551
|
Idan O, Hess H. Engineering enzymatic cascades on nanoscale scaffolds. Curr Opin Biotechnol 2013; 24:606-11. [DOI: 10.1016/j.copbio.2013.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/28/2022]
|
552
|
Liu D, Hoynes-O'Connor A, Zhang F. Bridging the gap between systems biology and synthetic biology. Front Microbiol 2013; 4:211. [PMID: 23898328 PMCID: PMC3722476 DOI: 10.3389/fmicb.2013.00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, systems biology provides the knowledge necessary for the development of synthetic biology tools, which in turn facilitates the manipulation and understanding of complex biological systems. Thus, the combination of systems and synthetic biology has huge potential for studying and engineering microbes, especially to perform advanced tasks, such as producing biofuels. Although there have been very few studies in integrating systems and synthetic biology, existing examples have demonstrated great power in extending microbiological capabilities. This review focuses on recent efforts in microbiological genomics, transcriptomics, proteomics, and metabolomics, aiming to fill the gap between systems and synthetic biology.
Collapse
Affiliation(s)
- Di Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| | | | | |
Collapse
|
553
|
Structural basis for recognition of the third SH3 domain of full-length R85 (R85FL)/ponsin by ataxin-7. FEBS Lett 2013; 587:2905-11. [PMID: 23892081 DOI: 10.1016/j.febslet.2013.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/01/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022]
Abstract
Ataxin-7 (Atx7) is a component of the nuclear transcription co-activator complex; its polyglutamine (polyQ) expansion may cause nuclear accumulation and recruit numerous proteins to the intranuclear inclusion bodies. Full-length R85 (R85FL) is such a protein sequestered by polyQ-expanded Atx7. Here, we report that Atx7 specifically interacts with the third SH3 domain (SH3C) of R85FL through its second portion of proline-rich region (PRR). NMR structural analysis of the SH3C domain and its complex with PRR revealed that SH3C contains a large negatively charged surface for binding with the RRTR motif of Atx7. Microscopy imaging demonstrated that sequestration of R85FL by the polyQ-expanded Atx7 in cell is mediated by this specific SH3C-PRR interaction, which is implicated in the pathogenesis of spinocerebellar ataxia 7.
Collapse
|
554
|
Chaki SP, Rivera GM. Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration. BIOARCHITECTURE 2013; 3:57-63. [PMID: 23887203 PMCID: PMC3782540 DOI: 10.4161/bioa.25744] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar and apical-basal cellular polarization of epithelia and endothelia are crucial during morphogenesis. The establishment of these distinct polarity states and their transitions are regulated by signaling networks that include polarity complexes, Rho GTPases, and phosphoinositides. The spatiotemporal coordination of signaling by these molecules modulates cytoskeletal remodeling and vesicle trafficking to specify membrane domains, a prerequisite for the organization of tissues and organs. Here we present an overview of how activation of the WASp/Arp2/3 pathway of actin remodeling by Nck coordinates directional cell migration and speculate on its role as a signaling integrator in the coordination of cellular processes involved in endothelial cell polarity and vascular lumen formation.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
555
|
On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization. Biosystems 2013; 114:8-24. [PMID: 23850535 DOI: 10.1016/j.biosystems.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 12/11/2022]
Abstract
Communication with the environment is an essential characteristic of the living cell, even more when considering the origins and evolution of multicellularity. A number of changes and tinkering inventions were necessary in the evolutionary transition between prokaryotic and eukaryotic cells, which finally made possible the appearance of genuine multicellular organisms. In the study of this process, however, the transformations experimented by signaling systems themselves have been rarely object of analysis, obscured by other more conspicuous biological traits: incorporation of mitochondria, segregated nucleus, introns/exons, flagellum, membrane systems, etc. Herein a discussion of the main avenues of change from prokaryotic to eukaryotic signaling systems and a review of the signaling resources and strategies underlying multicellularity will be attempted. In the expansion of prokaryotic signaling systems, four main systemic resources were incorporated: molecular tools for detection of solutes, molecular tools for detection of solvent (Donnan effect), the apparatuses of cell-cycle control, and the combined system endocytosis/cytoskeleton. The multiple kinds of enlarged, mixed pathways that emerged made possible the eukaryotic revolution in morphological and physiological complexity. The massive incorporation of processing resources of electro-molecular nature, derived from the osmotic tools counteracting the Donnan effect, made also possible the organization of a computational tissue with huge information processing capabilities: the nervous system. In the central nervous systems of vertebrates, and particularly in humans, neurons have achieved both the highest level of molecular-signaling complexity and the highest degree of information-processing adaptability. Theoretically, it can be argued that there has been an accelerated pace of evolutionary change in eukaryotic signaling systems, beyond the other general novelties introduced by eukaryotic cells in their handling of DNA processes. Under signaling system's guidance, the whole processes of transcription, alternative splicing, mobile elements, and other elements of domain recombination have become closely intertwined and have propelled the differentiation capabilities of multicellular tissues and morphologies. An amazing variety of signaling and self-construction strategies have emerged out from the basic eukaryotic design of multicellular complexity, in millions and millions of new species evolved. This design can also be seen abstractly as a new kind of quasi-universal problem-solving 'engine' implemented at the biomolecular scale-providing the fundamentals of eukaryotic 'intelligence'. Analyzing in depth the problem-solving intelligence of eukaryotic cells would help to establish an integrative panorama of their information processing organization, and of their capability to handle the morphological and physiological complexity associated. Whether an informational updating of the venerable "cell theory" is feasible or not, becomes, at the time being - right in the middle of the massive data deluge/revolution from omic disciplines - a matter to careful consider.
Collapse
|
556
|
Petkau-Milroy K, Sonntag MH, Brunsveld L. Modular columnar supramolecular polymers as scaffolds for biomedical applications. Chemistry 2013; 19:10786-93. [PMID: 23852752 DOI: 10.1002/chem.201301324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 01/17/2023]
Abstract
Self-assembly of discotic molecules into supramolecular polymers offers a flexible approach for the generation of multicomponent one-dimensional columnar architectures with tuneable biomedical properties. Decoration with ligands induces specific binding of the self-assembled scaffold to biological targets. The modular design allows the easy co-assembly of different discotics for the generation of probes for targeted imaging and cellular targeting with adjustable ligand density and composition.
Collapse
Affiliation(s)
- Katja Petkau-Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | | | | |
Collapse
|
557
|
Schott MB, Grove B. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin. Cell Signal 2013; 25:2125-35. [PMID: 23838009 DOI: 10.1016/j.cellsig.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC.
Collapse
Affiliation(s)
- Micah B Schott
- Department of Basic Sciences, UND School of Medicine and Health Sciences, 501 N Columbia Rd., Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
558
|
Schoffelen S, van Hest JCM. Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol 2013; 23:613-21. [PMID: 23830209 DOI: 10.1016/j.sbi.2013.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023]
Abstract
Inspired by nature, researchers aim at bringing together different types of enzymes by the generation of multi-enzymatic structures. Amongst others, chemical methods have been exploited enabling the covalent linkage of a set of enzymes to the same macromolecular scaffold or direct cross-linking. Control over the relative position of enzymes in the system has been realized by sequential immobilization in microchannels and by positional co-localization on DNA nanostructures. So far, site-specific conjugation reactions such as the azide-alkyne cycloaddition, N-terminal transamination and enzyme-mediated cross-linking, have been applied to a limited extent only. These methods are expected to allow for co-immobilization of less robust enzymes, hence, an expansion in the diversity of immobilized biocatalytic cascades. In addition, the combination of multiple bioconjugation methods will provide control over the composition in scaffold-free multi-enzyme complexes.
Collapse
Affiliation(s)
- Sanne Schoffelen
- Department of Bio-organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | |
Collapse
|
559
|
Beato M, Vicent GP. A new role for an old player: steroid receptor RNA Activator (SRA) represses hormone inducible genes. Transcription 2013; 4:167-71. [PMID: 23863201 DOI: 10.4161/trns.25777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In breast cancer cells the Steroid Receptor ¬RNA Activator (SRA) acts as scaffold of a complex containing HP1γ, LSD1, HDAC1/2 and CoREST, which contributes to repression of key hormone-inducible genes that must be kept silent in the absence of hormone.
Collapse
|
560
|
Vergé V, Lozano JC, Schatt P, Peaucellier G. SGEBP, a giant protein from starfish oocytes able to interact with ERK. Mol Reprod Dev 2013; 80:816-25. [PMID: 23794267 DOI: 10.1002/mrd.22210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/14/2013] [Indexed: 11/12/2022]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a key regulator of animal meiotic divisions. It involves cascades of kinases whose specificity has been shown to depend on binding proteins acting as scaffolds. We searched for proteins interacting with starfish extracellular signal-regulated kinase (ERK) using the yeast two-hybrid system. An interacting clone was found to encode the 5' region of a giant 16.7-kb transcript encoded by an intronless gene. The corresponding 630-kDa protein could not be detected by Western blot, but the meiotic spindle was labelled by immunolocalization with an antibody against the ERK-binding domain. A related gene was found in the genome of another starfish species, and similarities were also found to a 42.9-kb open reading frame in the sea urchin genome. Yet, no conserved protein-binding domain was detected in the amino acid sequence(s) compared to all the known motifs. Structure prediction software indicated that the encoded proteins are probably disordered while a query of the disordered protein database indicated some similarity with vertebrates microtubule-associated protein 2 (MAP2). This predicts that SGEBP may function as a space-filling polymer, having a role in both cytoskeleton organization and ERK targeting.
Collapse
Affiliation(s)
- Valérie Vergé
- UPMC Univ Paris 06, Laboratoire Arago, Avenue Fontaulé, BP44F-66650, Banyuls/mer, France
| | | | | | | |
Collapse
|
561
|
Jeoung M, Abdelmoti L, Jang ER, Vander Kooi CW, Galperin E. Functional Integration of the Conserved Domains of Shoc2 Scaffold. PLoS One 2013; 8:e66067. [PMID: 23805200 PMCID: PMC3689688 DOI: 10.1371/journal.pone.0066067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/05/2013] [Indexed: 01/25/2023] Open
Abstract
Shoc2 is a positive regulator of signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Shoc2 is also proposed to interact with RAS and Raf-1 in order to accelerate ERK1/2 activity. To understand the mechanisms by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor receptor (EGFR), we dissected the role of Shoc2 structural domains in binding to its signaling partners and its role in regulating ERK1/2 activity. Shoc2 is comprised of two main domains: the 21 leucine rich repeats (LRRs) core and the N-terminal non-LRR domain. We demonstrated that the N-terminal domain mediates Shoc2 binding to both M-Ras and Raf-1, while the C-terminal part of Shoc2 contains a late endosomal targeting motif. We found that M-Ras binding to Shoc2 is independent of its GTPase activity. While overexpression of Shoc2 did not change kinetics of ERK1/2 activity, both the N-terminal and the LRR-core domain were able to rescue ERK1/2 activity in cells depleted of Shoc2, suggesting that these Shoc2 domains are involved in modulating ERK1/2 activity.
Collapse
Affiliation(s)
- Myoungkun Jeoung
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
562
|
Abstract
Allostery is largely associated with conformational and functional transitions in individual proteins. This concept can be extended to consider the impact of conformational perturbations on cellular function and disease states. Here, we clarify the concept of allostery and how it controls physiological activities. We focus on the challenging questions of how allostery can both cause disease and contribute to development of new therapeutics. We aim to increase the awareness of the linkage between disease symptoms on the cellular level and specific aberrant allosteric actions on the molecular level and to emphasize the potential of allosteric drugs in innovative therapies.
Collapse
|
563
|
Javens J, Wan Z, Hardy GG, Brun YV. Bypassing the need for subcellular localization of a polysaccharide export-anchor complex by overexpressing its protein subunits. Mol Microbiol 2013; 89:350-71. [PMID: 23714375 DOI: 10.1111/mmi.12281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/30/2022]
Abstract
Subcellular protein localization is thought to promote protein-protein interaction by increasing the effective concentration and enabling spatial co-ordination and proper segregation of proteins. We found that protein overexpression allowed the assembly of a productive polysaccharide biosynthesis-export-anchoring complex in the absence of polar localization in Caulobacter crescentus. Polar localization of the holdfast export protein, HfsD, depends on the presence of the other export proteins, HfsA and HfsB, and on the polar scaffold protein PodJ. The holdfast deficiency of hfsB and podJ mutants is suppressed by the overexpression of export proteins. Restored holdfasts are randomly positioned and colocalize with a holdfast anchor protein in these strains, indicating that functional complexes can form at non-polar sites. Therefore, overexpression of export proteins surpasses a concentration threshold necessary for holdfast synthesis. Restoration of holdfast synthesis at non-polar sites reduces surface adhesion, consistent with the need to spatially co-ordinate the holdfast synthesis machinery with the flagellum and pili. These strains lack the cell-specific segregation of the holdfast, resulting in the presence of holdfasts in motile daughter cells. Our results highlight the fact that multiple facets of subcellular localization can be coupled to improve the phenotypic outcome of a protein assembly.
Collapse
Affiliation(s)
- June Javens
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
564
|
Affiliation(s)
- Benjamin M. Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , ,
| | - Steven Edgar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , ,
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; , ,
| |
Collapse
|
565
|
Roth Z, Weil S, Aflalo ED, Manor R, Sagi A, Khalaila I. Identification of receptor-interacting regions of vitellogenin within evolutionarily conserved β-sheet structures by using a peptide array. Chembiochem 2013; 14:1116-22. [PMID: 23733483 DOI: 10.1002/cbic.201300152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/11/2022]
Abstract
Vitellogenesis, a key process in oviparous animals, is characterized by enhanced synthesis of the lipoprotein vitellogenin, which serves as the major yolk-protein precursor. In most oviparous animals, and specifically in crustaceans, vitellogenin is mainly synthesized in the hepatopancreas, secreted to the hemolymph, and taken up into the ovary by receptor-mediated endocytosis. In the present study, localization of the vitellogenin receptor and its interaction with vitellogenin were investigated in the freshwater prawn Macrobrachium rosenbergii. The receptor was immuno-histochemically localized to the cell periphery and around yolk vesicles. A receptor blot assay revealed that the vitellogenin receptor interacts with most known vitellogenin subunits, the most prominent being the 79 kDa subunit. The receptor was, moreover, able to interact with trypsin-digested vitellogenin peptides. By combining a novel peptide-array approach with tandem mass spectrometry, eleven vitellogenin-derived peptides that interacted with the receptor were identified. A 3D model of vitellogenin indicated that four of the identified peptides are N-terminally localized. One of the peptides is homologous to the receptor-recognized site of vertebrate vitellogenin, and assumes a conserved β-sheet structure. These findings suggest that this specific β-sheet region in the vitellogenin N-terminal lipoprotein domain is the receptor-interacting site, with the rest of the protein serving to enhance affinity for the receptor. The conservation of the receptor recognition site in invertebrate and vertebrate vitellogenin might have vast implications for oviparous species reproduction, development, immunity, and pest management.
Collapse
Affiliation(s)
- Ziv Roth
- Avram and Stella Goldstein-Goren Department of Biotechnology, Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
566
|
Abel S, Bürstenbinder K, Müller J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. PLANT SIGNALING & BEHAVIOR 2013; 8:e24369. [PMID: 23531692 PMCID: PMC3909082 DOI: 10.4161/psb.24369] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Calcium (Ca(2+)) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca(2+) dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca(2+)-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca(2+)-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
- Institute of Biochemistry and Biotechnology; Martin-Luther-University Halle-Wittenberg; Halle, Germany
- Department of Plant Sciences; University of California-Davis; Davis, USA
- Correspondence to: Steffen Abel,
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
| | - Jens Müller
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
| |
Collapse
|
567
|
Friedrich T, Richter B, Gaiser T, Weiss C, Janssen KP, Einwächter H, Schmid RM, Ebert MPA, Burgermeister E. Deficiency of caveolin-1 in Apc(min/+) mice promotes colorectal tumorigenesis. Carcinogenesis 2013; 34:2109-18. [PMID: 23640045 DOI: 10.1093/carcin/bgt142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Caveolin-1 (Cav1), a scaffold protein of membrane caveolae and coactivator of peroxisome proliferator-activated receptor gamma (PPARg), inhibits oncogenic signaling through Ras and wingless. However, the in vivo role of Cav1 in colorectal cancer (CRC) remained unknown. To test whether loss of Cav1 accelerates tumorigenesis, we generated a novel mouse model of CRC by crossing C57BL/6 Apc(min/+) with B6129 Cav1 knockout (Cav1-/-) mice. Apc(min/+) Cav1-/- mice developed large, microinvasive and vascularized intraepithelial adenocarcinomas in the distal colon and rectum with higher incidence than Apc(min/+) Cav1+/- and Apc(min/+) Cav1+/+ littermates. Intratumoral gene signatures related to Ras and wingless signaling were elevated, nuclear localization of PPARg protein and expression of PPARg-target genes were reduced independently of Cav1. The PPARg-agonist rosiglitazone prevented tumor formation in mice irrespectively of the Cav1 status and upregulated expression of the Ras-inhibitory protein docking protein-1. Thus, codeficiency of Cav1 and adenomatous polyposis coli facilitated formation of CRC, and activation of PPARg may offer novel strategies for treatment of CRC.
Collapse
Affiliation(s)
- Teresa Friedrich
- Department of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
568
|
IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med 2013; 19:626-630. [PMID: 23603816 DOI: 10.1038/nm.3165] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Upregulation of the ERK1 and ERK2 (ERK1/2) MAP kinase (MAPK) cascade occurs in >30% of cancers, often through mutational activation of receptor tyrosine kinases or other upstream genes, including KRAS and BRAF. Efforts to target endogenous MAPKs are challenged by the fact that these kinases are required for viability in mammals. Additionally, the effectiveness of new inhibitors of mutant BRAF has been diminished by acquired tumor resistance through selection for BRAF-independent mechanisms of ERK1/2 induction. Furthermore, recently identified ERK1/2-inducing mutations in MEK1 and MEK2 (MEK1/2) MAPK genes in melanoma confer resistance to emerging therapeutic MEK inhibitors, underscoring the challenges facing direct kinase inhibition in cancer. MAPK scaffolds, such as IQ motif-containing GTPase activating protein 1 (IQGAP1), assemble pathway kinases to affect signal transmission, and disrupting scaffold function therefore offers an orthogonal approach to MAPK cascade inhibition. Consistent with this, we found a requirement for IQGAP1 in RAS-driven tumorigenesis in mouse and human tissue. In addition, the ERK1/2-binding IQGAP1 WW domain peptide disrupted IQGAP1-ERK1/2 interactions, inhibited RAS- and RAF-driven tumorigenesis, bypassed acquired resistance to the BRAF inhibitor vemurafenib (PLX-4032) and acted as a systemically deliverable therapeutic to significantly increase the lifespan of tumor-bearing mice. Scaffold-kinase interaction blockade acts by a mechanism distinct from direct kinase inhibition and may be a strategy to target overactive oncogenic kinase cascades in cancer.
Collapse
|
569
|
Wilson MZ, Gitai Z. Beyond the cytoskeleton: mesoscale assemblies and their function in spatial organization. Curr Opin Microbiol 2013; 16:177-83. [PMID: 23601587 DOI: 10.1016/j.mib.2013.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
Recent studies have identified a growing number of mesoscale protein assemblies in both bacterial and eukaryotic cells. Traditionally, these polymeric assemblies are thought to provide structural support for the cell and thus have been classified as the cytoskeleton. However a new class of macromolecular structure is emerging as an organizer of cellular processes that occur on scales hundreds of times larger than a single protein. We propose two types of self-assembling structures, dynamic globules and crystalline scaffolds, and suggest they provide a means to achieve cell-scale order. We discuss general mechanisms for assembly and regulation. Finally, we discuss assemblies that are found to organize metabolism and what possible mechanisms may serve these metabolic enzyme complexes.
Collapse
Affiliation(s)
- Maxwell Z Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | | |
Collapse
|
570
|
Okazaki T, Higuchi M, Gotoh Y. Mitochondrial localization of the antiviral signaling adaptor IPS-1 is important for its induction of caspase activation. Genes Cells 2013; 18:493-501. [DOI: 10.1111/gtc.12052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Tomohiko Okazaki
- Institute of Molecular and Cellular Biosciences; University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku; Tokyo; 113-0032; Japan
| | - Maiko Higuchi
- Institute of Molecular and Cellular Biosciences; University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku; Tokyo; 113-0032; Japan
| | - Yukiko Gotoh
- Institute of Molecular and Cellular Biosciences; University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku; Tokyo; 113-0032; Japan
| |
Collapse
|
571
|
Rock JM, Lim D, Stach L, Ogrodowicz RW, Keck JM, Jones MH, Wong CCL, Yates JR, Winey M, Smerdon SJ, Yaffe MB, Amon A. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 2013; 340:871-5. [PMID: 23579499 DOI: 10.1126/science.1235822] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.
Collapse
Affiliation(s)
- Jeremy M Rock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
572
|
Mura C, Randolph PS, Patterson J, Cozen AE. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol 2013; 10:636-51. [PMID: 23579284 PMCID: PMC3710371 DOI: 10.4161/rna.24538] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology.
Collapse
Affiliation(s)
- Cameron Mura
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
573
|
Giska F, Lichocka M, Piechocki M, Dadlez M, Schmelzer E, Hennig J, Krzymowska M. Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins. PLANT PHYSIOLOGY 2013; 161:2049-61. [PMID: 23396834 PMCID: PMC3613475 DOI: 10.1104/pp.112.209023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/06/2013] [Indexed: 05/02/2023]
Abstract
HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector.
Collapse
Affiliation(s)
- Fabian Giska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Marcin Piechocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Elmon Schmelzer
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | | |
Collapse
|
574
|
Tertiary and quaternary effects in the allosteric regulation of animal hemoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1860-72. [PMID: 23523886 DOI: 10.1016/j.bbapap.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022]
Abstract
In the last decade, protein allostery has experienced a major resurgence, boosted by the extension of the concept to systems of increasing complexity and by its exploitation for the development of drugs. Expansion of the field into new directions has not diminished the key role of hemoglobin as a test molecule for theory and experimental validation of allosteric models. Indeed, the diffusion of hemoglobins in all kingdoms of life and the variety of functions and of quaternary assemblies based on a common tertiary fold indicate that this superfamily of proteins is ideally suited for investigating the physical and molecular basis of allostery and firmly maintains its role as a main player in the field. This review is an attempt to briefly recollect common and different strategies adopted by metazoan hemoglobins, from monomeric molecules to giant complexes, exploiting homotropic and heterotropic allostery to increase their functional dynamic range. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
575
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
576
|
Šamajová O, Komis G, Šamaj J. Emerging topics in the cell biology of mitogen-activated protein kinases. TRENDS IN PLANT SCIENCE 2013; 18:140-8. [PMID: 23291243 DOI: 10.1016/j.tplants.2012.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 05/20/2023]
Abstract
Signaling through mitogen-activated protein kinase (MAPK) cascades is organized in complex interconnected subcellular networks. Upon MAPK activation, signals are transferred to targets in different subcellular compartments able to regulate various cellular processes. Therefore, subcellular dissection of individual MAPK modules is vital to understand how a single MAPK can simultaneously mediate many tasks and how a single stimulus can direct different MAPK modules to separated tasks. In this opinion article, we present a subcellular localization prediction of all members of Arabidopsis thaliana MAPK modules validated wherever possible with experimental data. Furthermore, we propose, that at least in part, the complexity of plant MAPK signaling can be explained by unique strategies of subcellular targeting, which will be worth investigating in the near future.
Collapse
Affiliation(s)
- Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Department of Cell Biology, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | |
Collapse
|
577
|
Hoffmann C, Mazari E, Lallet S, Le Borgne R, Marchi V, Gosse C, Gueroui Z. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. NATURE NANOTECHNOLOGY 2013; 8:199-205. [PMID: 23334169 DOI: 10.1038/nnano.2012.246] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/03/2012] [Indexed: 05/20/2023]
Abstract
Decisions on the fate of cells and their functions are dictated by the spatiotemporal dynamics of molecular signalling networks. However, techniques to examine the dynamics of these intracellular processes remain limited. Here, we show that magnetic nanoparticles conjugated with key regulatory proteins can artificially control, in time and space, the Ran/RCC1 signalling pathway that regulates the cell cytoskeleton. In the presence of a magnetic field, RanGTP proteins conjugated to superparamagnetic nanoparticles can induce microtubule fibres to assemble into asymmetric arrays of polarized fibres in Xenopus laevis egg extracts. The orientation of the fibres is dictated by the direction of the magnetic force. When we locally concentrated nanoparticles conjugated with the upstream guanine nucleotide exchange factor RCC1, the assembly of microtubule fibres could be induced over a greater range of distances than RanGTP particles. The method shows how bioactive nanoparticles can be used to engineer signalling networks and spatial self-organization inside a cell environment.
Collapse
Affiliation(s)
- Céline Hoffmann
- Département de Chimie, Ecole Normale Supérieure, UMR 8640 CNRS-ENS-UPMC Pasteur, 24, rue Lhomond, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
578
|
Leuchowius KJ, Clausson CM, Grannas K, Erbilgin Y, Botling J, Zieba A, Landegren U, Söderberg O. Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol Cell Proteomics 2013; 12:1563-71. [PMID: 23436906 DOI: 10.1074/mcp.o112.023374] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular functions are regulated and executed by complex protein interaction networks. Accordingly, it is essential to understand the interplay between proteins in determining the activity status of signaling cascades. New methods are therefore required to provide information on different protein interaction events at the single cell level in heterogeneous cell populations such as in tissue sections. Here, we describe a multiplex proximity ligation assay for simultaneous visualization of multiple protein complexes in situ. The assay is an enhancement of the original proximity ligation assay, and it is based on using proximity probes labeled with unique tag sequences that can be used to read out which probes, from a pool of probes, have bound a certain protein complex. Using this approach, it is possible to gain information on the constituents of different protein complexes, the subcellular location of the complexes, and how the balance between different complex constituents can change between normal and malignant cells, for example. As a proof of concept, we used the assay to simultaneously visualize multiple protein complexes involving EGFR, HER2, and HER3 homo- and heterodimers on a single-cell level in breast cancer tissue sections. The ability to study several protein complex formations concurrently at single cell resolution could be of great potential for a systems understanding, paving the way for improved disease diagnostics and possibilities for drug development.
Collapse
Affiliation(s)
- Karl-Johan Leuchowius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
579
|
Zhang J, Lewis SM, Kuhlman B, Lee AL. Supertertiary structure of the MAGUK core from PSD-95. Structure 2013; 21:402-13. [PMID: 23395180 DOI: 10.1016/j.str.2012.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 12/12/2022]
Abstract
The family of membrane-associated guanylate kinase (MAGUK) scaffold proteins comprises members that function at neuronal synapses, tight junctions, immunological synapses, and neutrophil membranes. Through their multiple domains, MAGUKs organize events of signal transduction, cell adhesion, and molecular trafficking. Here, we use nuclear magnetic resonance, small-angle X-ray scattering, and Rosetta modeling to reveal the structural preferences and interdomain dynamics of the MAGUK core (PDZ3-SH3-guanylate kinase) from postsynaptic density-95 (PSD-95), the best known MAUGK. PSD-95 is highly abundant in the postsynaptic density of excitatory neurons and is responsible for coupling glutamate receptors with internal postsynaptic structures. These solution-based studies show that the MAGUK core PDZ domain (PDZ3) interacts directly with the SH3 domain via its canonical peptide binding groove, with the connecting linker serving as an adhesive. This weak interaction, however, is dynamic and weakened further by PDZ3 ligands and linker phosphorylation, suggesting that domain dynamics may be central to MAGUK function.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7568, USA
| | | | | | | |
Collapse
|
580
|
Birrane G, Mulvaney EP, Pal R, Kinsella BT, Kocher O. Molecular analysis of the prostacyclin receptor's interaction with the PDZ1 domain of its adaptor protein PDZK1. PLoS One 2013; 8:e53819. [PMID: 23457445 PMCID: PMC3566133 DOI: 10.1371/journal.pone.0053819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
The prostanoid prostacyclin, or prostaglandin I2, plays an essential role in many aspects of cardiovascular disease. The actions of prostacyclin are mainly mediated through its activation of the prostacyclin receptor or, in short, the IP. In recent studies, the cytoplasmic carboxy-terminal domain of the IP was shown to bind several PDZ domains of the multi-PDZ adaptor PDZK1. The interaction between the two proteins was found to enhance cell surface expression of the IP and to be functionally important in promoting prostacyclin-induced endothelial cell migration and angiogenesis. To investigate the interaction of the IP with the first PDZ domain (PDZ1) of PDZK1, we generated a nine residue peptide (KK(411)IAACSLC(417)) containing the seven carboxy-terminal amino acids of the IP and measured its binding affinity to a recombinant protein corresponding to PDZ1 by isothermal titration calorimetry. We determined that the IP interacts with PDZ1 with a binding affinity of 8.2 µM. Using the same technique, we also determined that the farnesylated form of carboxy-terminus of the IP does not bind to PDZ1. To understand the molecular basis of these findings, we solved the high resolution crystal structure of PDZ1 bound to a 7-residue peptide derived from the carboxy-terminus of the non-farnesylated form of IP ((411)IAACSLC(417)). Analysis of the structure demonstrates a critical role for the three carboxy-terminal amino acids in establishing a strong interaction with PDZ1 and explains the inability of the farnesylated form of IP to interact with the PDZ1 domain of PDZK1 at least in vitro.
Collapse
Affiliation(s)
- Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eamon P. Mulvaney
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - B. Therese Kinsella
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
581
|
Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, Babwah AV, Bhattacharya M. β-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One 2013; 8:e56174. [PMID: 23405264 PMCID: PMC3566084 DOI: 10.1371/journal.pone.0056174] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/07/2013] [Indexed: 12/29/2022] Open
Abstract
β-Arrestins play critical roles in chemotaxis and cytoskeletal reorganization downstream of several receptor types, including G protein-coupled receptors (GPCRs), which are targets for greater than 50% of all pharmaceuticals. Among them, receptors for lysophosphatidic acid (LPA), namely LPA(1) are overexpressed in breast cancer and promote metastatic spread. We have recently reported that β-arrestin2 regulates LPA(1)-mediated breast cancer cell migration and invasion, although the underlying molecular mechanisms are not clearly understood. We show here that LPA induces activity of the small G protein, Rap1 in breast cancer cells in a β-arrestin2-dependent manner, but fails to activate Rap1 in non-malignant mammary epithelial cells. We found that Rap1A mRNA levels are higher in human breast tumors compared to healthy patient samples and Rap1A is robustly expressed in human ductal carcinoma in situ and invasive tumors, in contrast to the normal mammary ducts. Rap1A protein expression is also higher in aggressive breast cancer cells (MDA-MB-231 and Hs578t) relative to the weakly invasive MCF-7 cells or non-malignant MCF10A mammary cells. Depletion of Rap1A expression significantly impaired LPA-stimulated migration of breast cancer cells and invasiveness in three-dimensional Matrigel cultures. Furthermore, we found that β-arrestin2 associates with the actin binding protein IQGAP1 in breast cancer cells, and is necessary for the recruitment of IQGAP1 to the leading edge of migratory cells. Depletion of IQGAP1 blocked LPA-stimulated breast cancer cell invasion. Finally, we have identified that LPA enhances the binding of endogenous Rap1A to β-arrestin2, and also stimulates Rap1A and IQGAP1 to associate with LPA(1). Thus our data establish novel roles for Rap1A and IQGAP1 as critical regulators of LPA-induced breast cancer cell migration and invasion.
Collapse
MESH Headings
- Apoptosis/drug effects
- Arrestins/genetics
- Arrestins/metabolism
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Adhesion/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Lysophospholipids/pharmacology
- Neoplasm Invasiveness
- Neoplasm Staging
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Shelterin Complex
- Signal Transduction/drug effects
- Telomere-Binding Proteins/genetics
- Telomere-Binding Proteins/metabolism
- beta-Arrestins
- ras GTPase-Activating Proteins/antagonists & inhibitors
- ras GTPase-Activating Proteins/genetics
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Mistre Alemayehu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Western University, London, Ontario, Canada
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Andy V. Babwah
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- The Children’s Health Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynecology, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
582
|
Ivarsson Y, Wawrzyniak AM, Kashyap R, Polanowska J, Betzi S, Lembo F, Vermeiren E, Chiheb D, Lenfant N, Morelli X, Borg JP, Reboul J, Zimmermann P. Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments. PLoS One 2013; 8:e54581. [PMID: 23390500 PMCID: PMC3563628 DOI: 10.1371/journal.pone.0054581] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. METHODOLOGY/PRINCIPAL FINDINGS We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. CONCLUSIONS/SIGNIFICANCE Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | | | - Rudra Kashyap
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Jolanta Polanowska
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Stéphane Betzi
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Frédérique Lembo
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Elke Vermeiren
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Driss Chiheb
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
| | - Nicolas Lenfant
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Xavier Morelli
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Jean-Paul Borg
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Jérôme Reboul
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | - Pascale Zimmermann
- Department of Human Genetics, K. U. Leuven, Leuven, Belgium
- Inserm, U1068, CRCM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
- * E-mail:
| |
Collapse
|
583
|
Cohen-Katsenelson K, Wasserman T, Darlyuk-Saadon I, Rabner A, Glaser F, Aronheim A. Identification and analysis of a novel dimerization domain shared by various members of c-Jun N-terminal kinase (JNK) scaffold proteins. J Biol Chem 2013; 288:7294-304. [PMID: 23341463 DOI: 10.1074/jbc.m112.422055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) form a kinase tier module in which MAPK, MAP2K, and MAP3K are held by scaffold proteins. The scaffold proteins serve as a protein platform for selective and spatial kinase activation. The precise mechanism by which the scaffold proteins function has not yet been fully explained. WDR62 is a novel scaffold protein of the c-Jun N-terminal kinase (JNK) pathway. Recessive mutations within WDR62 result in severe cerebral cortical malformations. One of the WDR62 mutant proteins found in a patient with microcephaly encodes a C-terminal truncated protein that fails to associate efficiently with JNK and MKK7β1. The present article shows that the WDR62 C-terminal region harbors a novel dimerization domain composed of a putative loop-helix domain that is necessary and sufficient for WDR62 dimerization and is critical for its scaffolding function. The loop-helix domain is highly conserved between orthologues and is also shared by the JNK scaffold protein, JNKBP1/MAPKBP1. Based on the high sequence conservation of the loop-helix domain, our article shows that MAPKBP1 homodimerizes and heterodimerizes with WDR62. Endogenous WDR62 and MAPKBP1 co-localize to stress granules following arsenite treatment, but not during mitosis. This study proposes another layer of complexity, in which coordinated activation of signaling pathways is mediated by the association between the different JNK scaffold proteins depending on their biological function.
Collapse
Affiliation(s)
- Ksenya Cohen-Katsenelson
- Department of Molecular Genetics, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
584
|
Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation. J Neurosci 2013; 32:16510-20. [PMID: 23152633 DOI: 10.1523/jneurosci.2631-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life.
Collapse
|
585
|
Smith C, Shi C, Chroust M, Bliska T, Kelly M, Jacobson M, Kortemme T. Design of a Phosphorylatable PDZ Domain with Peptide-Specific Affinity Changes. Structure 2013; 21:54-64. [DOI: 10.1016/j.str.2012.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/13/2012] [Accepted: 10/18/2012] [Indexed: 01/06/2023]
|
586
|
Wawrzyniak AM, Kashyap R, Zimmermann P. Phosphoinositides and PDZ domain scaffolds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:41-57. [PMID: 23775690 DOI: 10.1007/978-94-007-6331-9_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery that PSD-95/Discs large/ZO-1 (PDZ) domains can function as lipid-binding modules, in particular interacting with phosphoinositides (PIs), was made more than 10 years ago (Mol Cell 9(6): 1215-1225, 2002). Confirmatory studies and a series of functional follow-ups established PDZ domains as dual specificity modules displaying both peptide and lipid binding, and prompted a rethinking of the mode of action of PDZ domains in the control of cell signaling. In this chapter, after introducing PDZ domains, PIs and methods for studying protein-lipid interactions, we focus on (i) the prevalence and the specificity of PDZ-PIs interactions, (ii) the molecular determinants of PDZ-PIs interactions, (iii) the integration of lipid and peptide binding by PDZ domains, (iv) the common features of PIs interacting PDZ domains and (v) the regulation and functional significance of PDZ-PIs interactions.
Collapse
|
587
|
Abstract
Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of protein-protein and protein-substrate interactions, and changes protein conformational dynamics. Collectively, these effects contribute to enzyme catalysis. Here we describe how crowding may bias the conformational change and dynamics of enzyme populations and in this way affect catalysis. Crowding effects have been studied using artificial crowding agents and in vivo-like environments. These studies revealed a correlation between protein dynamics and function in the crowded environment. We suggest that crowded environments be classified into uniform crowding and structured crowding. Uniform crowding represents random crowding conditions created by synthetic particles with a narrow size distribution. Structured crowding refers to the highly coordinated cellular environment, where proteins and other macromolecules are clustered and organized. In structured crowded environments the perturbation of protein thermal stability may be lower; however, it may still be able to modulate functions effectively and dynamically. Dynamic, allosteric enzymes could be more sensitive to cellular perturbations if their free energy landscape is flatter around the native state; on the other hand, if their free energy landscape is rougher, with high kinetic barriers separating deep minima, they could be more robust. Above all, cells are structured; and this holds both for the cytosol and for the membrane environment. The crowded environment is organized, which limits the search, and the crowders are not necessarily inert. More likely, they too transmit allosteric effects, and as such play important functional roles. Overall, structured cellular crowding may lead to higher enzyme efficiency and specificity.
Collapse
Affiliation(s)
- Judith Klinman
- Department of Chemistry Department of Molecular and Cell Biology, University of California The california institute for Quantitativ, Berkeley, CA, USA
| | | |
Collapse
|
588
|
Batista PJ, Chang HY. Cytotopic localization by long noncoding RNAs. Curr Opin Cell Biol 2012; 25:195-9. [PMID: 23279909 DOI: 10.1016/j.ceb.2012.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 02/05/2023]
Abstract
Cells are highly organized structures. In addition to membrane delimited organelles, proteins and RNAs can organize themselves into specific domains. Some examples include stress granules and subnuclear bodies. This level of organization is essential for the correct execution of multiple processes in the cell, ranging from cell signaling to assembly of structures such as the ribosomes. Here we will review evidence that noncoding RNAs play a critical role in the establishment and regulation of these domains. The unique abilities of RNA to mark the genome in a gene-specific and condition-specific manner and to serve as tethers nominate them as ideal molecular address codes.
Collapse
Affiliation(s)
- Pedro J Batista
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford, CA 94305, USA
| | | |
Collapse
|
589
|
Witzel F, Maddison L, Blüthgen N. How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front Physiol 2012; 3:475. [PMID: 23267331 PMCID: PMC3527831 DOI: 10.3389/fphys.2012.00475] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022] Open
Abstract
Scaffolding proteins add a new layer of complexity to the dynamics of cell signaling. Above their basic function to bring several components of a signaling pathway together, recent experimental research has found that scaffolds influence signaling in a much more complex way: scaffolds can exert some catalytic function, influence signaling by allosteric mechanisms, are feedback-regulated, localize signaling activity to distinct regions of the cell or increase pathway fidelity. Here we review experimental and theoretical approaches that address the function of two MAPK scaffolds, Ste5, a scaffold of the yeast mating pathway and KSR1/2, a scaffold of the classical mammalian MAPK signaling pathway. For the yeast scaffold Ste5, detailed mechanistic models have been valuable for the understanding of its function. For scaffolds in mammalian signaling, however, models have been rather generic and sketchy. For example, these models predicted narrow optimal scaffold concentrations, but when revisiting these models by assuming typical concentrations, rather a range of scaffold levels optimally supports signaling. Thus, more realistic models are needed to understand the role of scaffolds in mammalian signal transduction, which opens a big opportunity for systems biology.
Collapse
Affiliation(s)
- Franziska Witzel
- Institute of Pathology, Charité-Universitätsmedizin Berlin Berlin, Germany ; Institute for Theoretical Biology, Humboldt University Berlin Berlin, Germany
| | | | | |
Collapse
|
590
|
Intramolecular arrangement of sensor and regulator overcomes relaxed specificity in hybrid two-component systems. Proc Natl Acad Sci U S A 2012; 110:E161-9. [PMID: 23256153 DOI: 10.1073/pnas.1212102110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cellular processes require specific interactions between cognate protein partners and concomitant discrimination against noncognate partners. Signal transduction by classical two-component regulatory systems typically entails an intermolecular phosphoryl transfer between a sensor kinase (SK) and a cognate response regulator (RR). Interactions between noncognate partners are rare because SK/RR pairs coevolve unique interfaces that dictate phosphotransfer specificity. Here we report that the in vitro phosphotransfer specificity is relaxed in hybrid two-component systems (HTCSs) from the human gut symbiont Bacteroides thetaiotaomicron, which harbor both the SK and RR in a single polypeptide. In contrast, phosphotransfer specificity is retained in classical two-component regulatory systems from this organism. This relaxed specificity enabled us to rewire a HTCS successfully to transduce signals between noncognate SK/RR pairs. Despite the relaxed specificity between SK and RRs, HTCSs remained insulated from cross-talk with noncognate proteins in vivo. Our data suggest that the high local concentration of the SK and RR present in the same polypeptide maintains specificity while relaxing the constraints on coevolving unique contact interfaces.
Collapse
|
591
|
HIV-1 Tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold. Proc Natl Acad Sci U S A 2012; 110:E123-31. [PMID: 23251033 DOI: 10.1073/pnas.1216971110] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The HIV-1 Tat protein stimulates viral gene expression by recruiting human transcription elongation complexes containing P-TEFb, AFF4, ELL2, and ENL or AF9 to the viral promoter, but the molecular organization of these complexes remains unknown. To establish the overall architecture of the HIV-1 Tat elongation complex, we mapped the binding sites that mediate complex assembly in vitro and in vivo. The AFF4 protein emerges as the central scaffold that recruits other factors through direct interactions with short hydrophobic regions along its structurally disordered axis. Direct binding partners CycT1, ELL2, and ENL or AF9 act as bridging components that link this complex to two major elongation factors, P-TEFb and the PAF complex. The unique scaffolding properties of AFF4 allow dynamic and flexible assembly of multiple elongation factors and connect the components not only to each other but also to a larger network of transcriptional regulators.
Collapse
|
592
|
Krishnan Y, Bathe M. Designer nucleic acids to probe and program the cell. Trends Cell Biol 2012; 22:624-33. [DOI: 10.1016/j.tcb.2012.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
593
|
Brehm MA, Wundenberg T, Williams J, Mayr GW, Shears SB. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA. J Cell Sci 2012. [PMID: 23203802 DOI: 10.1242/jcs.110031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.
Collapse
Affiliation(s)
- Maria A Brehm
- Inositol Signaling Section, Laboratory of Signal Transduction, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
594
|
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150:1196-208. [PMID: 22980980 DOI: 10.1016/j.cell.2012.07.032] [Citation(s) in RCA: 715] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
Abstract
The mTOR Complex 1 (mTORC1) pathway regulates cell growth in response to numerous cues, including amino acids, which promote mTORC1 translocation to the lysosomal surface, its site of activation. The heterodimeric RagA/B-RagC/D GTPases, the Ragulator complex that tethers the Rags to the lysosome, and the v-ATPase form a signaling system that is necessary for amino acid sensing by mTORC1. Amino acids stimulate the binding of guanosine triphosphate to RagA and RagB but the factors that regulate Rag nucleotide loading are unknown. Here, we identify HBXIP and C7orf59 as two additional Ragulator components that are required for mTORC1 activation by amino acids. The expanded Ragulator has nucleotide exchange activity toward RagA and RagB and interacts with the Rag heterodimers in an amino acid- and v-ATPase-dependent fashion. Thus, we provide mechanistic insight into how mTORC1 senses amino acids by identifying Ragulator as a guanine nucleotide exchange factor (GEF) for the Rag GTPases.
Collapse
Affiliation(s)
- Liron Bar-Peled
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
595
|
Hinrichs MV, Torrejón M, Montecino M, Olate J. Ric-8: different cellular roles for a heterotrimeric G-protein GEF. J Cell Biochem 2012; 113:2797-805. [PMID: 22511245 DOI: 10.1002/jcb.24162] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Signaling via heterotrimeric G-proteins is evoked by agonist-mediated stimulation of seven transmembrane spanning receptors (GPCRs). During the last decade it has become apparent that Gα subunits can be activated by receptor-independent mechanisms. Ric-8 belongs to a highly conserved protein family that regulates heterotrimeric G-protein function, acting as a non-canonical guanine nucleotide exchange factors (GEF) over a subset of Gα subunits. In this review we discuss the roles of Ric-8 in the regulation of diverse cell functions, emphasizing the contribution of its multiple domain protein structure in these diverse functions.
Collapse
Affiliation(s)
- M V Hinrichs
- Faculty of Biological Sciences, Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | | | | | | |
Collapse
|
596
|
Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Appl Environ Microbiol 2012; 79:774-82. [PMID: 23160128 DOI: 10.1128/aem.02578-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite numerous approaches for the development of l-threonine-producing strains, strain development is still hampered by the intrinsic inefficiency of metabolic reactions caused by simple diffusion and random collisions of enzymes and metabolites. A scaffold system, which can promote the proximity of metabolic enzymes and increase the local concentration of intermediates, was reported to be one of the most promising solutions. Here, we report an improvement in l-threonine production in Escherichia coli using a DNA scaffold system, in which a zinc finger protein serves as an adapter for the site-specific binding of each enzyme involved in l-threonine production to a precisely ordered location on a DNA double helix to increase the proximity of enzymes and the local concentration of metabolites to maximize production. The optimized DNA scaffold system for l-threonine production significantly increased the efficiency of the threonine biosynthetic pathway in E. coli, substantially reducing the production time for l-threonine (by over 50%). In addition, this DNA scaffold system enhanced the growth rate of the host strain by reducing the intracellular concentration of toxic intermediates, such as homoserine. Our DNA scaffold system can be used as a platform technology for the construction and optimization of artificial metabolic pathways as well as for the production of many useful biomaterials.
Collapse
|
597
|
Abstract
Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.
Collapse
Affiliation(s)
- Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Building 56 Room 469C, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
598
|
Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K, Ambrosi C, Kontaridis MI, Sorgen PL, Sosinsky GE, Duffy HS. Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 2012; 303:H1208-18. [PMID: 22982782 PMCID: PMC3517637 DOI: 10.1152/ajpheart.00251.2012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
Abstract
Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity. ATP has been shown in noncardiac systems to initiate fibroblast activation. Therefore, we propose that ATP release through Panx1 channels and subsequent fibroblast activation in the heart drives the development of fibrosis in the heart following myocardial infarction. We identified for the first time that Panx1 is localized within sarcolemmal membranes of canine cardiac myocytes where it directly interacts with the postsynaptic density 95/Drosophila disk large/zonula occludens-1-containing scaffolding protein synapse-associated protein 97 via its carboxyl terminal domain (amino acids 300-357). Induced ischemia rapidly increased glycosylation of Panx1, resulting in increased trafficking to the plasma membrane as well as increased interaction with synapse-associated protein 97. Cellular stress enhanced ATP release from myocyte Panx1 channels, which, in turn, causes fibroblast transformation to the activated myofibroblast phenotype via activation of the MAPK and p53 pathways, both of which are involved in the development of cardiac fibrosis. ATP release through Panx1 channels in cardiac myocytes during ischemia may be an early paracrine event leading to profibrotic responses to ischemic cardiac injury.
Collapse
Affiliation(s)
- Elena Dolmatova
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
599
|
Blt1 and Mid1 provide overlapping membrane anchors to position the division plane in fission yeast. Mol Cell Biol 2012; 33:418-28. [PMID: 23149940 DOI: 10.1128/mcb.01286-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Spatial control of cytokinesis is essential for proper cell division. The molecular mechanisms that anchor the dynamic assembly and constriction of the cytokinetic ring at the plasma membrane remain unclear. In the fission yeast Schizosaccharomyces pombe, the cytokinetic ring is assembled in the cell middle from cortical node precursors that are positioned by the anillin-like protein Mid1. During mitotic entry, cortical nodes mature and then compact into a contractile ring positioned in the cell middle. The molecular link between Mid1 and medial cortical nodes remains poorly defined. Here we show that Blt1, a previously enigmatic cortical node protein, promotes the robust association of Mid1 with cortical nodes. Blt1 interacts with Mid1 through the RhoGEF Gef2 to stabilize nodes at the cell cortex during the early stages of contractile ring assembly. The Blt1 N terminus is required for localization and function, while the Blt1 C terminus promotes cortical localization by interacting with phospholipids. In cells lacking membrane binding by both Mid1 and Blt1, nodes detach from the cell cortex and generate aberrant cytokinetic rings. We conclude that Blt1 acts as a scaffolding protein for precursors of the cytokinetic ring and that Blt1 and Mid1 provide overlapping membrane anchors for proper division plane positioning.
Collapse
|
600
|
Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, LoGrasso PV. Structural mechanisms of allostery and autoinhibition in JNK family kinases. Structure 2012; 20:2174-84. [PMID: 23142346 DOI: 10.1016/j.str.2012.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 01/24/2023]
Abstract
c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.
Collapse
Affiliation(s)
- John D Laughlin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | | | |
Collapse
|