601
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
602
|
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, Grierson D, Zhang B, Xu C, Li X, Chen K, Sun C. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:671-688. [PMID: 33089636 PMCID: PMC8051604 DOI: 10.1111/pbi.13494] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Qin Gong
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Wanxia Shen
- Citrus Research InstituteSouthwest University/Chinese Academy of Agricultural SciencesChongqingChina
| | - Xueren Yin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
- Division of Plant and Crop SciencesSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
603
|
Morreeuw ZP, Escobedo-Fregoso C, Ríos-González LJ, Castillo-Quiroz D, Reyes AG. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110748. [PMID: 33691954 DOI: 10.1016/j.plantsci.2020.110748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 05/23/2023]
Abstract
Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 μg), flavanone (291.51 μg), hesperidin (34.23 μg), delphinidin (24.23 μg), quercetin (15.57 μg), kaempferol (13.71 μg), cyanidin (12.32 μg), apigenin (9.70 μg) and catechin (7.91 μg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Zoé P Morreeuw
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Cristina Escobedo-Fregoso
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Leopoldo J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila (UAdeC), Blvd. V. Carranza, Col. Republica Oriente, C.P. 25280, Saltillo, Coahuila, Mexico
| | - David Castillo-Quiroz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Saltillo, Carretera Saltillo-Zacatecas 9515, Col. Hacienda Buenavista, C.P. 25315, Saltillo, Coahuila, Mexico
| | - Ana G Reyes
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico.
| |
Collapse
|
604
|
Kim S, Van den Broeck L, Karre S, Choi H, Christensen SA, Wang G, Jo Y, Cho WK, Balint‐Kurti P. Analysis of the transcriptomic, metabolomic, and gene regulatory responses to Puccinia sorghi in maize. MOLECULAR PLANT PATHOLOGY 2021; 22:465-479. [PMID: 33641256 PMCID: PMC7938627 DOI: 10.1111/mpp.13040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 05/22/2023]
Abstract
Common rust, caused by Puccinia sorghi, is a widespread and destructive disease of maize. The Rp1-D gene confers resistance to the P. sorghi IN2 isolate, mediating a hypersensitive cell death response (HR). To identify differentially expressed genes (DEGs) and metabolites associated with the compatible (susceptible) interaction and with Rp1-D-mediated resistance in maize, we performed transcriptomics and targeted metabolome analyses of P. sorghi IN2-infected leaves from the near-isogenic lines H95 and H95:Rp1-D, which differed for the presence of Rp1-D. We observed up-regulation of genes involved in the defence response and secondary metabolism, including the phenylpropanoid, flavonoid, and terpenoid pathways. Metabolome analyses confirmed that intermediates from several transcriptionally up-regulated pathways accumulated during the defence response. We identified a common response in H95:Rp1-D and H95 with an additional H95:Rp1-D-specific resistance response observed at early time points at both transcriptional and metabolic levels. To better understand the mechanisms underlying Rp1-D-mediated resistance, we inferred gene regulatory networks occurring in response to P. sorghi infection. A number of transcription factors including WRKY53, BHLH124, NKD1, BZIP84, and MYB100 were identified as potentially important signalling hubs in the resistance-specific response. Overall, this study provides a novel and multifaceted understanding of the maize susceptible and resistance-specific responses to P. sorghi.
Collapse
Affiliation(s)
- Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Lisa Van den Broeck
- Department of Plant and Microbial BiologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Hoseong Choi
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Shawn A. Christensen
- Chemistry Research UnitDepartment of Agriculture–Agricultural Research Service (USDA‐ARS)Center for Medical, Agricultural, and Veterinary EntomologyGainesvilleFloridaUSA
| | - Guan‐Feng Wang
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
605
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Actinidia chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3677-3691. [PMID: 33749265 DOI: 10.1021/acs.jafc.0c07037] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB (AcMYBF110 expressed in fruit characteristically), one bHLH (AcbHLH1), two upstream regulators of AcbHLH1 (AcbHLH4 and AcbHLH5), and one WDR (AcWDR1) are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit. AcMYBF110 plays an important role in the regulation of anthocyanin accumulation by specifically activating the promoters of several anthocyanin pathway genes including AcCHS, AcF3'H, AcANS, AcUFGT3a, AcUFGT6b, and AcGST1. Coexpression of AcbHLH1, AcbHLH4, or AcbHLH5 together with AcMYBF110 induces much greater anthocyanin accumulation in both tobacco leaves and in Actinidia arguta fruit compared with AcMYBF110 alone. Moreover, this activation is further enhanced by adding AcWDR1. We found that both AcMYBF110 and AcWDR1 interact with all three AcbHLH factors, while AcMYBF110 also interacts with AcWDR1 to form three different MBW complexes that have different regulatory roles in anthocyanin accumulation of kiwifruit. The AcMYBF110-AcbHLH1-AcWDR1 complex directly targets the promoters of anthocyanin synthetic genes. Other features of the regulatory pathways identified include promotion of AcMYBF110, AcbHLH1,and AcWDR1 activities by this MBW complex, providing for both reinforcement and feedback regulation, whereas the AcMYBF110-AcbHLH4/5-AcWDR1 complex is indirectly involved in the regulation of anthocyanin synthesis by activating the promoters of AcbHLH1 and AcWDR1 to amplify the regulation signals of the first MBW complex.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Yingwei Qi
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610 Guangdong, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| |
Collapse
|
606
|
Xiao R, Zhang C, Guo X, Li H, Lu H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int J Mol Sci 2021; 22:3560. [PMID: 33808132 PMCID: PMC8037110 DOI: 10.3390/ijms22073560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.
Collapse
Affiliation(s)
- Ruixue Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (R.X.); (H.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (X.G.)
| |
Collapse
|
607
|
Aničić N, Patelou E, Papanikolaou A, Kanioura A, Valdesturli C, Arapitsas P, Skorić M, Dragićević M, Gašić U, Koukounaras A, Kostas S, Sarrou E, Martens S, Mišić D, Kanellis A. Comparative Metabolite and Gene Expression Analyses in Combination With Gene Characterization Revealed the Patterns of Flavonoid Accumulation During Cistus creticus subsp. creticus Fruit Development. FRONTIERS IN PLANT SCIENCE 2021; 12:619634. [PMID: 33841455 PMCID: PMC8034662 DOI: 10.3389/fpls.2021.619634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Cistus creticus L. subsp. creticus (rockrose) is a shrub widespread in Greece and the Mediterranean basin and has been used in traditional medicine as herb tea for colds, for healing and digestive hitches, for the treatment of maladies, as perfumes, and for other purposes. Compounds from its flavonoid fraction have recently drawn attention due to antiviral action against influenza virus and HIV. Although several bioactive metabolites belonging to this group have been chemically characterized in the leaves, the genes involved in their biosynthesis in Cistus remain largely unknown. Flavonoid metabolism during C. creticus fruit development was studied by adopting comparative metabolomic and transcriptomic approaches. The present study highlights the fruit of C. creticus subsp. creticus as a rich source of flavonols, flavan-3-ols, and proanthocyanidins, all of which displayed a decreasing trend during fruit development. The majority of proanthocyanidins recorded in Cistus fruit are B-type procyanidins and prodelphinidins, while gallocatechin and catechin are the dominant flavan-3-ols. The expression patterns of biosynthetic genes and transcription factors were analyzed in flowers and throughout three fruit development stages. Flavonoid biosynthetic genes were developmentally regulated, showing a decrease in transcript levels during fruit maturation. A high degree of positive correlations between the content of targeted metabolites and the expression of biosynthetic genes indicated the transcriptional regulation of flavonoid biosynthesis during C. creticus fruit development. This is further supported by the high degree of significant positive correlations between the expression of biosynthetic genes and transcription factors. The results suggest that leucoanthocyanidin reductase predominates the biosynthetic pathway in the control of flavan-3-ol formation, which results in catechin and gallocatechin as two of the major building blocks for Cistus proanthocyanidins. Additionally, there is a decline in ethylene production rates during non-climacteric Cistus fruit maturation, which coincides with the downregulation of the majority of flavonoid- and ethylene-related biosynthetic genes and corresponding transcription factors as well as with the decline in flavonoid content. Finally, functional characterization of a Cistus flavonoid hydroxylase (F3'5'H) was performed for the first time.
Collapse
Affiliation(s)
- Neda Aničić
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathia Patelou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antigoni Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthi Kanioura
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Camilla Valdesturli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Panagiotis Arapitsas
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Dragićević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Athanasios Koukounaras
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefanos Kostas
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization - DEMETER, Thessaloniki, Greece
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
608
|
Zheng J, Liu L, Tao H, An Y, Wang L. Transcriptomic Profiling of Apple Calli With a Focus on the Key Genes for ALA-Induced Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:640606. [PMID: 33841467 PMCID: PMC8033201 DOI: 10.3389/fpls.2021.640606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 05/30/2023]
Abstract
The red color is an attractive trait of fruit and determines its market acceptance. 5-Aminolevulinic acid (ALA), an eco-friendly plant growth regulator, has played a universal role in plant secondary metabolism regulation, particularly in flavonoid biosynthesis. It has been widely reported that ALA can up-regulate expression levels of several structural genes related to flavonoid metabolism and anthocyanin accumulation. However, the molecular mechanisms behind ALA-induced expression of these genes are complicated and still far from being completely understood. In this study, transcriptome analysis identified the differentially expressed genes (DEGs) associated with ALA-induced anthocyanin accumulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the flavonoid biosynthesis (ko00941) pathway was significantly enhanced in the ALA-treated apple calli at 24, 48, and 72 h after the treatment. Expression pattern revealed that ALA up-regulated the expression of the structural genes related to not only anthocyanin biosynthesis (MdCHS, MdCHI, MdF3'H, MdDFR, MdANS, and MdUFGT) but also anthocyanin transport (MdGST and MdMATE). Two R2R3-MYB transcription factors (MdMYB10 and MdMYB9), which are the known positive regulators of anthocyanin biosynthesis, were significantly induced by ALA. Gene overexpression and RNA interference assays demonstrated that MdMYB10 and MdMYB9 were involved in ALA-induced anthocyanin biosynthesis. Moreover, MdMYB10 and MdMYB9 might positively regulate the transcription of MdMATE8 by binding to the promoter region. These results indicate that MdMYB10 and MdMYB9 modulated structural gene expression of anthocyanin biosynthesis and transport in response to ALA-mediated apple calli coloration at the transcript level. We herein provide new details regarding transcriptional regulation of ALA-induced color development.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Longbo Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Huihui Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
609
|
Liu J, Deng Z, Sun H, Song J, Li D, Zhang S, Wang R. Differences in Anthocyanin Accumulation Patterns and Related Gene Expression in Two Varieties of Red Pear. PLANTS 2021; 10:plants10040626. [PMID: 33806180 PMCID: PMC8066033 DOI: 10.3390/plants10040626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Red pear is a popular fruit that is appreciated for its attractive and distinctive appearance and mild flavor. In this study, we investigated the mechanism underlying the red coloration of pear skin using the ‘Xinqihong’ cultivar—which was selected as a spontaneous bud sport mutant of the ‘Xinli 7′(Pyrus betulifolia Rehd.) variety and has a stronger red color that is retained in the mature fruit—as an experimental model. We compared the phenotype and gene expression patterns of the two varieties and found no significant differences at the early stage of fruit development. However, although the red color of ‘Xinli 7′ fruits began to fade 107 days after full bloom, that of ‘Xinqihong’ fruits persisted until the time of harvest. Transcriptome sequencing identified 639 genes that were differentially expressed between the two varieties, including genes related to light, calcium, and hormone signaling (e.g., PbPIF3, PbGA2ox, and the calmodulin related genes). Moreover, anthocyanin biosynthesis genes were downregulated as the red color of ‘Xinli 7′ fruits faded. These results provide insight into the molecular basis of color differences in red pears that can be useful for improving its fruit quality and commercial value.
Collapse
Affiliation(s)
- Jianlong Liu
- Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Z.D.); (H.S.); (J.S.); (D.L.)
| | - Zhiwei Deng
- Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Z.D.); (H.S.); (J.S.); (D.L.)
| | - Hongwei Sun
- Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Z.D.); (H.S.); (J.S.); (D.L.)
| | - Jiankun Song
- Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Z.D.); (H.S.); (J.S.); (D.L.)
| | - Dingli Li
- Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Z.D.); (H.S.); (J.S.); (D.L.)
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.Z.); (R.W.)
| | - Ran Wang
- Lab of Pear Genetic Improvement and Germplasm Innovation, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Z.D.); (H.S.); (J.S.); (D.L.)
- Correspondence: (S.Z.); (R.W.)
| |
Collapse
|
610
|
Lin N, Liu X, Zhu W, Cheng X, Wang X, Wan X, Liu L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3401-3414. [PMID: 33719437 DOI: 10.1021/acs.jafc.0c07009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tea leaves contain an extraordinarily high level of flavonoids that contribute to tea health benefits and flavor characteristics, but the regulatory mechanism of ambient ultraviolet B (UV-B) on tea flavonoid enrichment remains unclear. Here, we report that ambient UV-B modulates tea quality by inducing a metabolic flux in flavonoid biosynthesis. UV-B absence decreased bitter- and astringent-tasting flavonol glycosides (kaempferol-7-O-glucoside, myricetin-3-O-glucoside, and quercetin-7-O-glucoside) but increased non-galloylated catechins. Conversely, supplementary UV-B increased flavonols and decreased catechins in tea leaves. These responses were achieved via CsHY5, which mediates the UV-B-induced MYB12 activation and binds to the promoters of flavonoid biosynthetic genes (CsFLS, CsLARa, and CsDFRa), leading to flavonoid changes. Transcriptomic data indicated that UV-B-induced tea flavonoid regulation is responsive to multiple biotic and abiotic environmental stresses. These findings improve our understanding of light-regulated tea astringency and bitterness underlying shading effects and seasonal light changes and provide novel insights into tea cultivation management and processing.
Collapse
Affiliation(s)
- Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
611
|
Anguraj Vadivel AK, McDowell T, Renaud JB, Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 2021; 4:356. [PMID: 33742087 PMCID: PMC7979867 DOI: 10.1038/s42003-021-01889-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein-protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
612
|
Abrouk M, Athiyannan N, Müller T, Pailles Y, Stritt C, Roulin AC, Chu C, Liu S, Morita T, Handa H, Poland J, Keller B, Krattinger SG. Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Commun Biol 2021; 4:375. [PMID: 33742098 PMCID: PMC7979816 DOI: 10.1038/s42003-021-01908-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/25/2021] [Indexed: 01/25/2023] Open
Abstract
The cloning of agriculturally important genes is often complicated by haplotype variation across crop cultivars. Access to pan-genome information greatly facilitates the assessment of structural variations and rapid candidate gene identification. Here, we identified the red glume 1 (Rg-B1) gene using association genetics and haplotype analyses in ten reference grade wheat genomes. Glume color is an important trait to characterize wheat cultivars. Red glumes are frequent among Central European spelt, a dominant wheat subspecies in Europe before the 20th century. We used genotyping-by-sequencing to characterize a global diversity panel of 267 spelt accessions, which provided evidence for two independent introductions of spelt into Europe. A single region at the Rg-B1 locus on chromosome 1BS was associated with glume color in the diversity panel. Haplotype comparisons across ten high-quality wheat genomes revealed a MYB transcription factor as candidate gene. We found extensive haplotype variation across the ten cultivars, with a particular group of MYB alleles that was conserved in red glume wheat cultivars. Genetic mapping and transient infiltration experiments allowed us to validate this particular MYB transcription factor variants. Our study demonstrates the value of multiple high-quality genomes to rapidly resolve copy number and haplotype variations in regions controlling agriculturally important traits.
Collapse
Affiliation(s)
- Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Naveenkumar Athiyannan
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Thomas Müller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Yveline Pailles
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christoph Stritt
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | | | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, USA
| | - Takumi Morita
- Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hirokazu Handa
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
613
|
Anguraj Vadivel AK, McDowell T, Renaud JB, Dhaubhadel S. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 2021; 4:356. [PMID: 33742087 DOI: 10.1038/s42003-021-01889-1886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 05/25/2023] Open
Abstract
GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein-protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
614
|
Jia N, Wang J, Wang Y, Ye W, Liu J, Jiang J, Sun J, Yan P, Wang P, Wang F, Fan B. The Light-Induced WD40-Repeat Transcription Factor DcTTG1 Regulates Anthocyanin Biosynthesis in Dendrobium candidum. FRONTIERS IN PLANT SCIENCE 2021; 12:633333. [PMID: 33815441 PMCID: PMC8010245 DOI: 10.3389/fpls.2021.633333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
Dendrobium candidum is used as a traditional Chinese medicine and as a raw material in functional foods. D. candidum stems are green or red, and red stems are richer in anthocyanins. Light is an important environmental factor that induces anthocyanin accumulation in D. candidum. However, the underlying molecular mechanisms have not been fully unraveled. In this study, we exposed D. candidum seedlings to two different light intensities and found that strong light increased the anthocyanin content and the expression of genes involved in anthocyanin biosynthesis. Through transcriptome profiling and expression analysis, we identified a WD40-repeat transcription factor, DcTTG1, whose expression is induced by light. Yeast one-hybrid assays showed that DcTTG1 binds to the promoters of DcCHS2, DcCHI, DcF3H, and DcF3'H, and a transient GUS activity assay indicated that DcTTG1 can induce their expression. In addition, DcTTG1 complemented the anthocyanin deficiency phenotype of the Arabidopsis thaliana ttg1-13 mutant. Collectively, our results suggest that light promotes anthocyanin accumulation in D. candidum seedlings via the upregulation of DcTTG1, which induces anthocyanin synthesis-related gene expression.
Collapse
Affiliation(s)
- Ning Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jingjing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajuan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei Ye
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinlan Jiang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peipei Yan
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Peiyu Wang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Sanming, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
615
|
Li X, Xiang F, Han W, Qie B, Zhai R, Yang C, Wang Z, Xu L. The MIR-Domain of PbbHLH2 Is Involved in Regulation of the Anthocyanin Biosynthetic Pathway in "Red Zaosu" ( PyrusBretschneideri Rehd.) Pear Fruit. Int J Mol Sci 2021; 22:ijms22063026. [PMID: 33809693 PMCID: PMC8002321 DOI: 10.3390/ijms22063026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/05/2023] Open
Abstract
The N-terminal of Myc-like basic helix-loop-helix transcription factors (bHLH TFs) contains an interaction domain, namely the MYB-interacting region (MIR), which interacts with the R2R3-MYB proteins to regulate genes involved in the anthocyanin biosynthetic pathway. However, the functions of MIR-domain bHLHs in this pathway are not fully understood. In this study, PbbHLH2 containing the MIR-domain was identified and its function investigated. The overexpression of PbbHLH2 in ”Zaosu” pear peel increased the anthocyanin content and the expression levels of late biosynthetic genes. Bimolecular fluorescence complementation showed that PbbHLH2 interacted with R2R3-MYB TFs PbMYB9, 10, and 10b in onion epidermal cells and confirmed that MIR-domain plays important roles in the interaction between the MIR-domain bHLH and R2R3-MYB TFs. Moreover, PbbHLH2 bound and activated the dihydroflavonol reductase promoter in yeast one-hybrid (Y1H) and dual-luciferase assays. Taken together these results suggested that the MIR domain of PbbHLH2 regulated anthocyanin biosynthesis in pear fruit peel.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingfei Xu
- Correspondence: ; Tel.: +86-029–87081023
| |
Collapse
|
616
|
Ren Y, Zhang N, Li R, Ma X, Zhang L. Comparative transcriptome and flavonoids components analysis reveal the structural genes responsible for the yellow seed coat color of Brassica rapa L. PeerJ 2021; 9:e10770. [PMID: 33717670 PMCID: PMC7937345 DOI: 10.7717/peerj.10770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022] Open
Abstract
Background Seed coat color is an important horticultural trait in Brassica crops, which is divided into two categories: brown/black and yellow. Seeds with yellow seed coat color have higher oil quality, higher protein content and lower fiber content. Yellow seed coat color is therefore considered a desirable trait in hybrid breeding of Brassica rapa, Brassica juncea and Brassica napus. Methods Comprehensive analysis of the abundance transcripts for seed coat color at three development stages by RNA-sequencing (RNA-seq) and corresponding flavonoids compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were carried out in B. rapa. Results We identified 41,286 unigenes with 4,989 differentially expressed genes between brown seeds (B147) and yellow seeds (B80) at the same development stage. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 19 unigenes associated with the phenylpropanoid, flavonoid, flavone and flavonol biosynthetic pathways as involved in seed coat color formation. Interestingly, expression levels of early biosynthetic genes (BrCHS, BrCHI, BrF3H, BrF3’H and BrFLS) in the flavonoid biosynthetic pathway were down-regulated while late biosynthetic genes (BrDFR, BrLDOX and BrBAN) were hardly or not expressed in seeds of B80. At the same time, BrTT8 and BrMYB5 were down-regulated in B80. Results of LC-MS also showed that epicatechin was not detected in seeds of B80. We validated the accuracy of our RNA-seq data by RT-qPCR of nine critical genes. Epicatechin was not detected in seeds of B80 by LC-MS/MS. Conclusions The expression levels of flavonoid biosynthetic pathway genes and the relative content of flavonoid biosynthetic pathway metabolites clearly explained yellow seed color formation in B. rapa. This study provides a foundation for further research on the molecular mechanism of seed coat color formation.
Collapse
Affiliation(s)
- Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, China.,State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Ning Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Ru Li
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Xiaomin Ma
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, China.,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
617
|
A Roadmap to Modulated Anthocyanin Compositions in Carrots. PLANTS 2021; 10:plants10030472. [PMID: 33801499 PMCID: PMC7999315 DOI: 10.3390/plants10030472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Anthocyanins extracted from black carrots have received increased interest as natural colorants in recent years. The reason is mainly their high content of acylated anthocyanins that stabilizes the color and thereby increases the shelf-life of products colored with black carrot anthocyanins. Still, the main type of anthocyanins synthesized in all black carrot cultivars is cyanidin limiting their use as colorants due to the narrow color variation. Additionally, in order to be competitive against synthetic colors, a higher percentage of acylated anthocyanins and an increased anthocyanin content in black carrots are needed. However, along with the increased interest in black carrots there has also been an interest in identifying the structural and regulatory genes associated with anthocyanin biosynthesis in black carrots. Thus, huge progress in the identification of genes involved in anthocyanin biosynthesis has recently been achieved. Given this information it is now possible to attempt to modulate anthocyanin compositions in black carrots through genetic modifications. In this review we look into genetic modification opportunities for generating taproots of black carrots with extended color palettes, with a higher percentage of acylated anthocyanins or a higher total content of anthocyanins.
Collapse
|
618
|
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. THE NEW PHYTOLOGIST 2021; 229:2446-2469. [PMID: 33175410 DOI: 10.1111/nph.17074] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Kristian Holst Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
619
|
Wang Z, Luo Z, Liu Y, Li Z, Liu P, Bai G, Zhou Z, Xie H, Yang J. Molecular cloning and functional characterization of NtWRKY11b in promoting the biosynthesis of flavonols in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110799. [PMID: 33568298 DOI: 10.1016/j.plantsci.2020.110799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The biosynthesis of flavonols and anthocyanins is precisely regulated by different transcription factors in plants. WRKY11 promotes the biosynthesis of flavonoids in apple, but the molecular mechanism of WRKY11 regulating flavonols biosynthesis, and whether WRKY11 plays the same roles in other plants species remains to be further studied. Here, we cloned four NtWRKY11 genes from tobacco, which all contained the conserved WRKYGQK heptapeptide and a zinc-finger motif. The NtWRKY11b showed higher expression levels than the other NtWRKY11 genes in all the tobacco tissues examined, especially in tobacco leaves. Silencing of NtWRKY11b in tobacco leaves reduced the content of flavonols to 45.2 %-69.8 % of that in the WT plants, but overexpression of NtWRKY11b increased the flavonols content by 37.8 %-80.7 %. Transcriptome analysis revealed 8 flavonoids related differentially expressed genes (DEGs) between NtWRKY11b-OE and WT plants, among which the transcription of NtMYB12, NtFLS, NtGT5, and NtUFGT was significantly induced by posttranslational activation of NtWRKY11b with the presence of protein synthesis inhibitor, indicating a putative direct promotion of NtWRKY11b on the transcription of these flavonoids related genes. Chromatin immunoprecipitation assays further demonstrated that NtWRKY11b could bind to the promoter regions of NtMYB12, NtFLS, NtGT5, and NtUFGT to activate the transcription of these genes. Moreover, ectopic expression of NtWRKY11b also promoted the expression levels of NtCML38, NtCTL1, NtWRKY44, and NtCML37 genes, which have been shown to enhance plant resistance to various stresses. Our findings revealed the molecular mechanism of NtWRKY11b regulating flavonols biosynthesis, and provided a promising target for increasing flavonols content in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yongjun Liu
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
620
|
Wang C, Ji W, Liu Y, Zhou P, Meng Y, Zhang P, Wen J, Mysore KS, Zhai J, Young ND, Tian Z, Niu L, Lin H. The antagonistic MYB paralogs RH1 and RH2 govern anthocyanin leaf markings in Medicago truncatula. THE NEW PHYTOLOGIST 2021; 229:3330-3344. [PMID: 33222243 PMCID: PMC7986808 DOI: 10.1111/nph.17097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/14/2020] [Indexed: 05/11/2023]
Abstract
Patterned leaf coloration in plants generates remarkable diversity in nature, but the underlying mechanisms remain largely unclear. Here, using Medicago truncatula leaf marking as a model, we show that the classic M. truncatula leaf anthocyanin spot trait depends on two R2R3 MYB paralogous regulators, RED HEART1 (RH1) and RH2. RH1 mainly functions as an anthocyanin biosynthesis activator that specifically determines leaf marking formation depending on its C-terminal activation motif. RH1 physically interacts with the M. truncatula bHLH protein MtTT8 and the WDR family member MtWD40-1, and this interaction facilitates RH1 function in leaf anthocyanin marking formation. RH2 has lost transcriptional activation activity, due to a divergent C-terminal domain, but retains the ability to interact with the same partners, MtTT8 and MtWD40-1, as RH1, thereby acting as a competitor in the regulatory complex and exerting opposite effects. Moreover, our results demonstrate that RH1 can activate its own expression and that RH2-mediated competition can repress RH1 expression. Our findings reveal the molecular mechanism of the antagonistic gene paralogs RH1 and RH2 in determining anthocyanin leaf markings in M. truncatula, providing a multidimensional paralogous-antagonistic regulatory paradigm for fine-tuning patterned pigmentation.
Collapse
Affiliation(s)
- Chongnan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Wenkai Ji
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Yucheng Liu
- StateKey Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100101China
| | - Peng Zhou
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Yingying Meng
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Pengcheng Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | | | | | - Jixian Zhai
- Institute of Plant and Food ScienceDepartment of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Nevin D. Young
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Zhixi Tian
- StateKey Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, the Innovative Academy of Seed DesignChinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijing100101China
| | - Lifang Niu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Hao Lin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
621
|
Wang Z, Li ZF, Wang SS, Xiao YS, Xie XD, Wu MZ, Yu JL, Cheng LR, Yang AG, Yang J. NtMYB12a acts downstream of sucrose to inhibit fatty acid accumulation by targeting lipoxygenase and SFAR genes in tobacco. PLANT, CELL & ENVIRONMENT 2021; 44:775-791. [PMID: 33225450 DOI: 10.1111/pce.13957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
MYB12 promotes flavonol biosynthesis in plants by targeting several early biosynthesis genes (EBGs) of this pathway. The transcriptions of these EBGs are also induced by sucrose signal. However, whether MYB12 is activated by sucrose signal and what the other roles MYB12 has in regulating plant metabolism are poorly understood. In this study, two NtMYB12 genes were cloned from Nicotiana tabacum. Both NtMYB12a and NtMYB12b are involved in regulating flavonoids biosynthesis in tobacco. NtMYB12a is further shown to inhibit the accumulation of fatty acid (FA) in tobacco leaves and seeds. Post-translational activation and chromatin immunoprecipitation assays demonstrate that NtMYB12a directly promotes the transcriptions of NtLOX6, NtLOX5, NtSFAR4 and NtGDSL2, which encode lipoxygenase (LOX) or SFAR enzymes catalyzing the degradation of FA. NtLOX6 and NtLOX5 are shown to prevent the accumulation of FA in the mature seeds and significantly reduced the percentage of polyunsaturated fatty acids (PUFAs) in tobacco. Sucrose stimulates the transcription of NtMYB12a, and loss function of NtMYB12a partially suppresses the decrease of FA content in tobacco seedlings caused by sucrose treatment. The regulation of sucrose on the expression of NtLOX6 and NtGDSL2 genes is mediated by NtMYB12a, whereas those of NtLOX5 and NtSFAR4 genes are independent of sucrose.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ze Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shan Shan Wang
- Xiangyang Cigarette Factory, China Tobacco Hubei Industrial Co., Ltd., Xiangyang, China
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Xiao Dong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ming Zhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jin Long Yu
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Li Rui Cheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ai Guo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
622
|
Wang J, Li G, Li C, Zhang C, Cui L, Ai G, Wang X, Zheng F, Zhang D, Larkin RM, Ye Z, Zhang J. NF-Y plays essential roles in flavonoid biosynthesis by modulating histone modifications in tomato. THE NEW PHYTOLOGIST 2021; 229:3237-3252. [PMID: 33247457 DOI: 10.1111/nph.17112] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
NF-Y transcription factors are reported to play diverse roles in a wide range of biological processes in plants. However, only a few active NF-Y complexes are known in plants and the precise functions of NF-Y complexes in flavonoid biosynthesis have not been determined. Using various molecular, genetic and biochemical approaches, we found that NF-YB8a, NF-YB8b and NF-YB8c - a NF-YB subgroup - can interact with a specific subgroup of NF-YC and then recruit either of two distinct NF-YAs to form NF-Y complexes that bind the CCAAT element in the CHS1 promoter. Furthermore, suppressing the expression of particular NF-YB genes increased the levels of H3K27me3 at the CHS1 locus and significantly suppressed the expression of CHS1 during tomato fruit ripening, which led to the development of pink-coloured fruit with colourless peels. Altogether, by demonstrating that NF-Y transcription factors play essential roles in flavonoid biosynthesis and by providing significant molecular insight into the regulatory mechanisms that drive the development of pink-coloured tomato fruit, we provide a major advance to our fundamental knowledge and information that has considerable practical value for horticulture.
Collapse
Affiliation(s)
- Jiafa Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guobin Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxing Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunli Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Cui
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo Ai
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dedi Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
623
|
An JP, Zhang XW, Liu YJ, Wang XF, You CX, Hao YJ. ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1460-1472. [PMID: 33159793 DOI: 10.1093/jxb/eraa525] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/31/2020] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) induces anthocyanin biosynthesis in many plant species. However, the molecular mechanism of ABA-regulated anthocyanin biosynthesis remains unclear. As a crucial regulator of ABA signaling, ABSCISIC ACID-INSENSITIVE5 (ABI5) is involved in many aspects of plant growth and development, yet its regulation of anthocyanin biosynthesis has not been elucidated. In this study, we found that MdABI5, the apple homolog of Arabidopsis ABI5, positively regulated ABA-induced anthocyanin biosynthesis. A series of biochemical tests showed that MdABI5 specifically interacts with basic helix-loop-helix 3 (MdbHLH3), a positive regulator of anthocyanin biosynthesis. MdABI5 enhanced the binding of MdbHLH3 to its target genes dihydroflavonol 4-reductase (MdDFR) and UDP flavonoid glucosyl transferase (MdUF3GT). In addition, MdABI5 directly bound to the promoter of MdbHLH3 to activate its expression. Moreover, MdABI5 enhanced ABA-promoted interaction between MdMYB1 and MdbHLH3. Finally, antisense suppression of MdbHLH3 significantly reduced anthocyanin biosynthesis promoted by MdABI5, indicating that MdABI5-promoted anthocyanin biosynthesis was dependent on MdbHLH3. Taken together, our data suggest that MdABI5 plays a positive role in ABA-induced anthocyanin biosynthesis by modulating the MdbHLH3-MdMYB1 complex. Our work broadens the regulatory network of ABA-mediated anthocyanin biosynthesis, providing new insights to further study the transcriptional regulatory mechanisms behind this process.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
624
|
Chen C, Zhou G, Chen J, Liu X, Lu X, Chen H, Tian Y. Integrated Metabolome and Transcriptome Analysis Unveils Novel Pathway Involved in the Formation of Yellow Peel in Cucumber. Int J Mol Sci 2021; 22:ijms22031494. [PMID: 33540857 PMCID: PMC7867363 DOI: 10.3390/ijms22031494] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway-plant, plant-pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.
Collapse
Affiliation(s)
- Chen Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Juan Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
| | - Huiming Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| |
Collapse
|
625
|
Jiang S, Sun Q, Zhang T, Liu W, Wang N, Chen X. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153353. [PMID: 33352460 DOI: 10.1016/j.jplph.2020.153353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Anthocyanins, a major class of compounds derived from the flavonoid pathway, are important pigments of apple fruit. They can also prevent certain diseases and are beneficial to human health. Fruit pigmentation is a key quality trait that influences consumer preference; therefore, it is of great importance to investigate its regulatory mechanism. Here, we identified a MYB transcription factor (TF), MdMYB114, whose transcript level increased in the skin of the deep red apple fruit. It was determined to belong to the R2R3-MYB TF family and was localized in the nucleus. MdMYB114 overexpression led to anthocyanin accumulation in apple calli. MdMYB114 was not able to form an MBW complex but could enhance anthocyanin biosynthesis and transport by directly binding to the promoters of MdANS, MdUFGT, and MdGST to promote their expression. In addition, multiple assays revealed that MdbZIP4-like, a basic leucine-zipper TF, could directly bind to the MdMYB114 promoter to enhance its expression. Taken collectively, our results provide evidence that MdMYB114 is a positive regulator of anthocyanin biosynthesis and transport and it functions downstream of MdbZIP4-like in apple fruit.
Collapse
Affiliation(s)
- Shenghui Jiang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| | - Qingguo Sun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Tianliang Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Wenjun Liu
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Nan Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Xuesen Chen
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
626
|
Li Z, Peng R, Yao Q. SlMYB14 promotes flavonoids accumulation and confers higher tolerance to 2,4,6-trichlorophenol in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110796. [PMID: 33487333 DOI: 10.1016/j.plantsci.2020.110796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Flavonoids are small molecular secondary metabolites, which have a variety of biological functions. Transcriptional regulations of key enzyme genes play critical roles in the flavonoid biosynthesis. In this study, an R2R3-MYB transcription factor gene, SlMYB14, was isolated from tomato and characterized. The nucleus-localized SlMYB14 functions as a transcriptional activator in yeast. The expression of SlMYB14 could be induced by methyl jasmonic acid, wounding and ABA. SlMYB14 works downstream of SlMYC2 in the jasmonate signaling pathway. Overexpression of SlMYB14 under the control of CaMV35S promoter in tomato led to increased accumulation of flavonoids. RNA-sequencing analysis revealed that the transcript levels of several structural genes associated with flavonoid biosynthesis were up-regulated in transgenic tomato plants. Gel-shift assays confirmed that SlMYB14 protein could bind to the promoter regions of SlPAL genes. It was also found that overexpression of SlMYB14 improved the tolerance of transgenic plants to 2,4,6-trichlorophenol (2,4,6-TCP), an environmental organic pollutant which could cause serious oxidative damage to plant. These results suggest that SlMYB14 participates in the regulation of flavonoid biosynthesis and might play a role in maintaining reactive oxygen species homeostasis in plant. SlMYB14 gene also has the potential to contribute to the phytoremediation of 2,4,6-TCP-contaminated soils.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
627
|
Tian Y, Liu X, Fan C, Li T, Qin H, Li X, Chen K, Zheng Y, Chen F, Xu Y. Enhancement of Tobacco ( Nicotiana tabacum L.) Seed Lipid Content for Biodiesel Production by CRISPR-Cas9-Mediated Knockout of NtAn1. FRONTIERS IN PLANT SCIENCE 2021; 11:599474. [PMID: 33552096 PMCID: PMC7859101 DOI: 10.3389/fpls.2020.599474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 05/27/2023]
Abstract
Tobacco (Nicotiana tabacum L.) seed lipid is a promising non-edible feedstock for biodiesel production. In order to meet the increasing demand, achieving high seed lipid content is one of the major goals in tobacco seed production. The TT8 gene and its homologs negatively regulate seed lipid accumulation in Arabidopsis and Brassica species. We speculated that manipulating the homolog genes of TT8 in tobacco could enhance the accumulation of seed lipid. In this present study, we found that the TT8 homolog genes in tobacco, NtAn1a and NtAn1b, were highly expressed in developing seed. Targeted mutagenesis of NtAn1 genes was created by the CRISPR-Cas9-based gene editing technology. Due to the defect of proanthocyanidin (PA) biosynthesis, mutant seeds showed the phenotype of a yellow seed coat. Seed lipid accumulation was enhanced by about 18 and 15% in two targeted mutant lines. Protein content was also significantly increased in mutant seeds. In addition, the seed yield-related traits were not affected by the targeted mutagenesis of NtAn1 genes. Thus, the overall lipid productivity of the NtAn1 knockout mutants was dramatically enhanced. The results in this present paper indicated that tobacco NtAn1 genes regulate both PAs and lipid accumulation in the process of seed development and that targeted mutagenesis of NtAn1 genes could generate a yellow-seeded tobacco variety with high lipid and protein content. Furthermore, the present results revealed that the CRISPR-Cas9 system could be employed in tobacco seed de novo domestication for biodiesel feedstock production.
Collapse
Affiliation(s)
- Yinshuai Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China
| | - Xinanbei Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caixin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Yunpu Zheng
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China
| | - Ying Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
628
|
Mei Y, Xie H, Liu S, Zhu J, Zhao S, Wei C. Metabolites and Transcriptional Profiling Analysis Reveal the Molecular Mechanisms of the Anthocyanin Metabolism in the "Zijuan" Tea Plant (Camellia sinensis var. assamica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:414-427. [PMID: 33284608 DOI: 10.1021/acs.jafc.0c06439] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anthocyanins are natural colorants that have attracted increasing attention because of their extensive range of antioxidant, antimutagenic, and health-promoting properties. The mechanism of anthocyanin synthesis has been studied in "Zijuan" tea, a representative anthocyanin-rich tea plant. However, the molecular basis underlying the transformation and degradation of anthocyanins is less-thoroughly understood. In this study, we compare "Zijuan" with a similar variety, "Yunkang 10", for transcriptome and metabolite analysis. In total, four glycosylated anthocyanins were identified in "Zijuan", including delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, delphinidin 3-O-(6-O-p-coumaroyl) galactoside, and cyanidin 3-O-(6-O-p-coumaroyl) galactoside, and the glycosyl might determine the stable accumulation of anthocyanins. Several differentially expressed genes and transcription factors regulating the anthocyanin metabolism were identified, in which the significantly upregulated ANS, 3GT, 3AT, MYB, and WRKY were determined to be responsible for increasing and transforming anthocyanins. Moreover, by comparing the different positions of leaves in "Zijuan" and "Ziyan", we found that the pivotal genes regulating the biosynthesis of anthocyanins in "Zijuan" and "Ziyan" were different, and the degradation genes played different roles in the hydrolyzation of anthocyanins. These results provide further information on the molecular regulation of anthocyanin balance in tea plants.
Collapse
Affiliation(s)
- Yu Mei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| |
Collapse
|
629
|
Yang X, Zhou T, Wang M, Li T, Wang G, Fu FF, Cao F. Systematic investigation and expression profiles of the GbR2R3-MYB transcription factor family in ginkgo (Ginkgo biloba L.). Int J Biol Macromol 2021; 172:250-262. [PMID: 33450345 DOI: 10.1016/j.ijbiomac.2021.01.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
As one of the largest families of transcription factors, the R2R3-MYB family plays a significant role in plant growth, development, and response to hormone and environmental stress. To explore its evolutionary mechanism and potential function in Ginkgo biloba, a gymnosperm of great economic and ecological value, we presented a comprehensive analysis of the R2R3-MYB genes in ginkgo. Sixty-nine GbR2R3-MYB genes were identified and these genes could be classified into 33 groups based on the characteristics of the amino acid sequence of the R2R3-MYB domain and gene structure. Syntenic analyses indicated that few tandem and segmental duplications possibly resulted in the contraction of the GbR2R3-MYB gene family. Based on the transcriptome data, expression profiles of eight different tissues and different developmental stages of leaf and kernel showed that GbR2R3-MYB genes had distinct temporal and spatial expression characteristics. Specific expression patterns of the sixteen GbR2R3-MYB genes were also identified in response to different abiotic stresses and hormonal exposures. Further investigation revealed that GbR2R3-MYB19 was located in the nucleus and possessed transcriptional activity, implying its potential roles in the regulation of multiple biological processes. Our findings provide a robust basis for future comprehensive evolutionary and functional analyses of GbR2R3-MYB genes in ginkgo.
Collapse
Affiliation(s)
- Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tingting Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Mengke Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Tingting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Fang-Fang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
630
|
Kreynes AE, Yong Z, Ellis BE. Developmental phenotypes of Arabidopsis plants expressing phosphovariants of AtMYB75. PLANT SIGNALING & BEHAVIOR 2021; 16:1836454. [PMID: 33100126 PMCID: PMC7781762 DOI: 10.1080/15592324.2020.1836454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is a well-established transcriptional activator of genes required for anthocyanin and flavonoid production, and a repressor of lignin and other secondary cell wall biosynthesis genes. MYB75 is itself tightly regulated at the transcriptional, translational and post-translational levels, including protein phosphorylation by Arabidopsis MAP kinases Examination of the behavior of different phosphovariant versions of MYB75 in vitro and in vivo revealed that overexpression of the MYB75T131E phosphovariant had a particularly marked effect on global changes in gene expression suggesting that phosphorylated MYB75 could be involved in a broader range of functions than previously recognized. Here, we describe a range of distinct developmental phenotypes observed among Arabidopsis lines expressing various phosphovariant forms of MYB75. Expression of either MYB75T131E or MYB75T131A phosphovariants, from the endogenous MYB75 promoter, in Arabidopsis myb75- mutants (Nossen background), resulted in severely impaired germination rates, and developmental arrest at early seedling stages. Arabidopsis plants overexpressing MYB75T131E from a strong constitutive Cauliflower mosaic virus (CaMV35S) promoter displayed slower development, with delayed bolting, flowering and onset of senescence. Conversely, MYB75T131A -overexpressing lines flowered and set seed earlier than either Col-0 WT controls or other MYB75-overexpressors (MYB75WT and MYB75T131E ). Histochemical analysis of mature stems also revealed ectopic vessel development in plants overexpressing MYB75; this phenotype was particularly prominent in the MYB75T131E phosphovariant. These data suggest that MYB75 plays a significant role in plant development, and that this aspect of MYB75 function is influenced by its phosphorylation status.
Collapse
Affiliation(s)
- Anna E. Kreynes
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
- CONTACT Anna E. Kreynes Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Zhenhua Yong
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brian E. Ellis
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
631
|
Zhang D, Tan Y, Dong F, Zhang Y, Huang Y, Zhou Y, Zhao Z, Yin Q, Xie X, Gao X, Zhang C, Tu N. The Expression of IbMYB1 Is Essential to Maintain the Purple Color of Leaf and Storage Root in Sweet Potato [ Ipomoea batatas (L.) Lam]. FRONTIERS IN PLANT SCIENCE 2021; 12:688707. [PMID: 34630449 PMCID: PMC8495246 DOI: 10.3389/fpls.2021.688707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/16/2021] [Indexed: 05/14/2023]
Abstract
IbMYB1 was one of the major anthocyanin biosynthesis regulatory genes that has been identified and utilized in purple-fleshed sweet potato breeding. At least three members of this gene, namely, IbMYB1-1, -2a, and -2b, have been reported. We found that IbMYB1-2a and -2b are not necessary for anthocyanin accumulation in a variety of cultivated species (hexaploid) with purple shoots or purplish rings/spots of flesh. Transcriptomic and quantitative reverse transcription PCR (RT-qPCR) analyses revealed that persistent and vigorous expression of IbMYB1 is essential to maintain the purple color of leaves and storage roots in this type of cultivated species, which did not contain IbMYB1-2 gene members. Compared with IbbHLH2, IbMYB1 is an early response gene of anthocyanin biosynthesis in sweet potato. It cannot exclude the possibility that other MYBs participate in this gene regulation networks. Twenty-two MYB-like genes were identified from 156 MYBs to be highly positively or negatively correlated with the anthocyanin content in leaves or flesh. Even so, the IbMYB1 was most coordinately expressed with anthocyanin biosynthesis genes. Differences in flanking and coding sequences confirm that IbMYB2s, the highest similarity genes of IbMYB1, are not the members of IbMYB1. This phenomenon indicates that there may be more members of IbMYB1 in sweet potato, and the genetic complementation of these members is involved in the regulation of anthocyanin biosynthesis. The 3' flanking sequence of IbMYB1-1 is homologous to the retrotransposon sequence of TNT1-94. Transposon movement is involved in the formation of multiple members of IbMYB1. This study provides critical insights into the expression patterns of IbMYB1, which are involved in the regulation of anthocyanin biosynthesis in the leaf and storage root. Notably, our study also emphasized the presence of a multiple member of IbMYB1 for genetic improvement.
Collapse
Affiliation(s)
- Daowei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Daowei Zhang,
| | - Yongjun Tan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fang Dong
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ya Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yanlan Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yizhou Zhou
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhiJian Zhao
- Dryland Crop Research Institute, Shao Yang Academy of Agriculture Science, Shaoyang, China
| | - Qin Yin
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuehua Xie
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiewang Gao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chaofan Zhang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Chaofan Zhang,
| | - Naimei Tu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Naimei Tu,
| |
Collapse
|
632
|
Ismail A, Darwish AG, Park M, Gajjar P, Tsolova V, Soliman KFA, El-Sharkawy I. Transcriptome Profiling During Muscadine Berry Development Reveals the Dynamic of Polyphenols Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:818071. [PMID: 35185966 PMCID: PMC8849228 DOI: 10.3389/fpls.2021.818071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/31/2021] [Indexed: 05/17/2023]
Abstract
Muscadine grapes accumulate higher amounts of bioactive phenolics compared with other grape species. To identify the molecular events associated with polyphenolic accumulation that influence antioxidant capacity, two contrasting muscadine genotypes (C5 and C6) with varied phenolic/flavonoid content and antioxidant activity were investigated via RNA-sequencing during berry development. The results showed that berry development is concomitant with transcriptome profile changes, which was more pronounced at the véraison (V) stage. Despite that the downregulation pattern of gene expression dominated the upregulation through berry development, the C5 genotype maintained higher expression levels. Comparative transcript profiling allowed the identification of 94 differentially expressed genes with potential relevance in regulating fruit secondary metabolism, including 18 transcription factors and 76 structural genes. The genes underlying the critical enzymes in the modification reactions of polyphenolics biosynthetic pathway, including hydroxylation, methylation, and glycosylation were more pronounced during the immature stages of prevéraison (PrV), V, and postvéraison (PoV) in the C5 genotype, resulting in more accumulation of biologically active phenolic/flavonoid derivatives. The results suggested that muscadine grapes, as in bunch grapes (Vitis sp.); possess a similar mechanism that organizes polyphenolics accumulation; however, the set of total flavonoids (TFs) and structural genes coordinating the pathway varies between the two species.
Collapse
Affiliation(s)
- Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- *Correspondence: Islam El-Sharkawy,
| |
Collapse
|
633
|
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:180-209. [PMID: 33325112 DOI: 10.1111/jipb.13054] [Citation(s) in RCA: 631] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
634
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT DIRECT 2021; 5:e00305. [PMID: 33532692 PMCID: PMC7833464 DOI: 10.1002/pld3.305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are key regulators of plant specialized metabolites, including terpenoid indole alkaloids (TIAs) in Catharanthus roseus. Two previously characterized subgroup-IVa bHLH TFs, BIS1 (bHLH Iridoid Synthesis 1) and BIS2 regulate iridoid biosynthesis in the TIA pathway. We reanalyzed the recently updated C. roseus genome sequence and discovered that BIS1 and BIS2 are clustered on the same genomic scaffold with a previously uncharacterized bHLH gene, designated as BIS3. Only a few bHLH gene clusters have been studied to date. Comparative analysis of 49 genome sequences from different plant lineages revealed the presence of analogous bHLH clusters in core angiosperms, including the medicinal plants Calotropis gigantea (giant milkweed) and Gelsemium sempervirens (yellow jessamine), but not in the analyzed basal angiosperm and lower plants. Similar to the iridoid pathway genes, BIS3 is highly expressed in roots and induced by methyl jasmonate. BIS3 activates the promoters of iridoid branch genes, geraniol synthase (GES), geraniol 10-hydroxylase (G10H), 8-hydroxygeraniol oxidoreductase (8HGO), iridoid synthase (IS), 7-deoxyloganetic acid glucosyl transferase (7-DLGT), and 7-deoxyloganic acid hydroxylase (7DLH), but not iridoid oxidase (IO). Transactivation of the promoters was abolished when BIS3 is converted to a dominant repressor by fusing with the ERF-associated amphiphilic repression (EAR) sequence. In addition, BIS3 acts synergistically with BIS1 and BIS2 to activate the G10H promoter in tobacco cells. Mutation of the known bHLH TF binding motif, G-box (CACGTG) in the G10H promoter significantly reduced but did not abolish the transactivation by BIS3. Promoter deletion analysis of G10H suggests that the sequences adjacent to the G-box are also involved in the regulation by BIS3. Overexpression of BIS3 in C. roseus flower petals significantly upregulated the expression of iridoid biosynthetic genes and increased loganic acid accumulation. BIS2 expression was significantly induced by BIS3 although BIS3 did not directly activate the BIS2 promoter. Our results advance our understanding of the regulation of plant specialized metabolites by bHLH TF clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Barunava Patra
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Priyanka Paul
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
| | - Yongliang Liu
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Ling Yuan
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
635
|
Xie L, Tian J, Peng L, Cui Q, Liu Y, Liu J, Li F, Zhang S, Gao J. Conserved Regulatory Pathways for Stock-Scion Healing Revealed by Comparative Analysis of Arabidopsis and Tomato Grafting Transcriptomes. FRONTIERS IN PLANT SCIENCE 2021; 12:810465. [PMID: 35281699 PMCID: PMC8908109 DOI: 10.3389/fpls.2021.810465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 05/02/2023]
Abstract
Many plants can successfully join root and shoot sections at cut surfaces when severed at the stem. Graft healing is complex and conserved in diverse taxonomic groups with different vascular structures. Herein, we compared transcriptome data from autografted and separated stem sections of Arabidopsis thaliana and tomato (Solanum lycopersicum) to explore changes related to graft healing. Using orthologous gene pairs identified between the two species, temperal expression patterns of evolutionary associated genes in grafted top and bottom, separated top and bottom, and intact stems were exhibited. Genes with expression preference indicate functional diversification of genes related to anatomical structure and cellular development in the two species. Expression profiles of the variable genes revealed common pathways operating during graft healing, including phenylpropanoid metabolism, response to oxygen-containing compounds, xylan, and cell wall biogenesis, mitosis and the cell cycle, carboxylic acid catabolism, and meristem structural organization. In addition, vascular differentiation related NAC domain transcription factors and genome-wide members in Arabidopsis and tomato were used for phylogenetic and expression analysis. Expression differences were largely consistent with sequence differences, reflecting high similarity for protein-coding and regulatory regions of individual clades. NAC proteins mainly clustered in accordance with their reported functions in xylem differentiation or cambium formation. The putative conserved mechanisms suggested by conserved genes and functions could help to expand graft healing theory to a wider range of species, and temporal fluctuations in common pathways imply conserved biological processes during graft healing.
Collapse
Affiliation(s)
- Lulu Xie
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfan Tian
- Shouguang Vegetables Research and Development Center, Chinese Academy of Agricultural Sciences, Shouguang, China
| | - Lixin Peng
- Shouguang Vegetables Research and Development Center, Chinese Academy of Agricultural Sciences, Shouguang, China
| | - Qingqing Cui
- Institute of Modern Agricultural Research, Dalian University, Dalian, China
| | - Yang Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyang Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fu Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Siyuan Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianchang Gao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shouguang Vegetables Research and Development Center, Chinese Academy of Agricultural Sciences, Shouguang, China
- *Correspondence: Jianchang Gao,
| |
Collapse
|
636
|
Lim SH, Kim DH, Jung JA, Lee JY. Alternative Splicing of the Basic Helix-Loop-Helix Transcription Factor Gene CmbHLH2 Affects Anthocyanin Biosynthesis in Ray Florets of Chrysanthemum ( Chrysanthemum morifolium). FRONTIERS IN PLANT SCIENCE 2021; 12:669315. [PMID: 34177983 PMCID: PMC8222801 DOI: 10.3389/fpls.2021.669315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 05/19/2023]
Abstract
Chrysanthemum is an important ornamental crop worldwide. Some white-flowered chrysanthemum cultivars produce red ray florets under natural cultivation conditions, but little is known about how this occurs. We compared the expression of anthocyanin biosynthetic and transcription factor genes between white ray florets and those that turned red based on cultivation conditions to comprehend the underlying mechanism. Significant differences in the expression of CmbHLH2 were detected between the florets of different colors. CmbHLH2 generated two alternatively spliced transcripts, designated CmbHLH2Full and CmbHLH2Short . Compared with CmbHLH2Full , CmbHLH2Short encoded a truncated protein with only a partial MYB-interaction region and no other domains normally present in the full-length protein. Unlike the full-length form, the splicing variant protein CmbHLH2Short localized to the cytoplasm and the nucleus and could not interact with CmMYB6. Additionally, CmbHLH2Short failed to activate anthocyanin biosynthetic genes and induce pigment accumulation in transiently transfected tobacco leaves, whereas CmbHLH2Full promoted both processes when simultaneously expressed with CmMYB6. Co-expressing CmbHLH2Full and CmMYB6 also enhanced the promoter activities of CmCHS and CmDFR. Notably, the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, could be complemented by the heterologous expression of CmbHLH2Full, which restored red pigmentation and resulted in red pigmentation in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively, whereas expression of CmbHLH2Short did not. Together, these results indicate that CmbHLH2 and CmMYB6 interaction plays a key role in the anthocyanin pigmentation changes of ray florets in chrysanthemum. Our findings highlight alternative splicing as a potential approach to modulate anthocyanin biosynthesis in specific tissues.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- *Correspondence: Sun-Hyung Lim,
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Jae-A. Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju, South Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
- Jong-Yeol Lee,
| |
Collapse
|
637
|
Xu P, Wu L, Cao M, Ma C, Xiao K, Li Y, Lian H. Identification of MBW Complex Components Implicated in the Biosynthesis of Flavonoids in Woodland Strawberry. FRONTIERS IN PLANT SCIENCE 2021; 12:774943. [PMID: 34819941 PMCID: PMC8606683 DOI: 10.3389/fpls.2021.774943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 05/02/2023]
Abstract
Flavonoids belong to the family of polyphenolic secondary metabolites and contribute to fruit quality traits. It has been shown that MBW complexes (MYB-bHLH-WD40) regulate the flavonoids biosynthesis in different plants, but only a limited number of MBW complexes have been identified in strawberry species in general. In this study, we identified 112 R2R3-MYB proteins in woodland strawberry; 12 of them were found to have potential functions in regulating flavonoids biosynthesis by phylogenetic analysis. qRT-PCR assays showed that FvMYB3, FvMYB9, FvMYB11, FvMYB22, FvMYB64, and FvMYB105 mostly expressed at green stage of fruit development, aligned with proanthocyanidins accumulation; FvMYB10 and FvMYB41 showed higher expression levels at turning and ripe stages, aligned with anthocyanins accumulation. These results suggest that different MYBs might be involved in flavonoids biosynthesis at specific stages. Furthermore, FvMYB proteins were demonstrated to interact with FvbHLH proteins and induce expression from the promoters of CHS2 and DFR2 genes, which encode key enzymes in flavonoids biosynthesis. The co-expression of FvMYB and FvbHLH proteins in strawberry fruits also promoted the accumulation of proanthocyanidins. These findings confirmed and provided insights into the biofunction of MBW components in the regulation of flavonoid biosynthesis in woodland strawberry.
Collapse
Affiliation(s)
- Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Minghao Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongli Lian,
| |
Collapse
|
638
|
Lin RC, Rausher MD. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). THE NEW PHYTOLOGIST 2021; 229:1147-1162. [PMID: 32880946 DOI: 10.1111/nph.16908] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background. We used transcriptome analysis, gene expression assays, cosegregation in F2 plants and functional tests to identify the gene(s) involved in petal coloration in Clarkia gracilis ssp. sonomensis. We identified an R2R3-MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region ('cup') in the petal of C. gracilis ssp. sonomensis. A functional mutation in CgsMYB12 creates a white cup on a pink petal background. Additionally, we found that two R2R3-MYB genes (CgsMYB6 and CgsMYB11) are also involved in petal background pigmentation. Each of these three R2R3-MYB genes exhibits a different spatiotemporal expression pattern. The functionality of these R2R3-MYB genes was confirmed through stable transformation of Arabidopsis. Distinct spatial patterns of R2R3-MYB expression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning in C. gracilis ssp. sonomensis.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
639
|
Ortolan F, Fonini LS, Pastori T, Mariath JEA, Saibo NJM, Margis-Pinheiro M, Lazzarotto F. Tightly controlled expression of OsbHLH35 is critical for anther development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110716. [PMID: 33288022 DOI: 10.1016/j.plantsci.2020.110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 05/08/2023]
Abstract
Anther development is a complex process regulated by a myriad of transcription factors belonging to distinct protein families. In this study, we focus on the functional characterization of OsbHLH35, a basic Helix-Loop-Helix (bHLH) TF that regulates anther development in rice. Plants overexpressing OsbHLH35 presented small and curved anthers, leading to a reduction of 72 % on seed production. Rice transgenic plants expressing GUS reporter gene under the control of OsbHLH35 promoter (pOsbHLH35::GUS) showed that this TF specifically accumulates in anthers at the meiosis stage and in other spikelet tissues. Yeast one-hybrid screening identified three members of the Growth-Regulating Factor (GRF) family, OsGRF3, OsGRF4, and OsGRF11, as transcriptional regulators of OsbHLH35. Transactivation assay showed that OsGRF11 negatively regulates OsbHLH35 expression in Arabidopsis protoplasts. This regulation was also observed in planta through the analysis of transgenic plants overexpressing OsGRF11 (OsGRF11OE), confirming that OsGRF11 is a negative regulator of OsbHLH35 in rice. Our data suggest that OsbHLH35 plays an essential role in anther development in rice and the fine control of its expression is crucial to ensure proper seed production.
Collapse
Affiliation(s)
- Francieli Ortolan
- Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil.
| | - Leila S Fonini
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil.
| | - Tamara Pastori
- Programa de Pós-graduação em Botânica, Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil.
| | - Jorge E A Mariath
- Programa de Pós-graduação em Botânica, Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil.
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
| | - Márcia Margis-Pinheiro
- Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil.
| | - Fernanda Lazzarotto
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900, RS, Brazil.
| |
Collapse
|
640
|
Cao Y, Xu L, Xu H, Yang P, He G, Tang Y, Qi X, Song M, Ming J. LhGST is an anthocyanin-related glutathione S-transferase gene in Asiatic hybrid lilies (Lilium spp.). PLANT CELL REPORTS 2021; 40:85-95. [PMID: 33210154 DOI: 10.1007/s00299-020-02615-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/28/2020] [Indexed: 05/26/2023]
Abstract
LhGST, an anthocyanin-related GST gene, was identified from Asiatic hybrid lilies. Expression and functional analyses demonstrated that LhGST might be involved in anthocyanin sequestration in lily tepals. Anthocyanins are responsible for the pink, red and purple pigmentation of flowers in Asiatic hybrid lilies, synthesized at the cytoplasmic surface of the endoplasmic reticulum (ER) and then transported to the vacuole. To date, the mechanism involved in the intracellular transport of anthocyanins in lilies has not been well elucidated. Here, full-length glutathione S-transferase gene (LhGST) was identified from lilies. Expression analysis revealed that LhGST was positively correlated with anthocyanin accumulation. Phylogenetic tree analysis showed that LhGST clustered with other anthocyanin-related GSTs in the same phi clade. Moreover, functional complementation of an Arabidopsis tt19 mutant demonstrated that LhGST might be involved in anthocyanin accumulation in lily tepals. Additionally, according to phenotype analysis, LhGST was found to be correlated with the transport of anthocyanin in lilies by virus-induced gene silencing (VIGS) assay. In addition, cis-element analysis of the LhGST promoter showed the presence of ABA-, auxin-, MeJA-, gibberellin-, light-, and stress-responsive elements and an MYB recognition site (MRS, CCGTTG). Yeast one-hybrid and dual-luciferase report assays revealed that the promoter of LhGST was activated by LhMYB12-lat, which is a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in lilies. In conclusion, our results revealed that LhGST plays a key role in anthocyanin transport and accumulation in the tepals of lilies.
Collapse
Affiliation(s)
- Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hua Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianyu Qi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
641
|
Ning Z, Hu K, Zhou Z, Zhao D, Tang J, Wang H, Li L, Ding C, Chen X, Yao G, Zhang H. IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). PLANT CELL REPORTS 2021; 40:157-169. [PMID: 33084965 DOI: 10.1007/s00299-020-02621-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The transcription factor (TF) IbERF71 forms a novel complex, IbERF71-IbMYB340-IbbHLH2, to coregulate anthocyanin biosynthesis by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Purple-fleshed sweet potato (Ipomoea batatas L.) is very popular because of its abundant anthocyanins, which are natural pigments with multiple physiological functions. TFs involved in regulating anthocyanin biosynthesis have been identified in many plants. However, the molecular mechanism of anthocyanin biosynthesis in purple-fleshed sweet potatoes has rarely been examined. In this study, TF IbERF71 and its partners were screened by bioinformatics and RT-qPCR analysis. The results showed that the expression levels of IbERF71 and partners IbMYB340 and IbbHLH2 were higher in purple-fleshed sweet potatoes than in other colors and that the expression levels positively correlated with anthocyanin contents. Moreover, transient expression assays showed that cotransformation of IbMYB340+IbbHLH2 resulted in anthocyanin accumulation in tobacco leaves and strawberry receptacles, and additional IbERF71 significantly increased visual aspects. Furthermore, the combination of the three TFs significantly increased the expression levels of FvANS and FvGST, which are involved in anthocyanin biosynthesis and transport of strawberry receptacles. The dual-luciferase reporter system verified that cotransformation of the three TFs enhanced the transcription activity of IbANS1. In addition, yeast two-hybrid and firefly luciferase complementation assays revealed that IbMYB340 interacted with IbbHLH2 and IbERF71 but IbERF71 could not interact with IbbHLH2 in vitro. In summary, our findings provide novel evidence that IbERF71 and IbMYB340-IbbHLH2 form the regulatory complex IbERF71-IbMYB340-IbbHLH2 that coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Thus, the present study provides a new regulatory network of anthocyanin biosynthesis and strong insight into the color development of purple-fleshed sweet potatoes.
Collapse
Affiliation(s)
- Zhiyuan Ning
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Donglan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lixia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Ding
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaoyan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
642
|
Yin X, Zhang Y, Zhang L, Wang B, Zhao Y, Irfan M, Chen L, Feng Y. Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:761668. [PMID: 34925411 PMCID: PMC8672200 DOI: 10.3389/fpls.2021.761668] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Flower color is the decisive factor that affects the commercial value of ornamental flowers. Therefore, it is important to study the regulation of flower color formation in lily to discover the positive and negative factors that regulate this important trait. In this study, MYB transcription factors (TFs) were characterized to understand the regulatory mechanism of anthocyanin biosynthesis in lily. Two R2R3-MYB TFs, LvMYB5, and LvMYB1, were found to regulate anthocyanin biosynthesis in lily flowers. LvMYB5, which has an activation motif, belongs to the SG6 MYB protein subgroup of Arabidopsis thaliana. Transient expression of LvMYB5 indicated that LvMYB5 can promote coloration in Nicotiana benthamiana leaves, and that expression of LvMYB5 increases the expression levels of NbCHS, NbDFR, and NbANS. VIGS experiments in lily petals showed that the accumulation of anthocyanins was reduced when LvMYB5 was silenced. Luciferase assays showed that LvMYB5 can promote anthocyanin synthesis by activating the ANS gene promoter. Therefore, LvMYB5 plays an important role in flower coloration in lily. In addition, the transient expression experiment provided preliminary evidence that LvMYB1 (an R2R3-MYB TF) inhibits anthocyanin synthesis in lily flowers. The discovery of activating and inhibitory factors related to anthocyanin biosynthesis in lily provides a theoretical basis for improving flower color through genetic engineering. The results of our study provide a new direction for the further study of the mechanisms of flower color formation in lilies.
Collapse
Affiliation(s)
- Xiaojuan Yin
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Yibing Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Baohua Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yidi Zhao
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Lijing Chen, ;
| | - Yulong Feng
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Yulong Feng, ;
| |
Collapse
|
643
|
García-Gómez BE, Salazar JA, Nicolás-Almansa M, Razi M, Rubio M, Ruiz D, Martínez-Gómez P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. Int J Mol Sci 2020; 22:E333. [PMID: 33396946 PMCID: PMC7794732 DOI: 10.3390/ijms22010333] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view.
Collapse
Affiliation(s)
- Beatriz E. García-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Juan A. Salazar
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - María Nicolás-Almansa
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Mitra Razi
- Department of Horticulture, Faculty of Agriculture, University of Zajan, Zanjan 45371-38791, Iran;
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - David Ruiz
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| |
Collapse
|
644
|
Shi Q, Du J, Zhu D, Li X, Li X. Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant Ziziphus jujuba cv. Tailihong. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15186-15198. [PMID: 33300333 DOI: 10.1021/acs.jafc.0c05334] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purplish-red color of "Tailihong" jujube fruit skins is caused primarily by anthocyanin accumulation, but the mechanisms that underlie anthocyanin biosynthesis in jujube fruit have rarely been studied. We performed metabolomic and transcriptomic analyses of jujube fruit skins at different developmental stages and identified a total of 158 flavonoids, among which cyanidin-3-O-rutinoside and peonidin-3,5-O-diglucoside were the primary anthocyanins. During fruit development and maturation, the anthocyanin content was strongly correlated with the expression of ZjANS and ZjUGT79B1, suggesting that these are key genes in the anthocyanin biosynthesis process. Transcriptomic analysis indicated that the transcription factors ZjMYB5, ZjTT8, and ZjWDR3 regulated anthocyanin biosynthesis in jujube fruit skins. Subcellular localization experiments confirmed that ZjANS and ZjUGT79B1 were localized to the nucleus and the endoplasmic reticulum. ZjMYB5 and ZjTT8 were found only in the nucleus, whereas strong fluorescence signals from ZjWDR3 were observed in the nucleus and cytoplasm. Prokaryotic expression and in vitro enzyme activity assays showed that the recombinant ZjANS protein catalyzed the formation of cyanidin from (+)-catechin. Secondary glycosylation by ZjUFGT79B1 modified cyanidin-3-O-glucoside to produce cyanidin-3-O-rutinoside, and ZjCCoAOMT readily catalyzed the production of the methylated anthocyanin peonidin-3,5-O-diglucoside from cyanidin 3,5-O-glucoside. Dual-Luciferase and GUS activity assays showed that the ZjANS and ZjUGT79B1 promoters were activated by ZjMYB5, ZjTT8, and ZjWDR3. All data indicated that these three transcription factors played important roles in anthocyanin biosynthesis in the color mutant Ziziphus jujuba cv. Tailihong, contributing to anthocyanin accumulation by enhancing the expression of ZjANS and ZjUGT79B1.
Collapse
Affiliation(s)
- Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiangtao Du
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Dajun Zhu
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
645
|
He Q, Lu Q, He Y, Wang Y, Zhang N, Zhao W, Zhang L. Dynamic Changes of the Anthocyanin Biosynthesis Mechanism During the Development of Heading Chinese Cabbage ( Brassica rapa L.) and Arabidopsis Under the Control of BrMYB2. FRONTIERS IN PLANT SCIENCE 2020; 11:593766. [PMID: 33424889 PMCID: PMC7785979 DOI: 10.3389/fpls.2020.593766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Chinese cabbage is an important vegetable mainly planted in Asian countries, and mining the molecular mechanism responsible for purple coloration in Brassica crops is fast becoming a research hotspot. In particular, the anthocyanin accumulation characteristic of purple heading Chinese cabbage, along with the plant's growth and head developing, is still largely unknown. To elucidate the dynamic anthocyanin biosynthesis mechanism of Chinese cabbage during its development processes, here we investigated the expression profiles of 86 anthocyanin biosynthesis genes and corresponding anthocyanin accumulation characteristics of plants as they grew and their heads developed, between purple heading Chinese cabbage 11S91 and its breeding parents. Anthocyanin accumulation of 11S91 increased from the early head formation period onward, whereas the purple trait donor 95T2-5 constantly accumulated anthocyanin throughout its whole plant development. Increasing expression levels of BrMYB2 and BrTT8 together with the downregulation of BrMYBL2.1, BrMYBL2.2, and BrLBD39.1 occurred in both 11S91 and 95T2-5 plants during their growth, accompanied by the significantly continuous upregulation of a phenylpropanoid metabolic gene, BrPAL3.1; a series of early biosynthesis genes, such as BrCHSs, BrCHIs, BrF3Hs, and BrF3'H; as well as some key late biosynthesis genes, such as BrDFR1, BrANS1, BrUF3GT2, BrUF5GT, Br5MAT, and Brp-Cout; in addition to the transport genes BrGST1 and BrGST2. Dynamic expression profiles of these upregulated genes correlated well with the total anthocyanin contents during the processes of plant growth and leaf head development, and results supported by similar evidence for structural genes were also found in the BrMYB2 transgenic Arabidopsis. After intersubspecific hybridization breeding, the purple interior heading leaves of 11S91 inherited the partial purple phenotypes from 95T2-5 while the phenotypes of seedlings and heads were mainly acquired from white 94S17; comparatively in expression patterns of investigated anthocyanin biosynthesis genes, cotyledons of 11S91 might inherit the majority of genetic information from the white type parent, whereas the growth seedlings and developing heading tissues of 11S91 featured expression patterns of these genes more similar to 95T2-5. This comprehensive set of results provides new evidence for a better understanding of the anthocyanin biosynthesis mechanism and future breeding of new purple Brassica vegetables.
Collapse
Affiliation(s)
- Qiong He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qianqian Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yuting He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yaxiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ninan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenbin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
646
|
Simões MS, Ferreira SS, Grandis A, Rencoret J, Persson S, Floh EIS, Ferraz A, del Río JC, Buckeridge MS, Cesarino I. Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. FRONTIERS IN PLANT SCIENCE 2020; 11:617020. [PMID: 33469464 PMCID: PMC7814504 DOI: 10.3389/fpls.2020.617020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/01/2020] [Indexed: 05/06/2023]
Abstract
Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks. Here, we establish a xylogenic culture as a model system to study SCW deposition in sugarcane; the first of its kind in a C4 grass species. We used auxin and brassinolide to differentiate sugarcane suspension cells into tracheary elements, which showed metaxylem-like reticulate or pitted SCW patterning. The differentiation led to increased lignin levels, mainly caused by S-lignin units, and a rise in p-coumarate, leading to increased p-coumarate:ferulate ratios. RNAseq analysis revealed massive transcriptional reprogramming during differentiation, with upregulation of genes associated with cell wall biogenesis and phenylpropanoid metabolism and downregulation of genes related to cell division and primary metabolism. To better understand the differentiation process, we constructed regulatory networks of transcription factors and SCW-related genes based on co-expression analyses. Accordingly, we found multiple regulatory modules that may underpin SCW deposition in sugarcane. Our results provide important insights and resources to identify biotechnological strategies for sugarcane biomass optimization.
Collapse
Affiliation(s)
- Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Grandis
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, São Paulo, Brazil
| |
Collapse
|
647
|
Jia H, Zhang Z, Sadeghnezhad E, Pang Q, Li S, Pervaiz T, Su Z, Dong T, Fang J, Jia H. Demethylation alters transcriptome profiling of buds and leaves in 'Kyoho' grape. BMC PLANT BIOLOGY 2020; 20:544. [PMID: 33276735 PMCID: PMC7716455 DOI: 10.1186/s12870-020-02754-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Grape buds and leaves are directly associated with the physiology and metabolic activities of the plant, which is monitored by epigenetic modifications induced by environment and endogenous factors. Methylation is one of the epigenetic regulators that could be involved in DNA levels and affect gene expression in response to stimuli. Therefore, changes of gene expression profile in leaves and bud through inhibitors of DNA methylation provide a deep understanding of epigenetic effects in regulatory networks. RESULTS In this study, we carried out a transcriptome analysis of 'Kyoho' buds and leaves under 5-azacytidine (5-azaC) exposure and screened a large number of differentially expressed genes (DEGs). GO and KEGG annotations showed that they are mainly involved in photosynthesis, flavonoid synthesis, glutathione metabolism, and other metabolic processes. Functional enrichment analysis also provided a holistic perspective on the transcriptome profile when 5-azaC bound to methyltransferase and induced demethylation. Enrichment analysis of transcription factors (TFs) also showed that the MYB, C2H2, and bHLH families are involved in the regulation of responsive genes under epigenetic changes. Furthermore, hormone-related genes have also undergone significant changes, especially gibberellin (GA) and abscisic acid (ABA)-related genes that responded to bud germination. We also used protein-protein interaction network to determine hub proteins in response to demethylation. CONCLUSIONS These findings provide new insights into the establishment of molecular regulatory networks according to how methylation as an epigenetic modification alters transcriptome patterns in bud and leaves of grape.
Collapse
Affiliation(s)
- Haoran Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Zibo Zhang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Pang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Shangyun Li
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Ziwen Su
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China.
- China Wine Industry Technology Institute, Yinchuan, China.
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China.
- China Wine Industry Technology Institute, Yinchuan, China.
| |
Collapse
|
648
|
He Y, Zhu M, Wu J, Ouyang L, Wang R, Sun H, Yan L, Wang L, Xu M, Zhan H, Zhao Y. Repurposing of Anthocyanin Biosynthesis for Plant Transformation and Genome Editing. Front Genome Ed 2020; 2:607982. [PMID: 34713232 PMCID: PMC8525376 DOI: 10.3389/fgeed.2020.607982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9 gene editing technology has been very effective in editing genes in many plant species including rice. Here we further improve the current CRISPR/Cas9 gene editing technology in both efficiency and time needed for isolation of transgene-free and target gene-edited plants. We coupled the CRISPR/Cas9 cassette with a unit that activates anthocyanin biosynthesis, providing a visible marker for detecting the presence of transgenes. The anthocyanin-marker assisted CRISPR (AAC) technology enables us to identify transgenic events even at calli stage, to select transformants with elevated Cas9 expression, and to identify transgene-free plants in the field. We used the AAC technology to edit LAZY1 and G1 and successfully generated many transgene-free and target gene-edited plants at T1 generation. The AAC technology greatly reduced the labor, time, and costs needed for editing target genes in rice.
Collapse
Affiliation(s)
- Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Min Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Junhua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lejun Ouyang
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangdong University of Petrochemical Technology, Maoming, China
| | - Rongchen Wang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lang Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lihao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meilian Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
649
|
Ryu S, Han JH, Cho JG, Jeong JH, Lee SK, Lee HJ. High temperature at veraison inhibits anthocyanin biosynthesis in berry skins during ripening in 'Kyoho' grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:219-228. [PMID: 33129068 DOI: 10.1016/j.plaphy.2020.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
We examined the effects of high temperature (HT) at veraison (the onset of ripening) on coloration and anthocyanin biosynthesis in berry skins of 'Kyoho' grapevines (Vitis labruscana L.). The vines were subjected to control, HT (6 °C higher than the control for 10 days), and intermittent HT (IHT; 6 °C higher than the control for 4 days followed by control temperature for 3 days and then 6 °C higher than the control for another 3 days) conditions from 50 to 60 days after full bloom (DAFB) in temperature-controlled rooms. Under control conditions, berry skins were tinted purple from 55 DAFB and turned to reddish-purple thereafter until 80 DAFB, concurrently with the anthocyanin accumulation. The HT and IHT treatments greatly inhibited the coloration and anthocyanin accumulation, with greater inhibition by the HT treatment. The HT and IHT treatments significantly inhibited the expressions of early (EBGs) and late anthocyanin biosynthetic genes (LBGs), and the transcription factor gene VlMYBA2. Abscisic acid (ABA) contents in the control berry skins increased from 50 DAFB, peaked at 55 DAFB, and decreased thereafter. The HT and IHT treatments reduced the increase in ABA contents, with no significant difference between HT- and IHT-treated vines. Gibberellin (GA) contents decreased during veraison in the berry skins of control and IHT-treated vines, but remained unchanged in those of HT-treated vines. These results suggest that the coloration and anthocyanin biosynthesis in berry skins are associated with changes in the ABA/GA ratio.
Collapse
Affiliation(s)
- Suhyun Ryu
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea; Department of Plant Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeom Hwa Han
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Jung Gun Cho
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Jae Hoon Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Seul Ki Lee
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Hee Jae Lee
- Department of Plant Science, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
650
|
Viudes S, Burlat V, Dunand C. Seed mucilage evolution: Diverse molecular mechanisms generate versatile ecological functions for particular environments. PLANT, CELL & ENVIRONMENT 2020; 43:2857-2870. [PMID: 32557703 DOI: 10.1111/pce.13827] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Plant myxodiasporous species have the ability to release a polysaccharidic mucilage upon imbibition of the seed (myxospermy) or the fruit (myxocarpy). This is a widespread capacity in angiosperms providing multiple ecological functions including higher germination efficiency under environmental stresses. It is unclear whether myxodiaspory has one or multiple evolutionary origins and why it was supposedly lost in several species. Here, we summarize recent advances on three main aspects of myxodiaspory. (a) It represents a combination of highly diverse traits at different levels of observation, ranging from the dual tissular origin of mucilage secretory cells to diverse mucilage polysaccharidic composition and ultrastructural organization. (b) An asymmetrical selection pressure is exerted on myxospermy-related genes that were first identified in Arabidopsis thaliana. The A. thaliana and the flax intra-species mucilage variants show that myxospermy is a fast-evolving trait due to high polymorphism in a few genes directly acting on mucilage establishment. In A. thaliana, these actors are downstream of a master regulatory complex and an original phylogenetic overview provided here illustrates that this complex has sequentially evolved after the common ancestor of seed plants and was fully established in the common ancestor of the rosid clade. (c) Newly identified myxodiaspory ecological functions indicate new perspectives such as soil microorganism control and plant establishment support.
Collapse
Affiliation(s)
- Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|