551
|
Siade AJ, Bostick BC, Cirpka OA, Prommer H. Unraveling biogeochemical complexity through better integration of experiments and modeling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1825-1833. [PMID: 34739021 PMCID: PMC8673474 DOI: 10.1039/d1em00303h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/26/2021] [Indexed: 05/28/2023]
Abstract
The evolution of groundwater quality in natural and contaminated aquifers is affected by complex interactions between physical transport and biogeochemical reactions. Identifying and quantifying the processes that control the overall system behavior is the key driver for experimentation and monitoring. However, we argue that, in contrast to other disciplines in earth sciences, process-based computer models are currently vastly underutilized in the quest for understanding subsurface biogeochemistry. Such models provide an essential avenue for quantitatively testing hypothetical combinations of interacting, complex physical and chemical processes. If a particular conceptual model, and its numerical counterpart, cannot adequately reproduce observed experimental data, its underlying hypothesis must be rejected. This quantitative process of hypothesis testing and falsification is central to scientific discovery. We provide a perspective on how closer interactions between experimentalists and numerical modelers would enhance this scientific process, and discuss the potential limitations that are currently holding us back. We also propose a data-model nexus involving a greater use of numerical process-based models for a more rigorous analysis of experimental observations while also generating the basis for a systematic improvement in the design of future experiments.
Collapse
Affiliation(s)
- Adam J Siade
- School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia.
- CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| | - Olaf A Cirpka
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley WA 6009, Australia.
- CSIRO Land and Water, Private Bag No. 5, Wembley WA 6913, Australia
| |
Collapse
|
552
|
Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning. TOXICS 2021; 9:toxics9120333. [PMID: 34941767 PMCID: PMC8707206 DOI: 10.3390/toxics9120333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
Arsenic, a potent carcinogen and neurotoxin, affects over 200 million people globally. Current detection methods are laborious, expensive, and unscalable, being difficult to implement in developing regions and during crises such as COVID-19. This study attempts to determine if a relationship exists between soil’s hyperspectral data and arsenic concentration using NASA’s Hyperion satellite. It is the first arsenic study to use satellite-based hyperspectral data and apply a classification approach. Four regression machine learning models are tested to determine this correlation in soil with bare land cover. Raw data are converted to reflectance, problematic atmospheric influences are removed, characteristic wavelengths are selected, and four noise reduction algorithms are tested. The combination of data augmentation, Genetic Algorithm, Second Derivative Transformation, and Random Forest regression (R2=0.840 and normalized root mean squared error (re-scaled to [0,1]) = 0.122) shows strong correlation, performing better than past models despite using noisier satellite data (versus lab-processed samples). Three binary classification machine learning models are then applied to identify high-risk shrub-covered regions in ten U.S. states, achieving strong accuracy (=0.693) and F1-score (=0.728). Overall, these results suggest that such a methodology is practical and can provide a sustainable alternative to arsenic contamination detection.
Collapse
|
553
|
Wei W, Nghiem A, Ma R, Sun Z, Gong X, Zhou A, Prommer H. Factors controlling iodine enrichment in a coastal plain aquifer in the North Jiangsu Yishusi Plain, China. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103894. [PMID: 34628141 DOI: 10.1016/j.jconhyd.2021.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Iodine is an essential micronutrient in the human diet and an appropriate human iodine intake level is important for population health. Excessive iodine intake is often associated with high iodine groundwater which serves as an important drinking water source in many regions. This study aims to identify the source and key hydrogeochemical processes for iodine accumulation and mobility in the groundwaters of the Northern Jiangsu Yishusi Plain. Combined hydrogeochemical and statistical analyses, specifically random forest modeling and factor analysis, were used to explore the mechanisms affecting the spatial distribution of iodine. The concentration of iodine in the investigated groundwaters was found to vary widely and to range between 4.8 and 4750 μg/L, with 48.9% of the total samples (674) exceeding the threshold value of 100 μg/L for toxic exposure, as defined by the Chinese high‑iodine standard guideline. High iodine concentrations are shown to mainly occur in the marine plain and the shallow aquifer associated with the floodplains of the Old Yellow River. The marine or lagoons-facies sediments were identified as the most plausible iodine source. In addition, mixing of groundwater with paleo-seawater might also have played a role in the coastal area. In contrast, the flood sediments of the Old Yellow River are shown to be an unlikely source. However, they serve as a cover layer that favored the development of reducing hydrogeochemical conditions that can trigger iodine mobilization via the reductive dissolution of iron oxides and the degradation of organic matter. Slow groundwater flow rates also appear to favor iodine release from sediments.
Collapse
Affiliation(s)
- Wenhao Wei
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Athena Nghiem
- Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA; Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| | - Rui Ma
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Ziyong Sun
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xulong Gong
- Jiangsu Province Geological Survey, Nanjing, China
| | - Aiguo Zhou
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
554
|
Liu R, Qu J. Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water. J Environ Sci (China) 2021; 110:178-188. [PMID: 34593189 DOI: 10.1016/j.jes.2021.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite (As(III)) to negatively-charged arsenate (As(V)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal; however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(III) by solid oxidants such as manganese oxide, and the adsorption of As(V) accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(III). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(V). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants (DWTPs). This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.
Collapse
Affiliation(s)
- Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
555
|
Pinchoff J, Monseur B, Desai S, Koons K, Alvero R, Hindin MJ. Is living in a region with high groundwater arsenic contamination associated with adverse reproductive health outcomes? An analysis using nationally representative data from India. Int J Hyg Environ Health 2021; 239:113883. [PMID: 34837822 DOI: 10.1016/j.ijheh.2021.113883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Exposure to groundwater arsenic via drinking water is common in certain geographies, such as parts of India, and causes a range of negative health effects, potentially including adverse reproductive health outcomes. METHODS We conducted an ecological analysis of self-reported rates of stillbirth, recurrent pregnancy loss, and infertility in relation to groundwater arsenic levels in India. We used a gridded, modeled dataset of the probability of groundwater arsenic exceeding 10 μg/L (World Health Organization drinking water limit) to calculate mean probabilities at the district level (n = 599 districts). A spatial integration approach was used to merge these estimates with the third India District-Level Health Survey (DLHS-3) conducted in 2007-08 (n = 643,944 women of reproductive age). Maps of district level arsenic levels and rates of each of the three outcomes were created to visualize the patterns across India. To adjust for significant spatial autocorrelation, spatial error models were fit. FINDINGS District-level analysis showed that the average level of stillbirth was 4.3%, recurrent pregnancy loss was 3.3%, and infertility was 8.1%. The average district-level probability of groundwater arsenic levels exceeding 10 μg/L was 42%. After adjustment for sociodemographic factors, and accounting for spatial dependence, at the district level, for each percentage point increase in predicted arsenic levels exceeding 10 μg/L increased, the rates of stillbirths was 4.5% higher (95% confidence interval (CI) 2.4-6.6, p < 0.0001), the rates of RPL are 4.2% higher (95% CI 2.5-5.9, p < 0.0001), and the rates of infertility are 4.4% higher (95% CI 1.2-7.7, p=<0.0001).). CONCLUSIONS While arsenic exposure has been implicated with a range of adverse health outcomes, this is one of the first population-level studies to document an association between arsenic and three adverse reproductive pregnancy outcomes. The high levels of spatial correlation suggest that further and targeted efforts to mitigate arsenic in groundwater are needed.
Collapse
Affiliation(s)
- Jessie Pinchoff
- Population Council, One Dag Hammarskjold Plaza #3, New York, NY, 10017, USA.
| | - Brent Monseur
- Stanford University School of Medicine, 1195 W Fremont, Sunnyvale, CA, 94087, USA
| | - Sapna Desai
- Population Council, Zone 5A, Ground Floor India Habitat Centre, Lodi Road, New Delhi, Delhi, 110003, India
| | - Katelyn Koons
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ruben Alvero
- Stanford University School of Medicine, 1195 W Fremont, Sunnyvale, CA, 94087, USA
| | | |
Collapse
|
556
|
Ji W, Wang Y, Zhang TC, Ouyang L, Yuan S. Heterostructure Cu 2O@TiO 2Nanotube Array Coated Titanium Anode for Efficient Photoelectrocatalytic Oxidation of As(III) in Aqueous Solution. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenlan Ji
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Cheng Zhang
- Civil and Environmental Engineering Department, University of Nebraska─Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
557
|
Effects of Silicic Acid on Leaching Behavior of Arsenic from Spent Calcium-Based Adsorbents with Arsenite. SUSTAINABILITY 2021. [DOI: 10.3390/su132312937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spent adsorbents that remain after being used to purify As-contaminated water constitute waste containing a large amount of As. These spent adsorbents, after being disposed, are likely to come into contact with silicic acid leached from the soil or cementitious solidification materials. Thus, it is crucial the evaluate the effects of silicic acid on spent adsorbents. In this study, the effects of silicic acid on spent Ca-based (CaO and Ca(OH)2) adsorbents with arsenite were investigated. The As leaching ratio for the spent adsorbents decreased with an increase in the initial concentration of silicic acid in the liquid. Under the tested conditions, the As leaching ratio decreased from 8–9% to less than 0.7% in the presence of silicic acid at an initial Si-normalized concentration of 100 mg/L. The primary mechanism behind the inhibition of As leaching by silicic acid was determined to be re-immobilization via the incorporation of arsenite during the formation of calcium silicates. In the presence of silicic acid, spent Ca-based adsorbents with arsenite had a lower As leaching ratio than those with arsenate. Therefore, spent Ca-based adsorbents with arsenite were found to have a higher environmental stability than those with arsenate.
Collapse
|
558
|
Li PH, Yang M, Song ZY, Chen SH, Xiao XY, Lin CH, Huang XJ. Highly Sensitive and Stable Determination of As(III) under Near-Neutral Conditions: Benefit from the Synergetic Catalysis of Pt Single Atoms and Active S Atoms over Pt 1/MoS 2. Anal Chem 2021; 93:15115-15123. [PMID: 34714618 DOI: 10.1021/acs.analchem.1c03416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Designing new catalysts with high activity and stability is crucial for the effective analysis of environmental pollutants under mild conditions. Here, we developed a superior catalyst of Pt single atoms anchored on MoS2 (Pt1/MoS2) to catalyze the determination of As(III). A detection sensitivity of 3.31 μA ppb-1 was obtained in acetate buffer solution at pH 6.0, which is the highest compared with those obtained by other Pt-based nanomaterials currently reported. Pt1/MoS2 exhibited excellent electrochemical stability during the detection process of As(III), even in the coexistence of Cu(II), Pb(II), and Hg(II). X-ray absorption fine structure spectroscopy and theoretical calculations revealed that Pt single atoms were stably fixed by four S atoms and activated the adjacent S atoms. Then, Pt and S atoms synergistically interacted with O and As atoms, respectively, and transferred some electrons to H3AsO3, which change the rate-determining step of H3AsO3 reduction and reduce reaction energy barriers, thereby promoting rapid and efficient accumulation for As(0). Compared with Pt nanoparticles, the weaker interaction between arsenic species and Pt1/MoS2 enabled the effortless regeneration and cyclic utilization of active centers, which is more favorable for the oxidation of As(0). This work provides inspiration for developing highly efficient sensing platforms from the perspective of atomic-level catalysis and affords references to explore the detection mechanism of such contaminants.
Collapse
Affiliation(s)
- Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chu-Hong Lin
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid-State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
559
|
Probability of Non-Exceedance of Arsenic Concentration in Groundwater Estimated Using Stochastic Multicomponent Reactive Transport Modeling. WATER 2021. [DOI: 10.3390/w13213086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stochastic multicomponent reactive transport modeling is a powerful approach to quantify the probability of non-exceedance (PNE) of arsenic (As) critical concentration thresholds in groundwater. The approach is applied to a well-characterized shallow alluvial aquifer near Venice, Italy. Here, As mobility depends primarily on rainfall-controlled redox-dependent precipitation-dissolution of iron hydroxides. A Monte-Carlo analysis based on a calibrated three-dimensional flow and transport model targeted the geochemical initial conditions as the main source of uncertainty of As concentrations in the studied aquifer. It was found that, during 115 simulated days, the fraction of the entire aquifer volume with As > 10 μgL−1 decreased on average from ~43% to ~39% and the average As concentration from ~32 μgL−1 to ~27 μgL−1. Meanwhile, PNE increased from 55% to 60% when 10 μgL−1 was set as target threshold, and from 71% to 78% for 50 μgL−1. The time dependence of As attenuation can be ascribed to the increase of oxidizing conditions during rainfall-dependent aquifer recharge, which causes As sorption on precipitating iron hydroxides. When computing the same statistics for the shallowest 6 m, As attenuation was even more evident. The volume fraction of aquifer with As > 10μgL−1 dropped from 40% to 28% and the average As concentration from 31 μgL−1 to 20 μgL−1, whereas PNE increased from 58% to 70% for As < 10 μgL−1 and from 71% to 86% for As < 50 μgL−1. Thus, the wells screen depth in the aquifer can be a critical aspect when estimating As risk, owing to the depth-dependent relative change in redox conditions during rainfall events.
Collapse
|
560
|
Banerjee M, Al-Eryani L, Srivastava S, Rai SN, Pan J, Kalbfleisch TS, States JC. Delineating the Effects of Passaging and Exposure in a Longitudinal Study of Arsenic-Induced Squamous Cell Carcinoma in a HaCaT Cell Line Model. Toxicol Sci 2021; 185:184-196. [PMID: 34730829 DOI: 10.1093/toxsci/kfab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19 and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs. 19 weeks and 19 vs. 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < 0.05; log2(Fold Change)>I1I] and 2826-4079 mRNA [p < 0.001; log2(Fold Change)>I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared to unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line based longitudinal chronic exposure studies to follow for optimal efficacy.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Sudhir Srivastava
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, India New Delhi, 110012
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Department of Bioinformatics and Biostatistics, University of Louisville, USA Louisville, KY
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, USA Louisville, KY
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| |
Collapse
|
561
|
Wadgaonkar P, Chen F. Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Semin Cancer Biol 2021; 76:258-266. [PMID: 33836253 PMCID: PMC8492764 DOI: 10.1016/j.semcancer.2021.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Arsenic exposure in contaminated drinking water is a global health issue, as more than 200 million people are affected globally. Arsenic has been known to cause skin, liver, lung, bladder and prostate cancers. Accordingly, it has been categorized as a group I human carcinogen by the International Agency for Research on Cancer (IARC). Various natural and anthropogenic activities lead to the release of arsenic in the environment, contaminating air, water and food sources. Traditionally, genetic mutations have been the center of cancer research. However, emerging studies have now focused on the importance of epigenetics, metabolism and endoplasmic reticulum (ER) stress in cancer. Arsenic is highly capable of inducing stress in the cells via the generation of free radicals causing oxidative stress, epigenetic and genetic alterations, mitochondrial dysfunction, activation of intracellular signaling pathways, and impairment of autophagy and DNA repair systems. The cancer cells are able to utilize the unfolded protein response (UPR) to overcome these internal stresses in various stages of arsenic-induced carcinogenesis, from cancer growth to immune responses. The UPR is an evolutionarily conserved stress response that has both survival and apoptotic outcomes. PERK, IRE1α and ATF6α are the three ER stress sensors that are activated to maintain cellular proteostasis, which can also promote apoptosis on prolonged ER stress. The dual nature of UPR in different cancer types and stages is a challenge for researchers. We must investigate the role and the connections among ER stress-associated UPR, mitochondrial dysfunction and autophagy in arsenic malignancies to identify key targets for cancer prevention and therapeutics.
Collapse
Affiliation(s)
- Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
562
|
Zhou JR, Kaur G, Ma Y, Arutyunov D, Lu X, Le XC, Leslie EM. Biliary excretion of arsenic by human HepaRG cells is stimulated by selenide and mediated by the multidrug resistance protein 2 (MRP2/ABCC2). Biochem Pharmacol 2021; 193:114799. [PMID: 34678219 DOI: 10.1016/j.bcp.2021.114799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)2AsSe]-. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation. The influence of selenium on human arsenic hepatobiliary transport has not been studied using optimal human models. HepaRG cells, a surrogate for primary human hepatocytes, were used to investigate selenium (selenite, selenide, selenomethionine, and methylselenocysteine) effects on arsenic hepatobiliary transport. Arsenite + selenite and arsenite + selenide at different molar ratios revealed mutual toxicity antagonism, with the latter being higher. Significant levels of arsenic biliary excretion were detected with a biliary excretion index (BEI) of 14 ± 8%, which was stimulated to 32 ± 7% by selenide. Consistent with the formation and biliary efflux of [(GS)2AsSe]-, arsenite increased the BEI of selenide from 0% to 24 ± 5%. Arsenic biliary excretion was lost in the presence of selenite, selenomethionine, and methylselenocysteine. Sinusoidal export of arsenic was stimulated ∼1.6-fold by methylselenocysteine, but unchanged by other selenium forms. Arsenic canalicular and sinusoidal transport (±selenide) was temperature- and GSH-dependent and inhibited by MK571. Knockdown experiments revealed that multidrug resistance protein 2 (MRP2/ABCC2) accounted for all detectable biliary efflux of arsenic (±selenide). Overall, the chemical form of selenium and human MRP2 strongly influenced arsenic hepatobiliary transport, information critical for human selenium supplementation in arsenic-endemic regions.
Collapse
Affiliation(s)
- Janet R Zhou
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Gurnit Kaur
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Yingze Ma
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Denis Arutyunov
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - Elaine M Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada.
| |
Collapse
|
563
|
Huang R, Ma C, Ma J, Huangfu X, He Q. Machine learning in natural and engineered water systems. WATER RESEARCH 2021; 205:117666. [PMID: 34560616 DOI: 10.1016/j.watres.2021.117666] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Water resources of desired quality and quantity are the foundation for human survival and sustainable development. To better protect the water environment and conserve water resources, efficient water management, purification, and transportation are of critical importance. In recent years, machine learning (ML) has exhibited its practicability, reliability, and high efficiency in numerous applications; furthermore, it has solved conventional and emerging problems in both natural and engineered water systems. For example, ML can predict various water quality indicators in situ and real-time by considering the complex interactions among water-related variables. ML approaches can also solve emerging pollution problems with proven rules or universal mechanisms summarized from the related research. Moreover, by applying image recognition technology to analyze the relationships between image information and physicochemical properties of the research object, ML can effectively identify and characterize specific contaminants. In view of the bright prospects of ML, this review comprehensively summarizes the development of ML applications in natural and engineered water systems. First, the concept and modeling steps of ML are briefly introduced, including data preparation, algorithm selection and model evaluation. In addition, comprehensive applications of ML in recent studies, including predicting water quality, mapping groundwater contaminants, classifying water resources, tracing contaminant sources, and evaluating pollutant toxicity in natural water systems, as well as modeling treatment techniques, assisting characterization analysis, purifying and distributing drinking water, and collecting and treating sewage water in engineered water systems, are summarized. Finally, the advantages and disadvantages of commonly used algorithms are analyzed according to their structures and mechanisms, and recommendations on the selection of ML algorithms for different studies, as well as prospects on the application and development of ML in water science are proposed. This review provides references for solving a wider range of water-related problems and brings further insights into the intelligent development of water science.
Collapse
Affiliation(s)
- Ruixing Huang
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chengxue Ma
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region, Ministry of Education, College of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
564
|
Zhong S, Zhang K, Bagheri M, Burken JG, Gu A, Li B, Ma X, Marrone BL, Ren ZJ, Schrier J, Shi W, Tan H, Wang T, Wang X, Wong BM, Xiao X, Yu X, Zhu JJ, Zhang H. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12741-12754. [PMID: 34403250 DOI: 10.1021/acs.est.1c01339] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The rapid increase in both the quantity and complexity of data that are being generated daily in the field of environmental science and engineering (ESE) demands accompanied advancement in data analytics. Advanced data analysis approaches, such as machine learning (ML), have become indispensable tools for revealing hidden patterns or deducing correlations for which conventional analytical methods face limitations or challenges. However, ML concepts and practices have not been widely utilized by researchers in ESE. This feature explores the potential of ML to revolutionize data analysis and modeling in the ESE field, and covers the essential knowledge needed for such applications. First, we use five examples to illustrate how ML addresses complex ESE problems. We then summarize four major types of applications of ML in ESE: making predictions; extracting feature importance; detecting anomalies; and discovering new materials or chemicals. Next, we introduce the essential knowledge required and current shortcomings in ML applications in ESE, with a focus on three important but often overlooked components when applying ML: correct model development, proper model interpretation, and sound applicability analysis. Finally, we discuss challenges and future opportunities in the application of ML tools in ESE to highlight the potential of ML in this field.
Collapse
Affiliation(s)
- Shifa Zhong
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kai Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Majid Bagheri
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Joel G Burken
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - April Gu
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, United States
| | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Joshua Schrier
- Department of Chemistry, Fordham University, The Bronx, New York 10458 United States
| | - Wei Shi
- School of Environment, Nanjing University, Nanjing, 210093 China
| | - Haoyue Tan
- School of Environment, Nanjing University, Nanjing, 210093 China
| | - Tianbao Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xu Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, University of California-Riverside, Riverside, California 92521 United States
| | - Xusheng Xiao
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Xiong Yu
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jun-Jie Zhu
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
565
|
Chen H, Xu J, Lin H, Zhao X, Shang J, Liu Z. Arsenic removal via a novel hydrochar from livestock waste co-activated with thiourea and γ-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126457. [PMID: 34216968 DOI: 10.1016/j.jhazmat.2021.126457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contaminants post tremendous threats to environment safety. Pristine hydrochar (PHC), thiourea-activated hydrochar (THC), and thiourea-Fe(NO3)3-activated hydrochar (Fe2O3@THC) were fabricated from dairy cattle manure via one-pot hydrothermal carbonization at 250 ℃ and applied for aqueous As(V) removal. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize hydrochars and As(V) adsorption. Thiourea increased N and S functional groups (-NH2, C-N, C=S and S=O). Fe(NO3)3 introduced γ-Fe2O3 nanoparticles and provided Fe2O3@THC with Fe-O. The combination of thiourea and Fe(NO3)3 granted Fe2O3@THC with the largest surface area (33.45 m2/g), and the highest total pore volume (0.095 cm3/g) among three hydrochars. As(V) adsorption was a physicochemical process involving electrostatic attraction, complexation, ion exchange and H-bond interaction. The maximum As(V) adsorption capacities and partition coefficients decreased as follows: Fe2O3@THC (44.80 mg/g; 38.44 L/g) > THC (38.77 mg/g; 5.94 L/g) > PHC (19.05 mg/g; 1.17 L/g). Three hydrochars exhibited preferable reusability in NaOH solution with only 24.2%, 11.8% and 14.1% decrease in adsorption rates after four cycles for PHC, THC and Fe2O3@THC, respectively. Fe2O3@THC is a promising adsorbent for efficient As(V) removal. This study explored the efficient As(V) removal by activated hydrochars with future research potential.
Collapse
Affiliation(s)
- Hongxu Chen
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jiatao Xu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Hailong Lin
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Zhao
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, 100021, China.
| |
Collapse
|
566
|
Staicu LC, Wόjtowicz PJ, Baragaño D, Pόsfai M, Molnár Z, Ruiz-Agudo E, Gallego JLR. Bioremediation of a polymetallic, arsenic-dominated reverse osmosis reject stream. Lett Appl Microbiol 2021; 75:1084-1092. [PMID: 34608662 DOI: 10.1111/lam.13578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/01/2022]
Abstract
The treatment of metal-laden industrial effluents by reverse osmosis is gaining in popularity worldwide due to its high performance. However, this process generates a polymetallic concentrate (retentate) stream in need of efficient post-treatment prior to environmental discharge. This paper presents results on the bioremediation (in batch mode) of a metal-laden, arsenic-dominated retentate using Shewanella sp. O23S as inoculum. The incubation of the retentate for 14 days under anoxic conditions resulted in the following removal yields: As (8%), Co (11%), Mo (3%), Se (62%), Sb (30%) and Zn (40%). The addition of 1 mmol l-1 cysteine increased the removal rate as follows: As (27%), Co (80%), Mo (78%), Se (88%), Sb (83%) and Zn (90%). The contribution of cysteine as a source of H2 S to enhancing the removal yield was confirmed by its addition after 7 days of incubations initially lacking it. Additionally, the cysteine-sourced H2 S was confirmed by its capture onto headspace-mounted Pb-acetate test strips that were analysed by X-ray diffraction. We show that real metal-laden industrial effluents can be treated to medium-to-high efficiency using a biological system (naturally sourced inocula) and inexpensive reagents (yeast extract, lactate and cysteine).
Collapse
Affiliation(s)
- L C Staicu
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - P J Wόjtowicz
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - D Baragaño
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - M Pόsfai
- Research Institute of Biomolecular and Chemical Engineering, Nanolab, University of Pannonia, Veszprém, Hungary
| | - Z Molnár
- Research Institute of Biomolecular and Chemical Engineering, Nanolab, University of Pannonia, Veszprém, Hungary
| | - E Ruiz-Agudo
- Department of Mineralogy and Petrology, University of Granada, Granada, Spain
| | - J L R Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| |
Collapse
|
567
|
Murray A, Hall A, Weaver J, Kremer F. Methods for Estimating Locations of Housing Units Served by Private Domestic Wells in the United States Applied to 2010. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 2021; 57:1-16. [PMID: 34987281 PMCID: PMC8722366 DOI: 10.1111/1752-1688.12937] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
UNLABELLED In 1990, the last time the decennial census included a question on domestic drinking water source, it was estimated that private domestic water wells (PDWs) supplied household water to about 15.1 million housing units (15% of the population) in the United States (U.S.). PDWs are not regulated by the Safe Drinking Water Act, and with few exceptions, are not subject to the water quality testing required of public water suppliers. We expanded two methods in estimating housing units reliant on PDWs from an Oklahoma pilot study (Weaver et al. 2017), nationally. Both use 1990 census data on drinking water sources as a baseline. The first method uses housing unit change and private well drilling logs for 20 states. This allows for the rate of well use to change between 1990 and 2010 in these states. The second, based solely on housing unit change, assumes a constant rate of well use. Ordinary least squares regression demonstrated (R 2 = 0.78) that the methods yield similar estimates for nationwide well use. Using the housing unit change method, it is estimated that in 2010, 23 million housing units were reliant on PDWs (17% of the population). We provide these estimates at the census block group and census block resolution. This dataset will assist in a better understanding of the reliance on PDWs in the U.S., and position local, tribal, state, and national groups to better protect this water resource from contaminant sources. RESEARCH IMPACT STATEMENT The work provides improved estimates of the spatial distribution of housing units reliant on private domestic wells in the United States and a foundation to protect this water supply at all levels of government.
Collapse
Affiliation(s)
| | - Alexander Hall
- Office of Research and DevelopmentUnited States Environmental Protection AgencyCincinnatiOhioUSA
| | - James Weaver
- Office of Research and DevelopmentUnited States Environmental Protection AgencyCincinnatiOhioUSA
| | - Fran Kremer
- Office of Research and DevelopmentUnited States Environmental Protection AgencyCincinnatiOhioUSA
| |
Collapse
|
568
|
Kumar S, Kumar V, Saini RK, Pant N, Singh R, Singh A, Kumar S, Singh S, Yadav BK, Krishan G, Raj A, Maurya NS, Kumar M. Floodplains landforms, clay deposition and irrigation return flow govern arsenic occurrence, prevalence and mobilization: A geochemical and isotopic study of the mid-Gangetic floodplains. ENVIRONMENTAL RESEARCH 2021; 201:111516. [PMID: 34166666 DOI: 10.1016/j.envres.2021.111516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
This article attempts to understand the evolution of groundwater chemistry in the mid Gangetic floodplain through the identification of hydrogeochemical processes including the impact of surface recharge and geological features. Isotopic investigations identified that irrigation return flow is partly responsible for arsenic (As) enrichment through preferential vertical recharge. Further, the floodplain geomorphological attributes and associated As hydrogeochemical behaviour traced through isotopes tracers highlighted that meandering and ox-bow like geomorphological features owing to clay deposition leads to the anoxic condition induced reductive microbial dissolution of As-bearing minerals causing the arsenic contamination in the investigated aquifer of the mid-Gangetic plain (MGP). To achieve the objectives, 146 water samples for water chemistry and 62 samples for the isotopic study were collected from Bhojpur district, Bihar (district bounded by the river Ganges in the north and Son in the east) located in MGP during the pre-monsoon season of 2018. The chemical results revealed high arsenic concentration (BDL to 206 μg.L-1, 32% samples are exceeding the 10 μg.L-1 limit) in the Holocene recent alluviums which are characterized by various geomorphological features such as meander scars and oxbow lake (northern part of the district). Arsenic is more concentrated in the depth range of 15-40 m below ground surface. All other trace metals viz. Ni, Pb, Zn, Cd and Al were found in low concentration except Fe and Mn. The geochemical analyses suggest that rock-water interaction is controlling the hydro-geochemistry while the chemical constituent of the groundwater is mainly controlled by carbonate weathering with limited contribution from silicate weathering. The isotopic signatures revealed that the Son river is recharging groundwater while the groundwater is contributing to the Ganges river. A clear pattern of fast vertical recharge in the arsenic contaminated area is observed in the proximity to the river Ganges with an elevated nitrate concentration resulted from the reduced As dissolution. The origin of groundwater is local precipitation with low to high evaporation enrichment effect which is further indicating the vertical mixing of groundwater from the irrigation return flow and/or recharge from domestic discharge causing enhanced As mobilization through microbial assisted reductive dissolution of As-bearing minerals.
Collapse
Affiliation(s)
- Sumant Kumar
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India.
| | - Vinod Kumar
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Ravi K Saini
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Neeraj Pant
- Hydrological Investigation Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Sudhir Kumar
- Hydrological Investigation Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Surjeet Singh
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Brijesh K Yadav
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Gopal Krishan
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - Ameesha Raj
- Groundwater Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| | - N S Maurya
- Department of Civil Engineering, National Institute of Technology, Patna, Bihar, India
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology, Gandhinagar, India.
| |
Collapse
|
569
|
Wang P, Xiao T, Li J, Wang D, Sun J, Cheng C, Ma H, Xue J, Li Y, Zhang A, Liu Q. miR-21 in EVs from pulmonary epithelial cells promotes myofibroblast differentiation via glycolysis in arsenic-induced pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117259. [PMID: 33965804 DOI: 10.1016/j.envpol.2021.117259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
As an environmental toxicant, arsenic causes damage to various organs and systems of the body and has attracted worldwide attention. It is well-known that exposure to arsenic can induce pulmonary fibrosis, but the molecular mechanisms are elusive. Glycolysis is involved in the process of various diseases, including pulmonary fibrosis. Extracellular vehicles (EVs) are mediators of cell communication through transporting miRNAs. The potential of miRNAs in EVs as liquid biopsy biomarkers for various diseases has been reported, and they have been applied in clinical diagnoses. In the present investigation, we focused on the roles and mechanisms of miR-21 in EVs on arsenic-induced glycolysis and pulmonary fibrosis through experiments with human populations, experimental animals, and cells. The results for arsenicosis populations showed that the serum levels of hydroxyproline, lactate, and EVs-miRNAs were elevated and that EVs-miR-21 levels were positively related to the levels of hydroxyproline and lactate. For mice, chronic exposure to arsenite led to high levels of miR-21, AKT activation, elevated glycolysis, and pulmonary fibrosis; however, these effects were blocked by the depletion of miR-21 in miR-21 knockout (miR-21KO) mice. After MRC-5 cells were co-cultured with arsenite-treated HBE cells, the levels of miR-21, AKT activation, glycolysis, and myofibroblast differentiation were enhanced, effects that were blocked by reducing miR-21 and by inhibiting the EVs in HBE cells. The down-regulation of PTEN in MRC-5 cells and primary lung fibroblasts (PLFs) reversed the blocking effect of inhibiting miR-21 in HBE cells. Thus, miR-21 down-regulates PTEN and promotes glycolysis via activating AKT, which is associated with arsenite-induced myofibroblast differentiation and pulmonary fibrosis. Our results provide a new approach for the construction of clinical diagnosis technology based on analysis of the mechanism of arsenite-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Li
- Department of Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
570
|
Martinez VD, Lam WL. Health Effects Associated With Pre- and Perinatal Exposure to Arsenic. Front Genet 2021; 12:664717. [PMID: 34659330 PMCID: PMC8511415 DOI: 10.3389/fgene.2021.664717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Inorganic arsenic is a well-established human carcinogen, able to induce genetic and epigenetic alterations. More than 200 million people worldwide are exposed to arsenic concentrations in drinking water exceeding the recommended WHO threshold (10μg/l). Additionally, chronic exposure to levels below this threshold is known to result in long-term health effects in humans. The arsenic-related health effects in humans are associated with its biotransformation process, whereby the resulting metabolites can induce molecular damage that accumulates over time. The effects derived from these alterations include genomic instability associated with oxidative damage, alteration of gene expression (including coding and non-coding RNAs), global and localized epigenetic reprogramming, and histone posttranslational modifications. These alterations directly affect molecular pathways involved in the onset and progression of many conditions that can arise even decades after the exposure occurs. Importantly, arsenic metabolites generated during its biotransformation can also pass through the placental barrier, resulting in fetal exposure to this carcinogen at similar levels to those of the mother. As such, more immediate effects of the arsenic-induced molecular damage can be observed as detrimental effects on fetal development, pregnancy, and birth outcomes. In this review, we focus on the genetic and epigenetic damage associated with exposure to low levels of arsenic, particularly those affecting early developmental stages. We also present how these alterations occurring during early life can impact the development of certain diseases in adult life.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- The Canadian Environmental Exposures in Cancer (CE2C) Network, Halifax, NS, Canada
| | - Wan L. Lam
- The Canadian Environmental Exposures in Cancer (CE2C) Network, Halifax, NS, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
571
|
Enhanced GRP78 protein expression via the IRE1α/ASK1/p38 MAPK pathway during As 2O 3-induced endoplasmic reticulum stress in BEAS-2B cells. Toxicology 2021; 462:152962. [PMID: 34560123 DOI: 10.1016/j.tox.2021.152962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
Inorganic arsenic is widely present in the environment. Exposure to moderate to high concentrations of arsenic from drinking water or air can cause various cancers and multisystem dysfunction. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) stress sensor of unfolded protein response (UPR) under stress conditions and it enhances cell survival. The aim of this study is to investigate molecular mechanisms of arsenic-induced GRP78 expression in BEAS-2B cells model. We found that GRP78 protein expression was enhanced, while the level of GRP78 mRNA expression did not change under arsenic trioxide (As2O3)-induced ER stress condition in BEAS-2B cells. Cycloheximide, a protein synthesis inhibitor, completely inhibited As2O3-induced GRP78 protein expression. GRP78 mRNA expression was inhibited by actinomycin-D (Act-D). However, GRP78 protein expression was upregulated in the presence of Act-D under As2O3-induced ER stress condition. These data indicated that the upregulation of GRP78 protein under As2O3-induced UPR condition was possibly due to the increased biosynthesis of GRP78 protein. Moreover, both inositol-requiring enzyme 1α (IRE1α) RNase and kinase inhibitor KIRA6 and IRE1α kinase inhibitor APY29 completely inhibited As2O3-induced GRP78 protein expression and phosphorylation of JNK, ERK and p38 MAPK. Activation of apoptotic signaling kinase 1 (ASK1) is a downstream effector of IRE1α kinase. ASK1 inhibitor selonsertib and p38 MAPK inhibitor SB203580 partially inhibited As2O3-induced GRP78 protein expression, respectively. Our results suggested that As2O3 enhanced GRP78 protein expression in BEAS-2B cells via IRE1α kinase/ASK1/p38 MAPK signaling pathway. To our knowledge, this is the first report on illuminating the related mechanisms of increased GRP78 protein expression in As2O3-induced ER stress condition through a novel IRE1α pathway.
Collapse
|
572
|
Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P. Fate of arsenic in living systems: Implications for sustainable and safe food chains. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126050. [PMID: 34229383 DOI: 10.1016/j.jhazmat.2021.126050] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic, a group 1 carcinogen for humans, is abundant as compared to other trace elements in the environment and is present mainly in the Earth's crust and soil. The arsenic distributions in different geographical regions are dependent on their geological histories. Anthropogenic activities also contribute significantly to arsenic release into the environment. Arsenic presents several complications to humans, animals, and plants. The physiology of plants and their growth and development are affected by arsenic. Arsenic is known to cause cancer and several types of organ toxicity, such as cardiotoxicity, nephrotoxicity, and hepatotoxicity. In the environment, arsenic exists in variable forms both as inorganic and organic species. From arsenic containing compartments, plants can absorb and accumulate arsenic. Crops grown on these contaminated soils pose several-fold higher toxicity to humans compared with drinking water if arsenic enters the food chain. Information regarding arsenic transfer at different trophic levels in food chains has not been summarized until now. The present review focuses on the food chain perspective of arsenic, which affects all components of the food chain during its course. The circumstances that facilitate arsenic accumulation in flora and fauna, as components of the food chain, are outlined in this review.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rukhsana Akhter
- Department of Clinical Biochemistry, Govt. Degree College (Baramulla), Khawaja Bagh, Baramulla, Jammu and Kashmir, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
573
|
Das S, Kim GW, Lee JG, Bhuiyan MSI, Kim PJ. Silicate fertilization improves microbial functional potentials for stress tolerance in arsenic-enriched rice cropping systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125953. [PMID: 33984783 DOI: 10.1016/j.jhazmat.2021.125953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The host plant and its rhizosphere microbiome are similarly exposed to abiotic stresses under arsenic (As)-enriched cropping systems. Since silicon (Si) fertilization is effective in alleviating As-induced stresses in plants, and plant-microbe interactions are tightly coupled, we hypothesized that Si-fertilization would improve soil microbial functional potentials to environmental stress tolerance, which was not yet studied. With the help of high throughput metagenome, microarray and analyzing plant impacts on soil microbiome and the environment, we tested the hypothesis in two geographically different rice (i.e., Japonica and Indica) grown on As-enriched soils. Silicate fertilization in rice grown on As-enriched soils altered rhizosphere bacterial communities and increased several commensal microorganisms and their genetic potential to tolerate oxidative stress, osmotic stress, oxygen limitation, nitrogen and phosphate limitation, heat and cold shock, and radiation stress. The stress resistant microbial communities shifted with the changes in rhizosphere nutrient flows and cumulative plant impacts on the soil environment. The study highlights a thus-far unexplored behavior of Si-fertilization to improve microbial stress resilience under As-laden cropping systems and opens up a promising avenue to further study how commonalities in plant-microbe signaling in response to Si-fertilization alleviates As-induced stresses in agro-systems.
Collapse
Affiliation(s)
- Suvendu Das
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea
| | - Gil Won Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea
| | - Jeong Gu Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| | | | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea; Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
574
|
Bain R, Johnston R, Khan S, Hancioglu A, Slaymaker T. Monitoring Drinking Water Quality in Nationally Representative Household Surveys in Low- and Middle-Income Countries: Cross-Sectional Analysis of 27 Multiple Indicator Cluster Surveys 2014-2020. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97010. [PMID: 34546076 PMCID: PMC8454503 DOI: 10.1289/ehp8459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 06/10/2023]
Abstract
BACKGROUND The 2030 Sustainable Development Goals (SDGs) set an ambitious new benchmark for safely managed drinking water services (SMDWs), but many countries lack national data on the availability and quality of drinking water. OBJECTIVES We quantified the availability and microbiological quality of drinking water, monitored SMDWs, and examined risk factors for Escherichia coli (E. coli) contamination in 27 low-and middle-income countries (LMICs). METHODS A new water quality module for household surveys was implemented in 27 Multiple Indicator Cluster Surveys. Teams used portable equipment to measure E. coli at the point of collection (PoC, n=61,170) and at the point of use (PoU, n=64,900) and asked respondents about the availability and accessibility of drinking water. Households were classified as having SMDW services if they used an improved water source that was free of E. coli contamination at PoC, accessible on premises, and available when needed. Compliance with individual SMDW criteria was also assessed. Modified Poisson regression was used to explore household and community risk factors for E. coli contamination. RESULTS E. coli was commonly detected at the PoC (range 16-90%) and was more likely at the PoU (range 19-99%). On average, 84% of households used an improved drinking water source, and 31% met all of the SMDW criteria. E. coli contamination was the primary reason SMDW criteria were not met (15 of 27 countries). The prevalence of E. coli in PoC samples was lower among households using improved water sources [risk ratio (RR)=0.74; 95% confidence interval (CI): 0.64, 0.85] but not for households with water accessible on premises (RR=0.99; 95% CI: 0.94, 1.05) or available when needed (RR=0.95; 95% CI: 0.88, 1.02). E. coli contamination of PoU samples was less common for households in the richest vs. poorest wealth quintile (RR=0.70; 95% CI: 0.55, 0.88) and in communities with high (>75%) improved sanitation coverage (RR=0.94; 95% CI: 0.90, 0.97). Livestock ownership (RR=1.08; 95% CI: 1.04, 1.13), rural vs. urban residence (RR=1.10; 95% CI: 1.04, 1.16), and wet vs. dry season sampling (RR=1.07; 95% CI: 1.01, 1.15) were positively associated with contamination at the PoU. DISCUSSION Cross-sectional water quality data can be collected in household surveys and can be used to assess inequalities in service levels, to track the SDG indicator of SMDWs, and to examine risk factors for contamination. There is an urgent need for better risk management to reduce widespread exposure to fecal contamination through drinking water services in LMICs. https://doi.org/10.1289/EHP8459.
Collapse
Affiliation(s)
- Robert Bain
- Division of Data, Analytics, Planning and Monitoring, United Nations Children’s Fund, New York, New York, USA
| | - Richard Johnston
- Department of Public Health and Environment, World Health Organization, Geneva, Switzerland
| | - Shane Khan
- Division of Data, Analytics, Planning and Monitoring, United Nations Children’s Fund, New York, New York, USA
| | - Attila Hancioglu
- Division of Data, Analytics, Planning and Monitoring, United Nations Children’s Fund, New York, New York, USA
| | - Tom Slaymaker
- Division of Data, Analytics, Planning and Monitoring, United Nations Children’s Fund, New York, New York, USA
| |
Collapse
|
575
|
Leng G, Lin L, Worsfold PJ, Xu W, Luo X, Chang L, Li W, Zhang X, Xia C. A simple and rapid head space-single drop microextraction-‘spectro-pipette’ (HS-SDME-SP) method for the on-site measurement of arsenic species in natural waters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
576
|
Yao M, Zeng Q, Luo P, Sun B, Liang B, Wei S, Xu Y, Wang Q, Liu Q, Zhang A. Assessing the risk of coal-burning arsenic-induced liver damage: a population-based study on hair arsenic and cumulative arsenic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50489-50499. [PMID: 33959842 DOI: 10.1007/s11356-021-14273-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Exposure to arsenic-contaminated air and food caused by the burning of coal in unventilated indoor stoves is a major environmental public health concern in Guizhou Province, China. The liver is one of the main target organs for coal-fired arsenic exposure; however, there is little information about the risk assessment between cumulative arsenic exposure and the prevalence of liver damage. This study first evaluated the chronic daily intake (CDI) for two exposure pathways (inhalation and ingestion) and five environmental media (i.e., indoor and outdoor air, drinking water, rice, corn, and chili peppers) in 1998, 2006, 2014, and 2017. Then, the dose-effect and dose-response relationship between hair arsenic (HA) and cumulative arsenic (CA) levels and liver damage was analyzed. The results clearly show that the CDI in 1998 was 34.9 μg·kg-1·d-1, 22.9 μg·kg-1·d-1 in 2006, 11.7 μg·kg-1·d-1 in 2014, and 6.7 μg·kg-1·d-1 in 2017 in the arsenic exposure area. All of these values were higher than the daily baseline level of 3.0 μg·kg-1·d-1 as recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and the increased HA and CA can increase the risk of coal-fired arsenic-induced liver damage. In addition, we analyzed the possible maximum acceptable CA exposure level for coal-fired arsenic-induced liver damage using the Bayesian benchmark dose. The recommended maximum acceptable CA exposure level for liver damage caused by coal-burning arsenic is 7120 mg. This study provides scientific insight into understanding the dose-response relationship of liver damage caused by coal-burning arsenic exposure and the monitoring and prevention of arsenic poisoning.
Collapse
Affiliation(s)
- Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
577
|
Wang J, Xie Z, Wang Y, Yang Y, Chen M. Synergy between indigenous bacteria and extracellular electron shuttles enhances transformation and mobilization of Fe(III)/As(V). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147002. [PMID: 33865142 DOI: 10.1016/j.scitotenv.2021.147002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/22/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The reduction of Fe(III) by metal-reducing bacteria through extracellular electron transfer (EET) is a critical link in the biogeochemical cycle of As/Fe, and humic substances are believed to play a role in this process. In this study, the indigenous As-resistant bacterium Bacillus D2201 isolated from the Datong Basin was responsible for the valence transition of Fe and As in the groundwater environment. The bacterium has both the arsC gene for intracellular arsenate reduction and an EET pathway for transferring electrons to an electrode or Fe(III). Chronoamperometry showed that 3.0- and 10.2-fold increases in the output current density were achieved by injecting 0.05 and 0.5 mM AQDS with an inoculation of Bacillus D2201. Interestingly, Fe(III) bio-reduction is not only regulated by AQDS, but also by As(V) stimulation. The increase in pyruvate consumption and levels of intracellular glutathione (GSH) suggest that As pressure promotes cell metabolism and the consumption of electron donors for Fe(III) reduction with strain D2201. The reduction and dissolution of Fe(III) mineral regulated by AQDS dominated the release and mobilization of As. Compared with the AQDS-free treatment, 5.5-, 6.6-, and 7.2-fold increases in the amounts of Fe(II) were released with the addition of 0.1, 0.5, and 1 mM AQDS, respectively, and approximately 2.6-, 2.8-, and 3.2-fold increases in the As(V) levels were observed under the same conditions. These insights have profound environmental implications with respect to the effect of AQDS and As stress on EET and Fe(III) reduction in arsenic-resistant bacteria.
Collapse
Affiliation(s)
- Jia Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yang Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Mengna Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
578
|
Malakar A, Singh R, Westrop J, Weber KA, Elofson CN, Kumar M, Snow DD. Occurrence of arsenite in surface and groundwater associated with a perennial stream located in Western Nebraska, USA. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126170. [PMID: 34492946 DOI: 10.1016/j.jhazmat.2021.126170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Dissolved arsenic typically results from chemical weathering of arsenic rich sediments and is most often found in oxidized forms in surface water. The mobility of arsenic is controlled by its valence state and also by its association with iron oxides minerals, the forms of which are both influenced by abiotic and biotic processes in aqueous environment. In this study, speciation methods were used to measure and confirm the presence of reduced arsenic species in the surface water of Frenchman creek, a gaining stream that crosses the Colorado-Nebraska border. Selective extraction analysis of aquifer and stream bed sediments shows that the bulk of the arsenic occurs with labile iron-rich oxy(hydroxide) minerals. Total dissolved arsenic in surface and groundwater ranged from ~3-18 µg L-1, and reduced arsenic species comprise about 41% of the total dissolved arsenic (16.0 µg L-1) in Frenchman creek. Leachable arsenic in the aquifer sediment samples ranged up to 1553 µg kg-1, while samples from Frenchman creek bed sediments contained 4218 µg kg-1. Dynamic surface and groundwater interaction sustains arsenite in iron-rich surface headwaters, and the implied toxicity of reduced arsenic in this hydrogeological setting, which can be important in surface water environments around the globe.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 109 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, Uttarakhand, India
| | - Jeffrey Westrop
- School of Biological Sciences and Robert B. Daugherty Water for Food Institute, University of Nebraska-Lincoln, 232 Manter Hall, Lincoln, NE 68588-0118, USA
| | - Karrie A Weber
- School of Biological Sciences and Robert B. Daugherty Water for Food Institute, University of Nebraska-Lincoln, 232 Manter Hall, Lincoln, NE 68588-0118, USA; Department of Earth and Atmospheric Sciences and Robert B. Daugherty Water for Food Global Institute, University of Nebraska-Lincoln, 316 Bessey Hall, Lincoln, NE 68588-0340, USA
| | - Christopher N Elofson
- School of Biological Sciences and Robert B. Daugherty Water for Food Institute, University of Nebraska-Lincoln, 232 Manter Hall, Lincoln, NE 68588-0118, USA
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355 Gujarat, India
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA.
| |
Collapse
|
579
|
Sharma S, Kaur T, Sharma AK, Singh B, Pathak D, Yadav HN, Singh AP. Betaine attenuates sodium arsenite-induced renal dysfunction in rats. Drug Chem Toxicol 2021; 45:2488-2495. [PMID: 34380335 DOI: 10.1080/01480545.2021.1959699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Exposure to higher levels of arsenic is a serious threat affecting human health worldwide. We investigated the protective role of betaine (N,N,N-trimethylglycine) against sodium arsenite-induced renal dysfunction in rats. Sodium arsenite (5 mg/kg, oral) was given to rats for 4 weeks to induce nephrotoxicity. Betaine (125 and 250 mg/kg, oral) was administered in rats for 4 weeks along with sodium-arsenite feeding. Arsenic-induced renal dysfunction was demonstrated by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, fractional excretion of sodium, and microproteinuria. Oxidative stress in rat kidneys was determined by assaying thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Furthermore, hydroxyproline assay was done to assess renal fibrosis in arsenic intoxicated rats. Hematoxylin-eosin and picrosirius red staining revealed pathological alterations in rat kidneys. Renal endothelial nitric oxide synthase (eNOS) expression was determined by immuno-histochemistry. Concurrent administration of betaine abrogated arsenic-induced renal biochemical and histological changes in rats. Betaine treatment significantly attenuated arsenic-induced decrease in renal eNOS expression. In conclusion, betaine is protective against sodium arsenite-induced renal dysfunction, which may be attributed to its anti-oxidant activity and modulation of renal eNOS expression in rat kidneys.
Collapse
Affiliation(s)
- Sumedha Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
580
|
Chen JX, Cao Y, Yan X, Chen Y, Ma LQ. Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125647. [PMID: 33740714 DOI: 10.1016/j.jhazmat.2021.125647] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Arsenite (AsIII) antiporter ACR3 is crucial for arsenic (As) translocation and sequestration in As-hyperaccumulator Pteris vittata, which has potential for phytoremediation of As-contaminated soils. In this study, two new ACR3 genes PvACR3;2 and PvACR3;3 were cloned from P. vittata and studied in model organism yeast (Saccharomyces cerevisiae) and model plant tobacco (Nicotiana tabacum). Both ACR3s mediated AsIII efflux in yeast, decreasing its As accumulation and enhancing its As tolerance. In addition, PvACR3;2 and PvACR3;3 were expressed in tobacco plant. Localized on the plasma membrane, PvACR3;2 mediated both AsIII translocation to the shoots and AsIII efflux from the roots in tobacco, resulting in 203 - 258% increase in shoot As after exposing to 5 μM AsIII under hydroponics. In comparison, localized to the vacuolar membrane, PvACR3;3 sequestrated AsIII in tobacco root vacuoles, leading to 18 - 20% higher As in the roots and 15 - 36% lower As in the shoots. Further, based on qRT-PCR, both genes were mainly expressed in P. vittata fronds, indicating PvACR3;2 and PvACR3;3 may play roles in AsIII translocation and sequestration in the fronds. This study provides not only new insights into the functions of new ACR3 genes in P. vittata, but also important gene resources for manipulating As accumulation in plants for phytoremediation and food safety.
Collapse
Affiliation(s)
- Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjuan Yan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
581
|
Wang X, Liu L, Liang D, Liu Y, Zhao Q, Huang P, Li X, Fan W. Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125579. [PMID: 33721782 DOI: 10.1016/j.jhazmat.2021.125579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Although carbon nanomaterials (CNMs) commonly exist throughout the aquatic environment, their effect on arsenic (As) distribution and toxicity is unclear. In this study, arsenite accumulation, transformation, subcellular distribution, and enzyme activity were assessed in adult zebrafish (Danio rerio) intestines, heads and muscles, following co-exposure to arsenite and CNMs with different structures (single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), fullerene (C60), graphene oxide (GO), and graphene (GN)). Results show that GN and GO promoted As toxicity in D. rerio, as carriers increasing total As accumulation in the intestine, resulting in arsenite adsorbed by GO and GN being released and transformed mainly into moderately-toxic monomethylarsonic acid (MMA), which was mostly distributed in organelles and metallothionein-like proteins (MTLPs). Moreover, GO and GN influenced As species distribution in D. rerio due to the excellent electron transfer ability. However, the effect was marginal for SWCNT, MWCNT and C60, because of the different structure and suspension stability in fish-culture water. In addition, in the muscle and head tissues, As was mainly distributed in cellular debris in the forms of dimethylarsinic acid (DMA) and arsenobetaine (AsB). These findings help better understand the influence of CNMs on the mechanism of As toxicity in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Liping Liu
- Beijing Center for Disease Prevention and Control, Beijing 100013, PR China
| | - Dingyuan Liang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian, Beijing 100875, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Peng Huang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - XiaoMin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
582
|
He C, Liu Z, Wu J, Pan X, Fang Z, Li J, Bryan BA. Future global urban water scarcity and potential solutions. Nat Commun 2021; 12:4667. [PMID: 34344898 PMCID: PMC8333427 DOI: 10.1038/s41467-021-25026-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Urbanization and climate change are together exacerbating water scarcity-where water demand exceeds availability-for the world's cities. We quantify global urban water scarcity in 2016 and 2050 under four socioeconomic and climate change scenarios, and explored potential solutions. Here we show the global urban population facing water scarcity is projected to increase from 933 million (one third of global urban population) in 2016 to 1.693-2.373 billion people (one third to nearly half of global urban population) in 2050, with India projected to be most severely affected in terms of growth in water-scarce urban population (increase of 153-422 million people). The number of large cities exposed to water scarcity is projected to increase from 193 to 193-284, including 10-20 megacities. More than two thirds of water-scarce cities can relieve water scarcity by infrastructure investment, but the potentially significant environmental trade-offs associated with large-scale water scarcity solutions must be guarded against.
Collapse
Affiliation(s)
- Chunyang He
- Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zhifeng Liu
- Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, China.
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
| | - Jianguo Wu
- Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Life Sciences and School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Xinhao Pan
- Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zihang Fang
- Center for Human-Environment System Sustainability (CHESS), State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jingwei Li
- School of Environmental and Geographical Sciences (SEGS), Shanghai Normal University, Shanghai, China
| | - Brett A Bryan
- Centre for Integrative Ecology, Deakin University, Melbourne, Australia
| |
Collapse
|
583
|
Tang X, Zhou M, Fan C, Zeng G, Lu Y, Dong H, Song B, Fu Q, Zeng Y. The arsenic chemical species proportion and viral arsenic biotransformation genes composition affects lysogenic phage treatment under arsenic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146628. [PMID: 34030306 DOI: 10.1016/j.scitotenv.2021.146628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
When temperate phages and their hosts have a consistent interest, they are considered reciprocal. Based on the bacterium-phage collaboration, lysogenic phage treatment is a promising method to resist pollution through lysogenic phage reshaping indigenous microbial communities to maintain their ecological function under environmental stress. However, the potential factors affecting the establishment of bacterium-phage collaboration are still poorly understood. Here, lysogenic phages carrying arsenic biotransformation genes (ABGs) were induced from the enriched arsenic-resistant microorganisms (from arsenic-contaminated sites). The diversity analysis of viral arsC and arsM demonstrated that arsM tended to proliferate rapidly under high arsenic levels, and the transduction of arsM might be the key to lysogenic phages to help the hosts relieve the stress of high arsenic. Microcosm experiments confirmed that with the increase of the As(III) content (0% to 50%, of 200 mg/kg total arsenic) in the soil, inoculation of lysogenic phages with both arsC and arsM resulted in more transduction of arsM (0.06 ± 0.007 to 0.23 ± 0.024 per 16S rRNA) among soil microorganisms. In contrast, inoculation of lysogenic phages carrying the only arsC transduces more arsC (0.12 ± 0.037 to 0.315 ± 0.051 per 16S rRNA) compare with the control. This article confirmed that different arsenic species proportions and different viral gene compositions could change the abundance of ABGs in the soil microbe, which might provide basic knowledge for further understanding of arsenic pollution control mediated by lysogenic phage.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Man Zhou
- Power China Zhongnan Engineering Corporation Limited, Changsha, Hunan 410014, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanjing Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
584
|
Glodowska M, Schneider M, Eiche E, Kontny A, Neumann T, Straub D, Berg M, Prommer H, Bostick BC, Nghiem AA, Kleindienst S, Kappler A. Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146501. [PMID: 34030262 DOI: 10.1016/j.scitotenv.2021.146501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
High arsenic (As) concentrations in groundwater are a worldwide problem threatening the health of millions of people. Microbial processes are central in the (trans)formation of the As-bearing ferric and ferrous minerals, and thus regulate dissolved As levels in many aquifers. Mineralogy, microbiology and dissolved As levels can vary sharply within aquifers, making high-resolution measurements particularly valuable in understanding the linkages between them. We conducted a high spatial resolution geomicrobiological study in combination with analysis of sediment chemistry and mineralogy in an alluvial aquifer system affected by geogenic As in the Red River delta in Vietnam. Microbial community analysis revealed a dominance of fermenters, methanogens and methanotrophs whereas sediment mineralogy along a 46 m deep core showed a diversity of Fe minerals including poorly crystalline Fe (II/III) and Fe(III) (oxyhydr)oxides such as goethite, hematite, and magnetite, but also the presence of Fe(II)-bearing carbonates and sulfides which likely formed as a result of microbially driven organic carbon (OC) degradation. A potential important role of methane (CH4) as electron donor for reductive Fe mineral (trans)formation was supported by the high abundance of Candidatus Methanoperedens, a known Fe(III)-reducing methanotroph. Overall, these results imply that OC turnover including fermentation, methanogenesis and CH4 oxidation are important mechanisms leading to Fe mineral (trans)formation, dissolution and precipitation, and thus indirectly affecting As mobility by changing the Fe-mineral inventory.
Collapse
Affiliation(s)
- Martyna Glodowska
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany; Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Department of Microbiology, IWWR, Radboud University, the Netherlands.
| | - Magnus Schneider
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Germany
| | - Elisabeth Eiche
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Germany
| | - Agnes Kontny
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, Germany
| | - Thomas Neumann
- Technical University of Berlin, Institute for Applied Geosciences, Berlin, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Quantitative Biology Center (QBiC), University of Tübingen, Germany
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Perth, WA, Australia; CSIRO Land and Water, Floreat, WA, Australia
| | | | | | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany
| |
Collapse
|
585
|
Saha A, Mohapatra B, Kazy SK, Sar P. Variable response of arsenic contaminated groundwater microbial community to electron acceptor regime revealed by microcosm based high-throughput sequencing approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:804-817. [PMID: 34284694 DOI: 10.1080/10934529.2021.1930448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) mobilization in alluvial aquifers is facilitated by microbially catalyzed redox transformations that depend on the availability of electron acceptors (EAs). In this study, the response of an As-contaminated groundwater microbial community from West Bengal, India towards varied EAs was elucidated through microcosm based 16S rRNA gene amplicon sequencing. Acinetobacter, Deinococcus, Nocardioides, etc., and several unclassified bacteria (Ignavibacteria) and archaea (Bathyarchaeia, Micrarchaeia) previously not reported from As-contaminated groundwater of West Bengal, characterized the groundwater community. Distinct shifts in community composition were observed in response to various EAs. Enrichment of operational taxonomic units (OTUs) affiliated to Denitratisoma (NO3-), Spirochaetaceae (Mn4+), Deinococcus (As5+), Ruminiclostridium (Fe3+), Macellibacteroides (SO42-), Holophagae-Subgroup 7 (HCO3-), Dechloromonas and Geobacter (EA mixture) was noted. Alternatively, As3+ amendment as electron donor allowed predominance of Rhizobium. Taxonomy based functional profiling highlighted the role of chemoorganoheterotrophs capable of concurrent reduction of NO3-, Fe3+, SO42-, and As biotransformation in As-contaminated groundwater of West Bengal. Our analysis revealed two major aspects of the community, (a) taxa selective toward responding to the EAs, and (b) multifaceted nature of taxa appearing in abundance in response to multiple substrates. Thus, the results emphasized the potential of microbial community members to influence the biogeochemical cycling of As and other dominant anions/cations.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sufia Khannam Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
586
|
Glodowska M, Schneider M, Eiche E, Kontny A, Neumann T, Straub D, Kleindienst S, Kappler A. Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117012. [PMID: 33813189 DOI: 10.1016/j.envpol.2021.117012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Fe(III) minerals play a crucial role for arsenic (As) mobility in aquifers as they usually represent the main As-bearing phases. Microbial reductive dissolution of As-bearing Fe(III) minerals is responsible for the release of As and the resulting groundwater contamination in many sites worldwide. So far, in most studies mainly abiogenic iron minerals have been considered. Yet, biogenic minerals that possess different properties to their abiogenic counterparts are also present in the environment. In some environments they dominate the iron mineral inventory but so far, it is unclear what this means for the As mobility. We, therefore, performed an in-situ aquifer Fe(III) minerals exposure experiment i) to evaluate how different biogenic and abiogenic Fe(III) minerals are transformed in a strongly reducing, As-contaminated aquifer (25 m) compared to As-free moderately reducing aquifer (32 m) and ii) to assess which microbial taxa are involved in these Fe(III) minerals transformations. We found that higher numbers of bacteria and archaea were associated with the minerals incubated in the As-contaminated compared to the non-contaminated aquifer and that all Fe(III) minerals were mainly colonized by Fe(III)-reducing bacteria, with Geobacter being the most abundant taxon. Additionally, fermenting microorganisms were abundant on minerals incubated in the As-contaminated aquifer, while methanotrophs were identified on the minerals incubated in the As-free moderately reducing aquifer, implying involvement of these microorganisms in Fe(III) reduction. We observed that biogenic Fe(III) minerals generally tend to become more reduced and when incubated in the As-contaminated aquifer sorbed more As than the abiogenic ones. Most of abiogenic and biogenic Fe(III) minerals were transformed into magnetite while biogenic more crystalline mixed phases were not subjected to visible transformation. This in-situ Fe(III) minerals incubation approach shows that biogenic minerals are more prone to be colonized by (Fe(III)-reducing) microorganisms and bind more As, although ultimately produce similar minerals during Fe(III) reduction.
Collapse
Affiliation(s)
- Martyna Glodowska
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany; Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Department of Microbiology, IWWR, Radboud University, the Netherlands.
| | - Magnus Schneider
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, KIT, Germany
| | - Elisabeth Eiche
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, KIT, Germany
| | - Agnes Kontny
- Karlsruhe Institute of Technology, Institute of Applied Geosciences, KIT, Germany
| | - Thomas Neumann
- Technical University of Berlin, Institute for Applied Geosciences, Berlin, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany; Quantitative Biology Center (QBiC), University of Tübingen, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Germany
| |
Collapse
|
587
|
Baum ZJ, Yu X, Ayala PY, Zhao Y, Watkins SP, Zhou Q. Artificial Intelligence in Chemistry: Current Trends and Future Directions. J Chem Inf Model 2021; 61:3197-3212. [PMID: 34264069 DOI: 10.1021/acs.jcim.1c00619] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of artificial intelligence (AI) to chemistry has grown tremendously in recent years. In this Review, we studied the growth and distribution of AI-related chemistry publications in the last two decades using the CAS Content Collection. The volume of both journal and patent publications have increased dramatically, especially since 2015. Study of the distribution of publications over various chemistry research areas revealed that analytical chemistry and biochemistry are integrating AI to the greatest extent and with the highest growth rates. We also investigated trends in interdisciplinary research and identified frequently occurring combinations of research areas in publications. Furthermore, topic analyses were conducted for journal and patent publications to illustrate emerging associations of AI with certain chemistry research topics. Notable publications in various chemistry disciplines were then evaluated and presented to highlight emerging use cases. Finally, the occurrence of different classes of substances and their roles in AI-related chemistry research were quantified, further detailing the popularity of AI adoption in the life sciences and analytical chemistry. In summary, this Review offers a broad overview of how AI has progressed in various fields of chemistry and aims to provide an understanding of its future directions.
Collapse
Affiliation(s)
- Zachary J Baum
- Chemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43210, United States
| | - Xiang Yu
- Chemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43210, United States
| | - Philippe Y Ayala
- Chemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43210, United States
| | - Yanan Zhao
- Chemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43210, United States
| | - Steven P Watkins
- Chemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43210, United States
| | - Qiongqiong Zhou
- Chemical Abstracts Service, 2540 Olentangy River Road, Columbus, Ohio 43210, United States
| |
Collapse
|
588
|
Stopelli E, Duyen VT, Prommer H, Glodowska M, Kappler A, Schneider M, Eiche E, Lightfoot AK, Schubert CJ, Trang PKT, Viet PH, Kipfer R, Winkel LHE, Berg M. Carbon and methane cycling in arsenic-contaminated aquifers. WATER RESEARCH 2021; 200:117300. [PMID: 34107428 DOI: 10.1016/j.watres.2021.117300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer. Carbon isotope signatures (δ13C-CH4, δ13C-DOC, δ13C-DIC) provided evidence that fermentation, methanogenesis and methanotrophy are actively contributing to the As heterogeneity. Methanogenesis occurred concurrently where As levels are high (>200 µg/L) and DOC-enriched aquitard pore water infiltrates into the aquifer. Along the flowpath to the Holocene/Pleistocene aquifer transition, methane oxidation causes a strong shift in δ13C-CH4 from -87‰ to +47‰, indicating high reactivity. These findings demonstrate a previously overlooked role of methane cycling and DOC infiltration in high-As aquifers.
Collapse
Affiliation(s)
- Emiliano Stopelli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland.
| | - Vu T Duyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Henning Prommer
- CSIRO Land and Water, 6014 Floreat, WA, Australia; School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Martyna Glodowska
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Magnus Schneider
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alexandra K Lightfoot
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland
| | - Carsten J Schubert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters Research & Management, 6047 Kastanienbaum, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Pham K T Trang
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham H Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Rolf Kipfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Lenny H E Winkel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, School of Civil Engineering and Surveying, University of Southern Queensland, QLD 4350, Australia.
| |
Collapse
|
589
|
Du X, Zhang J, Zhang X, Schramm KW, Nan B, Huang Q, Tian M, Shen H. Persistence and reversibility of arsenic-induced gut microbiome and metabolome shifts in male rats after 30-days recovery duration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145972. [PMID: 33647652 DOI: 10.1016/j.scitotenv.2021.145972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The metabolites of gut microbiome are important host-health regulating factors and can be interrupted when the host is exposed to environmental pollutant via ingestion route. Arsenic contaminated drinking water is one of the most serious environmental health problems worldwide. Therefore, the arsenic-induced alterations of gut microbiome and metabolome, especially the persistence and reversibility of the alterations after the long-term arsenic exposure will be interesting to know. In this study, we investigated the relationship between gut microbiota and metabolites in male rats both after the 30-days arsenic treatment and 30-days recovery duration. The composition and diversity of gut microbiota were affected significantly by the treatment, but they presented partial improvement in recovery duration. Moreover, arsenic exposure induced the significant changes of 73 metabolites, which involved in the metabolism of glycerophospholipid, linoleic acid, as well as the biosynthesis of phenylalanine, tyrosine and tryptophan. Although it had a persistent effect, the restoration of glycerophospholipid metabolism was observed in the 30-days recovery. Integration analysis further correlated the arsenic impacting microbes with some important differential metabolites. Lactobacillus associated with the decreases of phosphatidylethanolamine(34:1), 16alpha-hydroxydehydroepiandrosterone 3-sulfate, seryltryptophan and alanyltyrosine in recovery duration. Lactobacillus strains have potential to work as protective agents against arsenic toxicity by restoring perturbed glycerophospholipid metabolism. In summary, arsenic significantly disrupted gut microbiome and metabolome, but the disruptions are reversible to some extent after a 30-days recovery.
Collapse
Affiliation(s)
- Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xi Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karl-Werner Schramm
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics, Neuherberg 85764, Germany; Department für Biowissenschaftliche Grundlagen, Technische Universität München, Freising 85350, Germany
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
590
|
Banerjee M, Ferragut Cardoso A, Al-Eryani L, Pan J, Kalbfleisch TS, Srivastava S, Rai SN, States JC. Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol 2021; 95:2351-2365. [PMID: 34032870 PMCID: PMC8241660 DOI: 10.1007/s00204-021-03084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Ana Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Knowledge Management and Special Projects Branch, Center for Strategic Scientific Initiatives (HNC1L), National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
- Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
591
|
Liu J, Li J, Wolfe K, Perrotta B, Cobb GP. Mobility of arsenic in the growth media of rice plants (Oryza sativa subsp. japonica. 'Koshihikari') with exposure to copper oxide nanoparticles in a life-cycle greenhouse study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145620. [PMID: 33609822 DOI: 10.1016/j.scitotenv.2021.145620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The increasing arsenic (As) concentration in agriculture media poses increasing risks to both environment and human health. Arsenic mobility determines its bioavailability and entry into the food chain. Nanoparticle application may help to control As mobility in crop cultivation media, and thus decreasing As bioavailability for plants. This research studied the adsorption kinetics of As(V) on copper oxide nanoparticles (nCuO) and nCuO dissolution in a hydroponic solution, and the effects of nCuO on As mobility in a greenhouse system exposed to As(V) addition of 10 mg/kg and nCuO at 0.1-100 mg/L for a life-cycle growth of rice. Arsenic adsorption was dependent on both the total mass and the concentration of nCuO as well as the initial concentration of As(V), while nCuO dissolution was mainly dependent on nCuO concentration regardless of As(V). Arsenic in the simulated paddy was quickly mobilized from soil to aqueous phase during week 1, and further interacted with components in water phase, sediment-water interfacial transition and rice plants. Copper (Cu) and As speciation in the soil were observed by X-Ray Absorption Near Edge Spectrometry. Dissolved Cu was complexed with organic ligands. As(V) was adsorbed to kaolinite, or reduced to As(III) and adsorbed to ferrihydrite. Percent As removal from water phase in the growth container was determined by both nCuO application and As(V) initial concentration. Based on our previous finding that As accumulation in rice grains was significantly decreased by nCuO at 50 mg/L and the results of this study on As adsorption capacity of nCuO and As removal from water due to nCuO application, nCuO at 50 mg/L was proposed to be an appropriate application in rice paddy to immobilize As. Further research is needed in actual agriculture to verify the appropriate nCuO application and get an integrated beneficial effect for rice plants and humans.
Collapse
Affiliation(s)
- Jing Liu
- Environment Research Institute, Shandong University, Binhai Road 72, Jimo District, Qingdao, Shandong 266237, China.
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Kyle Wolfe
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| | - Brittany Perrotta
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798-7266, USA.
| | - George P Cobb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
592
|
Maia LC, Soares LC, Alves Gurgel LV. A review on the use of lignocellulosic materials for arsenic adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112397. [PMID: 33823440 DOI: 10.1016/j.jenvman.2021.112397] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
In this review, bibliometric analysis was made of recent studies and current trends concerning the application of lignocellulosic materials as bioadsorbents for the removal of arsenic from aqueous systems. Evaluation was made of lignocellulosic adsorbents and their chemical characteristics, as well as interactions involved in the adsorption of arsenic, bioadsorbent reusage (desorption and re-adsorption), competition between co-existing ions in multi-element aqueous solutions, and applications of bioadsorbents in batch and continuous systems. Lignocellulosic biomass has been shown to be a promising source of new adsorbents, since it is a low-cost and renewable material. However, there seems to be no commercially available technology that uses bioadsorbents based on lignocellulosic biomass for arsenic removal. In addition, the structural modification of lignocellulosic biomass to improve its adsorption capacity and selectivity has proved to be a suitable strategy, with the service time and the selectivity of the bioadsorbent in the presence of co-existing ions the most critical aspects to be pursued. The competitive adsorption of co-existing anions (PO43-, SO42-, NO3-, and Cl-) by the adsorption sites, as well as life-cycle assessment and cost analysis are rarely reported. Complexation, electrostatic attraction, ion exchange and precipitation were the main interactions involved in the adsorption of arsenic on lignocellulosic materials. However, most studies have failed to prove the nature of the interactions. Macroscopic methods can be useful to evaluate the adsorption mechanism of arsenic on bioadsorbents of complex structure, such as lignocellulosic biomass (modified or not). Nevertheless, the elucidation of the adsorption mechanism requires experiments based on measurements at the microscopic level. The upscaling of biosorption technology for arsenic removal will only be possible through studies that investigate: i) the interactions involved in the adsorption process; ii) the transfer of bench-scale experiments to pilot-scale experiments with real contaminated water with low arsenic concentration; and iii) the life-cycle assessment of biosorbents produced from lignocellulosic biomass.
Collapse
Affiliation(s)
- Luisa Cardoso Maia
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences (ICEB), Federal University of Ouro Preto, Campus Morro do Cruzeiro s/n°, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Liliane Catone Soares
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences (ICEB), Federal University of Ouro Preto, Campus Morro do Cruzeiro s/n°, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Leandro Vinícius Alves Gurgel
- Group of Physical Organic Chemistry (GPOC), Department of Chemistry, Institute of Biological and Exact Sciences (ICEB), Federal University of Ouro Preto, Campus Morro do Cruzeiro s/n°, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
593
|
Qiao W, Guo H, He C, Shi Q, Xing S, Gao Z. Identification of processes mobilizing organic molecules and arsenic in geothermal confined groundwater from Pliocene aquifers. WATER RESEARCH 2021; 198:117140. [PMID: 33895585 DOI: 10.1016/j.watres.2021.117140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Organic matter (OM) has been accepted as an important trigger fueling Fe(III) oxide reduction and arsenic release in the late Pleistocene-Holocene anoxic aquifers, whereas its fates and roles on arsenic mobility in the Pliocene aquifer are unclear. To fill this gap, groundwaters from a confined Pliocene aquifer (CG) and an unconfined Holocene aquifer (UG) were sampled in the Guide Basin, China, to monitor evolutions of groundwater geochemistry and OM molecular signatures along the groundwater flow path. The outcomes showed that groundwater pH, temperature, and arsenic concentrations in the CG samples generally increased along the groundwater flow path, which were much higher than those in the UG samples. The numbers and intensities of recalcitrant molecules (polycyclic aromatics and polyphenols) in the CG samples remarkably increased along the path, but relatively labile molecules (highly unsaturated and phenolic compounds and aliphatic compounds) showed the opposite trends. The arsenic-poor (<10 μg/L) UG samples contained more labile molecules than the arsenic-rich CG samples. High groundwater pH, temperature, and sediment age in the confined aquifers may be responsible for the selective mobilization of the unique polycyclic aromatics and polyphenols. The mobilized recalcitrant organic molecules may enhance arsenic release via electron shuttling, complexation, and competition. Furthermore, high temperature and pH may also facilitate arsenic desorption. The study provides molecular-scale evidences that the mobilization of recalcitrant organic molecules and arsenic were concurrent in the geothermal confined groundwater.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Shiping Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhipeng Gao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
594
|
Mohapatra B, Saha A, Chowdhury AN, Kar A, Kazy SK, Sar P. Geochemical, metagenomic, and physiological characterization of the multifaceted interaction between microbiome of an arsenic contaminated groundwater and aquifer sediment. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125099. [PMID: 33951854 DOI: 10.1016/j.jhazmat.2021.125099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Geomicrobiological details of the interactions between groundwater microbiome (GWM) and arsenic (As)-rich aquifer sediment of Bengal basin was investigated through microcosm incubations. Role of key microorganisms and their specific interactions with As-bearing minerals was demarcated under organic carbon- amended and -unamended conditions. Acinetobacter (50.8 %), Brevundimonas (7.9 %), Sideroxydans (3.4 %), Alkanindiges (3.0 %) dominated the GWM. The microbiome catalysed considerable alterations in As-bearing mineral [Fe-(hydr)oxide and aluminosilicate] phases resulting in substantial changes in overall geochemistry and release of As (65 μg/L) and Fe (118 μg/L). Synergistic roles of autotrophic, NH4+-oxidizing Archaea (Thaumarchaeota) and chemoheterotrophic bacteria (Stenotrophomonas, Pseudomonas, Geobacter) of diverse metabolic abilities (NH4+-oxidizing, NO3-, As/Fe-reducing) were noted for observed changes. Organic carbon supported enhanced microbial growth and As mobilization (upto 403.2 μg As/L) from multiple mineral phases (hematite, magnetite, maghemite, biotite, etc.). In presence of high organic carbon, concerted actions of anaerobic, hydrocarbon-utilizing, As-, Fe-reducing Rhizobium, fermentative Escherichia, anaerobic Bacillales, metal-reducing and organic acid-utilizing Pseudomonas and Achromobacter were implicated in altering sediment mineralogy and biogeochemistry. Increase in abundance of arrA, arsC, bssA genes, and dissolution of Fe, Ca, Mg, Mn confirmed that dissimilatory-, cytosolic-As reduction, and mineral weathering fuelled by anaerobic (hydro)carbon metabolism are the predominant mechanisms of As release in aquifers of Bengal basin.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Anumeha Saha
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Atalanta N Chowdhury
- Central Ground Water Board, Bhujalika, C.P Block-6, Sector-V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Amlanjyoti Kar
- Central Ground Water Board, Bhujalika, C.P Block-6, Sector-V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
595
|
Neidhardt H, Rudischer S, Eiche E, Schneider M, Stopelli E, Duyen VT, Trang PTK, Viet PH, Neumann T, Berg M. Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125128. [PMID: 33485236 DOI: 10.1016/j.jhazmat.2021.125128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Although phosphate (PO43-) may play a decisive role in enriching toxic arsenic (As) in the groundwater of many Asian deltas, knowledge gaps exist regarding its interactions with As. This study investigates the simultaneous immobilisation of PO43- and As in aquifer sediments at a redox transition zone in the Red River Delta of Vietnam. The majority of PO43- and As was found to be structurally bound in layers of Fe(III)-(oxyhydr)oxide precipitates, indicating that their formation represents a dominant immobilisation mechanism. This immobilisation was also closely linked to sorption. In the surface sorbed sediment pools, the molar ratios of total P to As were one order of magnitude higher than found in groundwater, reflecting a preferential sorption of PO43- over As. However, this competitive sorption was largely dependent on the presence of Fe(III)-(oxyhydr)oxides. Ongoing contact of the aquifer sediments with iron-reducing groundwater resulted in the reductive dissolution of weakly crystalline Fe(III)-(oxyhydr)oxides, which was accompanied by decreased competition for sorption sites between PO43- and As. Our results emphasise that, to be successful in the medium and long term, remediation approaches and management strategies need to consider competitive sorption between PO43- and As and dynamics of the biogeochemical Fe-cycle.
Collapse
Affiliation(s)
- Harald Neidhardt
- Geoecology, Eberhard Karls University Tübingen, 72070 Tübingen, Germany.
| | | | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Magnus Schneider
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Emiliano Stopelli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Vu T Duyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham T K Trang
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Pham H Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thomas Neumann
- Applied Geochemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
596
|
Arsenic in Petroleum-Contaminated Groundwater near Bemidji, Minnesota Is Predicted to Persist for Centuries. WATER 2021. [DOI: 10.3390/w13111485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We used a reactive transport model to investigate the cycling of geogenic arsenic (As) in a petroleum-contaminated aquifer. We simulated As mobilization and sequestration using surface complexation reactions with Fe(OH)3 during petroleum biodegradation coupled with Fe-reduction. Model results predict that dissolved As in the plume will exceed the U.S. and EU 10 µg/L drinking water standard for ~400 years. Non-volatile dissolved organic carbon (NVDOC) in the model promotes As mobilization by exerting oxygen demand, which maintains anoxic conditions in the aquifer. After NVDOC degrades, As re-associates with Fe(OH)3 as oxygenated conditions are re-established. Over the 400-year simulation, As transport resembles a “roll front” in which: (1) arsenic sorbed to Fe(OH)3 is released during Fe-reduction coupled to petroleum biodegradation; (2) dissolved As resorbs to Fe(OH)3 at the plume’s leading edge; and (3) over time, the plume expands, and resorbed As is re-released into groundwater. This “roll front” behavior underscores the transience of sorption as an As attenuation mechanism. Over the plume’s lifespan, simulations suggest that As will contaminate more groundwater than benzene from the oil spill. At its maximum, the model simulates that ~5.7× more groundwater will be contaminated by As than benzene, suggesting that As could pose a greater long-term water quality threat than benzene in this petroleum-contaminated aquifer.
Collapse
|
597
|
Whitlock B. Telomere Length and Arsenic: Improving Animal Models of Toxicity by Choosing Mice With Shorter Telomeres. Int J Toxicol 2021; 40:211-217. [PMID: 34008434 DOI: 10.1177/10915818211009844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is both a chemotherapeutic drug and an environmental toxicant that affects hundreds of millions of people each year. Arsenic exposure in drinking water has been called the worst poisoning in human history. How arsenic is handled in the body is frequently studied using rodent models to investigate how arsenic both causes and treats disease. These models, used in a variety of arsenic-related testing, from tumor formation to drug toxicity monitoring, have virtually always been developed from animals with telomeres that are unnaturally long, likely because of accidental artificial selective pressures. Mice that have been bred in captivity in laboratory conditions, often for over 100 years, are the standard in creating animal models for this research. Using these mice introduces challenges to any work that can be affected by the length of telomeres and the related capacities for tissue repair and cancer resistance. However, arsenic research is particularly susceptible to the misuse of such animal models due to the multiple and various interactions between arsenic and telomeres. Researchers in the field commonly find mouse models and humans behaving very differently upon exposure to acute and chronic arsenic, including drug therapies which seem safe in mice but are toxic in humans. Here, some complexities and apparent contradictions of the arsenic carcinogenicity and toxicity research are reconciled by an explanatory model that involves telomere length explained by the evolutionary pressures in laboratory mice. A low-risk hypothesis is proposed which has the power to determine whether researchers can easily develop more powerful and accurate mouse models by simply avoiding mouse lineages that are very old and have strangely long telomeres. Swapping in newer mouse lineages for the older, long-telomere mice may vastly improve our ability to research arsenic toxicity with virtually no increase in cost or difficulty of research.
Collapse
Affiliation(s)
- Brayden Whitlock
- University of Alberta Health Accelerator, Edmonton, Alberta, Canada.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
598
|
Ouyang L, Zhang Y, Wang Y, Wang X, Yuan S. Insights into the Adsorption and Photocatalytic Oxidation Behaviors of Boron-Doped TiO 2/g-C 3N 4 Nanocomposites toward As(III) in Aqueous Solution. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Zhang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinlong Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
599
|
Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X, Gao W, Wu F, Holford P, Chen ZH. Metalloid hazards: From plant molecular evolution to mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124495. [PMID: 33187800 DOI: 10.1016/j.jhazmat.2020.124495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guang Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adeel Riaz
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
600
|
Rajendran M, Thangavelu D. Removal of As(V) from water using galvanically coupled sacrificial metals. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124564. [PMID: 33248826 DOI: 10.1016/j.jhazmat.2020.124564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
The Permeable reactive barriers (PRBs) is one of the sustainable methods of environmental remediation for groundwater treatment. On using iron as reactive media for PRBs, the longevity of the column is affected by the accumulation of iron corrosion products resulting in permeability reduction. Hence, in this work, iron and zinc are employed as sacrificial metals to remove 50 mg/L As(V) from aqueous solution in an oxic environment, where copper is added as a noble metal. The iron-based system followed first-order reaction kinetics with rate constants -1.65 × 10-3 min-1 for iron and 2.95 × 10-3 min-1 for copper-iron. The zinc-based system followed second-order reaction kinetics with rate constants - 1.26 × 10-4 L.mg-1.min-1for zinc and 4.67 × 10-4 L.mg-1.min-1 for copper-zinc. The half-life was computed to be 420.1, 234.9. 171.1, and 46.6 min for Fe, Cu‒Fe, Zn, and Cu‒Zn. The constant supply of adsorption sites is ensured by the continuous generation of corrosion products by sacrificial metals on galvanically coupling with copper. The effectiveness of arsenic retention can be in the order: Cu‒Zn > Cu‒Fe > Zn > Fe. Among the studied systems, the copper-zinc system can be suggested as the best possible reactive media for PRB in arsenic remediation of groundwater.
Collapse
Affiliation(s)
- Malini Rajendran
- Central Electrochemical Research Institute, Karaikudi 630 003, India.
| | - Deepa Thangavelu
- Vivekanandha Arts and Science College for Women, Veerachipalayam, Sankari (t.k), Salem District 637303, India
| |
Collapse
|