural modifications introduced had retained the original catalytic efficiency for reduction of xylose by NADH. This work was carried out to assess physiological consequences in xylose-fermenting S. cerevisiae resulting from a well defined alteration of XR cosubstrate specificity. Results An isogenic pair of yeast strains was derived from S. cerevisiae Cen.PK 113-7D through chromosomal integration of a three-gene cassette that carried a single copy for C. tenuis XR in wild-type or double mutant form, XDH from Galactocandida mastotermitis, and the endogenous xylulose kinase (XK). Overexpression of each gene was under control of the constitutive TDH3 promoter. Measurement of intracellular levels of XR, XDH, and XK activities confirmed the expected phenotypes. The strain harboring the XR double mutant showed 42% enhanced ethanol yield (0.34 g/g) compared to the reference strain harboring wild-type XR during anaerobic bioreactor conversions of xylose (20 g/L). Likewise, the yields of xylitol (0.19 g/g) and glycerol (0.02 g/g) were decreased 52% and 57% respectively in the XR mutant strain. The xylose uptake rate per gram of cell dry weight was identical (0.07 ± 0.02 h-1) in both strains. Conclusion Integration of enzyme and strain engineering to enhance utilization of NADH in the XR-catalyzed conversion of xylose results in notably improved fermentation capabilities of recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Barbara Petschacher
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria.
| | | |
Collapse
|
597
|
Shanmugam KT, Ingram LO. Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 2008; 15:8-15. [PMID: 18349546 DOI: 10.1159/000111988] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lignocellulosic biomass is an attractive alternate to petroleum for production of both fuels and commodity chemicals. This conversion of biomass would require a new generation of microbial biocatalysts that can convert all the sugars present in the biomass to the desired compounds. In this review, the critical factors that need to be considered in engineering such microbial biocatalysts for cost-effective fermentation of sugars are discussed with specific emphasis on commodity chemicals such as lactic acid, succinic acid and acetic acid.
Collapse
Affiliation(s)
- K T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
598
|
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BIOENERGY RESEARCH 2008; 1:20-43. [PMID: 0 DOI: 10.1007/s12155-008-9008-8] [Citation(s) in RCA: 769] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
599
|
Evaluation of cashew apple juice for the production of fuel ethanol. Appl Biochem Biotechnol 2008; 148:227-34. [PMID: 18418754 DOI: 10.1007/s12010-007-8118-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L(-1) of initial sugar concentration was used. Cell yield (Y (X/S)) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L(-1) of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Collapse
|
600
|
Khanal SK, Montalbo M, van Leeuwen J, Srinivasan G, Grewell D. Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnol Bioeng 2008; 98:978-85. [PMID: 17514753 DOI: 10.1002/bit.21497] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This work evaluated the use of high power ultrasonic energy to treat corn slurry in dry corn milling ethanol plants to enhance liquefaction and saccharification for ethanol production. Corn slurry samples obtained before and after jet cooking were subjected to ultrasonic pretreatment for 20 and 40 s at amplitudes of vibration ranging from 180 to 299 microm(pp) (peak to peak amplitude in microm). The resulting samples were then exposed to enzymes (alpha-amylase and glucoamylase) to convert cornstarch into glucose. A comparison of scanning electron micrographs of raw and sonicated samples showed the development of micropores and the disruption of cell walls in corn mash. The corn particle size declined nearly 20-fold following ultrasonic treatment at high power settings. The glucose release rate from sonicated samples increased as much as threefold compared to the control group. The efficiency of ultrasound exceeded 100% in terms of energy gain from the sugar released over the ultrasonic energy supplied. Enzymatic activity was enhanced when the corn slurry was sonicated with simultaneous addition of enzymes. This finding suggests that the ultrasonic energy did not degrade or denature the enzymes during the pretreatment.
Collapse
Affiliation(s)
- Samir Kumar Khanal
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011-3080, USA
| | | | | | | | | |
Collapse
|