601
|
Abstract
The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, 1 Rope Ferry Rd., Hanover, NH 03755-1404, USA.
| | | | | | | |
Collapse
|
602
|
Schellekens H, Dinan TG, Cryan JF. Lean mean fat reducing "ghrelin" machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology 2009; 58:2-16. [PMID: 19573543 DOI: 10.1016/j.neuropharm.2009.06.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 12/13/2022]
Abstract
Obesity has reached epidemic proportions not only in Western societies but also in the developing world. Current pharmacological treatments for obesity are either lacking in efficacy and/or are burdened with adverse side effects. Thus, novel strategies are required. A better understanding of the intricate molecular pathways controlling energy homeostasis may lead to novel therapeutic intervention. The circulating hormone, ghrelin represents a major target in the molecular signalling regulating food intake, appetite and energy expenditure and its circulating levels often display aberrant signalling in obesity. Ghrelin exerts its central orexigenic action mainly in the hypothalamus and in particular in the arcuate nucleus via activation of specific G-protein coupled receptors (GHS-R). In this review we describe current pharmacological models of how ghrelin regulates food intake and how manipulating ghrelin signalling may give novel insight into developing better and more selective anti-obesity drugs. Accumulating data suggests multiple ghrelin variants and additional receptors exist to play a role in energy metabolism and these may well play an important role in obesity. In addition, the recent findings of hypothalamic GHS-R crosstalk and heterodimerization may add to the understanding of the complexity of bodyweight regulation.
Collapse
|
603
|
Ohgusu H, Shirouzu K, Nakamura Y, Nakashima Y, Ida T, Sato T, Kojima M. Ghrelin O-acyltransferase (GOAT) has a preference for n-hexanoyl-CoA over n-octanoyl-CoA as an acyl donor. Biochem Biophys Res Commun 2009; 386:153-8. [PMID: 19501572 DOI: 10.1016/j.bbrc.2009.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
Abstract
Ghrelin is a peptide hormone in which serine 3 is modified by n-octanoic acid through GOAT (ghrelin O-acyltransferase). However, the enzymological properties of GOAT remain to be elucidated. We analyzed the in vitro activity of GOAT using the recombinant enzyme. Unexpectedly, although the main active form of ghrelin is modified by n-octanoic acid, GOAT had a strong preference for n-hexanoyl-CoA over n-octanoyl-CoA as an acyl donor. Moreover, a four-amino acid peptide derived from the N-terminal sequence of ghrelin can be modified by GOAT, indicating that these four amino acids constitute the core motif for substrate recognition by the enzyme.
Collapse
Affiliation(s)
- Hideko Ohgusu
- Molecular Genetics, Institute of Life Science, Kurume University, Hyakunenkohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | | | | | | | | | | | | |
Collapse
|
604
|
Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, Schürmann A, Joost HG, Jandacek RJ, Hale JE, Heiman ML, Tschöp MH. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med 2009; 15:741-5. [PMID: 19503064 PMCID: PMC2789701 DOI: 10.1038/nm.1997] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/29/2009] [Indexed: 12/16/2022]
Abstract
CNS nutrient sensing and afferent endocrine signalling are established as parallel systems communicating metabolic status and energy availability in vertebrates. The only afferent endocrine signal known to require modification with a fatty acid side chain is the orexigenic hormone ghrelin. We find that the ghrelin O-acyl transferase (GOAT) which is essential for ghrelin acylation, is regulated by nutrient availability, depends on specific dietary lipids as acylation substrates and modulates body fat mass in mice.
Collapse
Affiliation(s)
- Henriette Kirchner
- Departments of Psychiatry and Medicine, Obesity Research Centre & Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
605
|
Gómez R, Lago F, Gómez-Reino JJ, Dieguez C, Gualillo O. Expression and modulation of ghrelinO-acyltransferase in cultured chondrocytes. ACTA ACUST UNITED AC 2009; 60:1704-9. [DOI: 10.1002/art.24522] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
606
|
Regional distribution and the dynamics of n-decanoyl ghrelin, another acyl-form of ghrelin, upon fasting in rodents. ACTA ACUST UNITED AC 2009; 156:47-56. [PMID: 19445969 DOI: 10.1016/j.regpep.2009.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 11/21/2022]
Abstract
n-Decanoyl ghrelin (D-ghrelin), a member of ghrelin-derived peptides, is found in plasma and the stomach; however, there have so far been no studies describing its dynamics. A D-ghrelin-specific radioimmunoassay was established to examine the tissue distribution and the kinetics of D-ghrelin in mice. The effect of D-ghrelin on food intake was also examined and compared to n-octanoyl ghrelin (O-ghrelin). D-ghrelin was detected throughout the gastrointestinal tissue and plasma with highest level in the stomach. An immunofluorescent study revealed the co-localization of D- and O-ghrelin in the same stomach cells. Upon fasting, the levels of D-ghrelin in the stomach and plasma significantly increased, while that of O-ghrelin in the stomach declined. D-ghrelin increased the 2 h food consumption in mice as O-ghrelin does. These findings indicate that D-ghrelin is mainly produced in the stomach to work in concert with O-ghrelin. The different kinetics of D- and O-ghrelin in the stomach upon fasting implies the possibility of D-ghrelin-specific bioregulation.
Collapse
|
607
|
Lipid-modified morphogens: functions of fats. Curr Opin Genet Dev 2009; 19:308-14. [PMID: 19442512 DOI: 10.1016/j.gde.2009.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Despite their location in the aqueous extracellular environment, a number of secreted proteins carry hydrophobic lipid modifications. These modifications include glycosylphosphatidylinositol, cholesterol, and both saturated and unsaturated fatty acids, and they are attached in the secretory pathway by different classes of enzymes. Lipid attachments make crucial contributions to protein function in vivo through a diverse array of mechanisms. They can promote protein maturation and secretion, membrane tethering, targeting to specific membrane subdomains, or receptor binding and activation. Additionally, secretion of lipid-modified morphogens of the Wnt and Hh families requires dedicated accessory proteins and may involve their packaging into lipoprotein particles for long-range transport.
Collapse
|
608
|
Ozawa A, Speaker RB, Lindberg I. Enzymatic characterization of a human acyltransferase activity. PLoS One 2009; 4:e5426. [PMID: 19412546 PMCID: PMC2672172 DOI: 10.1371/journal.pone.0005426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Non-histone protein acylation is increasingly recognized as an important posttranslational modification, but little is known as to the biochemical properties of protein serine acylating enzymes. METHODOLOGY/PRINCIPAL FINDINGS We here report that we have identified a metal-stimulated serine octanoyltransferase activity in microsomes from human erythroleukemic (HEL) cells. The HEL acylating enzyme was linear with respect to time and protein, exhibited a neutral pH optimum (stimulated by cobalt and zinc), and inhibited by chelating reagents. Hydroxylamine treatment removed most, but not all, of the attached radioactivity. A salt extract of microsomal membranes contained the major portion of enzyme activity, indicating that this acyltransferase is not an integral membrane protein. Sucrose density fractionation showed that the acyltransferase activity is concentrated in the endoplasmic reticulum. In competition experiments, the acyltransferase was well inhibited by activated forms of fatty acids containing at least eight to fourteen carbons, but not by acetyl CoA. The zinc-stimulated HEL acyltransferase did not octanoylate proenkephalin, proopiomelanocortin, His-tagged proghrelin, or proghrelin lacking the amino-terminal His-tag stub of Gly-Ala-Met. The peptides des-acyl ghrelin and ACTH were also not acylated; however, des-acyl ghrelin containing the N-terminal tripeptide Gly-Ala-Met was acylated. Mutagenesis studies indicated a requirement for serine five residues from the amino terminus, reminiscent of myristoyl transferase, but not of ghrelin acylation. However, recombinant myristoyl transferase could not recapitulate the hydroxylamine sensitivity, zinc-stimulation, nor EDTA inhibition obtained with HEL acyltransferase, properties preserved in the HEL cell enzyme purified through four sequential chromatographic steps. CONCLUSIONS/SIGNIFICANCE In conclusion, our data demonstrate the presence of a zinc-stimulated acyltransferase activity concentrated in the endoplasmic reticulum in HEL cells which is likely to contribute to medium-chain protein lipidation.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland—Baltimore, Baltimore, Maryland, United States of America
| | - Richard B. Speaker
- Department of Anatomy and Neurobiology, University of Maryland—Baltimore, Baltimore, Maryland, United States of America
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland—Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
609
|
Tham E, Liu J, Innis S, Thompson D, Gaylinn BD, Bogarin R, Haim A, Thorner MO, Chanoine JP. Acylated ghrelin concentrations are markedly decreased during pregnancy in mothers with and without gestational diabetes: relationship with cholinesterase. Am J Physiol Endocrinol Metab 2009; 296:E1093-100. [PMID: 19240252 PMCID: PMC2681309 DOI: 10.1152/ajpendo.90866.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acylated (octanoylated) ghrelin stimulates food intake and growth hormone secretion and is deacylated into desacyl ghrelin by butyrylcholinesterase. Acylated and desacyl ghrelin both promote adipogenesis. Ghrelin concentrations decrease with hyperglycemia and hyperinsulinism. We hypothesized that 1) acylated ghrelin increases during pregnancy, contributing positively to energy balance, but is lower in women with gestational diabetes and 2) butyrylcholinesterase activity is inversely correlated with acylated ghrelin concentrations. In a first group of subjects, using two-site sandwich ghrelin assays that specifically detect full-length forms, we investigated women with and without gestational diabetes (n = 14/group) during pregnancy and after delivery. We examined whether changes in ghrelin during a test meal were correlated with changes in pituitary growth hormone [assessed through calculation of the area under the curve (AUC) during the test meal]. In postpartum subjects, the percent of total ghrelin that is acylated was four to five times higher than previously observed using single antibody assays. During pregnancy, acylated ghrelin concentrations (mean +/- SE) were lower compared with the postpartum period throughout the meal (AUC 1.2 +/- 0.2 vs. 10.2 +/- 1.9 ng.ml(-1).90 min(-1), P < 0.001). In the postpartum, acylated ghrelin and growth hormone were positively correlated (r = 0.50, P = 0.007). Desacyl (but not acylated) ghrelin was increased in subjects with gestational diabetes during and after pregnancy (AUC 15.4 +/- 1.9 vs. 8.6 +/- 1.2 ng.ml(-1).90 min(-1), P = 0.005). In a second group of subjects (n = 13), acylated ghrelin was similarly suppressed during pregnancy. Circulating octanoate concentrations (3.1 +/- 0.5 vs. 4.5 +/- 0.6 microg/ml, P = 0.029) and cholinesterase activity (705 +/- 33 vs. 1,013 +/- 56 U/ml, P < 0.001) were lower during pregnancy compared with the postpartum period. In conclusion, acylated ghrelin markedly decreases during pregnancy, likely because of a decrease in the acylation process. Desacyl ghrelin increases in gestational diabetes, possibly reflecting resistance to the inhibitory effect of insulin on ghrelin secretion.
Collapse
Affiliation(s)
- Elaine Tham
- British Columbia's Children's Hospital, Vancouver, BC, Canada V6H 3V4
| | | | | | | | | | | | | | | | | |
Collapse
|
610
|
Sakata I, Nakano Y, Osborne-Lawrence S, Rovinsky SA, Lee CE, Perello M, Anderson JG, Coppari R, Xiao G, Lowell BB, Elmquist JK, Zigman JM. Characterization of a novel ghrelin cell reporter mouse. ACTA ACUST UNITED AC 2009; 155:91-8. [PMID: 19361544 DOI: 10.1016/j.regpep.2009.04.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 03/02/2009] [Accepted: 04/01/2009] [Indexed: 11/28/2022]
Abstract
Ghrelin is a hormone that influences many physiological processes and behaviors, such as food intake, insulin and growth hormone release, and a coordinated response to chronic stress. However, little is known about the molecular pathways governing ghrelin release and ghrelin cell function. To better study ghrelin cell physiology, we have generated several transgenic mouse lines expressing humanized Renilla reniformis green fluorescent protein (hrGFP) under the control of the mouse ghrelin promoter. hrGFP expression was especially abundant in the gastric oxyntic mucosa, in a pattern mirroring that of ghrelin immunoreactivity and ghrelin mRNA. hrGFP expression also was observed in the duodenum, but not in the brain, pancreatic islet, or testis. In addition, we used fluorescent activated cell sorting (FACS) to collect and partially characterize highly enriched populations of gastric ghrelin cells. We suggest that these novel ghrelin-hrGFP transgenic mice will serve as useful tools to better understand ghrelin cell physiology.
Collapse
Affiliation(s)
- Ichiro Sakata
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9077, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
611
|
Bewick GA, Kent A, Campbell D, Patterson M, Ghatei MA, Bloom SR, Gardiner JV. Mice with hyperghrelinemia are hyperphagic and glucose intolerant and have reduced leptin sensitivity. Diabetes 2009; 58:840-6. [PMID: 19151202 PMCID: PMC2661599 DOI: 10.2337/db08-1428] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Ghrelin is the only known peripheral hormone to increase ingestive behavior. However, its role in the physiological regulation of energy homeostasis is unclear because deletion of ghrelin or its receptor does not alter food intake or body weight in mice fed a normal chow diet. We hypothesized that overexpression of ghrelin in its physiological tissues would increase food intake and body weight. RESEARCH DESIGN AND METHODS We used bacterial artificial chromosome transgenesis to generate a mouse model with increased ghrelin expression and production in the stomach and brain. We investigated the effect of ghrelin overexpression on food intake and body weight. We also measured energy expenditure and determined glucose tolerance, glucose stimulated insulin release, and peripheral insulin sensitivity. RESULTS Ghrelin transgenic (Tg) mice exhibited increased circulating bioactive ghrelin, which was associated with hyperphagia, increased energy expenditure, glucose intolerance, decreased glucose stimulated insulin secretion, and reduced leptin sensitivity. CONCLUSIONS This is the first report of a Tg approach suggesting that ghrelin regulates appetite under normal feeding conditions and provides evidence that ghrelin plays a fundamental role in regulating beta-cell function.
Collapse
Affiliation(s)
- Gavin A. Bewick
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
| | - Aysha Kent
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
| | - Daniel Campbell
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
| | - Michael Patterson
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
| | - Mohammed A. Ghatei
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
| | - Stephen R. Bloom
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
- Corresponding author: Stephen R. Bloom,
| | - James V. Gardiner
- Department of Investigative Medicine, Hammersmith Campus, Imperial College London, London, U.K
| |
Collapse
|
612
|
Lorenzi T, Meli R, Marzioni D, Morroni M, Baragli A, Castellucci M, Gualillo O, Muccioli G. Ghrelin: a metabolic signal affecting the reproductive system. Cytokine Growth Factor Rev 2009; 20:137-52. [DOI: 10.1016/j.cytogfr.2009.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
613
|
Yin X, Li Y, Xu G, An W, Zhang W. Ghrelin fluctuation, what determines its production? Acta Biochim Biophys Sin (Shanghai) 2009; 41:188-97. [PMID: 19280057 DOI: 10.1093/abbs/gmp001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ghrelin, a 28 amino acid gut brain peptide, acts as an endogenous ligand for its receptor, the growth hormone secretagogue receptor, to exercise a variety of functions ranging from stimulation of growth hormone secretion, regulation of appetite and energy metabolism, and cell protection to modulation of inflammation. This review summarizes the advance in the regulation of ghrelin expression and secretion. We introduce the structure of ghrelin promoter, the processing and modification of ghrelin precursor, and the regulation mechanism in these processes. Then we discuss factors found to be important in the regulation of ghrelin production, including nutrients, hormones, and autonomic nervous system. Finally, we outline the alteration in the level of ghrelin in certain physiological and pathological status.
Collapse
Affiliation(s)
- Xuefeng Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | |
Collapse
|
614
|
Hall J, Roberts R, Vora N. Energy homoeostasis: The roles of adipose tissue-derived hormones, peptide YY and Ghrelin. Obes Facts 2009; 2:117-25. [PMID: 20054215 PMCID: PMC6444707 DOI: 10.1159/000208517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the physiology of the hormones leptin, adiponectin, resistin, peptide YY, and ghrelin and how each of these contributes to energy homoeostasis, weight regulation, and the pathogenesis of obesity. The relationship these hormones have with insulin and insulin resistance is also discussed, and the potential therapeutic use of each of these hormones is also considered.
Collapse
|
615
|
Tena-Sempere M. Ghrelin as a pleotrophic modulator of gonadal function and reproduction. ACTA ACUST UNITED AC 2008; 4:666-74. [DOI: 10.1038/ncpendmet1003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/29/2008] [Indexed: 11/09/2022]
|
616
|
Carpino PA, Ho G. Modulators of the ghrelin system as potential treatments for obesity and diabetes. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.11.1253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
617
|
Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides. Proc Natl Acad Sci U S A 2008; 105:10750-5. [PMID: 18669668 DOI: 10.1073/pnas.0805353105] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery of ghrelin O-acyltransferase (GOAT) opens the way to the design of drugs that block the attachment of an octanoyl group to the appetite-stimulating peptide hormone ghrelin, potentially preventing obesity. Here, we develop a biochemical assay that uses membranes from insect cells infected with baculovirus encoding mouse GOAT. The GOAT-containing membranes transferred the [(3)H]octanoyl group from [(3)H]octanoyl CoA to recombinant proghrelin in vitro. Transfer depended on the serine at residue 3 of proghrelin, which is the known site of acylation. GOAT also transferred [(3)H]octanoyl to a pentapeptide containing only the N-terminal five amino acids of proghrelin. GOAT activity could be inhibited by an octanoylated ghrelin pentapeptide, and its potency was enhanced 45-fold when the octanoylated serine-3 was replaced by octanoylated diaminopropionic acid. The data suggest that GOAT is subjected to end-product inhibition and this inhibition is better achieved with substrates having the octanoyl group attached through an amide linkage rather than the corresponding ester. These insights may facilitate the future design of useful inhibitors of GOAT.
Collapse
|
618
|
Gualillo O, Lago F, Dieguez C. Introducing GOAT: a target for obesity and anti-diabetic drugs? Trends Pharmacol Sci 2008; 29:398-401. [PMID: 18606462 DOI: 10.1016/j.tips.2008.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 02/07/2023]
Abstract
The acyltransferase that catalyzes ghrelin octanoylation has recently been identified as ghrelin O-acyltransferase (GOAT). GOAT belongs to a family of membrane-bound O-acyltransferases (MBOATs). GOAT covalently links a medium fatty-acid chain, typically octanoate, to the hydroxyl group of the third serine of ghrelin, a potent orexigenic peptide characterized by this unique post-translational modification. The discovery of GOAT raises important questions and reveals several therapeutical possibilities. Indeed, drugs that inhibit GOAT might be able to prevent diet-induced obesity and might be an effective therapy for type-2 diabetes, increasing insulin secretion and enhancing peripheral insulin sensitivity. Furthermore, research on GOAT is providing new insights into the pathophysiology of energy homeostasis and might lead to the identification of further therapeutic targets. Here, we review what is currently known about the regulatory role of GOAT and discuss the potential of this novel approach for treating obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Oreste Gualillo
- Neuroendocrine Interactions in Rheumatology and Inflammatory Disease, University of Santiago Clinical Hospital,15706 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
619
|
Qi X, Reed JT, Wang G, Han S, Englander EW, Greeley GH. Ghrelin secretion is not reduced by increased fat mass during diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2008; 295:R429-35. [PMID: 18495830 DOI: 10.1152/ajpregu.90329.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is a stomach hormone that stimulates growth hormone (GH) secretion, adiposity, and food intake. Gastric ghrelin production and secretion are regulated by caloric intake; ghrelin secretion increases during fasting, decreases with refeeding, and is reduced by diet-induced obesity. The aim of the present study was to test the hypotheses that 1) an increase in body adiposity will play an inhibitory role in the reduction of gastric ghrelin synthesis and secretion during chronic ingestion of a high-fat (HF) diet and 2) chronic ingestion of an HF diet will suppress the rise in circulating ghrelin levels in response to acute fasting. Adult male Sprague-Dawley rats were fed a standard AIN-76A (approximately 5-12% of calories from fat) or an HF (approximately 45% of calories from fat) diet. The effect of increased adiposity on gastric ghrelin homeostasis was assessed by comparison of stomach ghrelin production and plasma ghrelin levels in obese and nonobese rats fed the HF diet. HF diet-fed, nonobese rats were generated by administration of triiodothyronine to lower body fat accumulation. Our findings indicate that an increased fat mass per se does not exert an inhibitory effect on ghrelin homeostasis during ingestion of the HF diet. Additionally, the magnitude of change in plasma ghrelin in response to fasting was not blunted, indicating that a presumed, endogenous signal for activation of ingestive behavior remains intact, despite excess stored calories in HF-fed rats.
Collapse
Affiliation(s)
- Xiang Qi
- Department of Surgery, University of Texas Medical Branch, 301 Univ. Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
620
|
Gastric O-acyl transferase activates hunger signal to the brain. Proc Natl Acad Sci U S A 2008; 105:6213-4. [PMID: 18443299 DOI: 10.1073/pnas.0802461105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
621
|
Kirchner H, Nogueiras R. GOAT: a stomach enzyme that whets our appetite. Obes Facts 2008; 1:123-6. [PMID: 20054171 PMCID: PMC6452120 DOI: 10.1159/000139141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Ruben Nogueiras
- *Dr. Ruben Nogueiras, Department of Psychiatry, Obesity Research Centre/Genome Research Institute, University of Cincinnati, 2180 East Galbraith Road, Building D, Room 211, Cincinnati, OH 45237, USA, Tel: +1 513 558 86–58, Fax -56, E-mail
| |
Collapse
|