551
|
Zhu L, Sharp JD, Kobayashi H, Woychik NA, Inouye M. Noncognate Mycobacterium tuberculosis toxin-antitoxins can physically and functionally interact. J Biol Chem 2010; 285:39732-8. [PMID: 20876537 DOI: 10.1074/jbc.m110.163105] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Mycobacterium tuberculosis genome harbors a striking number (>40) of toxin-antitoxin systems. Among them are at least seven MazF orthologs, designated MazF-mt1 through MazF-mt7, four of which have been demonstrated to function as mRNA interferases that selectively target mRNA for cleavage at distinct consensus sequences. As is characteristic of all toxin-antitoxin systems, each of the mazF-mt toxin genes is organized in an operon downstream of putative antitoxin genes. However, only one of the seven putative upstream antitoxins (designated MazE-mt1 through MazE-mt7) has significant sequence similarity to Escherichia coli MazE, the cognate antitoxin for E. coli MazF. Interestingly, the M. tuberculosis genome contains two independent operons encoding E. coli MazE orthologs, but they are not paired with mazF-mt-like genes. Instead, the genes encoding these two MazE orthologs are each paired with proteins containing a PIN domain, indicating that they may be members of the very large VapBC toxin-antitoxin family. We tested a spectrum of pair-wise combinations of cognate and noncognate Mtb toxin-antitoxins using in vivo toxicity and rescue experiments along with in vitro interaction experiments. Surprisingly, we uncovered several examples of noncognate toxin-antitoxin association, even among different families (e.g. MazF toxins and VapB antitoxins). These results challenge the "one toxin for one antitoxin" dogma and suggest that M. tuberculosis may enlist a sophisticated toxin-antitoxin network to alter its physiology in response to environmental cues.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | |
Collapse
|
552
|
Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution 2010; 65:3-20. [PMID: 20722725 DOI: 10.1111/j.1558-5646.2010.01103.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- University of New Brunswick, Department of Biology, Fredericton, NB, Canada.
| | | | | | | | | |
Collapse
|
553
|
Rešetárová S, Florek P, Muchová K, Wilkinson AJ, Barák I. Expression and localization of SpoIISA toxin during the life cycle of Bacillus subtilis. Res Microbiol 2010; 161:750-6. [PMID: 20863891 PMCID: PMC3038269 DOI: 10.1016/j.resmic.2010.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022]
Abstract
The previously identified spoIIS locus encodes a toxin-antitoxin system in Bacillus subtilis. It comprises two genes, spoIISA encoding a toxin and spoIISB encoding an antitoxin, which lies adjacent to each other on the chromosome. Each of the spoIIS coding sequences is preceded by a promoter region and the two genes together constitute an operon. The function of SpoIISA is unknown, although it has been shown that the absence of SpoIISB or loss of its function leads to a block in sporulation at stage II. The cytoplasmic membrane has been proposed as the target of the SpoIISA toxin. Heterologously expressed SpoIISA-SpoIISB was shown to be functional in Escherichia coli, where again the cytoplasmic membrane was the most probable target for SpoIISA toxicity. Here we analyzed the effects of SpoIISA production during vegetative growth of B. subtilis and during sporulation by following the levels of SpoIISA. SpoIISA levels increase at the point of entry into stationary phase of cell cultures grown in sporulation-inducing medium. However, SpoIISA expression appears to be unrelated to the sporulation process, since it is independent of the major early sporulation-specific transcription factor, Spo0A. We also investigated SpoIISA localization within the cell. We confirmed the predicted localization of SpoIISA at the B. subtilis cytoplasmic membrane. In addition, we observed localization of SpoIISA in higher level structures in a cell-wall-dependent manner.
Collapse
Affiliation(s)
- Stanislava Rešetárová
- Institute of Molecular Biology, Slovak Academy of Sciences Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Patrik Florek
- Institute of Molecular Biology, Slovak Academy of Sciences Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Katarína Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences Dúbravská cesta 21, 845 51 Bratislava, Slovakia
- Corresponding author.
| |
Collapse
|
554
|
Göbl C, Kosol S, Stockner T, Rückert HM, Zangger K. Solution structure and membrane binding of the toxin fst of the par addiction module. Biochemistry 2010; 49:6567-75. [PMID: 20677831 PMCID: PMC2914490 DOI: 10.1021/bi1005128] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The par toxin−antitoxin system is required for the stable inheritance of the plasmid pAD1 in its native host Enterococcus faecalis. It codes for the toxin Fst and a small antisense RNA which inhibits translation of toxin mRNA, and it is the only known antisense regulated toxin−antitoxin system in Gram-positive bacteria. This study presents the structure of the par toxin Fst, the first atomic resolution structure of a component of an antisense regulated toxin−antitoxin system. The mode of membrane binding was determined by relaxation enhancements in a paramagnetic environment and molecular dynamics simulation. Fst forms a membrane-binding α-helix in the N-terminal part and contains an intrinsically disordered region near the C-terminus. It binds in a transmembrane orientation with the C-terminus likely pointing toward the cytosol. Membrane-bound, α-helical peptides are frequently found in higher organisms as components of the innate immune system. Despite similarities to these antimicrobial peptides, Fst shows neither hemolytic nor antimicrobial activity when applied externally to a series of bacteria, fungal cells, and erythrocytes. Moreover, its charge distribution, orientation in the membrane, and structure distinguish it from antimicrobial peptides.
Collapse
Affiliation(s)
- Christoph Göbl
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
555
|
Fivian-Hughes AS, Davis EO. Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J Bacteriol 2010; 192:4348-56. [PMID: 20585061 PMCID: PMC2937366 DOI: 10.1128/jb.00454-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022] Open
Abstract
Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to autoregulate TA expression under normal growth conditions, but it is unknown whether they have a more global role in transcriptional regulation. This study focuses on analyzing the regulatory role of the M. tuberculosis HigA antitoxin. We first show that the M. tuberculosis higBA locus is functional within its native organism, as higB, higA, and Rv1957 were successfully deleted from the genome together while the deletion of higA alone was not possible. The effects of higB-Rv1957 deletion on M. tuberculosis global gene expression were investigated, and a number of potential HigA-regulated genes were identified. Transcriptional fusion and protein-DNA-binding assays were utilized to confirm the direct role of HigA in Rv1954A-Rv1957 repression, and the M. tuberculosis HigA DNA-binding motif was defined as ATATAGG(N(6))CCTATAT. As HigA failed to bind to the next-most-closely related motif within the M. tuberculosis genome, HigA may not directly regulate any other genes in addition to its own operon.
Collapse
Affiliation(s)
- Amanda S. Fivian-Hughes
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Elaine O. Davis
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| |
Collapse
|
556
|
Han JS, Lee JJ, Anandan T, Zeng M, Sripathi S, Jahng WJ, Lee SH, Suh JW, Kang CM. Characterization of a chromosomal toxin–antitoxin, Rv1102c–Rv1103c system in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2010; 400:293-8. [DOI: 10.1016/j.bbrc.2010.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/06/2010] [Indexed: 01/07/2023]
|
557
|
|
558
|
Genomic signatures of the haarlem lineage of Mycobacterium tuberculosis: implications of strain genetic variation in drug and vaccine development. J Clin Microbiol 2010; 48:3614-23. [PMID: 20631099 DOI: 10.1128/jcm.00157-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis is the world's leading cause of death due to a single infectious agent, and efforts aimed at its control require a better understanding of host, environmental, and bacterial factors that govern disease outcome. Growing evidence indicates that certain Mycobacterium tuberculosis strains of distinct phylogeographic lineages elicit unique immunopathological events. However, identifying the genetic basis of these phenotypic peculiarities has proven difficult. Here we report the presence of six large sequence polymorphisms which, together with two single-nucleotide changes previously described by our group, consistently differentiate Haarlem strains from the remaining M. tuberculosis lineages. The six newly found Haarlem-specific genetic events are four deletions, which altogether involve more than 13 kb, and two intragenic insertions of the element IS6110. The absence of the genes involved in these polymorphisms could have an important physiological impact on Haarlem strains, i.e., by affecting key genes, such as Rv1354c and cyp121, which have been recently proposed as plausible drug targets. These lineage-specific polymorphisms can serve as genetic markers for the rapid PCR identification of Haarlem strains, providing a useful tool for strain surveillance and molecular epidemiology studies. Strain variability such as that described here underscores the need for the definition of a core set of essential genes in M. tuberculosis that are ubiquitously present in all circulating lineages, as a requirement in the development of effective antituberculosis drugs and vaccines.
Collapse
|
559
|
Fiebig A, Rojas CMC, Siegal-Gaskins D, Crosson S. Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin-antitoxin systems. Mol Microbiol 2010; 77:236-51. [PMID: 20487277 PMCID: PMC2907451 DOI: 10.1111/j.1365-2958.2010.07207.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Toxin-antitoxin (TA) gene cassettes are widely distributed across bacteria, archaea and bacteriophage. The chromosome of the alpha-proteobacterium, Caulobacter crescentus, encodes eight ParE/RelE-superfamily toxins that are organized into operons with their cognate antitoxins. A systematic genetic analysis of these parDE and relBE TA operons demonstrates that seven encode functional toxins. The one exception highlights an example of a non-functional toxin pseudogene. Chromosomally encoded ParD and RelB proteins function as antitoxins, inhibiting their adjacently encoded ParE and RelE toxins. However, these antitoxins do not functionally complement each other, even when overexpressed. Transcription of these paralogous TA systems is differentially regulated under distinct environmental conditions. These data support a model in which multiple TA paralogs encoded by a single bacterial chromosome form independent functional units with insulated protein-protein interactions. Further characterization of the parDE(1) system at the single-cell level reveals that ParE(1) toxin functions to inhibit cell division but not cell growth; residues at the C-terminus of ParE(1) are critical for its stability and toxicity. While continuous ParE(1) overexpression results in a substantial loss in cell viability at the population level, a fraction of cells escape toxicity, providing evidence that ParE(1) toxicity is not uniform within clonal cell populations.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637
| | - Cyd Marie Castro Rojas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637
| | | | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637
- The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637
| |
Collapse
|
560
|
Andrews G, Lewis D, Notey J, Kelly R, Muddiman D. Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting. Anal Bioanal Chem 2010; 398:391-404. [PMID: 20582400 DOI: 10.1007/s00216-010-3929-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/13/2010] [Accepted: 06/14/2010] [Indexed: 11/27/2022]
Abstract
Probing the intracellular proteome of Thermotoga maritima and Caldicellulosiruptor saccharolyticus in pure and co-culture affords a global investigation into the machinery and mechanisms enduring inside the bacterial thermophilic cell at the time of harvest. The second of a two part study, employing GeLC-MS(2) a variety of proteins were confidently identified with <1% false discovery rate, and spectral counts for label-free relative quantification afforded indication of the dynamic proteome as a function of environmental stimuli. Almost 25% of the T. maritima proteome and 10% of the C. saccharolyticus proteome were identified. Through comparison of growth temperatures for T. maritima, a protein associated with chemotaxis was uniquely present in the sample cultivated at the non-optimal growth temperature. It is suspected that movement was induced due to the non-optimal condition as the organism may need to migrate in the culture to locate more nutrients. The inventory of C. saccharolyticus proteins identified in these studies and attributed to spectral counting, demonstrated that two CRISPR-associated proteins had increased expression in the pure culture versus the co-culture. Further focusing on this relationship, a C. saccharolyticus phage-shock protein was identified in the co-culture expanding a scenario that the co-culture had decreased antiviral resistance and accordingly an infection-related protein was present. Alterations in growth conditions of these bacterial thermophilic microorganisms offer a glimpse into the intricacy of microbial behavior and interaction.
Collapse
Affiliation(s)
- Genna Andrews
- Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
561
|
Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates. PLoS One 2010; 5:e11289. [PMID: 20585658 PMCID: PMC2890582 DOI: 10.1371/journal.pone.0011289] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/21/2010] [Indexed: 01/24/2023] Open
Abstract
Type II (proteic) chromosomal toxin-antitoxin systems (TAS) are widespread in Bacteria and Archaea but their precise function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6). To address the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-relBE2Spn wild type strain with that of an isogenic derivative, Delta relB2Spn under different stress conditions such as carbon and amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide additional advantages to the bacteria for colonization and/or infection.
Collapse
Affiliation(s)
- Concha Nieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | - Adela G. de la Campa
- Centro Nacional de Microbiología and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Spain
| | | | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
562
|
Shi W, Zhang Y. PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J Antimicrob Chemother 2010; 65:1237-42. [PMID: 20360062 PMCID: PMC2868530 DOI: 10.1093/jac/dkq103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/18/2010] [Accepted: 03/05/2010] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Mycobacterial persistence is thought to be the underlying cause of the current lengthy tuberculosis therapy and latent infection. Despite some recent progress, the mechanisms of bacterial persistence are poorly understood. We have recently identified a new persister gene phoU from Escherichia coli and have shown that the phoU mutant has a defect in persisters. The objective of this study is to evaluate the role of two phoU homologues phoY1 and phoY2 from Mycobacterium tuberculosis in mycobacterial persistence. METHODS M. tuberculosis phoY1 and phoY2 mutant strains were constructed. The persister-related phenotypes of the phoY1 and phoY2 mutants were assessed in vitro by MIC testing, drug exposure assays and also by survival in the mouse model of tuberculosis infection. RESULTS We demonstrated that M. tuberculosis PhoY2 is the equivalent of E. coli PhoU in that inactivation of phoY2 but not phoY1 caused a defect in persistence phenotype as shown by increased susceptibility to rifampicin and pyrazinamide in both MIC testing and drug exposure assays and also reduced persistence in the mouse model. CONCLUSIONS This study provides further validation that PhoU is involved in persistence not only in E. coli but also in M. tuberculosis and has implications for the development of new drugs targeting persisters for improved treatment.
Collapse
Affiliation(s)
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
563
|
Cooper TF, Paixão T, Heinemann JA. Within-host competition selects for plasmid-encoded toxin-antitoxin systems. Proc Biol Sci 2010; 277:3149-55. [PMID: 20504809 DOI: 10.1098/rspb.2010.0831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toxin-antitoxin (TA) systems are commonly found on bacterial plasmids. The antitoxin inhibits toxin activity unless the system is lost from the cell. Then the shorter lived antitoxin degrades and the cell becomes susceptible to the toxin. Selection for plasmid-encoded TA systems was initially thought to result from their reducing the number of plasmid-free cells arising during growth in monoculture. However, modelling and experiments have shown that this mechanism can only explain the success of plasmid TA systems under a restricted set of conditions. Previously, we have proposed and tested an alternative model explaining the success of plasmid TA systems as a consequence of competition occurring between plasmids during co-infection of bacterial hosts. Here, we test a further prediction of this model, that competition between plasmids will lead to the biased accumulation of TA systems on plasmids relative to chromosomes. Transposon-encoded TA systems were added to populations of plasmid-containing cells, such that TA systems could insert into either plasmids or chromosomes. These populations were enriched for transposon-containing cells and then incubated in environments that did, or did not, allow effective within-host plasmid competition to occur. Changes in the ratio of plasmid- to chromosome-encoded TA systems were monitored. In agreement with our model, we found that plasmid-encoded TA systems had a competitive advantage, but only when host cells were sensitive to the effect of TA systems. This result demonstrates that within-host competition between plasmids can select for TA systems.
Collapse
Affiliation(s)
- Tim F Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
564
|
Yang M, Gao C, Wang Y, Zhang H, He ZG. Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS One 2010; 5:e10672. [PMID: 20498855 PMCID: PMC2871789 DOI: 10.1371/journal.pone.0010672] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/24/2010] [Indexed: 01/15/2023] Open
Abstract
RelBE represents a typical bacterial toxin-antitoxin (TA) system. Mycobacterium tuberculosis H37Rv, the pathogen responsible for human tuberculosis, contains three RelBE-like modules, RelBE, RelFG, and RelJK, which are at least partly expressed in human macrophages during infection. RelBE modules appear to be autoregulated in an atypical manner compared to other TA systems; however, the molecular mechanisms and potential interactions between different RelBE modules remain to be elucidated. In the present study, we characterized the interaction and cross-regulation of these Rel toxin-antitoxin modules from this unique pathogen. The physical interactions between the three pairs of RelBE proteins were confirmed and the DNA-binding domain recognized by three RelBE-like pairs and domain structure characteristics were described. The three RelE-like proteins physically interacted with the same RelB-like protein, and could conditionally regulate its binding with promoter DNA. The RelBE-like modules exerted complex cross-regulation effects on mycobacterial growth. The relB antitoxin gene could replace relF in cross-neutralizing the relG toxin gene. Conversely, relF enhanced the toxicity of the relE toxin gene, while relB increased the toxicity of relK. This is the first report of interactions between different pairs of RelBE modules of M. tuberculosis.
Collapse
Affiliation(s)
- Min Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Gao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Wang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hua Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
565
|
Abstract
Toxin-antitoxin (TA) loci consist of two genes in an operon, encoding a stable toxin and an unstable antitoxin. The expression of toxin leads to cell growth arrest and sometimes bacterial death, while the antitoxin prevents the cytotoxic activity of the toxin. In this study, we show that the chromosome of Yersinia pestis, the causative agent of plague, carries 10 putative TA modules and two solitary antitoxins that belong to five different TA families (HigBA, HicAB, RelEB, Phd/Doc, and MqsRA). Two of these toxin genes (higB2 and hicA1) could not be cloned in Escherichia coli unless they were coexpressed with their cognate antitoxin gene, indicating that they are highly toxic for this species. One of these toxin genes (higB2) could, however, be cloned directly and expressed in Y. pestis, where it was highly toxic, while the other one (hicA1) could not, probably because of its extreme toxicity. All eight other toxin genes were successfully cloned into the expression vector pBAD-TOPO. For five of them (higB1, higB3, higB5, hicA2, and tox), no toxic activity was detected in either E. coli or Y. pestis despite their overexpression. The three remaining toxin genes (relE1, higB4, and doc) were toxic for E. coli, and this toxic activity was abolished when the cognate antitoxin was coexpressed, showing that these three TA modules are functional in E. coli. Curiously, only one of these three toxins (RelE1) was active in Y. pestis. Cross-interaction between modules of the same family was observed but occurred only when the antitoxins were almost identical. Therefore, our study demonstrates that of the 10 predicted TA modules encoded by the Y. pestis chromosome, at least 5 are functional in E. coli and/or in Y. pestis. This is the first demonstration of active addiction toxins produced by the plague agent.
Collapse
|
566
|
Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 2010; 6:e1000943. [PMID: 20485560 PMCID: PMC2869309 DOI: 10.1371/journal.pgen.1000943] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/08/2010] [Indexed: 11/19/2022] Open
Abstract
Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpaxdeltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents.
Collapse
|
567
|
Prevalence of Haemophilus influenzae type b genetic islands among clinical and commensal H. influenzae and H. haemolyticus isolates. J Clin Microbiol 2010; 48:2565-8. [PMID: 20463164 DOI: 10.1128/jcm.02453-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five genetic islands (HiGI) found in Haemophilus influenzae type b strain Eagan were used as hybridization probes on type b, Haemophilus haemolyticus, and nontypeable H. influenzae (NTHi) isolates. HiGI2 and HiGI7 were significantly more prevalent in NTHi isolates from children with otitis media than in those from the throats of healthy children.
Collapse
|
568
|
Mutschler H, Reinstein J, Meinhart A. Assembly dynamics and stability of the pneumococcal epsilon zeta antitoxin toxin (PezAT) system from Streptococcus pneumoniae. J Biol Chem 2010; 285:21797-806. [PMID: 20442221 DOI: 10.1074/jbc.m110.126250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pneumococcal epsilon zeta antitoxin toxin (PezAT) system is a chromosomally encoded, class II toxin antitoxin system from the human pathogen Streptococcus pneumnoniae. Neutralization of the bacteriotoxic protein PezT is carried out by complex formation with its cognate antitoxin PezA. Here we study the stability of the inhibitory complex in vivo and in vitro. We found that toxin release is impeded in Escherichia coli and Bacillus subtilis due to the proteolytic resistance of PezA once bound to PezT. These findings are supported by in vitro experiments demonstrating a strong thermodynamic stabilization of both proteins upon binding. A detailed kinetic analysis of PezAT assembly revealed that these particular features of PezAT are based on a strong, electrostatically guided binding mechanism leading to a stable toxin antitoxin complex with femtomolar affinity. Our data show that PezAT complex formation is distinct to all other conventional toxin antitoxin modules and a controlled mode of toxin release is required for activation.
Collapse
Affiliation(s)
- Hannes Mutschler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
569
|
Miclea PS, Péter M, Végh G, Cinege G, Kiss E, Váró G, Horváth I, Dusha I. Atypical transcriptional regulation and role of a new toxin-antitoxin-like module and its effect on the lipid composition of Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:638-650. [PMID: 20367472 DOI: 10.1094/mpmi-23-5-0638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A toxin-antitoxin (TA)-like system (designated as bat/bto genes) was identified in Bradyrhizobium japonicum, based on sequence homology and similarities in organization and size to known TA systems. Deletion of the bat/bto module resulted in pleiotropic alterations in cell morphology and metabolism. The generation time of the mutant was considerably decreased in rich media. Atomic force microscopy revealed the modified shape (shorter and wider) and softness of mutant cells. The synthesis of phosphatidylcholine was completely blocked in the mutant bacteria, and vaccenic acid, the predominant fatty acid of membranes of the wild-type cell, was replaced by palmitic acid in the mutant membranes. The mutant bacteria synthesized incomplete lipopolysaccharide molecules. Remarkable changes in the membrane lipid composition may explain the observed morphological alterations and growth properties of the mutant bacteria. The overlapping promoter region of bat/bto and glpD (coding for the aerobic sn-glycerol-3-phosphate dehydrogenase) genes suggests a complex regulation and the involvement of bat/bto in the control of main metabolic pathways and an important role in the maintenance of a normal physiological state of B. japonicum. These data reveal new aspects of the role of TA systems in bacteria.
Collapse
Affiliation(s)
- Paul S Miclea
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
570
|
Prozorov AA, Danilenko VN. Toxin-antitoxin systems in bacteria: Apoptotic tools or metabolic regulators? Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710020013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
571
|
Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid 2010; 64:1-17. [PMID: 20403380 DOI: 10.1016/j.plasmid.2010.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/15/2022]
Abstract
pSM19035 is a low-copy-number theta-replicating plasmid, which belongs to the Inc18 family. Plasmids of this family, which show a modular organization, are functional in evolutionarily diverse bacterial species of the Firmicutes Phylum. This review summarizes our understanding, accumulated during the last 20 years, on the genetics, biochemistry, cytology and physiology of the five pSM19035 segregation (seg) loci, which map outside of the minimal replicon. The segA locus plays a role both in maximizing plasmid random segregation, and in avoiding replication fork collapses in those plasmids with long inverted repeated regions. The segB1 locus, which acts as the ultimate determinant of plasmid maintenance, encodes a short-lived epsilon(2) antitoxin protein and a long-lived zeta toxin protein, which form a complex that neutralizes zeta toxicity. The cells that do not receive a copy of the plasmid halt their proliferation upon decay of the epsilon(2) antitoxin. The segB2 locus, which encodes two trans-acting, ParA- and ParB-like proteins and six cis-acting parS centromeres, actively ensures equal or roughly equal distribution of plasmid copies to daughter cells. The segC locus includes functions that promote the shift from the use of DNA polymerase I to the replicase (PolC-PolE DNA polymerases). The segD locus, which encodes a trans-acting transcriptional repressor, omega(2), and six cis-acting cognate sites, coordinates the expression of genes that control copy number, better-than-random segregation and partition, and assures the proper balance of these different functions. Working in concert the five different loci achieve almost absolute plasmid maintenance with a minimal growth penalty.
Collapse
|
572
|
A new member of the ribbon-helix-helix transcription factor superfamily from the plant pathogen Xanthomonas axonopodis pv. citri. J Struct Biol 2010; 170:21-31. [DOI: 10.1016/j.jsb.2009.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/11/2009] [Accepted: 12/22/2009] [Indexed: 11/19/2022]
|
573
|
Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 2010; 76:719-32. [PMID: 20345661 DOI: 10.1111/j.1365-2958.2010.07129.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Type II toxin-antitoxin (TA) systems are considered as protein pairs in which a specific toxin is associated with a specific antitoxin. We have identified a novel antitoxin family (paaA) that is associated with parE toxins. The paaA-parE gene pairs form an operon with a third component (paaR) encoding a transcriptional regulator. Two paralogous paaR-paaA-parE systems are found in E. coli O157:H7. Deletions of the paaA-parE pairs in O157:H7 allowed us to show that these systems are expressed in their natural host and that PaaA antitoxins specifically counteract toxicity of their associated ParE toxin. For the paaR2-paaA2-parE2 system, PaaR2 and Paa2-ParE2 complex are able to regulate the operon expression and both are necessary to ensure complete repression. The paaR2-paaA2-parE2 system mediates ClpXP-dependent post-segregational killing. The PaaR2 regulator appears to be essential for this function, most likely by maintaining an appropriate antitoxin : toxin ratio in steady-state conditions. Ectopic overexpression of ParE2 is bactericidal and is not resuscitated by PaaA2 expression. ParE2 colocalizes with the nucleoid, while it is diffusely distributed in the cytoplasm when PaaA2 is coexpressed. This indicates that ParE2 interacts with DNA-gyrase cycling on DNA and that coexpression of PaaA2 antitoxin sequesters ParE2 away from its target by protein-protein complex formation.
Collapse
Affiliation(s)
- Régis Hallez
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté des Sciences, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
574
|
Dalton KM, Crosson S. A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Biochemistry 2010; 49:2205-15. [PMID: 20143871 PMCID: PMC2846751 DOI: 10.1021/bi902133s] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 A resolution. This TA system forms an alpha(2)beta(2) heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and binding groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.
Collapse
Affiliation(s)
- Kevin M. Dalton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
575
|
Abstract
Toxin-antitoxin (TA) systems are plasmid- or chromosome-encoded protein complexes composed of a stable toxin and a short-lived inhibitor of the toxin. In cultures of Escherichia coli, transcription of toxin-antitoxin genes was induced in a nondividing subpopulation of bacteria that was tolerant to bactericidal antibiotics. Along with transcription of known toxin-antitoxin operons, transcription of mqsR and ygiT, two adjacent genes with multiple TA-like features, was induced in this cell population. Here we show that mqsR and ygiT encode a toxin-antitoxin system belonging to a completely new family which is represented in several groups of bacteria. The mqsR gene encodes a toxin, and ectopic expression of this gene inhibits growth and induces rapid shutdown of protein synthesis in vivo. ygiT encodes an antitoxin, which protects cells from the effects of MqsR. These two genes constitute a single operon which is transcriptionally repressed by the product of ygiT. We confirmed that transcription of this operon is induced in the ampicillin-tolerant fraction of a growing population of E. coli and in response to activation of the HipA toxin. Expression of the MqsR toxin does not kill bacteria but causes reversible growth inhibition and elongation of cells.
Collapse
|
576
|
|
577
|
Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010; 8:e1000317. [PMID: 20186264 PMCID: PMC2826370 DOI: 10.1371/journal.pbio.1000317] [Citation(s) in RCA: 573] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/20/2010] [Indexed: 11/18/2022] Open
Abstract
Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA) transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.
Collapse
Affiliation(s)
- Tobias Dörr
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Marin Vulić
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
578
|
De Jonge N, Hohlweg W, Garcia-Pino A, Respondek M, Buts L, Haesaerts S, Lah J, Zangger K, Loris R. Structural and thermodynamic characterization of Vibrio fischeri CcdB. J Biol Chem 2010; 285:5606-13. [PMID: 19959472 PMCID: PMC2820787 DOI: 10.1074/jbc.m109.068429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/31/2009] [Indexed: 11/06/2022] Open
Abstract
CcdB(Vfi) from Vibrio fischeri is a member of the CcdB family of toxins that poison covalent gyrase-DNA complexes. In solution CcdB(Vfi) is a dimer that unfolds to the corresponding monomeric components in a two-state fashion. In the unfolded state, the monomer retains a partial secondary structure. This observation correlates well with the crystal and NMR structures of the protein, which show a dimer with a hydrophobic core crossing the dimer interface. In contrast to its F plasmid homologue, CcdB(Vfi) possesses a rigid dimer interface, and the apparent relative rotations of the two subunits are due to structural plasticity of the monomer. CcdB(Vfi) shows a number of non-conservative substitutions compared with the F plasmid protein in both the CcdA and the gyrase binding sites. Although variation in the CcdA interaction site likely determines toxin-antitoxin specificity, substitutions in the gyrase-interacting region may have more profound functional implications.
Collapse
Affiliation(s)
- Natalie De Jonge
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Walter Hohlweg
- the Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
| | - Abel Garcia-Pino
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Michal Respondek
- the Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
| | - Lieven Buts
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Sarah Haesaerts
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jurij Lah
- the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana, Slovenia
| | - Klaus Zangger
- the Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, and
| | - Remy Loris
- From Structural Biology Brussels and
- the Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
579
|
Nitrification and degradation of halogenated hydrocarbons--a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 2010; 86:435-44. [PMID: 20146060 DOI: 10.1007/s00253-010-2454-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
The process of nitrification has the potential for the in situ bioremediation of halogenated compounds provided a number of challenges can be overcome. In nitrification, the microbial process where ammonia is oxidized to nitrate, ammonia-oxidizing bacteria (AOB) are key players and are capable of carrying out the biodegradation of recalcitrant halogenated compounds. Through industrial uses, halogenated compounds often find their way into wastewater, contaminating the environment and bodies of water that supply drinking water. In the reclamation of wastewater, halogenated compounds can be degraded by AOB but can also be detrimental to the process of nitrification. This minireview considers the ability of AOB to carry out cometabolism of halogenated compounds and the consequent inhibition of nitrification. Possible cometabolism monitoring methods that were derived from current information about AOB genomes are also discussed. AOB expression microarrays have detected mRNA of genes that are expressed at higher levels during stress and are deemed "sentinel" genes. Promoters of selected "sentinel" genes have been cloned and used to drive the expression of gene-reporter constructs. The latter are being tested as early warning biosensors of cometabolism-induced damage in Nitrosomonas europaea with promising results. These and other biosensors may help to preserve the tenuous balance that exists when nitrification occurs in waste streams containing alternative AOB substrates such as halogenated hydrocarbons.
Collapse
|
580
|
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476-95. [PMID: 20236330 DOI: 10.1111/j.1574-6976.2010.00213.x] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conditions that sustain constant bacterial growth are seldom found in nature. Oligotrophic environments and competition among microorganisms force bacteria to be able to adapt quickly to rough and changing situations. A particular lifestyle composed of continuous cycles of growth and starvation is commonly referred to as feast and famine. Bacteria have developed many different mechanisms to survive in nutrient-depleted and harsh environments, varying from producing a more resistant vegetative cell to complex developmental programmes. As a consequence of prolonged starvation, certain bacterial species enter a dynamic nonproliferative state in which continuous cycles of growth and death occur until 'better times' come (restoration of favourable growth conditions). In the laboratory, microbiologists approach famine situations using batch culture conditions. The entrance to the stationary phase is a very regulated process governed by the alternative sigma factor RpoS. Induction of RpoS changes the gene expression pattern, aiming to produce a more resistant cell. The study of stationary phase revealed very interesting phenomena such as the growth advantage in stationary phase phenotype. This review focuses on some of the interesting responses of gram-negative bacteria when they enter the fascinating world of stationary phase.
Collapse
|
581
|
Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 2010; 12:1105-21. [PMID: 20105222 DOI: 10.1111/j.1462-2920.2009.02147.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously we identified that the Escherichia coli protein MqsR (YgiU) functions as a toxin and that it is involved in the regulation of motility by quorum sensing signal autoinducer-2 (AI-2). Furthermore, MqsR is directly associated with biofilm development and is linked to the development of persister cells. Here we show that MqsR and MqsA (YgiT) are a toxin/antitoxin (TA) pair, which, in significant difference to other TA pairs, regulates additional loci besides its own. We have recently identified that MqsR functions as an RNase. However, using three sets of whole-transcriptome studies and two nickel-enrichment DNA binding microarrays coupled with cell survival studies in which MqsR was overproduced in isogenic mutants, we identified eight genes (cspD, clpX, clpP, lon, yfjZ, relB, relE and hokA) that are involved in a mode of MqsR toxicity in addition to its RNase activity. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) showed that (i) the MqsR/MqsA complex (and MqsA alone) represses the toxin gene cspD, (ii) MqsR overproduction induces cspD, (iii) stress induces cspD, and (iv) stress fails to induce cspD when MqsR/MqsA are overproduced or when mqsRA is deleted. Electrophoretic mobility shift assays show that the MqsA/MqsR complex binds the promoter of cspD. In addition, proteases Lon and ClpXP are necessary for MqsR toxicity. Together, these results indicate the MqsR/MqsA complex represses cspD which may be derepressed by titrating MqsA with MqsR or by degrading MqsA via stress conditions through proteases Lon and ClpXP. Hence, we demonstrate that the MqsR/MqsA TA system controls cell physiology via its own toxicity as well as through its regulation of another toxin, CspD.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | | | | | | | |
Collapse
|
582
|
Jones BV, Sun F, Marchesi JR. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome. BMC Genomics 2010; 11:46. [PMID: 20085629 PMCID: PMC2822762 DOI: 10.1186/1471-2164-11-46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 01/19/2010] [Indexed: 11/29/2022] Open
Abstract
Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90%) to two plasmids (pTRACA10 and pTRACA22) were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA) addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria), but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In particular the increased relative abundance and broad phylogenetic distribution was identified for a putative RelBE toxin/antitoxin addiction module, a putative phosphohydrolase/phosphoesterase, and an ORF of unknown function. Our analysis also indicates that some plasmids or plasmid families are present in the gut microbiomes of geographically isolated human hosts with a broad global distribution (America, Japan and Europe), and are potentially unique to the human gut microbiome. Further investigation of the plasmid population associated with the human gut is likely to provide important insights into the development, functioning and evolution of the human gut microbiota.
Collapse
Affiliation(s)
- Brian V Jones
- Centre for Biomedical and Health Sciences Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road Brighton, UK.
| | | | | |
Collapse
|
583
|
The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 2010; 192:1279-91. [PMID: 20061486 DOI: 10.1128/jb.01285-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In Escherichia coli, expression of the RelE and HipA toxins in the absence of their cognate antitoxins has been associated with generating multidrug-tolerant "persisters." Here we show that unlike persisters of E. coli, persisters of Mycobacterium tuberculosis selected with one drug do not acquire cross-resistance to other classes of drugs. M. tuberculosis has three homologs of RelE arranged in operons with their apparent antitoxins. Each toxin individually arrests growth of both M. tuberculosis and E. coli, an effect that is neutralized by coexpression of the cognate antitoxin. Overexpression or deletion of each of the RelE toxins had a toxin- and drug-specific effect on the proportion of bacilli surviving antibiotic killing. All three toxins were upregulated in vivo, but none of the deletions affected survival during murine infection. RelE2 overexpression increased bacterial survival rates in the presence of rifampin in vitro, while deletion significantly decreased survival rates. Strikingly, deletion of this toxin had no discernible effect on the level of persisters seen in rifampin-treated mice. Our results suggest that, in vivo, RelE-generated persisters are unlikely to play a significant role in the generation of bacilli that survive in the face of multidrug therapy or in the generation of multidrug-resistant M. tuberculosis.
Collapse
|
584
|
Jones BV. The human gut mobile metagenome: a metazoan perspective. Gut Microbes 2010; 1:415-31. [PMID: 21468227 PMCID: PMC3056110 DOI: 10.4161/gmic.1.6.14087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/21/2010] [Accepted: 11/02/2010] [Indexed: 02/03/2023] Open
Abstract
Using the culture independent TRACA system in conjunction with a comparative metagenomic approach, we have recently explored the pool of plasmids associated with the human gut mobile metagenome. This revealed that some plasmids or plasmid families are present in the gut microbiomes of geographically isolated human hosts with a broad global distribution (America, Japan and Europe), and are potentially unique to the human gut microbiome. Functions encoded by the most widely distributed plasmid (pTRACA22) were found to be enriched in the human gut microbiome when compared to microbial communities from other environments, and of particular interest was the increased prevalence of a putative RelBE toxin-antitoxin (TA) addiction module. Subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes, but homologues of the RelE toxin were associated with all major bacterial divisions comprising the human gut microbiota. In this addendum, functions of the gut mobile metagenome are considered from the perspective of the human host, and within the context of the hologenome theory of human evolution. In doing so, our original analysis is also extended to include the gut metagenomes of a further 124 individuals comprising the METAHIT dataset. Differences in the incidence and relative abundance of pTRACA22 and associated TA modules between healthy individuals and those with inflammatory bowel diseases are explored, and potential functions of pTRACA22 type RelBE modules in the human gut microbiome are discussed.
Collapse
|
585
|
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 2009; 192:1416-22. [PMID: 20038589 DOI: 10.1128/jb.00233-09] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation exist in other organisms. To address this, we followed antitoxin levels over time for the three known TA systems of the major human pathogen Staphylococcus aureus, mazEF, axe1-txe1, and axe2-txe2. We observed that the antitoxins of these systems, MazE(sa), Axe1, and Axe2, respectively, were all degraded rapidly (half-life [t(1/2)], approximately 18 min) at rates notably higher than those of their E. coli counterparts, such as MazE (t(1/2), approximately 30 to 60 min). Furthermore, when S. aureus strains deficient for various proteolytic systems were examined for changes in the half-lives of these antitoxins, only strains with clpC or clpP deletions showed increased stability of the molecules. From these studies, we concluded that ClpPC serves as the functional unit for the degradation of all known antitoxins in S. aureus.
Collapse
|
586
|
Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R. PemK toxin of Bacillus anthracis is a ribonuclease: an insight into its active site, structure, and function. J Biol Chem 2009; 285:7254-70. [PMID: 20022964 DOI: 10.1074/jbc.m109.073387] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus anthracis genome harbors a toxin-antitoxin (TA) module encoding pemI (antitoxin) and pemK (toxin). This study describes the rPemK as a potent ribonuclease with a preference for pyrimidines (C/U), which is consistent with our previous study that demonstrated it as a translational attenuator. The in silico structural modeling of the PemK in conjunction with the site-directed mutagenesis confirmed the role of His-59 and Glu-78 as an acid-base couple in mediating the ribonuclease activity. The rPemK is shown to form a complex with the rPemI, which is in line with its function as a TA module. This rPemI-rPemK complex becomes catalytically inactive when both the proteins interact in a molar stoichiometry of 1. The rPemI displays vulnerability to proteolysis but attains conformational stability only upon rPemK interaction. The pemI-pemK transcript is shown to be up-regulated upon stress induction with a concomitant increase in the amount of PemK and a decline in the PemI levels, establishing the role of these modules in stress. The artificial perturbation of TA interaction could unleash the toxin, executing bacterial cell death. Toward this end, synthetic peptides are designed to disrupt the TA interaction. The peptides are shown to be effective in abrogating TA interaction in micromolar range in vitro. This approach can be harnessed as a potential antibacterial strategy against anthrax in the future.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Laboratory of Molecular Biology and Genetic Engineering, , School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | |
Collapse
|
587
|
Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009; 5:e1000767. [PMID: 20011113 PMCID: PMC2781298 DOI: 10.1371/journal.pgen.1000767] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/12/2009] [Indexed: 12/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis. Tuberculosis (TB) continues to be a major global health problem, causing 2 million deaths every year. A hallmark of TB pathogenesis is that the bacilli can enter into a slow or non-growing state in response to the host immune system. Because these persistent bacteria are resistant to antibiotic treatment, efforts to eliminate TB from the human population must include therapies to target dormant organisms as they can eventually resume replication to cause active disease. How Mycobacterium tuberculosis, the causative agent of TB, alters its replication dynamics in response to host cues is not understood. Toxin-antitoxin (TA) systems, which may control persistence in other bacteria, are massively expanded in M. tuberculosis, suggesting that they are important for TB pathogenesis. Surprisingly, the vast majority of these numerous TA systems are conserved only in pathogenic mycobacteria, suggesting their acquisition was important in M. tuberculosis evolution. Of the 88 putative TA systems identified, we show that 30 are functional in mycobacteria. A subset of these systems is activated upon exposure to stresses encountered during infection, indicating that specific TA systems are involved in adapting to environmental cues in the host. These genes are promising candidates for the development of novel therapies to target persistent bacteria.
Collapse
Affiliation(s)
- Holly R. Ramage
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
| | - Lynn E. Connolly
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffery S. Cox
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
588
|
Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 2009; 326:578-82. [PMID: 19900896 DOI: 10.1126/science.1175309] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oxygen minimum zones, also known as oceanic "dead zones," are widespread oceanographic features currently expanding because of global warming. Although inhospitable to metazoan life, they support a cryptic microbiota whose metabolic activities affect nutrient and trace gas cycling within the global ocean. Here, we report metagenomic analyses of a ubiquitous and abundant but uncultivated oxygen minimum zone microbe (SUP05) related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur oxidation, and nitrate respiration responsive to a wide range of water-column redox states. Our analysis provides a genomic foundation for understanding the ecological and biogeochemical role of pelagic SUP05 in oxygen-deficient oceanic waters and its potential sensitivity to environmental changes.
Collapse
Affiliation(s)
- David A Walsh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
589
|
Christensen-Dalsgaard M, Jørgensen MG, Gerdes K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 2009; 75:333-48. [PMID: 19943910 PMCID: PMC2814082 DOI: 10.1111/j.1365-2958.2009.06969.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prokaryotic toxin – antitoxin (TA) loci encode mRNA interferases that inhibit translation, either by cleaving mRNA codons at the ribosomal A site or by cleaving any RNA site-specifically. So far, seven mRNA interferases of Escherichia coli have been identified, four of which cleave mRNA by a translation-dependent mechanism. Here, we experimentally confirmed the presence of three novel TA loci in E. coli. We found that the yafNO, higBA (ygjNM) and ygiUT loci encode mRNA interferases related to RelE. YafO and HigB cleaved translated mRNA only, while YgiU cleaved RNA site-specifically at GC[A/U], independently of translation. Thus, YgiU is the first RelE-related mRNA interferase that cleaves mRNA independently of translation, in vivo. All three loci were induced by amino acid starvation, and inhibition of translation although to different degrees. Carbon starvation induced only two of the loci. The yafNO locus was induced by DNA damage, but the transcription originated from the dinB promoter. Thus, our results showed that the different TA loci responded differentially to environmental stresses. Induction of the three loci depended on Lon protease that may sense the environmental stresses and activate TA loci by cleavage of the antitoxins. Transcription of the three TA operons was autoregulated by the antitoxins.
Collapse
Affiliation(s)
- Mikkel Christensen-Dalsgaard
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle, UK
| | | | | |
Collapse
|
590
|
Examination of post-transcriptional regulations in prokaryotes by integrative biology. C R Biol 2009; 332:958-73. [DOI: 10.1016/j.crvi.2009.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
591
|
Hayes CS, Low DA. Signals of growth regulation in bacteria. Curr Opin Microbiol 2009; 12:667-73. [PMID: 19854099 DOI: 10.1016/j.mib.2009.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/15/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
A fundamental characteristic of cells is their ability to regulate growth in response to changing environmental conditions. This review focuses on recent progress toward understanding the mechanisms by which bacterial growth is regulated. These phenomena include the 'viable but not culturable' (VBNC) state, in which bacterial growth becomes conditional, and 'persistence', which confers antibiotic resistance to a small fraction of bacteria in a population. Notably, at least one form of persistence appears to involve the generation of nongrowing phenotypic variants after transition through stationary phase. The possible roles of toxin-antitoxin modules in growth control are explored, as well as other mechanisms including contact-dependent growth inhibition, which regulates cellular metabolism and growth through binding to an outer membrane protein receptor.
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
592
|
Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 2009; 5:305. [PMID: 19756044 PMCID: PMC2758717 DOI: 10.1038/msb.2009.63] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 08/03/2009] [Indexed: 11/09/2022] Open
Abstract
Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon-limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light-dependent manner and may be required for processing the L11 r-operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks.
Collapse
|
593
|
De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D, Zangger K, Wyns L, De Greve H, Loris R. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell 2009; 35:154-63. [PMID: 19647513 DOI: 10.1016/j.molcel.2009.05.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/14/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Toxin-antitoxin modules are small regulatory circuits that ensure survival of bacterial populations under challenging environmental conditions. The ccd toxin-antitoxin module on the F plasmid codes for the toxin CcdB and its antitoxin CcdA. CcdB poisons gyrase while CcdA actively dissociates CcdB:gyrase complexes in a process called rejuvenation. The CcdA:CcdB ratio modulates autorepression of the ccd operon. The mechanisms behind both rejuvenation and regulation of expression are poorly understood. We show that CcdA binds consecutively to two partially overlapping sites on CcdB, which differ in affinity by six orders of magnitude. The first, picomolar affinity interaction triggers a conformational change in CcdB that initiates the dissociation of CcdB:gyrase complexes by an allosteric segmental binding mechanism. The second, micromolar affinity binding event regulates expression of the ccd operon. Both functions of CcdA, rejuvenation and autoregulation, are mechanistically intertwined and depend crucially on the intrinsically disordered nature of the CcdA C-terminal domain.
Collapse
Affiliation(s)
- Natalie De Jonge
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
594
|
Yamaguchi Y, Park JH, Inouye M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 2009; 284:28746-53. [PMID: 19690171 DOI: 10.1074/jbc.m109.032904] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mqsR gene has been shown to be positively regulated by the quorum-sensing autoinducer AI-2, which in turn activates a two-component system, the qseB-qseC operon. This operon plays an important role in biofilm formation in Escherichia coli. However, its cellular function has remained unknown. Here, we found that 1 base downstream of mqsR there is a gene, ygiT, that is co-transcribed with mqsR. Induction of mqsR caused cell growth arrest, whereas ygiT co-induction recovered cell growth. We demonstrate that MqsR (98 amino acid residues), which has no homology to the well characterized mRNA interferase MazF, is a potent inhibitor of protein synthesis that functions by degrading cellular mRNAs. In vivo and in vitro primer extension experiments showed that MqsR is an mRNA interferase specifically cleaving mRNAs at GCU. The mRNA interferase activity of purified MqsR was inhibited by purified YgiT (131 residues). MqsR forms a stable 2:1 complex with YgiT, and the complex likely functions as a repressor for the mqsR-ygiT operon by specifically binding to two different palindromic sequences present in the 5'-untranslated region of this operon.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
595
|
Significant bias against the ACA triplet in the tmRNA sequence of Escherichia coli K-12. J Bacteriol 2009; 191:6157-66. [PMID: 19633073 DOI: 10.1128/jb.00699-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin MazF in Escherichia coli cleaves single-stranded RNAs specifically at ACA sequences. MazF overexpression virtually eliminates all cellular mRNAs to completely block protein synthesis. However, protein synthesis can continue on an mRNA that is devoid of ACA triplets. The finding that ribosomal RNAs remain intact in the face of complete translation arrest suggested a purpose for such preservation. We therefore examined the sequences of all transcribed RNAs to determine if there was any statistically significant bias against ACA. While ACA motifs are absent from tmRNA, 4.5S RNA, and seven of the eight 5S rRNAs, statistical analysis revealed that only for tmRNA was the absence nonrandom. The introduction of single-strand ACAs makes tmRNA highly susceptible to MazF cleavage. Furthermore, analysis of tmRNA sequences from 442 bacteria showed that the discrimination against ACA in tmRNAs was seen mostly in enterobacteria. We propose that the unusual bias against ACA in tmRNA may have coevolved with the acquisition of MazF.
Collapse
|
596
|
Lata P, Ram S, Agrawal M, Shanker R. Enterococci in river Ganga surface waters: propensity of species distribution, dissemination of antimicrobial-resistance and virulence-markers among species along landscape. BMC Microbiol 2009; 9:140. [PMID: 19615089 PMCID: PMC2722665 DOI: 10.1186/1471-2180-9-140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 07/18/2009] [Indexed: 12/02/2022] Open
Abstract
Background Surface waters quality has declined in developing countries due to rapid industrialization and population growth. The microbiological quality of river Ganga, a life-sustaining surface water resource for large population of northern India, is adversely affected by several point and non-point sources of pollution. Further, untreated surface waters are consumed for drinking and various household tasks in India making the public vulnerable to water-borne diseases and outbreaks. Enterococci, the 'indicator' of water quality, correlates best with the incidence of gastrointestinal diseases as well as prevalence of other pathogenic microorganisms. Therefore, this study aims to determine the distribution of species diversity, dissemination of antimicrobial-resistance and virulence-markers in enterococci with respect to rural-urban landscape along river Ganga in northern India. Results Enterococci density (χ2: 1900, df: 1; p < 0.0001) increased from up-to-down gradient sites in the landscape. Species diversity exhibit significant (χ2: 100.4, df: 20; p < 0.0001) and progressive distribution of E. faecalis, E. faecium, E. durans and E. hirae down the gradient. Statistically discernible (p: 0.0156 – < 0.0001) background pool of resistance and virulence was observed among different Enterococcus spp. recovered from five sites in the up-to-down gradient landscape. A significant correlation was observed in the distribution of multiple-antimicrobial-resistance (viz., erythromycin-rifampicin-gentamicin-methicillin and vancomycin-gentamicin-streptomycin; rs: 0.9747; p: 0.0083) and multiple-virulence-markers (viz., gelE+esp+; rs: 0.9747; p: 0.0083; gelE+efaA+; rs: 0.8944; p: 0.0417) among different Enterococcus spp. Conclusion Our observations show prevalence of multiple-antimicrobial-resistance as well as multiple-virulence traits among different Enterococcus spp. The observed high background pool of resistance and virulence in enterococci in river waters of populous countries has the potential to disseminate more alarming antimicrobial-resistant pathogenic bacteria of same or other lineage in the environment. Therefore, the presence of elevated levels of virulent enterococci with emerging vancomycin resistance in surface waters poses serious health risk in developing countries like India.
Collapse
Affiliation(s)
- Pushpa Lata
- Environmental Microbiology Division, Indian Institute Toxicology Research (CSIR), Post Box 80, Mahatma Gandhi Marg, Lucknow-226001, U.P, India.
| | | | | | | |
Collapse
|
597
|
Abstract
YoeB is a bacterial toxin encoded by the yefM-yoeB toxin-antitoxin system found in various bacterial genomes. Here, we show that Staphylococcus aureus contains two YoeB homologues, both of which function as ribosome-dependent mRNA interferases to inhibit translation initiation in a manner identical to that of YoeB-ec from Escherichia coli.
Collapse
|
598
|
The vapBC Operon from Mycobacterium smegmatis Is An Autoregulated Toxin–Antitoxin Module That Controls Growth via Inhibition of Translation. J Mol Biol 2009; 390:353-67. [DOI: 10.1016/j.jmb.2009.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 12/19/2022]
|
599
|
Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009; 4:19. [PMID: 19493340 PMCID: PMC2701414 DOI: 10.1186/1745-6150-4-19] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 11/13/2022] Open
Abstract
Background The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. Results We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. Conclusion The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of comprehensive identification of these systems particularly challenging. However, these same properties can be exploited to develop context-based computational approaches which, combined with exhaustive analysis of subtle sequence similarities were employed in this work to substantially expand the current collection of TAS by predicting both previously unnoticed, derived versions of known toxins and antitoxins, and putative novel TAS-like systems. In a broader context, the TAS belong to the resistome domain of the prokaryotic mobilome which includes partially selfish, addictive gene cassettes involved in various aspects of stress response and organized under the same general principles as the TAS. The "selfish altruism", or "responsible selfishness", of TAS-like systems appears to be a defining feature of the resistome and an important characteristic of the entire prokaryotic pan-genome given that in the prokaryotic world the mobilome and the "stable" chromosomes form a dynamic continuum. Reviewers This paper was reviewed by Kenn Gerdes (nominated by Arcady Mushegian), Daniel Haft, Arcady Mushegian, and Andrei Osterman. For full reviews, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
600
|
Provvedi R, Boldrin F, Falciani F, Palù G, Manganelli R. Global transcriptional response to vancomycin in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2009; 155:1093-1102. [PMID: 19332811 DOI: 10.1099/mic.0.024802-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to gain additional understanding of the physiological mechanisms used by bacteria to maintain surface homeostasis and to identify potential targets for new antibacterial drugs, we analysed the variation of the Mycobacterium tuberculosis transcriptional profile in response to inhibitory and subinhibitory concentrations of vancomycin. Our analysis identified 153 genes differentially regulated after exposing bacteria to a concentration of the drug ten times higher than the MIC, and 141 genes differentially expressed when bacteria were growing in a concentration of the drug eightfold lower than the MIC. Hierarchical clustering analysis indicated that the response to these different conditions is different, although with some overlap. This approach allowed us to identify several genes whose products could be involved in the protection from antibiotic stress targeting the envelope and help to confer the basal level of M. tuberculosis resistance to antibacterial drugs, such as Rv2623 (UspA-like), Rv0116c, PE20-PPE31, PspA and proteins related to toxin-antitoxin systems. Moreover, we also demonstrated that the alternative sigma factor sigma(E) confers basal resistance to vancomycin, once again underlining its importance in the physiology of the mycobacterial surface stress response.
Collapse
Affiliation(s)
| | - Francesca Boldrin
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35100 Padua, Italy
| | - Francesco Falciani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Giorgio Palù
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35100 Padua, Italy
| | - Riccardo Manganelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35100 Padua, Italy
| |
Collapse
|