601
|
Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 2008; 78:211-20. [PMID: 18197406 DOI: 10.1007/s00253-007-1322-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 12/06/2007] [Accepted: 12/08/2007] [Indexed: 10/22/2022]
Abstract
The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A. niger as the transcriptional regulator of xylanase-encoding genes controls the transcription of about 20-30 genes encoding hemicellulases and cellulases. The orthologous xyr1 (xylanase regulator 1-encoding) gene product of H. jecorina has a similar function as XlnR, although at points, the mechanisms seems to be different. Specifically in H. jecorina, the interaction of Xyr1 and the co-regulators Ace1 and Ace2 in the regulation of transcription of xylanases and cellulases has been studied. This paper describes the similarities and differences in the transcriptional regulation of expression of hemicellulases and cellulases in A. niger and H. jecorina.
Collapse
|
602
|
Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 2008; 35:403-419. [PMID: 18193465 DOI: 10.1007/s10295-007-0300-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/14/2007] [Indexed: 12/27/2022]
Abstract
In view of the realization that fossil fuels reserves are limited, various options of generating energy are being explored. Biological methods for producing fuels such as ethanol, diesel, hydrogen (H2), methane, etc. have the potential to provide a sustainable energy system for the society. Biological H2 production appears to be the most promising as it is non-polluting and can be produced from water and biological wastes. The major limiting factors are low yields, lack of industrially robust organisms, and high cost of feed. Actually, H2 yields are lower than theoretically possible yields of 4 mol/mol of glucose because of the associated fermentation products such as lactic acid, propionic acid and ethanol. The efficiency of energy production can be improved by screening microbial diversity and easily fermentable feed materials. Biowastes can serve as feed for H2 production through a set of microbial consortia: (1) hydrolytic bacteria, (2) H2 producers (dark fermentative and photosynthetic). The efficiency of the bioconversion process may be enhanced further by the production of value added chemicals such as polydroxyalkanoate and anaerobic digestion. Discovery of enormous microbial diversity and sequencing of a wide range of organisms may enable us to realize genetic variability, identify organisms with natural ability to acquire and transmit genes. Such organisms can be exploited through genome shuffling for transgenic expression and efficient generation of clean fuel and other diverse biotechnological applications.
Collapse
|
603
|
Zhang YHP. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 2008; 35:367-375. [PMID: 18180967 DOI: 10.1007/s10295-007-0293-6] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 12/04/2007] [Indexed: 11/27/2022]
Abstract
Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
604
|
Sun H, Lu L, Chen X, Jiang Z. Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes. Sep Purif Technol 2008. [DOI: 10.1016/j.seppur.2007.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
605
|
Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol 2007; 375:499-510. [PMID: 18035374 DOI: 10.1016/j.jmb.2007.10.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/11/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
An efficient breakdown of lignocellulosic biomass is a prerequisite for the production of second-generation biofuels. Cellulases are key enzymes in this process. We crystallized complexes between hemithio-cello-deca and dodecaoses and the inactive mutants E44Q and E55Q of the endo-processive cellulase Cel48F, one of the most abundant cellulases in cellulosomes from Clostridium cellulolyticum, to elucidate its processive mechanism. In both complexes, the cellooligosaccharides occupy similar positions in the tunnel part of the active site but are more or less buried into the cleft, which hosts the active site. In the E44Q complex, it proceeds along the upper part of the cavity, while it occupies in the E55Q complex the same productive binding subsites in the lower part of the cavity that have previously been reported in Cel48F/cellooligosaccharide complexes. In both cases, the sugar moieties are stabilized by stacking interactions with aromatic side chains and H bonds. The upper pathway is gated by Tyr403, which blocks its access in the E55Q complex and offers a new stacking interaction in the E44Q complex. The new structural data give rise to the hypothesis of a two-step mechanism in which processive action and chain disruption occupy different subsites at the end of their trajectory. In the first part of the mechanism, the chain may smoothly slide up to the leaving group site along the upper pathway, while in the second part, the chain is cleaved in the already described productive binding position located in the lower pathway. The solved native structure of Cel48F without any bound sugar in the active site confirms the two side-chain orientations of the proton donor Glu55 as observed in the complex structures.
Collapse
Affiliation(s)
- Goetz Parsiegla
- Laboratoire de l'Architecture et Fonction des Macromolecules Biologiques, UMR 6098 CNRS and University of Aix-Marseille, Parc Scientifique et Technologique de Luminy, 13288 Marseille Cedex 09, France.
| | | | | | | | | |
Collapse
|
606
|
Tateno T, Fukuda H, Kondo A. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 2007; 77:533-41. [PMID: 17891388 DOI: 10.1007/s00253-007-1191-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/03/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
Corynebacterium glutamicum is an important microorganism in the industrial production of amino acids. We engineered a strain of C. glutamicum that secretes alpha-amylase from Streptococcus bovis 148 (AmyA) for the efficient utilization of raw starch. Among the promoters and signal sequences tested, those of cspB from C. glutamicum possessed the highest expression level. The fusion gene was introduced into the homoserine dehydrogenase gene locus on the chromosome by homologous recombination. L-Lysine fermentation was conducted using C. glutamicum secreting AmyA in the growth medium containing 50 g/l of raw corn starch as the sole carbon source at various temperatures in the range 30 to 40 degrees C. Efficient L-lysine production and raw starch degradation were achieved at 34 and 37 degrees C, respectively. The alpha-amylase activity using raw corn starch was more than 2.5 times higher than that using glucose as the sole carbon source during L-lysine fermentation. AmyA expression under the control of cspB promoter was assumed to be induced when raw starch was used as the sole carbon source. These results indicate that efficient simultaneous saccharification and fermentation of raw corn starch to L-lysine were achieved by C. glutamicum secreting AmyA using the cspB promoter and signal sequence.
Collapse
Affiliation(s)
- Toshihiro Tateno
- Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | | | | |
Collapse
|
607
|
Marguet P, Balagadde F, Tan C, You L. Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 2007; 4:607-23. [PMID: 17251159 PMCID: PMC2373384 DOI: 10.1098/rsif.2006.0206] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biological research is experiencing an increasing focus on the application of knowledge rather than on its generation. Thanks to the increased understanding of cellular systems and technological advances, biologists are more frequently asking not only 'how can I understand the structure and behaviour of this biological system?', but also 'how can I apply that knowledge to generate novel functions in different biological systems or in other contexts?' Active pursuit of the latter has nurtured the emergence of synthetic biology. Here, we discuss the motivation behind, and foundational technologies enabling, the development of this nascent field. We examine some early successes and applications while highlighting the challenges involved. Finally, we consider future directions and mention non-scientific considerations that can influence the field's growth.
Collapse
Affiliation(s)
- Philippe Marguet
- Department of Biochemistry, Duke University Medical CenterDurham, NC 27710, USA
| | - Frederick Balagadde
- Department of Bioengineering, Stanford UniversityStanford, CA 94305-9505, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
- Institute for Genome Sciences and Policy, Duke University Medical CenterDurham, NC 27710, USA
- Author and address for correspondence: CIEMAS 2345, 101 Science Drive, Durham, NC 27708, USA ()
| |
Collapse
|
608
|
Boumba VA, Ziavrou KS, Vougiouklakis T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int 2007; 174:133-51. [PMID: 17452087 DOI: 10.1016/j.forsciint.2007.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/13/2007] [Accepted: 03/21/2007] [Indexed: 11/23/2022]
Abstract
In this contribution are presented the fermentations of the main substrates present in a decaying corpse, namely carbohydrates, amino acids, glycerol and fatty acids, generating the post-mortem volatile compounds that could be detected along with ethanol during the forensic ethanol analysis. The available literature (preferably reviews) on microbial metabolic pathways (enzymes, substrates, conditions) that are implicated in the formation of these volatiles has been reviewed. The microbial formation of the following volatiles is supported by the presented biochemical data: ethanol, acetaldehyde, acetone, 2-propanol, 1-propanol, 1-butanol, isobutanol, isoamyl alcohol, d-amyl alcohol, acetate, propionate, butyrate, isobutyrate and ethyl esters (mainly ethyl acetate). The extracted information was correlated with the existing forensic literature on the post-mortem detected volatiles. The significance of the microbial produced volatiles on the selection of an appropriate internal standard for the ethanol analysis has been considered. Finally, the possible contribution of the presence of volatiles in the interpretation of ethanol analysis results in post-mortem cases is discussed.
Collapse
Affiliation(s)
- Vassiliki A Boumba
- Department of Forensic Medicine and Toxicology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | | | | |
Collapse
|
609
|
Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 2007. [PMID: 16865734 DOI: 10.1002/bbb.4] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.
Collapse
Affiliation(s)
- Henning Jørgensen
- Forestry and Forest Products, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
610
|
Abstract
Economic and geopolitical factors (high oil prices, environmental concerns, and supply instability) have been prompting policy-makers to put added emphasis on renewable energy sources. For the scientific community, recent advances, embodied in new insights into basic biology and technology that can be applied to metabolic engineering, are generating considerable excitement. There is justified optimism that the full potential of biofuel production from cellulosic biomass will be obtainable in the next 10 to 15 years.
Collapse
Affiliation(s)
- Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
611
|
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007; 74:937-53. [PMID: 17294186 DOI: 10.1007/s00253-006-0827-2] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, Lund 22100, Sweden.
| | | | | | | | | |
Collapse
|
612
|
Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:147-77. [PMID: 17846723 DOI: 10.1007/10_2007_062] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The introduction of pentose utilization pathways in baker's yeast Saccharomyces cerevisiae is summarized together with metabolic engineering strategies to improve ethanolic pentose fermentation. Bacterial and fungal xylose and arabinose pathways have been expressed in S. cerevisiae but do not generally convey significant ethanolic fermentation traits to this yeast. A large number of rational metabolic engineering strategies directed among others toward sugar transport, initial pentose conversion, the pentose phosphate pathway, and the cellular redox metabolism have been exploited. The directed metabolic engineering approach has often been combined with random approaches including adaptation, mutagenesis, and hybridization. The knowledge gained about pentose fermentation in S. cerevisiae is primarily limited to genetically and physiologically well-characterized laboratory strains. The translation of this knowledge to strains performing in an industrial context is discussed.
Collapse
|