551
|
Li D, Wang P, Wang P, Hu X, Chen F. The gut microbiota: A treasure for human health. Biotechnol Adv 2016; 34:1210-1224. [DOI: 10.1016/j.biotechadv.2016.08.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022]
|
552
|
What’s bugging your teen?—The microbiota and adolescent mental health. Neurosci Biobehav Rev 2016; 70:300-312. [DOI: 10.1016/j.neubiorev.2016.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
|
553
|
|
554
|
Wang H, Lee IS, Braun C, Enck P. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. J Neurogastroenterol Motil 2016; 22:589-605. [PMID: 27413138 PMCID: PMC5056568 DOI: 10.5056/jnm16018] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future.
Collapse
Affiliation(s)
- Huiying Wang
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany.,MEG Center, University Hospital Tübingen, Germany.,Graduate Training Center of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - In-Seon Lee
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany.,MEG Center, University Hospital Tübingen, Germany.,Graduate Training Center of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University Hospital Tübingen, Germany.,CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany
| |
Collapse
|
555
|
Bienenstock J, Kunze W, Forsythe P. The Microbiome–Gut–Brain Axis and the Consequences of Infection and Dysbiosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1038/ajgsup.2016.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
556
|
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci 2016; 39:763-781. [PMID: 27793434 PMCID: PMC5102282 DOI: 10.1016/j.tins.2016.09.002] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut–brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome. Psychobiotics are beneficial bacteria (probiotics) or support for such bacteria (prebiotics) that influence bacteria–brain relationships. Psychobiotics exert anxiolytic and antidepressant effects characterised by changes in emotional, cognitive, systemic, and neural indices. Bacteria–brain communication channels through which psychobiotics exert effects include the enteric nervous system and the immune system. Current unknowns include dose-responses and long-term effects. The definition of psychobiotics should be expanded to any exogenous influence whose effect on the brain is bacterially-mediated.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Soili M Lehto
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, FI-70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, FI-70211, Kuopio, Finland
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
557
|
Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med 2016; 14:298. [PMID: 27756430 PMCID: PMC5069982 DOI: 10.1186/s12967-016-1058-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background The microbiota colonizing the gastrointestinal tract have been associated with both gastrointestinal and extra-gastrointestinal diseases. In recent years, considerable interest has been devoted to their role in the development of neurologic diseases, as many studies have described bidirectional communication between the central nervous system and the gut, the so-called “microbiota-gut-brain axis”. Considering the ability of probiotics (i.e., live non-pathogenic microorganisms) to restore the normal microbial population and produce benefits for the host, their potential effects have been investigated in the context of neurologic diseases. The main aims of this review are to analyse the relationship between the gut microbiota and brain disorders and to evaluate the current evidence for the use of probiotics in the treatment and prevention of neurologic conditions. Discussion Overall, trials involving animal models and adults have reported encouraging results, suggesting that the administration of probiotic strains may exert some prophylactic and therapeutic effects in a wide range of neurologic conditions. Studies involving children have mainly focused on autism spectrum disorder and have shown that probiotics seem to improve neuro behavioural symptoms. However, the available data are incomplete and far from conclusive. Conclusions The potential usefulness of probiotics in preventing or treating neurologic diseases is becoming a topic of great interest. However, deeper studies are needed to understand which formulation, dosage and timing might represent the optimal regimen for each specific neurologic disease and what populations can benefit. Moreover, future trials should also consider the tolerability and safety of probiotics in patients with neurologic diseases.
Collapse
|
558
|
Principi N, Esposito S. Gut microbiota and central nervous system development. J Infect 2016; 73:536-546. [PMID: 27725185 DOI: 10.1016/j.jinf.2016.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Gut dysbiosis has been associated with several clinically relevant conditions, including alterations of central nervous system (CNS) structure and function development. This review discussed aspects of the relationship between gut microbiota and the CNS during development. METHODS PubMed was used to search for all of the studies published over the last 15 years using the key word "microbiota" and "gut" or "intestinal" and "nervous system". More than 350 articles were found, and only those published in English and providing data on aspects related to neurologic diseases were included in the evaluation. RESULTS The data indicate that the gut microbiota influences CNS development and function and that gut dysbiosis is associated with significant neurological problems. However, most of these data have been collected in experimental animals and cannot be transferred to humans. Moreover, it is not definitively established whether neurologic diseases depend on a generic modification of the gut microbiota or whether a single bacterial phylum or species plays a specific role for any single condition. Furthermore, limited information exists regarding protective bacteria. CONCLUSIONS Both probiotics and prebiotics can have different impacts on CNS according to the microbial species or oligosaccharides that are administered. In humans, particularly in children, several factors may be important in conditioning gut microbiota modifications; unfortunately, most of these factors act simultaneously. More efforts are required to fully define both the array of complex behaviors that are influenced by the gut microbiota at the CNS level and the mechanisms involved.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
559
|
Abstract
The ecosystem of the human gut consists of trillions of bacteria forming a bioreactor that is fueled by dietary macronutrients to produce bioactive compounds. These microbiota-derived metabolites signal to distant organs in the body, which enables the gut bacteria to connect to the immune and hormone system, to the brain (the gut-brain axis) and to host metabolism, as well as other functions of the host. This microbe-host communication is essential to maintain vital functions of the healthy host. Recently, however, the gut microbiota has been associated with a number of diseases, ranging from obesity and inflammatory diseases to behavioral and physiological abnormalities associated with neurodevelopmental disorders. In this Review, we will discuss microbiota-host cross-talk and intestinal microbiome signaling to extraintestinal organs. We will review mechanisms of how this communication might contribute to host physiology and discuss how misconfigured signaling might contribute to different diseases.
Collapse
|
560
|
Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22:1079-1089. [DOI: 10.1038/nm.4185] [Citation(s) in RCA: 695] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
|
561
|
Shi LH, Balakrishnan K, Thiagarajah K, Mohd Ismail NI, Yin OS. Beneficial Properties of Probiotics. Trop Life Sci Res 2016. [PMID: 27688852 DOI: 10.21315/tlsr2016.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as "health friendly bacteria", which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller's diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents.
Collapse
Affiliation(s)
- Lye Huey Shi
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kunasundari Balakrishnan
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Kokila Thiagarajah
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ooi Shao Yin
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
562
|
Shi LH, Balakrishnan K, Thiagarajah K, Mohd Ismail NI, Yin OS. Beneficial Properties of Probiotics. Trop Life Sci Res 2016; 27:73-90. [PMID: 27688852 DOI: 10.21315/tlsr2016.27.2.6] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as "health friendly bacteria", which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller's diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents.
Collapse
Affiliation(s)
- Lye Huey Shi
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kunasundari Balakrishnan
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Kokila Thiagarajah
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ooi Shao Yin
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
563
|
Phillips Campbell RB, Duffourc MM, Schoborg RV, Xu Y, Liu X, KenKnight BH, Beaumont E. Aberrant fecal flora observed in guinea pigs with pressure overload is mitigated in animals receiving vagus nerve stimulation therapy. Am J Physiol Gastrointest Liver Physiol 2016; 311:G754-G762. [PMID: 27562060 DOI: 10.1152/ajpgi.00218.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023]
Abstract
Altered gut microbial diversity has been associated with several chronic disease states, including heart failure. Stimulation of the vagus nerve, which innervates the heart and abdominal organs, is proving to be an effective therapeutic in heart failure. We hypothesized that cervical vagus nerve stimulation (VNS) could alter fecal flora and prevent aberrations observed in fecal samples from heart failure animals. To determine whether microbial abundances were altered by pressure overload (PO), leading to heart failure and VNS therapy, a VNS pulse generator was implanted with a stimulus lead on either the left or right vagus nerve before creation of PO by aortic constriction. Animals received intermittent, open-loop stimulation or sham treatment, and their heart function was monitored by echocardiography. Left ventricular end-systolic and diastolic volumes, as well as cardiac output, were impaired in PO animals compared with baseline. VNS mitigated these effects. Metagenetic analysis was then performed using 16S rRNA sequencing to identify bacterial genera present in fecal samples. The abundance of 10 genera was significantly altered by PO, 8 of which were mitigated in animals receiving either left- or right-sided VNS. Metatranscriptomics analyses indicate that the abundance of genera that express genes associated with ATP-binding cassette transport and amino sugar/nitrogen metabolism was significantly changed following PO. These gut flora changes were not observed in PO animals subjected to VNS. These data suggest that VNS prevents aberrant gut flora following PO, which could contribute to its beneficial effects in heart failure patients.
Collapse
Affiliation(s)
| | - Michelle M Duffourc
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Robert V Schoborg
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Yanji Xu
- Shaun & Lilly International, Collierville, Tennessee; and
| | - Xinyi Liu
- Shaun & Lilly International, Collierville, Tennessee; and
| | | | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee;
| |
Collapse
|
564
|
Winek K, Dirnagl U, Meisel A. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics 2016; 13:762-774. [PMID: 27714645 PMCID: PMC5081128 DOI: 10.1007/s13311-016-0475-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.
Collapse
Affiliation(s)
- Katarzyna Winek
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegeneration Research (DZNE), partner site Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
565
|
Kao ACC, Harty S, Burnet PWJ. The Influence of Prebiotics on Neurobiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:21-48. [PMID: 27793220 DOI: 10.1016/bs.irn.2016.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Manipulating the intestinal microbiota for the benefit of the brain is a concept that has become widely acknowledged. Prebiotics are nondigestible nutrients (i.e., fibers, carbohydrates, or various saccharides) that proliferate intrinsic, beneficial gut bacteria, and so provide an alternative strategy for effectively altering the enteric ecosystem, and thence brain function. Rodent studies demonstrating neurobiological changes following prebiotic intake are slowly emerging, and have thus far revealed significant benefits in disease models, including antiinflammatory and neuroprotective actions. There are also compelling data showing the robust and favorable effects of prebiotics on several behavioral paradigms including, anxiety, learning, and memory. At present, studies in humans are limited, though there is strong evidence for prebiotics modulating emotional processes and the neuroendocrine stress response that may underlie the pathophysiology of anxiety. While the mechanistic details linking the enteric microbiota to the central nervous system remain to be elucidated, there are a number of considerations that can guide future studies. These include the modulation of intestinal endocrine systems and inflammatory cascades, as well as direct interaction with the enteric nervous system and gut mucosa. Our knowledge of gut microbiome-brain communication is steadily progressing, and thorough investigations validating the use of prebiotics in the treatment of neuropsychiatric disorders would be highly valued and are encouraged.
Collapse
Affiliation(s)
- A C C Kao
- University of Oxford, Oxford, United Kingdom
| | - S Harty
- University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
566
|
Abstract
Ineffective esophageal motility (IEM) is characterized by low to very low amplitude propulsive contractions in the distal esophagus, hence primarily affecting the smooth muscle part of the esophagus. IEM is often found in patients with dysphagia or heartburn and is commonly associated with gastroesophageal reflux disease. IEM is assumed to be associated with ineffective bolus transport; however, this can be verified using impedance measurements or evaluation of a barium coated marshmallow swallow. Furthermore, water swallows may not assess accurately the motor capabilities of the esophagus, since contraction amplitude is strongly determined by the size and consistency of the bolus. The “peristaltic reserve” of the esophagus can be evaluated by multiple rapid swallows that, after a period of diglutative inhibition, normally give a powerful peristaltic contraction suggestive of the integrity of neural orchestration and smooth muscle action. The amplitude of contraction is determined by a balance between intrinsic excitatory cholinergic, inhibitory nitrergic, as well as postinhibition rebound excitatory output to the musculature. This is strongly influenced by vagal efferent motor neurons and this in turn is influenced by vagal afferent neurons that send bolus information to the solitary nucleus where programmed activation of the vagal motor neurons to the smooth muscle esophagus is initiated. Solitary nucleus activity is influenced by sensory activity from a large number of organs and various areas of the brain, including the hypothalamus and the cerebral cortex. This allows interaction between swallowing activities and respiratory and cardiac activities and allows the influence of acute and chronic emotional states on swallowing behavior. Interstitial cells of Cajal are part of the sensory units of vagal afferents, the intramuscular arrays, and they provide pacemaker activity to the musculature that can generate peristalsis in the absence of innervation. This indicates that a low-amplitude esophageal contraction, observed as IEM, can be caused by a multitude of factors, and therefore many pathways can be potentially explored to restore normal esophageal peristalsis.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, People's Republic of China; Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
567
|
Julio-Pieper M, Bravo JA. Intestinal Barrier and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:127-141. [PMID: 27793215 DOI: 10.1016/bs.irn.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses.
Collapse
Affiliation(s)
- M Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| | - J A Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de, Valparaíso, Chile.
| |
Collapse
|
568
|
Abstract
There is increasing evidence that the composition of the resident bacteria within the gastrointestinal tract can influence the brain and behavior, particularly with respect to cognitive function. Cognitive function encompasses the life-long process of learning, both long- and short-term processes. Cognition was originally thought to be exclusively regulated by the central nervous system, with long-term potentiation and neurogenesis contributing to the creation and storage of memories, but now other systems, including, for example, the immune system and the intestinal microbiome may also be involved. Cognitive impairment has been identified in numerous disease states, both gastrointestinal and extraintestinal in nature, many of which have also been characterized as having a role for dysbiosis in disease pathogenesis. This includes, but is not limited to, inflammatory bowel diseases, irritable bowel syndrome, type 1 diabetes, obesity, major depressive disorder, and autism spectrum disorder. The role of cognition and the microbiome will be discussed in this chapter for all these diseases, as well as evidence for a role in maintaining overall human health and well being. Finally, evidence for a role for probiotics in beneficially modulating the microbiota and leading to improved cognition will be discussed.
Collapse
Affiliation(s)
- M G Gareau
- School of Veterinary Medicine, University of California Davis, Davis, CA, United States.
| |
Collapse
|
569
|
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, Hoisington AJ, Postolache TT, Kinney KA, Marciani D, Hernandez M, Hemmings SMJ, Malan-Muller S, Wright KP, Knight R, Raison CL, Rook GAW. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Environ Health Rep 2016; 3:270-86. [PMID: 27436048 PMCID: PMC5763918 DOI: 10.1007/s40572-016-0100-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hygiene or "Old Friends" hypothesis proposes that the epidemic of inflammatory disease in modern urban societies stems at least in part from reduced exposure to microbes that normally prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such diseases include but are not limited to allergies and asthma; we and others have proposed that the markedly reduced exposure to these Old Friends in modern urban societies may also increase vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as anxiety and affective disorders, where data are emerging in support of inflammation as a risk factor. Here, we review recent advances in our understanding of the potential for Old Friends, including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving bacterially derived metabolites, bacterial antigens, and helminthic antigens, through which these inputs promote immunoregulation. Though findings are encouraging, significant human subjects' research is required to evaluate the potential impact of Old Friends, including environmental microbial inputs, on biological signatures and clinically meaningful mental health prevention and intervention outcomes.
Collapse
Affiliation(s)
- Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Philip H Siebler
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Dominic Schmidt
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James E Hassell
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Paula S Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James H Fox
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081, Ulm, Germany
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine & Rehabilitation, University of Colorado, Anschutz School of Medicine, Aurora, CO, 80045, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, 80220, USA
| | - Andrew J Hoisington
- Department of Civil and Environmental Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Teodor T Postolache
- University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain MIRECC, Denver, CO, 80220, USA
- VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | | | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Kenneth P Wright
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Charles L Raison
- School of Human Ecology and School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Graham A W Rook
- Center for Clinical Microbiology, UCL (University College London), WC1E 6BT, London, UK
| |
Collapse
|
570
|
Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Front Microbiol 2016; 7:1204. [PMID: 27594848 PMCID: PMC4990546 DOI: 10.3389/fmicb.2016.01204] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Indeed, several studies have linked alterations in the gut microbiota with the development of different diseases. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. The presence of different species of bifidobacteria changes with age, from childhood to old age. Bifidobacterium longum, B. breve, and B. bifidum are generally dominant in infants, whereas B. catenulatum, B. adolescentis and, as well as B. longum are more prevalent in adults. Increasingly, evidence is accumulating which shows beneficial effects of supplementation with bifidobacteria for the improvement of human health conditions ranging from protection against infection to different extra- and intra-intestinal positive effects. Moreover, bifidobacteria have been associated with the production of a number of potentially health promoting metabolites including short chain fatty acids, conjugated linoleic acid and bacteriocins. The aim of this mini-review is to describe the bifidobacteria compositional changes associated with different stages in life, highlighting their beneficial role, as well as their presence or absence in many disease states.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland
| | - Claire Watkins
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland; School of Microbiology, University College CorkCork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland; School of Science, Engineering and Food Science, University College CorkCork, Ireland
| |
Collapse
|
571
|
Biodiversity, the Human Microbiome and Mental Health: Moving toward a New Clinical Ecology for the 21st Century? ACTA ACUST UNITED AC 2016. [DOI: 10.1155/2016/2718275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in research concerning the brain-related influences of the microbiome have been paradigm shifting, although at an early stage, clinical research involving beneficial microbes lends credence to the notion that the microbiome may be an important target in supporting mental health (defined here along the continuum between quality of life and the criteria for specific disorders). Through metagenomics, proteomics, metabolomics, and systems biology, a new emphasis to personalized medicine is on the horizon. Humans can now be viewed as multispecies organisms operating within an ecological theatre; it is important that clinicians increasingly see their patients in this context. Historically marginalized ecological aspects of health are destined to become an important consideration in the new frontiers of practicing medicine with the microbiome in mind. Emerging evidence indicates that macrobiodiversity in the external environment can influence mental well-being. Local biodiversity may also drive differences in human-associated microbiota; microbial diversity as a product of external biodiversity may have far-reaching effects on immune function and mood. With a focus on the microbiome as it pertains to mental health, we define environmental “grey space” and emphasize a new frontier involving bio-eco-psychological medicine. Within this concept the ecological terrain can link dysbiotic lifestyles and biodiversity on the grand scale to the local human-associated microbial ecosystems that might otherwise seem far removed from one another.
Collapse
|
572
|
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. Int J Neuropsychopharmacol 2016; 19:pyw020. [PMID: 26912607 PMCID: PMC5006193 DOI: 10.1093/ijnp/pyw020] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pauline Luczynski
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Karen-Anne McVey Neufeld
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Clara Seira Oriach
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland.
| |
Collapse
|
573
|
Hyland NP, Cryan JF. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev Biol 2016; 417:182-7. [PMID: 27343895 DOI: 10.1016/j.ydbio.2016.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS), considered a separate branch of the autonomic nervous system, is located throughout the length of the gastrointestinal (GI) tract as a series of interconnected ganglionated plexi. Given the proximity of the intestinal microbiota to the ENS, it is perhaps not surprising that the gut microbiota can influence its development and function. However, these interactions are complex and may be either direct or indirect, often involving signalling initiated by microbe-derived components, metabolites or host-derived intermediaries which subsequently affect enteric nerve excitability and GI function. Individual microbes and strains can differentially influence ENS activity and neurochemistry. In this review we will briefly summarise the role of the microbiota on ENS development, and, in some more detail, explore the mechanisms by which the microbiota can influence ENS activity and function.
Collapse
Affiliation(s)
- Niall P Hyland
- APC Microbiome Institute, University College Cork, Cork, Ireland; Departments of Pharmacology & Therapeutics, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
574
|
Arboleya S, Stanton C, Ryan CA, Dempsey E, Ross PR. Bosom Buddies: The Symbiotic Relationship Between Infants and Bifidobacterium longum ssp. longum and ssp. infantis. Genetic and Probiotic Features. Annu Rev Food Sci Technol 2016; 7:1-21. [PMID: 26934170 DOI: 10.1146/annurev-food-041715-033151] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal microbiota is a complex community that plays an important role in human health from the initial steps of its establishment. Its microbial composition has been suggested to result from selective pressures imposed by the host and is modulated by competition among its members. Bifidobacterium longum is one of the most abundant species of the Bifidobacterium genus in the gut microbiota of healthy breast-fed infants and adults. The recent advancements of 'omics techniques have facilitated the genetic and functional studies of different gut microbiota members. They have revealed the complex genetic pathways used to metabolize different compounds that likely contribute to the competitiveness and persistence of B. longum in the colon. The discovery of a genomic island in B. longum ssp. infantis that encodes specific enzymes for the metabolism of human milk oligosaccharides suggests a specific ecological adaptation. Moreover, B. longum is widely used as probiotic, and beneficial effects in infant health have been reported in several studies.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Paul R Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; , .,School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
575
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 652] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
576
|
Emge JR, Huynh K, Miller EN, Kaur M, Reardon C, Barrett KE, Gareau MG. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G989-98. [PMID: 27056723 DOI: 10.1152/ajpgi.00086.2016] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/30/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED Anxiety, depression, and altered memory are associated with intestinal diseases, including inflammatory bowel disease (IBD). Understanding the link between these behavioral changes and IBD is important clinically since concomitant mood disorders often increase a patient's risk of requiring surgery and developing secondary functional gastrointestinal diseases. Anxiety-like behavior (light/dark box test) and recognition memory (novel object recognition task) were determined at the peak and during resolution of inflammation in the dextran sodium sulfate (DSS) mouse model of acute colitis. DSS (5 days) was administered via drinking water followed by 3 or 9 days of normal drinking water to assess behavior during active or resolving inflammation, respectively. Disease (weight, colon length, and histology) was assessed and the composition of the gut microbiota was characterized by using qPCR on fecal pellet DNA. In a subset of mice, pretreatment with probiotics was started 1 wk prior to commencing DSS. During active inflammation (8 days), mice demonstrated impaired recognition memory and exhibited anxiety-like behavior vs. CONTROLS These behavioral defects were normalized by 14 days post-DSS. Shifts in the composition of the gut microbiota were evident during active inflammation, notably as decreases in lactobacilli and segmented filamentous bacteria, which were also reversed once the disease had resolved. Administration of probiotics could prevent the behavioral defects seen in acute DSS. Taken together, our findings indicate that changes in mood and behavior are present during acute inflammation in murine IBD and associated with dysbiosis and that these outcomes can be prevented by the administration of probiotics.
Collapse
Affiliation(s)
- Jacob R Emge
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Kevin Huynh
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Elaine N Miller
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Manvir Kaur
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Colin Reardon
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California; Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Mélanie G Gareau
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California; Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| |
Collapse
|
577
|
Fermented Milk Containing Lactobacillus casei Strain Shirota Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical Students Exposed to Academic Stress. Appl Environ Microbiol 2016; 82:3649-58. [PMID: 27208120 DOI: 10.1128/aem.04134-15] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Stress-induced abdominal dysfunction is an attractive target for probiotics. To investigate the effects of the probiotic Lactobacillus casei strain Shirota on abdominal dysfunction, a double-blind, placebo-controlled trial was conducted with healthy medical students undertaking an authorized nationwide examination for academic advancement. For 8 weeks, until the day before the examination, 23 and 24 subjects consumed an L. casei strain Shirota-fermented milk and a placebo milk daily, respectively. In addition to assessments of abdominal symptoms, psychophysical state, and salivary stress markers, gene expression changes in peripheral blood leukocytes and composition of the gut microbiota were analyzed using DNA microarray analysis and 16S rRNA gene amplicon sequence analysis, respectively, before and after the intervention. Stress-induced increases in a visual analog scale measuring feelings of stress, the total score of abdominal dysfunction, and the number of genes with changes in expression of more than 2-fold in leukocytes were significantly suppressed in the L. casei strain Shirota group compared with those in the placebo group. A significant increase in salivary cortisol levels before the examination was observed only in the placebo group. The administration of L. casei strain Shirota, but not placebo, significantly reduced gastrointestinal symptoms. Moreover, 16S rRNA gene amplicon sequencing demonstrated that the L. casei strain Shirota group had significantly higher numbers of species, a marker of the alpha-diversity index, in their gut microbiota and a significantly lower percentage of Bacteroidaceae than the placebo group. Our findings indicate that the daily consumption of probiotics, such as L. casei strain Shirota, preserves the diversity of the gut microbiota and may relieve stress-associated responses of abdominal dysfunction in healthy subjects exposed to stressful situations. IMPORTANCE A novel clinical trial was conducted with healthy medical students under examination stress conditions. It was demonstrated that the daily consumption of lactic acid bacteria provided health benefits to prevent the onset of stress-associated abdominal symptoms and a good change of gut microbiota in healthy medical students.
Collapse
|
578
|
Goto Y, Lee YA, Yamaguchi Y, Jas E. Biological mechanisms underlying evolutionary origins of psychotic and mood disorders. Neurosci Res 2016; 111:13-24. [PMID: 27230505 DOI: 10.1016/j.neures.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
Psychotic and mood disorders are brain dysfunctions that are caused by gene environment interactions. Although these disorders are disadvantageous and involve behavioral phenotypes that decrease the reproductive success of afflicted individuals in the modern human society, the prevalence of these disorders have remained constant in the population. Here, we propose several biological mechanisms by which the genes associated with psychotic and mood disorders could be selected for in specific environmental conditions that provide evolutionary bases for explanations of when, why, and where these disorders emerged and have been maintained in humans. We discuss the evolutionary origins of psychotic and mood disorders with specific focuses on the roles of dopamine and serotonin in the conditions of social competitiveness/hierarchy and maternal care and other potential mechanisms, such as social network homophily and symbiosis.
Collapse
Affiliation(s)
- Yukiori Goto
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| | - Young-A Lee
- Department of Food Science & Nutrition, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 712-702, Republic of Korea
| | - Yoshie Yamaguchi
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Emanuel Jas
- Graduate School of Natural Sciences, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
579
|
|
580
|
Cernada M, Bäuerl C, Serna E, Collado MC, Martínez GP, Vento M. Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins. Sci Rep 2016; 6:25497. [PMID: 27180802 PMCID: PMC4867619 DOI: 10.1038/srep25497] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/15/2016] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a life-threatening condition in preterm infants. Neonatal microbiota plays a pivotal role in the immune system maturation. Changes in gut microbiota have been associated to inflammatory disorders; however, a link with sepsis in the neonatal period has not yet been established. We aimed to analyze gut microbiota and mucosal gene expression using non-invasively obtained samples to provide with an integrative perspective of host-microbe interactions in neonatal sepsis. For this purpose, a prospective observational case-control study was conducted in septic preterm dizygotic twins and their non-septic twin controls. Fecal samples were used for both microbiota analysis and host genome-wide expression using exfoliated intestinal cells. Gene expression of exfoliated intestinal cells in septic preterm showed an induction of inflammatory and oxidative stress pathways in the gut and pro-oxidant profile that caused dysbiosis in the gut microbiota with predominance of Enterobacteria and reduction of Bacteroides and Bifidobacterium spp.in fecal samples, leading to a global reduction of beneficial anaerobic bacteria. Sepsis in preterm infants induced low-grade inflammation and oxidative stress in the gut mucosa, and also changes in the gut microbiota. This study highlights the role of inflammation and oxidative stress in neonatal sepsis on gut microbial profiles.
Collapse
Affiliation(s)
- María Cernada
- Health Research Institute (Instituto de Investigación Sanitaria) Hospital La Fe, Av. Fernando Abril Martorell 106; 46026 Valencia, Spain.,Division of Neonatology. University &Polytechnic Hospital La Fe, Avda. Fernando Abril Martorell 106; 46026 Valencia, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology. Av. Agustin Escardino 7, 46980 Valencia, Spain
| | - Eva Serna
- Central Research Unit-INCLIVA, Faculty of Medicine, University of Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology. Av. Agustin Escardino 7, 46980 Valencia, Spain
| | - Gaspar Pérez Martínez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology. Av. Agustin Escardino 7, 46980 Valencia, Spain
| | - Máximo Vento
- Health Research Institute (Instituto de Investigación Sanitaria) Hospital La Fe, Av. Fernando Abril Martorell 106; 46026 Valencia, Spain.,Central Research Unit-INCLIVA, Faculty of Medicine, University of Valencia, Spain.,Spanish Maternal and Child Health and Development Network Retics Red SAMID, Health Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness, Sinesio Delgado 4, 28029 Madrid, Spain
| |
Collapse
|
581
|
Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci U S A 2016; 113:E3130-9. [PMID: 27185913 DOI: 10.1073/pnas.1600324113] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1-2 wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies.
Collapse
|
582
|
Foster JA, Lyte M, Meyer E, Cryan JF. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience. Int J Neuropsychopharmacol 2016; 19:pyv114. [PMID: 26438800 PMCID: PMC4886662 DOI: 10.1093/ijnp/pyv114] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29(th) International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, "Gut microbiota and brain function: Relevance to psychiatric disorders" to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan).
| | - Mark Lyte
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| | - Emeran Meyer
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| | - John F Cryan
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| |
Collapse
|
583
|
Logan AC, Jacka FN, Craig JM, Prescott SL. The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:131-47. [PMID: 27121424 PMCID: PMC4857870 DOI: 10.9758/cpn.2016.14.2.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/05/2015] [Indexed: 02/06/2023]
Abstract
Relationships between gastrointestinal viscera and human emotions have been documented by virtually all medical traditions known to date. The focus on this relationship has waxed and waned through the centuries, with noted surges in interest driven by cultural forces. Here we explore some of this history and the emerging trends in experimental and clinical research. In particular, we pay specific attention to how the hygiene hypothesis and emerging research on traditional dietary patterns has helped re-ignite interest in the use of microbes to support mental health. At present, the application of microbes and their structural parts as a means to positively influence mental health is an area filled with promise. However, there are many limitations within this new paradigm shift in neuropsychiatry. Impediments that could block translation of encouraging experimental studies include environmental forces that work toward dysbiosis, perhaps none more important than westernized dietary patterns. On the other hand, it is likely that specific dietary choices may amplify the value of future microbial-based therapeutics. Pre-clinical and clinical research involving microbiota and allergic disorders has predated recent work in psychiatry, an early start that provides valuable lessons. The microbiome is intimately connected to diet, nutrition, and other lifestyle variables; microbial-based psychopharmacology will need to consider this contextual application, otherwise the ceiling of clinical expectations will likely need to be lowered.
Collapse
Affiliation(s)
- Alan C Logan
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,International Society for Nutritional Psychiatry Research (ISNPR), Geelong, Australia
| | - Felice N Jacka
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,International Society for Nutritional Psychiatry Research (ISNPR), Geelong, Australia.,The Centre for Innovation in Mental and Physical Health and Clinical Treatment, School of Medicine, Deakin University, Geelong, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Psychiatry, University of Melbourne, Melbourne, Australia.,Black Dog Institute, Sydney, Australia
| | - Jeffrey M Craig
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,Group of Early Life Epigenetics, Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Susan L Prescott
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| |
Collapse
|
584
|
Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med 2016; 14:58. [PMID: 27090095 PMCID: PMC4836158 DOI: 10.1186/s12916-016-0604-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.
Collapse
Affiliation(s)
- Paul Forsythe
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada. .,Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Wolfgang Kunze
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - John Bienenstock
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
585
|
Leclercq S, Forsythe P, Bienenstock J. Posttraumatic Stress Disorder: Does the Gut Microbiome Hold the Key? CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:204-13. [PMID: 27254412 PMCID: PMC4794957 DOI: 10.1177/0706743716635535] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gut bacteria strongly influence our metabolic, endocrine, immune, and both peripheral and central nervous systems. Microbiota do this directly and indirectly through their components, shed and secreted, ranging from fermented and digested dietary and host products to functionally active neurotransmitters including serotonin, dopamine, and γ-aminobutyric acid. Depression has been associated with enhanced levels of proinflammatory biomarkers and abnormal responses to stress. Posttraumatic stress disorder (PTSD) appears to be marked in addition by low cortisol responses, and these factors seem to predict and predispose individuals to develop PTSD after a traumatic event. Dysregulation of the immune system and of the hypothalamic-pituitary-adrenal axis observed in PTSD may reflect prior trauma exposure, especially early in life. Early life, including the prenatal period, is a critical time in rodents, and may well be for humans, for the functional and structural development of the immune and nervous systems. These, in turn, are likely shaped and programmed by gut and possibly other bacteria. Recent experimental and clinical data converge on the hypothesis that imbalanced gut microbiota in early life may have long-lasting immune and other physiologic effects that make individuals more susceptible to develop PTSD after a traumatic event and contribute to the disorder. This suggests that it may be possible to target abnormalities in these systems by manipulation of certain gut bacterial communities directly through supplementation or indirectly by dietary and other novel approaches.
Collapse
Affiliation(s)
- Sophie Leclercq
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Ontario Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Ontario Firestone Institute for Respiratory Health and Department of Medicine, McMaster University, Hamilton, Ontario
| | - John Bienenstock
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton, Hamilton, Ontario Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario
| |
Collapse
|
586
|
Cryan JF. Stress and the Microbiota-Gut-Brain Axis: An Evolving Concept in Psychiatry. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:201-3. [PMID: 27254411 PMCID: PMC4794959 DOI: 10.1177/0706743716635538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
587
|
Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J Neurogastroenterol Motil 2016; 22:201-12. [PMID: 27032544 PMCID: PMC4819858 DOI: 10.5056/jnm15146] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.
Collapse
Affiliation(s)
- Shadi S Yarandi
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel A Peterson
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Glen J Treisman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
588
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
589
|
Felice VD, Quigley EM, Sullivan AM, O'Keeffe GW, O'Mahony SM. Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism Relat Disord 2016; 27:1-8. [PMID: 27013171 DOI: 10.1016/j.parkreldis.2016.03.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, affecting 1-2% of the population over 65 years of age. The primary neuropathology is the loss of midbrain dopaminergic neurons, resulting in characteristic motor deficits, upon which the clinical diagnosis is based. However, a number of significant non-motor symptoms (NMS) are also evident that appear to have a greater impact on the quality of life of these patients. In recent years, it has become increasingly apparent that neurobiological processes can be modified by the bi-directional communication that occurs along the brain-gut axis. The microbiota plays a key role in this communication throughout different routes in both physiological and pathological conditions. Thus, there has been an increasing interest in investigating how microbiota changes within the gastrointestinal tract may be implicated in health and disease including PD. Interestingly α-synuclein-aggregates, the cardinal neuropathological feature in PD, are present in both the submucosal and myenteric plexuses of the enteric nervous system, prior to their appearance in the brain, indicating a possible gut to brain route of "prion-like" spread. In this review we highlight the potential importance of gut to brain signalling in PD with particular focus on the role of the microbiota as major player in this communication.
Collapse
Affiliation(s)
- Valeria D Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Eamonn M Quigley
- APC Microbiome Institute, University College Cork, Cork, Ireland; Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, and Weill Cornell Medical College, 6550 Fannin St, SM 1001, Houston, TX 77030, USA
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland. http://publish.ucc.ie/researchprofiles/C003/somahony
| |
Collapse
|
590
|
Kato-Kataoka A, Nishida K, Takada M, Suda K, Kawai M, Shimizu K, Kushiro A, Hoshi R, Watanabe O, Igarashi T, Miyazaki K, Kuwano Y, Rokutan K. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes 2016; 7:153-6. [DOI: 10.3920/bm2015.0100] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This pilot study investigated the effects of the probiotic Lactobacillus casei strain Shirota (LcS) on psychological, physiological, and physical stress responses in medical students undertaking an authorised nationwide examination for promotion. In a double-blind, placebo-controlled trial, 24 and 23 healthy medical students consumed a fermented milk containing LcS and a placebo milk, respectively, once a day for 8 weeks until the day before the examination. Psychophysical state, salivary cortisol, faecal serotonin, and plasma L-tryptophan were analysed on 5 different sampling days (8 weeks before, 2 weeks before, 1 day before, immediately after, and 2 weeks after the examination). Physical symptoms were also recorded in a diary by subjects during the intervention period for 8 weeks. In association with a significant elevation of anxiety at 1 day before the examination, salivary cortisol and plasma L-tryptophan levels were significantly increased in only the placebo group (P<0.05). Two weeks after the examination, the LcS group had significantly higher faecal serotonin levels (P<0.05) than the placebo group. Moreover, the rate of subjects experiencing common abdominal and cold symptoms and total number of days experiencing these physical symptoms per subject were significantly lower in the LcS group than in the placebo group during the pre-examination period at 5-6 weeks (each P<0.05) and 7-8 weeks (each P<0.01) during the intervention period. Our results suggest that the daily consumption of fermented milk containing LcS may exert beneficial effects preventing the onset of physical symptoms in healthy subjects exposed to stressful situations.
Collapse
Affiliation(s)
- A. Kato-Kataoka
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K. Nishida
- Department of Pathophysiology, Tokushima University Graduate School of Medicine, 3-18-5 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - M. Takada
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K. Suda
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - M. Kawai
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - K. Shimizu
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - A. Kushiro
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - R. Hoshi
- Faculty of Research and Development, Yakult Honsya Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - O. Watanabe
- Faculty of Research and Development, Yakult Honsya Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - T. Igarashi
- Faculty of Research and Development, Yakult Honsya Co., Ltd., 1-1-19 Higashi-Shimbashi, Minato, Tokyo 105-8660, Japan
| | - K. Miyazaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - Y. Kuwano
- Department of Pathophysiology, Tokushima University Graduate School of Medicine, 3-18-5 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - K. Rokutan
- Department of Pathophysiology, Tokushima University Graduate School of Medicine, 3-18-5 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
591
|
Woloszynek S, Pastor S, Mell JC, Nandi N, Sokhansanj B, Rosen GL. Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:67-124. [PMID: 27017007 DOI: 10.1016/bs.ircmb.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complex relationship between microbiota, human physiology, and environmental perturbations has become a major research focus, particularly with the arrival of culture-free and high-throughput approaches for studying the microbiome. Early enthusiasm has come from results that are largely correlative, but the correlative phase of microbiome research has assisted in defining the key questions of how these microbiota interact with their host. An emerging repertoire for engineering the microbiome places current research on a more experimentally grounded footing. We present a detailed look at the interplay between microbiota and host and how these interactions can be exploited. A particular emphasis is placed on unstable microbial communities, or dysbiosis, and strategies to reestablish stability in these microbial ecosystems. These include manipulation of intermicrobial communication, development of designer probiotics, fecal microbiota transplantation, and synthetic biology.
Collapse
Affiliation(s)
- S Woloszynek
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States of America
| | - S Pastor
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - J C Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - N Nandi
- Division of Gastroenterology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - B Sokhansanj
- McKool Smith Hennigan, P. C., Redwood Shores, CA, United States of America
| | - G L Rosen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
592
|
Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 324:131-9. [PMID: 26964681 DOI: 10.1016/j.neuroscience.2016.03.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders that are characterized by deficits in both social and cognitive functions. Although the exact etiology and pathology of ASD remain unclear, a disorder of the microbiota-gut-brain axis is emerging as a prominent factor in the generation of autistic behaviors. Clinical studies have shown that gastrointestinal symptoms and compositional changes in the gut microbiota frequently accompany cerebral disorders in patients with ASD. A disturbance in the gut microbiota, which is usually induced by a bacterial infection or chronic antibiotic exposure, has been implicated as a potential contributor to ASD. The bidirectional microbiota-gut-brain axis acts mainly through neuroendocrine, neuroimmune, and autonomic nervous mechanisms. Application of modulators of the microbiota-gut-brain axis, such as probiotics, helminthes and certain special diets, may be a promising strategy for the treatment of ASD. This review mainly discusses the salient observations of the disruptions of the microbiota-gut-brain axis in the pathogenesis of ASD and reveals its potential therapeutic role in autistic deficits.
Collapse
Affiliation(s)
- Q Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J-M Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
593
|
Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep 2016; 5:51-64. [PMID: 26865085 PMCID: PMC4798912 DOI: 10.1007/s13679-016-0191-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.
Collapse
Affiliation(s)
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Remsen Building, Room 132A, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, United States, Phone: (603) 653-9909
| |
Collapse
|
594
|
Turna J, Grosman Kaplan K, Anglin R, Van Ameringen M. "WHAT'S BUGGING THE GUT IN OCD?" A REVIEW OF THE GUT MICROBIOME IN OBSESSIVE-COMPULSIVE DISORDER. Depress Anxiety 2016; 33:171-8. [PMID: 26629974 DOI: 10.1002/da.22454] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome has become a topic of major interest as of late, with a new focus specifically on psychiatric disorders. Recent studies have revealed that variations in the composition of the gut microbiota may influence anxiety and mood and vice versa. Keeping the concept of this bidirectional "microbiota-gut-brain" axis in mind, this review aims to shed light on how these findings may also be implicated in obsessive-compulsive disorder (OCD); potentially outlining a novel etiological pathway of interest for future research in the field.
Collapse
Affiliation(s)
- Jasmine Turna
- MacAnxiety Research Centre, McMaster University, Hamilton, Ontario, Canada.,MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Keren Grosman Kaplan
- MacAnxiety Research Centre, McMaster University, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca Anglin
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael Van Ameringen
- MacAnxiety Research Centre, McMaster University, Hamilton, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
595
|
Maternal Weaning Modulates Emotional Behavior and Regulates the Gut-Brain Axis. Sci Rep 2016; 6:21958. [PMID: 26903212 PMCID: PMC4763306 DOI: 10.1038/srep21958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Evidence shows that nutritional and environmental stress stimuli during postnatal period influence brain development and interactions between gut and brain. In this study we show that in rats, prevention of weaning from maternal milk results in depressive-like behavior, which is accompanied by changes in the gut bacteria and host metabolism. Depressive-like behavior was studied using the forced-swim test on postnatal day (PND) 25 in rats either weaned on PND 21, or left with their mother until PND 25 (non-weaned). Non-weaned rats showed an increased immobility time consistent with a depressive phenotype. Fluorescence in situ hybridization showed non-weaned rats to harbor significantly lowered Clostridium histolyticum bacterial groups but exhibit marked stress-induced increases. Metabonomic analysis of urine from these animals revealed significant differences in the metabolic profiles, with biochemical phenotypes indicative of depression in the non-weaned animals. In addition, non-weaned rats showed resistance to stress-induced modulation of oxytocin receptors in amygdala nuclei, which is indicative of passive stress-coping mechanism. We conclude that delaying weaning results in alterations to the gut microbiota and global metabolic profiles which may contribute to a depressive phenotype and raise the issue that mood disorders at early developmental ages may reflect interplay between mammalian host and resident bacteria.
Collapse
|
596
|
Sobol CV, Belostotskaya GB. Product fermented by Lactobacilli induces changes in intracellular calcium dynamics in rat brain neurons. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s199074781505013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
597
|
Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood‐Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther 2016; 22:102-17. [PMID: 26662472 PMCID: PMC6492884 DOI: 10.1111/cns.12490] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Present address:
Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Anthony C. Johnson
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Siobhain M. O'Mahony
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Timothy G. Dinan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Beverley Greenwood‐Van Meerveld
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- V.A. Medical CenterOklahoma CityOKUSA
| | - John F. Cryan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
598
|
Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, Tsai YC. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res 2016; 298:202-9. [DOI: 10.1016/j.bbr.2015.10.046] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 12/24/2022]
|
599
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
600
|
Bucci C, Santonicola A, Iovino P. Gut Microbiota and IBS. PROBIOTICS, PREBIOTICS, AND SYNBIOTICS 2016:557-566. [DOI: 10.1016/b978-0-12-802189-7.00040-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|