601
|
Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L, Near TJ. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 2012; 67:732-48. [PMID: 23461324 DOI: 10.1111/j.1558-5646.2012.01822.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genetic mechanisms underlying regressive evolution-the degeneration or loss of a derived trait--are largely unknown, particularly for complex structures such as eyes in cave organisms. In several eyeless animals, the visual photoreceptor rhodopsin appears to have retained functional amino acid sequences. Hypotheses to explain apparent maintenance of function include weak selection for retention of light-sensing abilities and its pleiotropic roles in circadian rhythms and thermotaxis. In contrast, we show that there has been repeated loss of functional constraint of rhodopsin in amblyopsid cavefishes, as at least three cave lineages have independently accumulated unique loss-of-function mutations over the last 10.3 Mya. Although several cave lineages still possess functional rhodopsin, they exhibit increased rates of nonsynonymous mutations that have greater effect on the structure and function of rhodopsin compared to those in surface lineages. These results indicate that functionality of rhodopsin has been repeatedly lost in amblyopsid cavefishes. The presence of a functional copy of rhodopsin in some cave lineages is likely explained by stochastic accumulation of mutations following recent subterranean colonization.
Collapse
Affiliation(s)
- Matthew L Niemiller
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | | | |
Collapse
|
602
|
Huttunen S, Olsson S, Buchbender V, Enroth J, Hedenäs L, Quandt D. Phylogeny-based comparative methods question the adaptive nature of sporophytic specializations in mosses. PLoS One 2012; 7:e48268. [PMID: 23118967 PMCID: PMC3484137 DOI: 10.1371/journal.pone.0048268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.
Collapse
Affiliation(s)
- Sanna Huttunen
- Department of Biology, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
603
|
Conte GL, Arnegard ME, Peichel CL, Schluter D. The probability of genetic parallelism and convergence in natural populations. Proc Biol Sci 2012; 279:5039-47. [PMID: 23075840 PMCID: PMC3497250 DOI: 10.1098/rspb.2012.2146] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genomic and genetic methods allow investigation of how frequently the same genes are used by different populations during adaptive evolution, yielding insights into the predictability of evolution at the genetic level. We estimated the probability of gene reuse in parallel and convergent phenotypic evolution in nature using data from published studies. The estimates are surprisingly high, with mean probabilities of 0.32 for genetic mapping studies and 0.55 for candidate gene studies. The probability declines with increasing age of the common ancestor of compared taxa, from about 0.8 for young nodes to 0.1–0.4 for the oldest nodes in our study. Probability of gene reuse is higher when populations begin from the same ancestor (genetic parallelism) than when they begin from divergent ancestors (genetic convergence). Our estimates are broadly consistent with genomic estimates of gene reuse during repeated adaptation to similar environments, but most genomic studies lack data on phenotypic traits affected. Frequent reuse of the same genes during repeated phenotypic evolution suggests that strong biases and constraints affect adaptive evolution, resulting in changes at a relatively small subset of available genes. Declines in the probability of gene reuse with increasing age suggest that these biases diverge with time.
Collapse
Affiliation(s)
- Gina L Conte
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
604
|
Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, Protas M, Rosenblum EB, Schneider CJ, Hoekstra HE. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res 2012; 25:411-33. [PMID: 22578174 DOI: 10.1111/j.1755-148x.2012.01014.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals display incredibly diverse color patterns yet little is known about the underlying genetic basis of these phenotypes. However, emerging results are reshaping our view of how the process of phenotypic evolution occurs. Here, we outline recent research from three particularly active areas of investigation: melanin pigmentation in Drosophila, wing patterning in butterflies, and pigment variation in lizards. For each system, we highlight (i) the function and evolution of color variation, (ii) various approaches that have been used to explore the genetic basis of pigment variation, and (iii) conclusions regarding the genetic basis of convergent evolution which have emerged from comparative analyses. Results from these studies indicate that natural variation in pigmentation is a particularly powerful tool to examine the molecular basis of evolution, especially with regard to convergent or parallel evolution. Comparison of these systems also reveals that the molecular basis of convergent evolution is heterogeneous, sometimes involving conserved mechanisms and sometimes not. In the near future, additional work in other emerging systems will substantially expand the scope of available comparisons.
Collapse
|
605
|
Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, Harrod C, Elmer KR, Meyer A. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol Ecol 2012; 22:650-69. [DOI: 10.1111/mec.12034] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/11/2012] [Accepted: 07/26/2012] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Gonzalo Machado-Schiaffino
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | | | - Kathryn R. Elmer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz, Universitätsstrasse 10; 78457; Konstanz; Germany
| | | |
Collapse
|
606
|
Colombo M, Diepeveen ET, Muschick M, Santos ME, Indermaur A, Boileau N, Barluenga M, Salzburger W. The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes. Mol Ecol 2012; 22:670-84. [PMID: 23050496 DOI: 10.1111/mec.12029] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
The evolution of convergent phenotypes is one of the most interesting outcomes of replicate adaptive radiations. Remarkable cases of convergence involve the thick-lipped phenotype found across cichlid species flocks in the East African Great Lakes. Unlike most other convergent forms in cichlids, which are restricted to East Africa, the thick-lipped phenotype also occurs elsewhere, for example in the Central American Midas Cichlid assemblage. Here, we use an ecological genomic approach to study the function, the evolution and the genetic basis of this phenotype in two independent cichlid adaptive radiations on two continents. We applied phylogenetic, demographic, geometric morphometric and stomach content analyses to an African (Lobochilotes labiatus) and a Central American (Amphilophus labiatus) thick-lipped species. We found that similar morphological adaptations occur in both thick-lipped species and that the 'fleshy' lips are associated with hard-shelled prey in the form of molluscs and invertebrates. We then used comparative Illumina RNA sequencing of thick vs. normal lip tissue in East African cichlids and identified a set of 141 candidate genes that appear to be involved in the morphogenesis of this trait. A more detailed analysis of six of these genes led to three strong candidates: Actb, Cldn7 and Copb. The function of these genes can be linked to the loose connective tissue constituting the fleshy lips. Similar trends in gene expression between African and Central American thick-lipped species appear to indicate that an overlapping set of genes was independently recruited to build this particular phenotype in both lineages.
Collapse
Affiliation(s)
- Marco Colombo
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
607
|
Green DA, Extavour CG. Convergent evolution of a reproductive trait through distinct developmental mechanisms in Drosophila. Dev Biol 2012; 372:120-30. [PMID: 23022298 DOI: 10.1016/j.ydbio.2012.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/08/2012] [Accepted: 09/16/2012] [Indexed: 11/18/2022]
Abstract
Convergent morphologies often arise due to similar selective pressures in independent lineages. It is poorly understood whether the same or different developmental genetic mechanisms underlie such convergence. Here we show that independent evolution of a reproductive trait, ovariole number, has resulted from changes in distinct developmental mechanisms, each of which may have a different underlying genetic basis in Drosophila. Ovariole number in Drosophila is species-specific, highly variable, and largely under genetic control. Convergent changes in Drosophila ovariole number have evolved independently within and between species. We previously showed that the number of a specific ovarian cell type, terminal filament (TF) cells, determines ovariole number. Here we examine TF cell development in different Drosophila lineages that independently evolved a significantly lower ovariole number than the D. melanogaster Oregon R strain. We show that in these Drosophila lineages, reduction in ovariole number occurs primarily through variations in one of two different developmental mechanisms: (1) reduced number of somatic gonad precursors (SGP cells) specified during embryogenesis; or (2) alterations of somatic gonad cell morphogenesis and differentiation in larval life. Mutations in the D. melanogaster Insulin Receptor (InR) alter SGP cell number but not ovarian morphogenesis, while targeted loss of function of bric-à-brac 2 (bab2) affects morphogenesis without changing SGP cell number. Thus, evolution can produce similar ovariole numbers through distinct developmental mechanisms, likely controlled by different genetic mechanisms.
Collapse
Affiliation(s)
- Delbert A Green
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
608
|
Samuels JX, Meachen JA, Sakai SA. Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol 2012; 274:121-46. [DOI: 10.1002/jmor.20077] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
|
609
|
Kautt AF, Elmer KR, Meyer A. Genomic signatures of divergent selection and speciation patterns in a ‘natural experiment’, the young parallel radiations of Nicaraguan crater lake cichlid fishes. Mol Ecol 2012; 21:4770-86. [DOI: 10.1111/j.1365-294x.2012.05738.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 12/13/2022]
Affiliation(s)
| | - Kathryn R. Elmer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz; Universitätsstrasse 10; 78457; Konstanz; Germany
| | | |
Collapse
|
610
|
Meloro C, Jones MEH. Tooth and cranial disparity in the fossil relatives ofSphenodon(Rhynchocephalia) dispute the persistent ‘living fossil’ label. J Evol Biol 2012; 25:2194-209. [DOI: 10.1111/j.1420-9101.2012.02595.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/28/2022]
Affiliation(s)
- C. Meloro
- Hull York Medical School; The University of Hull; Hull; UK
| | - M. E. H. Jones
- Research Department of Cell and Developmental Biology; University College London; London; UK
| |
Collapse
|
611
|
Walters RJ, Blanckenhorn WU, Berger D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02045.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard J. Walters
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
- Environmental Biology; School of Biological Sciences, University of Reading; Reading RG6 6BX UK
| | - Wolf U. Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - David Berger
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
- Evolutionary Biology Centre, Uppsala University; Norbyvägen 14-18 75236 Uppsala Sweden
| |
Collapse
|
612
|
Leinonen T, McCairns RJS, Herczeg G, Merilä J. MULTIPLE EVOLUTIONARY PATHWAYS TO DECREASED LATERAL PLATE COVERAGE IN FRESHWATER THREESPINE STICKLEBACKS. Evolution 2012. [DOI: 10.1111/j.1558-5646.2012.01724.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
613
|
Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM. Repeated origin and loss of adhesive toepads in geckos. PLoS One 2012; 7:e39429. [PMID: 22761794 PMCID: PMC3384654 DOI: 10.1371/journal.pone.0039429] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022] Open
Abstract
Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.
Collapse
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Bell Museum of Natural History, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eli Greenbaum
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Todd R. Jackman
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Anthony P. Russell
- Department of Biological Sciences, University Department of Calgary, Calgary, Canada
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| |
Collapse
|
614
|
Abstract
The relationship between form and function can have profound effects on evolutionary dynamics and such effects may differ for simple versus complex systems. In particular, functions produced by multiple structural configurations (many-to-one mapping, MTOM) may dampen constituent trade-offs and promote diversification. Unfortunately, we lack information about the genetic architecture of MTOM functional systems. The skulls of teleost fishes contain both simple (lower jaw levers) as well as more complex (jaws modeled as 4-bar linkages) functional systems within the same craniofacial unit. We examined the mapping of form to function and the genetic basis of these systems by identifying quantitative trait loci (QTL) in hybrids of two Lake Malawi cichlid species. Hybrid individuals exhibited novelty (transgressive segregation) in morphological components and function of the simple and complex jaw systems. Functional novelty was proportional to the prevalence of extreme morphologies in the simple levers; by contrast, recombination of parental morphologies produced transgression in the MTOM 4-bar linkage. We found multiple loci of moderate effect and epistasis controlling jaw phenotypes in both the simple and complex systems, with less phenotypic variance explained by QTL for the 4-bar. Genetic linkage between components of the simple and complex systems partly explains phenotypic correlations and may constrain functional evolution.
Collapse
Affiliation(s)
- Nicholas F Parnell
- School of Biology, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | |
Collapse
|
615
|
HENRY CHARLESS, BROOKS STEPHENJ, DUELLI PETER, JOHNSON JAMESB, WELLS MARTAM, MOCHIZUKI ATSUSHI. Parallel evolution in courtship songs of North American and European green lacewings (Neuroptera: Chrysopidae). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01845.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
616
|
Dalziel AC, Ou M, Schulte PM. Mechanisms underlying parallel reductions in aerobic capacity in non-migratory threespine stickleback (Gasterosteus aculeatus) populations. J Exp Biol 2012; 215:746-59. [DOI: 10.1242/jeb.065425] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SUMMARY
Non-migratory, stream-resident populations of threespine stickleback, Gasterosteus aculeatus, have a lower maximum oxygen consumption (ṀO2,max) than ancestral migratory marine populations. Here, we examined laboratory-bred stream-resident and marine crosses from two locations (West and Bonsall Creeks) to determine which steps in the oxygen transport and utilization cascade evolved in conjunction with, and thus have the potential to contribute to, these differences in ṀO2,max. We found that West Creek stream-resident fish have larger muscle fibres (not measured in Bonsall fish), Bonsall Creek stream-resident fish have smaller ventricles, and both stream-resident populations have evolved smaller pectoral adductor and abductor muscles. However, many steps of the oxygen cascade did not evolve in stream-resident populations (gill surface area, hematocrit, mean cellular hemoglobin content and the activities of mitochondrial enzymes per gram ventricle and pectoral muscle), arguing against symmorphosis. We also studied F1 hybrids to determine which traits in the oxygen cascade have a genetic architecture similar to that of ṀO2,max. In West Creek, ṀO2,max, abductor and adductor size all showed dominance of marine alleles, whereas in Bonsall Creek, ṀO2,max and ventricle mass showed dominance of stream-resident alleles. We also found genetically based differences among marine populations in hematocrit, ventricle mass, pectoral muscle mass and pectoral muscle pyruvate kinase activity. Overall, reductions in pectoral muscle mass evolved in conjunction with reductions in ṀO2,max in both stream-resident populations, but the specific steps in the oxygen cascade that have a genetic basis similar to that of ṀO2,max, and are thus predicted to have the largest impact on ṀO2,max, differ among populations.
Collapse
Affiliation(s)
- Anne C. Dalziel
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Michelle Ou
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Patricia M. Schulte
- Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| |
Collapse
|
617
|
Olson ME. The developmental renaissance in adaptationism. Trends Ecol Evol 2012; 27:278-87. [PMID: 22326724 DOI: 10.1016/j.tree.2011.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/01/2011] [Accepted: 12/31/2011] [Indexed: 11/16/2022]
Abstract
From an adaptation perspective, unoccupied patches of morphological space are inferred to be empty because they are of low fitness and selected against. These inferences hinge on venturesome assumptions, because emptiness is explained by low fitness and low fitness is inferred from emptiness. Moreover, non-adaptive factors, such as developmental constraint, could also plausibly account for empty morphospace. In response, biologists increasingly study ontogeny to test the assumption that unobserved phenotypes could be produced if selection were to favor them; finding that empty space morphologies can be readily produced in development helps reject constraint and lends support to adaptive hypotheses. This developmental approach to adaptation calls on manifold techniques, including embryology, artificial selection and comparative methods. Belying their diversity, all of these methods examine the causes of empty morphospace and mark a return of development, long excluded from traditional evolutionary biology, to adaptationist practice.
Collapse
Affiliation(s)
- Mark E Olson
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de Ciudad Universitaria, México DF 04510, Mexico.
| |
Collapse
|
618
|
Connallon T, Singh ND, Clark AG. Impact of genetic architecture on the relative rates of X versus autosomal adaptive substitution. Mol Biol Evol 2012; 29:1933-42. [PMID: 22319138 DOI: 10.1093/molbev/mss057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular evolutionary theory predicts that the ratio of autosomal to X-linked adaptive substitution (K(A)/K(x)) is primarily determined by the average dominance coefficient of beneficial mutations. Although this theory has profoundly influenced analysis and interpretation of comparative genomic data, its predictions are based upon two unverified assumptions about the genetic basis of adaptation. The theory assumes that 1) the rate of adaptively driven molecular evolution is limited by the availability of beneficial mutations, and 2) the scaling of evolutionary parameters between the X and the autosomes (e.g., the beneficial mutation rate, and the fitness effect distribution of beneficial alleles, per X-linked versus autosomal locus) is constant across molecular evolutionary timescales. Here, we show that the genetic architecture underlying bouts of adaptive substitution can influence both assumptions, and consequently, the theoretical relationship between K(A)/K(x) and mean dominance. Quantitative predictions of prior theory apply when 1) many genomically dispersed genes potentially contribute beneficial substitutions during individual steps of adaptive walks, and 2) the population beneficial mutation rate, summed across the set of potentially contributing genes, is sufficiently small to ensure that adaptive substitutions are drawn from new mutations rather than standing genetic variation. Current research into the genetic basis of adaptation suggests that both assumptions are plausibly violated. We find that the qualitative positive relationship between mean dominance and K(A)/K(x) is relatively robust to the specific conditions underlying adaptive substitution, yet the quantitative relationship between dominance and K(A)/K(x) is quite flexible and context dependent. This flexibility may partially account for the puzzlingly variable X versus autosome substitution patterns reported in the empirical evolutionary genomics literature. The new theory unites the previously separate analysis of adaptation using new mutations versus standing genetic variation and makes several useful predictions about the interaction between genetic architecture, evolutionary genetic constraints, and effective population size in determining the ratio of adaptive substitution between autosomal and X-linked genes.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, USA.
| | | | | |
Collapse
|
619
|
Drummond CS, Eastwood RJ, Miotto STS, Hughes CE. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 2012; 61:443-60. [PMID: 22228799 DOI: 10.1093/sysbio/syr126] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth-death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18-0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48-1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89-3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36-1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for "replicate adaptive radiations" in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New World.
Collapse
Affiliation(s)
- Christopher S Drummond
- Department of Fish and Wildlife Resources, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA
| | | | | | | |
Collapse
|
620
|
Abstract
Populations that have independently evolved reproductive isolation from their ancestors while remaining reproductively cohesive have undergone parallel speciation. A specific type of parallel speciation, known as parallel ecological speciation, is one of several forms of evidence for ecology's role in speciation. In this paper we search the literature for candidate examples of parallel ecological speciation in plants. We use four explicit criteria (independence, isolation, compatibility, and selection) to judge the strength of evidence for each potential case. We find that evidence for parallel ecological speciation in plants is unexpectedly scarce, especially relative to the many well-characterized systems in animals. This does not imply that ecological speciation is uncommon in plants. It only implies that evidence from parallel ecological speciation is rare. Potential explanations for the lack of convincing examples include a lack of rigorous testing and the possibility that plants are less prone to parallel ecological speciation than animals.
Collapse
|
621
|
Dalziel AC, Vines TH, Schulte PM. REDUCTIONS IN PROLONGED SWIMMING CAPACITY FOLLOWING FRESHWATER COLONIZATION IN MULTIPLE THREESPINE STICKLEBACK POPULATIONS. Evolution 2011; 66:1226-39. [PMID: 22486700 DOI: 10.1111/j.1558-5646.2011.01498.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anne C Dalziel
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
622
|
Smith ND. BODY MASS AND FORAGING ECOLOGY PREDICT EVOLUTIONARY PATTERNS OF SKELETAL PNEUMATICITY IN THE DIVERSE “WATERBIRD” CLADE. Evolution 2011; 66:1059-78. [DOI: 10.1111/j.1558-5646.2011.01494.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
623
|
Kaeuffer R, Peichel CL, Bolnick DI, Hendry AP. Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 2011; 66:402-18. [PMID: 22276537 DOI: 10.1111/j.1558-5646.2011.01440.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parallel (or convergent) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some nonparallel evolution is present. It is therefore important to explicitly quantify the parallel and nonparallel aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in six independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was parallel across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that parallel evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respects to the dichotomous habitat classifications frequently used in such studies.
Collapse
Affiliation(s)
- Renaud Kaeuffer
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada, H3A 2K6.
| | | | | | | |
Collapse
|
624
|
Meloro C, Raia P, Carotenuto F, Cobb SN. Phylogenetic signal, function and integration in the subunits of the carnivoran mandible. Evol Biol 2011. [DOI: 10.1007/s11692-011-9135-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
625
|
|
626
|
Sanger TJ, Revell LJ, Gibson-Brown JJ, Losos JB. Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards. Proc Biol Sci 2011; 279:739-48. [PMID: 21849319 DOI: 10.1098/rspb.2011.0840] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The independent evolution of similar morphologies has long been a subject of considerable interest to biologists. Does phenotypic convergence reflect the primacy of natural selection, or does development set the course of evolution by channelling variation in certain directions? Here, we examine the ontogenetic origins of relative limb length variation among Anolis lizard habitat specialists to address whether convergent phenotypes have arisen through convergent developmental trajectories. Despite the numerous developmental processes that could potentially contribute to variation in adult limb length, our analyses reveal that, in Anolis lizards, such variation is repeatedly the result of changes occurring very early in development, prior to formation of the cartilaginous long bone anlagen.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|