551
|
NADIN-DAVIS SUSANA, FENG YUQIN, MOUSSE DELPHINE, WANDELER ALEXANDERI, ARIS-BROSOU STÉPHANE. Spatial and temporal dynamics of rabies virus variants in big brown bat populations across Canada: footprints of an emerging zoonosis. Mol Ecol 2010; 19:2120-36. [DOI: 10.1111/j.1365-294x.2010.04630.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
552
|
Clarkson JJ, Kelly LJ, Leitch AR, Knapp S, Chase MW. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol Phylogenet Evol 2010; 55:99-112. [PMID: 19818862 DOI: 10.1016/j.ympev.2009.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species.
Collapse
Affiliation(s)
- James J Clarkson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| | - Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Andrew R Leitch
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Sandra Knapp
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
553
|
Kelly LJ, Leitch AR, Clarkson JJ, Hunter RB, Knapp S, Chase MW. Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae). Mol Biol Evol 2010; 27:781-99. [PMID: 19897524 DOI: 10.1093/molbev/msp267] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Reticulate evolution may function both at the species level, through homoploid and polyploid hybridization, and below the species level, through inter and intragenic recombination. These processes represent challenges for the reconstruction of evolutionary relationships between species, because they cannot be represented adequately with bifurcating trees. We use data from low-copy nuclear genes to evaluate long-standing hypotheses of homoploid (interspecific) hybrid speciation in Nicotiana (Solanaceae) and reconstruct a complex series of reticulation events that have been important in the evolutionary history of this genus. Hybrid origins for three diploid species (Nicotiana glauca, N. linearis, and N. spegazzinii) are inferred on the basis of gene tree incongruence, evidence for interallelic recombination between likely parental alleles, and support for incompatible splits in Lento plots. Phylogenetic analysis of recombinant gene sequences illustrates that recombinants may be resolved with one of their progenitor lineages with a high posterior probability under Bayesian inference, and thus there is no indication of the conflict between phylogenetic signals that results from reticulation. Our results illustrate the importance of hybridization in shaping evolution in Nicotiana and also show that intragenic recombination may be relatively common. This finding demonstrates that it is important to investigate the possibility of recombination when aiming to detect hybrids from DNA-sequence data and reconstruct patterns of reticulate evolution between species.
Collapse
Affiliation(s)
- Laura J Kelly
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
554
|
Liu X, Wu C, Chen AYH. Codon usage bias and recombination events for neuraminidase and hemagglutinin genes in Chinese isolates of influenza A virus subtype H9N2. Arch Virol 2010; 155:685-93. [DOI: 10.1007/s00705-010-0631-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
555
|
Bui Thi Ngoc L, Vernière C, Jouen E, Ah-You N, Lefeuvre P, Chiroleu F, Gagnevin L, Pruvost O. Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae. Int J Syst Evol Microbiol 2010; 60:515-525. [DOI: 10.1099/ijs.0.009514-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three pathogenic variants (i.e. pathotypes) have been described within Xanthomonas citri pv. citri, the causal agent of Asiatic citrus canker. Pathotype A strains naturally infect a wide range of Citrus species and members of some related genera. In contrast, pathotypes A* and Aw have narrow host ranges within the genus Citrus and have been isolated from Mexican lime (Citrus aurantifolia L.) and from Mexican lime and alemow (Citrus macrophylla L.), respectively. We used amplified fragment length polymorphism (AFLP) and multilocus sequence analysis (MLSA) based on four partial housekeeping gene sequences (atpD, dnaK, efp and gyrB) for the genotypic classification of Xanthomonas citri pv. citri and the poorly characterized citrus pathogen Xanthomonas campestris pv. bilvae. A Mantel test showed that genetic distances derived from AFLP and MLSA were highly correlated. X. campestris pv. bilvae showed a close relatedness to the type strain of X. citri, indicating that this pathovar should be reclassified as X. citri pv. bilvae. All pathotype A* and Aw strains were most closely related to X. citri pv. citri strains with a wide host range (pathotype A), confirming previous DNA–DNA hybridization data. Pathotype Aw should be considered a junior synonym of pathotype A* on the basis of pathogenicity tests, AFLP, MLSA and PCR using pathovar-specific primers. Evolutionary genome divergences computed from AFLP data suggested that pathotype A* (including Aw strains) is a group of strains that shows a wider genetic diversity than pathotype A.
Collapse
Affiliation(s)
- Lan Bui Thi Ngoc
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Christian Vernière
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Emmanuel Jouen
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Nathalie Ah-You
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Frédéric Chiroleu
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Lionel Gagnevin
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| |
Collapse
|
556
|
Tiendrébéogo F, Lefeuvre P, Hoareau M, Villemot J, Konaté G, Traoré AS, Barro N, Traoré VS, Reynaud B, Traoré O, Lett JM. Molecular diversity of cotton leaf curl Gezira virus isolates and their satellite DNAs associated with okra leaf curl disease in Burkina Faso. Virol J 2010; 7:48. [PMID: 20178575 PMCID: PMC2839976 DOI: 10.1186/1743-422x-7-48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Okra leaf curl disease (OLCD) is a major constraint on okra (Abelmoschus esculentus) production and is widespread in Africa. Using a large number of samples representative of the major growing regions in Burkina Faso (BF), we show that the disease is associated with a monopartite begomovirus and satellite DNA complexes. Twenty-three complete genomic sequences of Cotton leaf curl Gezira virus (CLCuGV) isolates associated with OLCD, sharing 95 to 99% nucleotide identity, were cloned and sequenced. Six betasatellite and four alphasatellite (DNA-1) molecules were also characterized. The six isolates of betasatellite associated with CLCuGV isolates correspond to Cotton leaf curl Gezira betasatellite (CLCuGB) (88 to 98% nucleotide identity). One isolate of alphasatellite is a variant of Cotton leaf curl Gezira alphasatellite (CLCuGA) (89% nucleotide identity), whereas the three others isolates appear to correspond to a new species of alphasatellite (CLCuGA most similar sequence present 52 to 60% nucleotide identity), provisionally named Okra leaf curl Burkina Faso alphasatellite (OLCBFA). Recombination analysis of the viruses demonstrated the interspecies recombinant origin of all CLCuGV isolates, with parents being close to Hollyhock leaf crumple virus (AY036009) and Tomato leaf curl Diana virus (AM701765). Combined with the presence of satellites DNA, these results highlight the complexity of begomoviruses associated with OLCD.
Collapse
Affiliation(s)
- Fidèle Tiendrébéogo
- Laboratoire de Biochimie & Biologie Moléculaire, CRSBAN/UFR/SVT, Université de Ouagadougou 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
557
|
Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch Virol 2010; 155:471-80. [DOI: 10.1007/s00705-010-0604-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
|
558
|
Fluoroquinolone resistance in Streptococcus dysgalactiae subsp. equisimilis and evidence for a shared global gene pool with Streptococcus pyogenes. Antimicrob Agents Chemother 2010; 54:1769-77. [PMID: 20145082 DOI: 10.1128/aac.01377-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolone resistance is an emerging problem in Streptococcus pyogenes, and recombination with Streptococcus dysgalactiae DNA has been implicated as a frequent mechanism leading to resistance. We have characterized a collection of S. dysgalactiae subsp. equisimilis isolates responsible for infections in humans (n = 314) and found a high proportion of levofloxacin-resistant isolates (12%). Resistance was associated with multiple emm types and genetic lineages, as determined by pulsed-field gel electrophoretic profiling. Since we could not find evidence for a role of efflux pumps in resistance, we sequenced the quinolone resistance-determining regions of the gyrA and parC genes of representative resistant and susceptible isolates. We found much greater diversity among the parC genes (19 alleles) than among the gyrA genes (5 alleles). While single mutations in either GyrA or ParC were sufficient to raise the MIC so that the strains were classified as intermediately resistant, higher-level resistance was associated with mutations in both GyrA and ParC. Evidence for recombination with S. pyogenes DNA was found in some parC alleles, but this was not exclusively associated with resistance. Our data support the existence of a common reservoir of genes conferring quinolone resistance shared between S. dysgalactiae subsp. equisimilis and S. pyogenes, while no recombination with the animal pathogen S. dysgalactiae subsp. dysgalactiae could be found.
Collapse
|
559
|
Liu W, Zhai J, Liu J, Xie Y. Identification of natural recombination in duck hepatitis B virus. Virus Res 2010; 149:245-51. [PMID: 20144903 DOI: 10.1016/j.virusres.2010.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 12/29/2022]
Abstract
Due to its high similarity to human hepatitis B virus (HBV), duck HBV (DHBV) is often used as an important model for HBV research. While inter-genotypic recombination of HBV is common, it has not been reported with DHBV. In this study, 32 non-redundant DHBV complete genomes were analyzed using phylogenetic methods and classified into two clusters, corresponding to the 'Chinese' and 'Western country' branches previously reported based on geographical distribution. One 'Chinese' branch strain was isolated in Australia and three 'Western country' branch strains were isolated in China, suggesting cross-geographical distribution of both branches. Recombination analyses of the 32 DHBV genomes identified two possible inter-genotypic recombination events with high confidence value. These recombination events occurred between the lineages represented, respectively, by the Chinese isolate GD3 (AY536371, 'Chinese' branch) and the American isolate DHBV16 (K01834, 'Western country' branch), giving rise to two Chinese recombinant isolates CH4 (EU429324) and CH6 (EU429326). The identification of inter-genotypic recombination among circulating DHBV isolates suggests the usefulness of DHBV as a model for studying the mechanism of HBV recombination.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | |
Collapse
|
560
|
Boulila M. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis. Biochem Genet 2009; 48:357-75. [PMID: 20035376 DOI: 10.1007/s10528-009-9317-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.
Collapse
|
561
|
Comparative analysis of American Dengue virus type 1 full-genome sequences. Virus Genes 2009; 40:60-6. [PMID: 19997970 DOI: 10.1007/s11262-009-0428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
Dengue virus (DENV; Genus Flavivirus, Family Flaviviridae) has been circulating in Brazil since at least the mid-1980s and continues to be responsible for sporadic cases of Dengue fever and Dengue hemorrhagic fever throughout this country. Here, we describe the full genomes of two new Brazilian DENV-serotype 1 (DENV-1) variants and analyze these together with all other available American DENV-1 full-genome sequences. Besides confirming the existence of various country-specific DENV-1 founder effects that have produced a high degree of geographical structure in the American DENV-1 population, we also identify that one of the new viruses is one of only three detectable intra-American DENV-1 recombinants. Although such obvious evidence of genetic exchange among epidemiologically unlinked Latin American DENV-1 sequences is relatively rare, we find that at the population-scale there exists substantial evidence of pervasive recombination that most likely occurs between viruses that are so genetically similar that it is not possible to reliably distinguish and characterize individual recombination events.
Collapse
|
562
|
Mekuria TA, Gutha LR, Martin RR, Naidu RA. Genome diversity and intra- and interspecies recombination events in Grapevine fanleaf virus. PHYTOPATHOLOGY 2009; 99:1394-402. [PMID: 19900006 DOI: 10.1094/phyto-99-12-1394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ABSTRACT Grapevine fanleaf virus (GFLV) was documented in self-rooted vines of four grapevine (Vitis vinifera) cultivars in eastern Washington. GFLV was found as mixed infection in cvs. Pinot Noir, Chardonnay, and Cabernet Franc and as single infections in cv. Merlot. Fanleaf disease symptoms were only observed in the first two cultivars. The spatial distribution of GFLV-infected grapevines was random, suggesting primary spread through planting virus-infected cuttings rather than infield transmission. RNA1 sequences of Washington isolates showed 87 to 89% nucleotide sequence identity between them and with strain F13. RNA2 of Washington isolates was variable in size, showing 85 to 99% sequence identity between them and 81 to 92% with other isolates. As in other GFLV isolates, three conserved putative stem-loop structures were present in the 5' noncoding regions of both RNAs of Washington isolates. Phylogenetic incongruence of GFLV isolates from Washington in 2A(HP)- and 2B(MP)-based trees and identification of putative recombination events suggested that their genomic RNA2 originated from inter- and intraspecies recombination events between GFLV, Grapevine deformation virus, and Arabis mosaic virus. These results confirm interspecies recombination in RNA2 of grapevine-infecting nepoviruses as an important strategy for GFLV evolution.
Collapse
Affiliation(s)
- Tefera A Mekuria
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State Crops Reserach Laboratory, Corvallis, OR 97330, USA
| | | | | | | |
Collapse
|
563
|
Fournier-Level A, Lacombe T, Le Cunff L, Boursiquot JM, This P. Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity (Edinb) 2009; 104:351-62. [PMID: 19920856 DOI: 10.1038/hdy.2009.148] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Polymorphisms in the grape transcription factor family VvMybA are responsible for variation in anthocyanin content in the berries of cultivated grapevine (Vitis vinifera L. subsp. sativa). Previous study has shown that white grapes arose through the mutation of two adjacent genes: a retroelement insertion in VvMybA1 and a single-nucleotide polymorphism mutation in VvMybA2. The purpose of this study was to understand how these mutations emerged and affected genetic diversity at neighbouring sites and how they structured the genetic diversity of cultivated grapevines. We sequenced a total of 3225 bp of these genes in a core collection of genetic resources, and carried out empirical selection tests, phylogenetic- and coalescence-based demographic analyses. The insertion in the VvMybA1 promoter was shown to have occurred recently, after the mutation of VvMybA2, both mutations followed by a selective sweep. The mutational pattern for these colour genes is consistent with progressively relaxed selection from constrained ancestral coloured haplotypes to light coloured and finally white haplotypes. Dynamics of population size in the VvMybA genes showed an initial exponential growth, followed by population size stabilization. Most ancestral haplotypes are found in cultivars from western region, whereas recent haplotypes are essentially present in table cultivars from eastern regions where intense breeding practices may have replaced the original diversity. Finally, the emergence of the white allele was followed by a recent strong exponential growth, showing a very fast diffusion of the initial white allele.
Collapse
Affiliation(s)
- A Fournier-Level
- INRA UMR 1097 Diversité et Adaptation des Plantes Cultivées, Montpellier, France
| | | | | | | | | |
Collapse
|
564
|
Varsani A, Monjane AL, Donaldson L, Oluwafemi S, Zinga I, Komba EK, Plakoutene D, Mandakombo N, Mboukoulida J, Semballa S, Briddon RW, Markham PG, Lett JM, Lefeuvre P, Rybicki EP, Martin DP. Comparative analysis of Panicum streak virus and Maize streak virus diversity, recombination patterns and phylogeography. Virol J 2009; 6:194. [PMID: 19903330 PMCID: PMC2777162 DOI: 10.1186/1743-422x-6-194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background Panicum streak virus (PanSV; Family Geminiviridae; Genus Mastrevirus) is a close relative of Maize streak virus (MSV), the most serious viral threat to maize production in Africa. PanSV and MSV have the same leafhopper vector species, largely overlapping natural host ranges and similar geographical distributions across Africa and its associated Indian Ocean Islands. Unlike MSV, however, PanSV has no known economic relevance. Results Here we report on 16 new PanSV full genome sequences sampled throughout Africa and use these together with others in public databases to reveal that PanSV and MSV populations in general share very similar patterns of genetic exchange and geographically structured diversity. A potentially important difference between the species, however, is that the movement of MSV strains throughout Africa is apparently less constrained than that of PanSV strains. Interestingly the MSV-A strain which causes maize streak disease is apparently the most mobile of all the PanSV and MSV strains investigated. Conclusion We therefore hypothesize that the generally increased mobility of MSV relative to other closely related species such as PanSV, may have been an important evolutionary step in the eventual emergence of MSV-A as a serious agricultural pathogen. The GenBank accession numbers for the sequences reported in this paper are GQ415386-GQ415401
Collapse
Affiliation(s)
- Arvind Varsani
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Pickett BE, Lefkowitz EJ. Recombination in West Nile Virus: minimal contribution to genomic diversity. Virol J 2009; 6:165. [PMID: 19821990 PMCID: PMC2763871 DOI: 10.1186/1743-422x-6-165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/12/2009] [Indexed: 02/01/2023] Open
Abstract
Recombination is known to play a role in the ability of various viruses to acquire sequence diversity. We consequently examined all available West Nile virus (WNV) whole genome sequences both phylogenetically and with a variety of computational recombination detection algorithms. We found that the number of distinct lineages present on a phylogenetic tree reconstruction to be identical to the 6 previously reported. Statistically-significant evidence for recombination was only observed in one whole genome sequence. This recombination event was within the NS5 polymerase coding region. All three viruses contributing to the recombination event were originally isolated in Africa at various times, with the major parent (SPU116_89_B), minor parent (KN3829), and recombinant sequence (AnMg798) belonging to WNV taxonomic lineages 2, 1a, and 2 respectively. This one isolated recombinant genome was out of a total of 154 sequences analyzed. It therefore does not seem likely that recombination contributes in any significant manner to the overall sequence variation within the WNV genome.
Collapse
Affiliation(s)
- Brett E Pickett
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| | | |
Collapse
|
566
|
Rivera R, Nollens HH, Venn-Watson S, Gulland FMD, Wellehan JFX. Characterization of phylogenetically diverse astroviruses of marine mammals. J Gen Virol 2009; 91:166-73. [DOI: 10.1099/vir.0.015222-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
567
|
Pinel-Galzi A, Mpunami A, Sangu E, Rakotomalala M, Traoré O, Sérémé D, Sorho F, Séré Y, Kanyeka Z, Konaté G, Fargette D. Recombination, selection and clock-like evolution of Rice yellow mottle virus. Virology 2009; 394:164-72. [PMID: 19740507 DOI: 10.1016/j.virol.2009.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/15/2009] [Accepted: 08/04/2009] [Indexed: 02/07/2023]
Abstract
The clock-like diversification of Rice yellow mottle virus (RYMV), a widespread RNA plant virus that infects rice in Africa, was tested following a three-step approach with (i) an exhaustive search of recombinants, (ii) a comprehensive assessment of the selective constraints over lineages, and (iii) a stepwise series of tests of the molecular clock hypothesis. The first evidence of recombination in RYMV was found in East Africa, in the region most favorable to co-infection. RYMV evolved under a pronounced purifying selection, but the selection pressure did vary among lineages. There was no phylogenetic evidence of transient deleterious mutations. ORF2b, which codes for the polymerase and is the most constrained ORF, tends to diversify clock-like. With the other ORFs and the full genome, the departure from the strict clock model was limited. This likely reflects the dominant conservative selection pressure and the clock-like fixation of synonymous mutations.
Collapse
Affiliation(s)
- A Pinel-Galzi
- Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Koop JL, Zeh DW, Bonilla MM, Zeh JA. Reproductive compensation favours male-killing Wolbachia in a live-bearing host. Proc Biol Sci 2009; 276:4021-8. [PMID: 19710065 DOI: 10.1098/rspb.2009.1230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Wolbachia are maternally inherited, cellular endosymbionts that can enhance their fitness by biasing host sex ratio in favour of females. Male killing (MK) is an extreme form of sex-ratio manipulation that is selectively advantageous if the self-sacrifice of Wolbachia in males increases transmission through females. In live-bearing hosts, females typically produce more embryos than can be carried to term, and reproductive compensation through maternal resource reallocation from dead males to female embryos could increase the number of daughters born to infected females. Here, we report a new strain of MK Wolbachia (wCsc2) in the pseudoscorpion, Cordylochernes scorpioides, and present the first empirical evidence that reproductive compensation favours the killing of males in a viviparous host. Females infected with the wCsc2 strain produced 26 per cent more and significantly larger daughters than tetracycline-cured females. In contrast to the previously described wCsc1 MK Wolbachia strain in C. scorpioides, wCsc2 infection was not accompanied by an increase in the rate of spontaneous brood abortion. Characterization of the wCsc1 and wCsc2 strains by multi-locus sequence typing and by Wolbachia surface protein (wsp) gene sequencing indicates that the marked divergence between these two MK strains in their impact on host reproductive success, and hence in their potential to spread, has occurred in association with homologous recombination in the wsp gene.
Collapse
Affiliation(s)
- Julie L Koop
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
569
|
Kang HJ, Bennett SN, Sumibcay L, Arai S, Hope AG, Mocz G, Song JW, Cook JA, Yanagihara R. Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One 2009; 4:e6149. [PMID: 19582155 PMCID: PMC2702001 DOI: 10.1371/journal.pone.0006149] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/04/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. METHODOLOGY/PRINCIPAL FINDINGS Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. CONCLUSIONS Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.
Collapse
Affiliation(s)
- Hae Ji Kang
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Microbiology, College of Medicine, Institute for Viral Diseases and Bank for Pathogenic Viruses, Korea University, Seoul, Korea
| | - Shannon N. Bennett
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Laarni Sumibcay
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Andrew G. Hope
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gabor Mocz
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Institute for Viral Diseases and Bank for Pathogenic Viruses, Korea University, Seoul, Korea
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
570
|
Miller PJ, Kim LM, Ip HS, Afonso CL. Evolutionary dynamics of Newcastle disease virus. Virology 2009; 391:64-72. [PMID: 19564032 DOI: 10.1016/j.virol.2009.05.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/27/2009] [Accepted: 05/22/2009] [Indexed: 12/26/2022]
Abstract
A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution.
Collapse
Affiliation(s)
- Patti J Miller
- Southeast Poultry Research Laboratories, USDA ARS, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | | | | | | |
Collapse
|
571
|
Tracing the evolution of competence in Haemophilus influenzae. PLoS One 2009; 4:e5854. [PMID: 19516897 PMCID: PMC2689351 DOI: 10.1371/journal.pone.0005854] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/11/2009] [Indexed: 11/19/2022] Open
Abstract
Natural competence is the genetically encoded ability of some bacteria to take up DNA from the environment. Although most of the incoming DNA is degraded, occasionally intact homologous fragments can recombine with the chromosome, displacing one resident strand. This potential to use DNA as a source of both nutrients and genetic novelty has important implications for the ecology and evolution of competent bacteria. However, it is not known how frequently competence changes during evolution, or whether non-competent strains can persist for long periods of time. We have previously studied competence in H. influenzae and found that both the amount of DNA taken up and the amount recombined varies extensively between different strains. In addition, several strains are unable to become competent, suggesting that competence has been lost at least once. To investigate how many times competence has increased or decreased during the divergence of these strains, we inferred the evolutionary relationships of strains using the largest datasets currently available. However, despite the use of three datasets and multiple inference methods, few nodes were resolved with high support, perhaps due to extensive mixing by recombination. Tracing the evolution of competence in those clades that were well supported identified changes in DNA uptake and/or transformation in most strains. The recency of these events suggests that competence has changed frequently during evolution but the poor support of basal relationships precludes the determination of whether non-competent strains can persist for long periods of time. In some strains, changes in transformation have occurred that cannot be due to changes in DNA uptake, suggesting that selection can act on transformation independent of DNA uptake.
Collapse
|
572
|
Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus. PLoS Pathog 2009; 5:e1000418. [PMID: 19424420 PMCID: PMC2671596 DOI: 10.1371/journal.ppat.1000418] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/07/2009] [Indexed: 11/23/2022] Open
Abstract
The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology. Recombination allows mixing portions of genomes of different origins, generating chimeric genes and genomes. With respect to the random generation of new mutations, it can lead to the simultaneous insertion of several substitutions, introducing more drastic changes in the genome. Furthermore, recombination is expected to yield a higher proportion of functional products since it combines variants that already exist in the population and that are therefore compatible with the survival of the organism. However, when recombination involves genetically distant strains, it can be constrained by the necessity to retain the functionality of the resulting products. In pathogens, which are subjected to strong selective pressures, recombination is particularly important, and several viruses, such as the human immunodeficiency virus (HIV), readily recombine. Here, we demonstrate the existence of preferential regions for recombination in the HIV-1 envelope gene when crossing sequences representative of strains observed to recombine in vivo. Furthermore, some recombinants give a decreased proportion of functional products. When considering these factors, one can retrace the history of most natural HIV recombinants. Recombination in HIV appears not so unpredictable, therefore, and the existence of recombinants that frequently generate nonfunctional products highlights previously unappreciated limits of the genetic flexibility of HIV.
Collapse
|
573
|
Schmidt J, Kirsch S, Rappold GA, Schempp W. Complex evolution of a Y-chromosomal double homeobox 4 (DUX4)-related gene family in hominoids. PLoS One 2009; 4:e5288. [PMID: 19404400 PMCID: PMC2671837 DOI: 10.1371/journal.pone.0005288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/24/2009] [Indexed: 12/21/2022] Open
Abstract
The human Y chromosome carries four human Y-chromosomal euchromatin/heterochromatin transition regions, all of which are characterized by the presence of interchromosomal segmental duplications. The Yq11.1/Yq11.21 transition region harbours a peculiar segment composed of an imperfectly organized tandem-repeat structure encoding four members of the double homeobox (DUX) gene family. By comparative fluorescence in situ hybridization (FISH) analysis we have documented the primary appearance of Y-chromosomal DUX genes (DUXY) on the gibbon Y chromosome. The major amplification and dispersal of DUXY paralogs occurred after the gibbon and hominid lineages had diverged. Orthologous DUXY loci of human and chimpanzee show a highly similar structural organization. Sequence alignment survey, phylogenetic reconstruction and recombination detection analyses of human and chimpanzee DUXY genes revealed the existence of all copies in a common ancestor. Comparative analysis of the circumjacent beta-satellites indicated that DUXY genes and beta-satellites evolved in concert. However, evolutionary forces acting on DUXY genes may have induced amino acid sequence differences in the orthologous chimpanzee and human DUXY open reading frames (ORFs). The acquisition of complete ORFs in human copies might relate to evolutionary advantageous functions indicating neo-functionalization. We propose an evolutionary scenario in which an ancestral tandem array DUX gene cassette transposed to the hominoid Y chromosome followed by lineage-specific chromosomal rearrangements paved the way for a species-specific evolution of the Y-chromosomal members of a large highly diverged homeobox gene family.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Stefan Kirsch
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Gudrun A. Rappold
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
574
|
Lemey P, Lott M, Martin DP, Moulton V. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinformatics 2009; 10:126. [PMID: 19397803 PMCID: PMC2684544 DOI: 10.1186/1471-2105-10-126] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/27/2009] [Indexed: 12/02/2022] Open
Abstract
Background Recombination has a profound impact on the evolution of viruses, but characterizing recombination patterns in molecular sequences remains a challenging endeavor. Despite its importance in molecular evolutionary studies, identifying the sequences that exhibit such patterns has received comparatively less attention in the recombination detection framework. Here, we extend a quartet-mapping based recombination detection method to enable identification of recombinant sequences without prior specifications of either query and reference sequences. Through simulations we evaluate different recombinant identification statistics and significance tests. We compare the quartet approach with triplet-based methods that employ additional heuristic tests to identify parental and recombinant sequences. Results Analysis of phylogenetic simulations reveal that identifying the descendents of relatively old recombination events is a challenging task for all methods available, and that quartet scanning performs relatively well compared to the triplet based methods. The use of quartet scanning is further demonstrated by analyzing both well-established and putative HIV-1 recombinant strains. In agreement with recent findings, we provide evidence that the presumed circulating recombinant CRF02_AG is a 'pure' lineage, whereas the presumed parental lineage subtype G has a recombinant origin. We also demonstrate HIV-1 intrasubtype recombination, confirm the hybrid origin of SIV in chimpanzees and further disentangle the recombinant history of SIV lineages in a primate immunodeficiency virus data set. Conclusion Quartet scanning makes a valuable addition to triplet-based methods for identifying recombinant sequences without prior specifications of either query and reference sequences. The new method is available in the VisRD v.3.0 package .
Collapse
Affiliation(s)
- Philippe Lemey
- Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
575
|
Burzynski A, Smietanka B. Is Interlineage Recombination Responsible for Low Divergence of Mitochondrial nad3 Genes in Mytilus galloprovincialis? Mol Biol Evol 2009; 26:1441-5. [DOI: 10.1093/molbev/msp085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
576
|
Tolf C, Gullberg M, Johansson ES, Tesh RB, Andersson B, Lindberg AM. Molecular characterization of a novel Ljungan virus (Parechovirus; Picornaviridae) reveals a fourth genotype and indicates ancestral recombination. J Gen Virol 2009; 90:843-853. [PMID: 19264646 PMCID: PMC2889435 DOI: 10.1099/vir.0.007948-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/22/2008] [Indexed: 01/11/2023] Open
Abstract
Ljungan virus (LV) was discovered 20 years ago in Swedish bank voles (Myodes glareolus, previously referred to as Clethrionomys glareolus) during the search for an infectious agent causing lethal myocarditis in young athletes. To date, the genomes of four LV isolates, including the prototype 87-012 strain, have been characterized. Three of these LV strains were isolated from bank voles trapped in Sweden. Sequence analysis of an American virus (M1146), isolated from a montane vole (Microtus montanus) in western USA, indicates that this strain represents a genotype that is different from the Swedish strains. Here, we present genomic analyses of a fifth LV strain (64-7855) isolated from a southern red-backed vole (Myodes gapperi) trapped during arbovirus studies in New York state in the north-eastern USA in the 1960s. Sequence analysis of the 64-7855 genome showed an LV-like genome organization and sequence similarity to other LV strains. Genetic and phylogenetic analyses of the evolutionary relationship between the 64-7855 strain and other viruses within the family Picornaviridae, including previously published LV strains, demonstrated that the 64-7855 strain constitutes a new genotype within the LV species. Analyses also showed that different regions of the 64-7855 genome have different phylogenetic relationships with other LV strains, indicating that previous recombination events have been involved in the evolution of this virus.
Collapse
Affiliation(s)
- Conny Tolf
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - Maria Gullberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| | - E. Susanne Johansson
- Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, NSW 2300, Australia
| | - Robert B. Tesh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - A. Michael Lindberg
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-39182 Kalmar, Sweden
| |
Collapse
|
577
|
Lamers SL, Salemi M, Galligan DC, de Oliveira T, Fogel GB, Granier SC, Zhao L, Brown JN, Morris A, Masliah E, McGrath MS. Extensive HIV-1 intra-host recombination is common in tissues with abnormal histopathology. PLoS One 2009; 4:e5065. [PMID: 19333384 PMCID: PMC2659430 DOI: 10.1371/journal.pone.0005065] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 02/12/2009] [Indexed: 11/19/2022] Open
Abstract
There is evidence that immune-activated macrophages infected with the Human Immunodeficiency Virus (HIV) are associated with tissue damage and serve as a long-lived viral reservoir during therapy. In this study, we analyzed 780 HIV genetic sequences generated from 53 tissues displaying normal and abnormal histopathology. We found up to 50% of the sequences from abnormal lymphoid and macrophage rich non-lymphoid tissues were intra-host viral recombinants. The presence of extensive recombination, especially in non-lymphoid tissues, implies that HIV-1 infected macrophages may significantly contribute to the generation of elusive viral genotypes in vivo. Because recombination has been implicated in immune evasion, the acquisition of drug-resistance mutations, and alterations of viral co-receptor usage, any attempt towards the successful eradication of HIV-1 requires therapeutic approaches targeting tissue macrophages.
Collapse
Affiliation(s)
| | - Marco Salemi
- BioInfoExperts, Thibodaux, Louisiana, United States of America
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Derek C. Galligan
- Department of Laboratory Medicine, Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
| | - Tulio de Oliveira
- BioInfoExperts, Thibodaux, Louisiana, United States of America
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Gary B. Fogel
- Natural Selection, Inc., San Diego, California, United States of America
| | - Sara C. Granier
- BioInfoExperts, Thibodaux, Louisiana, United States of America
| | - Li Zhao
- The Department of Toxicology, Shandong University, Jinan, China
| | - Joseph N. Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alanna Morris
- Department of Laboratory Medicine, Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
| | - Eliezer Masliah
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Michael S. McGrath
- Department of Laboratory Medicine, Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
- Pathologica Inc., Burlingame, California, United States of America
- AIDS and Cancer Specimen Resource, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
578
|
Varsani A, Shepherd DN, Dent K, Monjane AL, Rybicki EP, Martin DP. A highly divergent South African geminivirus species illuminates the ancient evolutionary history of this family. Virol J 2009; 6:36. [PMID: 19321000 PMCID: PMC2666655 DOI: 10.1186/1743-422x-6-36] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have characterised a new highly divergent geminivirus species, Eragrostis curvula streak virus (ECSV), found infecting a hardy perennial South African wild grass. ECSV represents a new genus-level geminivirus lineage, and has a mixture of features normally associated with other specific geminivirus genera. RESULTS Whereas the ECSV genome is predicted to express a replication associated protein (Rep) from an unspliced complementary strand transcript that is most similar to those of begomoviruses, curtoviruses and topocuviruses, its Rep also contains what is apparently a canonical retinoblastoma related protein interaction motif such as that found in mastreviruses. Similarly, while ECSV has the same unusual TAAGATTCC virion strand replication origin nonanucleotide found in another recently described divergent geminivirus, Beet curly top Iran virus (BCTIV), the rest of the transcription and replication origin is structurally more similar to those found in begomoviruses and curtoviruses than it is to those found in BCTIV and mastreviruses. ECSV also has what might be a homologue of the begomovirus transcription activator protein gene found in begomoviruses, a mastrevirus-like coat protein gene and two intergenic regions. CONCLUSION Although it superficially resembles a chimaera of geminiviruses from different genera, the ECSV genome is not obviously recombinant, implying that the features it shares with other geminiviruses are those that were probably present within the last common ancestor of these viruses. In addition to inferring how the ancestral geminivirus genome may have looked, we use the discovery of ECSV to refine various hypotheses regarding the recombinant origins of the major geminivirus lineages.
Collapse
Affiliation(s)
- Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Dionne N Shepherd
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Kyle Dent
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Aderito L Monjane
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
579
|
Martín S, Sambade A, Rubio L, Vives MC, Moya P, Guerri J, Elena SF, Moreno P. Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J Gen Virol 2009; 90:1527-1538. [PMID: 19264625 DOI: 10.1099/vir.0.008193-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The genetic variation of Citrus tristeza virus (CTV) was analysed by comparing the predominant sequence variants in seven genomic regions (p33, p65, p61, p18, p13, p20 and p23) of 18 pathogenically distinct isolates from seven different countries. Analyses of the selective constraints acting on each codon suggest that most regions were under purifying selection. Phylogenetic analysis shows diverse patterns of molecular evolution for different genomic regions. A first clade composed of isolates that are genetically close to the reference mild isolates T385 or T30 was inferred from all genomic regions. A second clade, mostly comprising virulent isolates, was defined from regions p33, p65, p13 and p23. For regions p65, p61, p18, p13 and p23, a third clade that mostly included South American isolates could not be related to any reference genotype. Phylogenetic relationships among isolates did not reflect their geographical origin, suggesting significant gene flow between geographically distant areas. Incongruent phylogenetic trees for different genomic regions suggested recombination events, an extreme that was supported by several recombination-detecting methods. A phylogenetic network incorporating the effect of recombination showed an explosive radiation pattern for the evolution of some isolates and also grouped isolates by virulence. Taken together, the above results suggest that negative selection, gene flow, sequence recombination and virulence may be important factors driving CTV evolution.
Collapse
Affiliation(s)
- Susana Martín
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain.,Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| | - Adrián Sambade
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| | - Luis Rubio
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| | - María C Vives
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| | - Patricia Moya
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| | - José Guerri
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Pedro Moreno
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 Valencia, Spain
| |
Collapse
|
580
|
Boulila M. Recombination structure and genetic relatedness among members of the family Bromoviridae based on their RNAs 1 and 2 sequence analyses. Virus Genes 2009; 38:435-44. [DOI: 10.1007/s11262-009-0340-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/12/2009] [Indexed: 12/01/2022]
|
581
|
Lefeuvre P, Lett JM, Varsani A, Martin DP. Widely conserved recombination patterns among single-stranded DNA viruses. J Virol 2009; 83:2697-707. [PMID: 19116260 PMCID: PMC2648288 DOI: 10.1128/jvi.02152-08] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/23/2008] [Indexed: 01/19/2023] Open
Abstract
The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.
Collapse
Affiliation(s)
- P Lefeuvre
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, 97410 Saint Pierre, La Réunion, France
| | | | | | | |
Collapse
|
582
|
Alfaqih MA, Steele CA, Morris RT, Thorgaard GH. Comparative genome mapping reveals evidence of gene conversion between Sox9 paralogs of rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:147-53. [PMID: 20403766 DOI: 10.1016/j.cbd.2009.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/19/2009] [Accepted: 01/19/2009] [Indexed: 11/29/2022]
Abstract
Considerable evidence suggests that one genome duplication event preceded the divergence of teleost fishes and a second genome duplication event occurred before the radiation of teleosts of the family Salmonidae. Two Sox9 genes have been isolated from a number of teleosts and are called Sox9a and Sox9b. Two Sox9 gene copies have also been isolated from rainbow trout, a salmonid fish and are called Sox9 and Sox9?2. Previous evaluations of the evolutionary history of rainbow trout Sox9 gene copies using phylogenetic reconstructions of their coding regions indicated that they both belong to the Sox9b clade. In this study, we determine the true evolutionary history of Sox9 gene copies in rainbow trout. We show that the locus referred to as Sox9 in rainbow trout is itself duplicated. Mapping of the duplicated Sox9 gene copies indicates that they are co-orthologs of Sox9b while mapping of Sox9?2 indicates that it is an ortholog of Sox9a. This relationship is supported by phylogenetic reconstruction of Sox9 gene copies in teleosts using their 3? untranslated regions. The conflicting phylogenetic topology of Sox9 genes in rainbow trout indicates the occurrence of gene conversion events between Sox9 and Sox9?2 which is supported by a number of recombination analyses.
Collapse
Affiliation(s)
- Mahmoud A Alfaqih
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234 USA; Department of Pharmacology and Physiology, Mutah University, Karak, 61710, Jordan
| | | | | | | |
Collapse
|
583
|
Hsu CH, Zhang Y, Hardison R, Miller W. Whole-Genome Analysis of Gene Conversion Events. COMPARATIVE GENOMICS 2009. [DOI: 10.1007/978-3-642-04744-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
584
|
Abstract
Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. While its evolutionary value is a matter of quite intense debate, so too is the influence of recombination on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. The crux of the problem is that when nucleic acids recombine, the daughter or recombinant molecules no longer have a single evolutionary history. All analysis methods that derive increased power from correctly inferring evolutionary relationships between sequences will therefore be at least mildly sensitive to the effects of recombination. The importance of considering recombination in evolutionary studies is underlined by the bewildering array of currently available methods and software tools for analysing and characterising it in various classes of nucleotide sequence datasets. Here we will examine the use of some of these tools to derive and test recombination hypotheses for datasets containing a moderate degree of nucleotide sequence diversity.
Collapse
Affiliation(s)
- Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Observatory, South Africa
| |
Collapse
|
585
|
Genetic diversity and distribution of tomato-infecting begomoviruses in Iran. Virus Genes 2008; 38:311-9. [PMID: 19112612 DOI: 10.1007/s11262-008-0310-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5'-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.
Collapse
|
586
|
Vitorino LR, Margos G, Feil EJ, Collares-Pereira M, Zé-Zé L, Kurtenbach K. Fine-scale phylogeographic structure of Borrelia lusitaniae revealed by multilocus sequence typing. PLoS One 2008; 3:e4002. [PMID: 19104655 PMCID: PMC2602731 DOI: 10.1371/journal.pone.0004002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/20/2008] [Indexed: 11/19/2022] Open
Abstract
Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being approximately 130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites.
Collapse
Affiliation(s)
- Liliana R. Vitorino
- Departamento de Biologia Vegetal/Centro de Genética e Biologia Molecular, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Unidade de Leptospirose e Borreliose de Lyme, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gabriele Margos
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Edward J. Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Margarida Collares-Pereira
- Unidade de Leptospirose e Borreliose de Lyme, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Libia Zé-Zé
- Departamento de Biologia Vegetal/Centro de Genética e Biologia Molecular, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- Centro de Estudos de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Klaus Kurtenbach
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
587
|
Bandawe GP, Martin DP, Treurnicht F, Mlisana K, Karim SSA, Williamson C, The CAPRISA 002 Acute Infection Study Team. Conserved positive selection signals in gp41 across multiple subtypes and difference in selection signals detectable in gp41 sequences sampled during acute and chronic HIV-1 subtype C infection. Virol J 2008; 5:141. [PMID: 19025632 PMCID: PMC2630941 DOI: 10.1186/1743-422x-5-141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/24/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The high diversity of HIV variants driving the global AIDS epidemic has caused many to doubt whether an effective vaccine against the virus is possible. However, by identifying the selective forces that are driving the ongoing diversification of HIV and characterising their genetic consequences, it may be possible to design vaccines that pre-empt some of the virus' more common evasion tactics. One component of such vaccines might be the envelope protein, gp41. Besides being targeted by both the humoral and cellular arms of the immune system this protein mediates fusion between viral and target cell membranes and is likely to be a primary determinant of HIV transmissibility. RESULTS Using recombination aware analysis tools we compared site specific signals of selection in gp41 sequences from different HIV-1 M subtypes and circulating recombinant forms and identified twelve sites evolving under positive selection across multiple major HIV-1 lineages. To identify evidence of selection operating during transmission our analysis included two matched datasets sampled from patients with acute or chronic subtype C infections. We identified six gp41 sites apparently evolving under different selection pressures during acute and chronic HIV-1 infections. These sites mostly fell within functional gp41 domains, with one site located within the epitope recognised by the broadly neutralizing antibody, 4E10. CONCLUSION Whereas these six sites are potentially determinants of fitness and are therefore good candidate targets for subtype-C specific vaccines, the twelve sites evolving under diversifying selection across multiple subtypes might make good candidate targets for broadly protective vaccines.
Collapse
Affiliation(s)
- Gama P Bandawe
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Florette Treurnicht
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Koleka Mlisana
- Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, South Africa
| | - Salim S Abdool Karim
- Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | | |
Collapse
|
588
|
He CQ, Xie ZX, Han GZ, Dong JB, Wang D, Liu JB, Ma LY, Tang XF, Liu XP, Pang YS, Li GR. Homologous recombination as an evolutionary force in the avian influenza A virus. Mol Biol Evol 2008; 26:177-87. [PMID: 18931384 DOI: 10.1093/molbev/msn238] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Avian influenza A viruses (AIVs), including the H5N1, H9N2, and H7N7 subtypes, have been directly transmitted to humans, raising concerns over the possibility of a new influenza pandemic. To prevent a future avian influenza pandemic, it is very important to fully understand the molecular basis driving the change in AIV virulence and host tropism. Although virulent variants of other viruses have been generated by homologous recombination, the occurrence of homologous recombination within AIV segments is controversial and far from proven. This study reports three circulating H9N2 AIVs with similar mosaic PA genes descended from H9N2 and H5N1. Additionally, many homologous recombinants are also found deposited in GenBank. Recombination events can occur in PB2, PB1, PA, HA, and NP segments and between lineages of the same/different serotype. These results collectively demonstrate that intragenic recombination plays a role in driving the evolution of AIVs, potentially resulting in effects on AIV virulence and host tropism changes.
Collapse
Affiliation(s)
- Cheng-Qiang He
- Department of Biotechnology College of Life Science, Shandong Normal University, Shandong Province, Jinan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
589
|
Filipowicz M, Burzyński A, Śmietanka B, Wenne R. Recombination in Mitochondrial DNA of European Mussels Mytilus. J Mol Evol 2008; 67:377-88. [DOI: 10.1007/s00239-008-9157-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/08/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
590
|
Varsani A, Shepherd DN, Monjane AL, Owor BE, Erdmann JB, Rybicki EP, Peterschmitt M, Briddon RW, Markham PG, Oluwafemi S, Windram OP, Lefeuvre P, Lett JM, Martin DP. Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J Gen Virol 2008; 89:2063-2074. [PMID: 18753214 PMCID: PMC2886952 DOI: 10.1099/vir.0.2008/003590-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 06/17/2008] [Indexed: 01/20/2023] Open
Abstract
Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.
Collapse
Affiliation(s)
- Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dionne N. Shepherd
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Adérito L. Monjane
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Betty E. Owor
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Julia B. Erdmann
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Biology, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Edward P. Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Michel Peterschmitt
- CIRAD, UMR BGPI, TA A54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Rob W. Briddon
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, PO Box 577, Faisalabad, Pakistan
| | - Peter G. Markham
- Department of Disease and Stress Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Sunday Oluwafemi
- Department of Crop, Soil and Environmental Management, Bowen University, PMB 284, Iwo, Osun State, Nigeria
| | - Oliver P. Windram
- Warwick HRI Biology Centre, University of Warwick, Wellesbourne CV35 9EF, UK
| | - Pierre Lefeuvre
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, 97410 Saint Pierre, La Réunion, France
| | - Jean-Michel Lett
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, 97410 Saint Pierre, La Réunion, France
| | - Darren P. Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
591
|
Investigating hybridization in the parthenogenetic New Zealand stick insect Acanthoxyla (Phasmatodea) using single-copy nuclear loci. Mol Phylogenet Evol 2008; 48:335-49. [DOI: 10.1016/j.ympev.2008.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/12/2008] [Accepted: 02/15/2008] [Indexed: 11/19/2022]
|
592
|
Codoñer FM, Elena SF. The promiscuous evolutionary history of the family Bromoviridae. J Gen Virol 2008; 89:1739-1747. [DOI: 10.1099/vir.0.2008/000166-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination and segment reassortment are important contributors to the standing genetic variation of RNA viruses and are often involved in the genesis of new, emerging viruses. This study explored the role played by these two processes in the evolutionary radiation of the plant virus family Bromoviridae. The evolutionary history of this family has been explored previously using standard molecular phylogenetic methods, but incongruences have been found among the trees inferred from different gene sequences. This would not be surprising if RNA exchange was a common event, as it is well known that recombination and reassortment of genomes are poorly described by standard phylogenetic methods. In an attempt to reconcile these discrepancies, this study first explored the extent of segment reassortment and found that it was common at the origin of the bromoviruses and cucumoviruses and at least at the origin of alfalfa mosaic virus, American plum line pattern virus and citrus leaf rugose virus. Secondly, recombination analyses were performed on each of the three genomic RNAs and it was found that recombination was very common in members of the genera Bromovirus, Cucumovirus and Ilarvirus. Several cases of recombination involving species from different genera were also identified. Finally, a phylogenetic network was constructed reflecting these genetic exchanges. The network confirmed the taxonomic status of the different genera within the family, despite the phylogenetic noise introduced by genetic exchange.
Collapse
Affiliation(s)
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| |
Collapse
|
593
|
Oluwafemi S, Varsani A, Monjane AL, Shepherd DN, Owor BE, Rybicki EP, Martin DP. A new African streak virus species from Nigeria. Arch Virol 2008; 153:1407-10. [DOI: 10.1007/s00705-008-0123-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
|
594
|
Han GZ, Liu XP, Li SS. Homologous recombination is unlikely to play a major role in influenza B virus evolution. Virol J 2008; 5:65. [PMID: 18505573 PMCID: PMC2474605 DOI: 10.1186/1743-422x-5-65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/27/2008] [Indexed: 11/30/2022] Open
Abstract
Influenza B viruses cause a significant amount of morbidity and mortality. The occurrence of homologous recombination in influenza viruses is controversial. To determine the extent of homologous recombination in influenza B viruses, recombination analyses of 2,650 sequences representing all eight segments of the influenza B viruses were carried out. Only four sequences were indentified as putative recombinants, which were verified using phylogenetic methods. However, the mosaics detected here were much likely to represent cases of laboratory-generated artificial recombinants. As in other myxoviruses, it is unlikely that homologous recombination plays a major role in influenza B virus evolution.
Collapse
Affiliation(s)
- Guan-Zhu Han
- National Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | | | | |
Collapse
|
595
|
Vaughan SP, Grisoni M, Kumagai MH, Kuehnle AR. Characterization of Hawaiian isolates of Cymbidium mosaic virus (CymMV) co-infecting Dendrobium orchid. Arch Virol 2008; 153:1185-9. [PMID: 18458814 DOI: 10.1007/s00705-008-0102-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 03/19/2008] [Indexed: 11/26/2022]
Abstract
We report here the isolation and characterization of three distinct isolates of Cymbidium mosaic virus (CymMV) co-infecting Dendrobium orchid in Hawaii. Isolates 1 and 2 were phylogenetically distinct from previously reported CymMV isolates. However, isolate 3 was highly similar to previously reported CymMV sequences and could be localised to CymMV subgroup A. Isolate 2 localised to CymMV subgroup B. Thus, we report here the first full-length CymMV subgroup B isolate. Isolate 1 represents a recombination event between isolates 2 and 3. Infectivity assays revealed that all three isolates are functional and individually infectious in both Dendrobium and indicator species.
Collapse
Affiliation(s)
- S P Vaughan
- Department of Tropical Plant and Soil Sciences, University of Hawaii, 3190 Maile Way, Honolulu, HI 98622, USA.
| | | | | | | |
Collapse
|
596
|
Boni MF, Zhou Y, Taubenberger JK, Holmes EC. Homologous recombination is very rare or absent in human influenza A virus. J Virol 2008; 82:4807-11. [PMID: 18353939 PMCID: PMC2346757 DOI: 10.1128/jvi.02683-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 11/20/2022] Open
Abstract
To determine the extent of homologous recombination in human influenza A virus, we assembled a data set of 13,852 sequences representing all eight segments and both major circulating subtypes, H3N2 and H1N1. Using an exhaustive search and a nonparametric test for mosaic structure, we identified 315 sequences (approximately 2%) in five different RNA segments that, after a multiple-comparison correction, had statistically significant mosaic signals compatible with homologous recombination. Of these, only two contained recombinant regions of sufficient length (>100 nucleotides [nt]) that the occurrence of homologous recombination could be verified using phylogenetic methods, with the rest involving very short sequence regions (15 to 30 nt). Although this secondary analysis revealed patterns of phylogenetic incongruence compatible with the action of recombination, neither candidate recombinant was strongly supported. Given our inability to exclude the occurrence of mixed infection and template switching during amplification, laboratory artifacts provide an alternative and likely explanation for the occurrence of phylogenetic incongruence in these two cases. We therefore conclude that, if it occurs at all, homologous recombination plays only a very minor role in the evolution of human influenza A virus.
Collapse
Affiliation(s)
- Maciej F Boni
- Resources for the Future, 1616 P St. NW, Washington, DC 20036, USA.
| | | | | | | |
Collapse
|
597
|
Gomes CPC, Nagata T, de Jesus WC, Neto CRB, Pappas GJ, Martin DP. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease. Virol J 2008; 5:9. [PMID: 18199320 PMCID: PMC2244595 DOI: 10.1186/1743-422x-5-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 01/16/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Citrus sudden death (CSD), a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV). CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. RESULTS A total of 286 RNA-dependent-RNA polymerase (RdRp) and 284 heat shock protein 70 homolog (HSP70h) gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h) was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. CONCLUSION We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence) of a single CTV variant within these populations that triggers the disease.
Collapse
Affiliation(s)
- Clarissa PC Gomes
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília. SGAN, Quadra 916, Módulo B, Av. W5 Norte, 70.790-160, Brasília-DF, Brazil
| | - Tatsuya Nagata
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília. SGAN, Quadra 916, Módulo B, Av. W5 Norte, 70.790-160, Brasília-DF, Brazil
| | - Waldir C de Jesus
- Fundecitrus, Av. Adhemar Pereira de Barros, 201, 14807-040, São Paulo, SP, Brazil
- Universidade Federal do Espírito Santo, Centro de Ciências Agrárias, Alto Universitário, S/N, 29500-000, ES, Brazil
| | - Carlos R Borges Neto
- CENARGEN, Parque Estação Biológica, Av. W5 Norte, 70770-900, Brasília, DF, Brazil
| | - Georgios J Pappas
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília. SGAN, Quadra 916, Módulo B, Av. W5 Norte, 70.790-160, Brasília-DF, Brazil
| | - Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7000, South Africa
| |
Collapse
|
598
|
Lorenzen J, Nolte P, Martin D, Pasche JS, Gudmestad NC. NE-11 represents a new strain variant class of Potato virus Y. Arch Virol 2008; 153:517-25. [PMID: 18193154 DOI: 10.1007/s00705-007-0030-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/20/2007] [Indexed: 11/30/2022]
Abstract
This report describes the characterization by whole-genome sequencing of four PVY isolates with unique combinations of molecular and symptomatic characteristics. Three of these four isolates were of type PVY(N:O) (ID-1, OR-1, PN10A), including one of "type B", which contains an extra recombination event in the 5'UTR/P1 cistron; the other (NE-11) represents a novel PVY molecular genotype, previously misclassified as a PVY(NA-NTN) isolate. The full genome sequence of this latter isolate is unique inasmuch as it is nearly identical to that of PVY(N) isolates for the first 2,000 nucleotides (nts), after which it very strongly resembles PVY(NA-NTN) isolates for the next 600 nts. For the final 7,000 nts of its genome, NE-11 shares intermediate identity with these other two previously reported classes of PVY(N) genomes, except for a portion of the capsid protein region in which it resembles neither. Recombination in each of the four isolates was verified by a suite of recombination detection programs. PN10A represents the first complete sequence of a PVY strain variant of the class reported as PVY(N)-W (or PVY(N:O)) type B. Specific PCR assays for two unique regions of NE-11 are presented that will allow the identification of this strain variant by other researchers.
Collapse
Affiliation(s)
- Jim Lorenzen
- International Institute of Tropical Agriculture, Kampala, Uganda.
| | | | | | | | | |
Collapse
|
599
|
Novel sugarcane streak and sugarcane streak Reunion mastreviruses from southern Africa and La Réunion. Arch Virol 2008; 153:605-9. [DOI: 10.1007/s00705-007-0016-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
600
|
Varsani A, Oluwafemi S, Windram OP, Shepherd DN, Monjane AL, Owor BE, Rybicki EP, Lefeuvre P, Martin DP. Panicum streak virus diversity is similar to that observed for maize streak virus. Arch Virol 2008; 153:601-4. [DOI: 10.1007/s00705-007-0020-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/20/2007] [Indexed: 11/30/2022]
|