601
|
Wellborn GA, Langerhans RB. Ecological opportunity and the adaptive diversification of lineages. Ecol Evol 2015; 5:176-95. [PMID: 25628875 PMCID: PMC4298445 DOI: 10.1002/ece3.1347] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche-related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species-rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity - but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying the four major components of the concept of ecological opportunity.
Collapse
Affiliation(s)
- Gary A Wellborn
- Department of Biology, University of OklahomaNorman, Oklahoma, 73019
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State UniversityCampus Box 7617, Raleigh, North Carolina, 27695
| |
Collapse
|
602
|
Sih A, Ehlman S, Halpin R. On connecting behavioral responses to HIREC to ecological outcomes: a comment on Wong and Candolin. Behav Ecol 2014. [DOI: 10.1093/beheco/aru229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
603
|
Van Dyck H, Bonte D, Puls R, Gotthard K, Maes D. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? OIKOS 2014. [DOI: 10.1111/oik.02066] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hans Van Dyck
- Earth and Life Inst., Université Catholique de Louvain (UCL); BE-1348 Louvain-la-Neuve Belgium
| | - Dries Bonte
- Dept of Biology; Ghent Univ.; DE-9000 Ghent Belgium
| | - Rik Puls
- Dept of Biology; Ghent Univ.; DE-9000 Ghent Belgium
| | - Karl Gotthard
- Dept of Zoology; Stockholm Univ.; SE-106 48 Stockholm Sweden
| | - Dirk Maes
- Res. Inst. for Nature and Forest (INBO); BE-1070 Brussels Belgium
| |
Collapse
|
604
|
Atwell JW, Cardoso GC, Whittaker DJ, Price TD, Ketterson ED. Hormonal, Behavioral, and Life-History Traits Exhibit Correlated Shifts in Relation to Population Establishment in a Novel Environment. Am Nat 2014; 184:E147-60. [DOI: 10.1086/678398] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
605
|
Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M. Ecological effects of pharmaceuticals in aquatic systems--impacts through behavioural alterations. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130580. [PMID: 25405968 PMCID: PMC4213591 DOI: 10.1098/rstb.2013.0580] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study of animal behaviour is important for both ecology and ecotoxicology, yet research in these two fields is currently developing independently. Here, we synthesize the available knowledge on drug-induced behavioural alterations in fish, discuss potential ecological consequences and report results from an experiment in which we quantify both uptake and behavioural impact of a psychiatric drug on a predatory fish (Perca fluviatilis) and its invertebrate prey (Coenagrion hastulatum). We show that perch became more active while damselfly behaviour was unaffected, illustrating that behavioural effects of pharmaceuticals can differ between species. Furthermore, we demonstrate that prey consumption can be an important exposure route as on average 46% of the pharmaceutical in ingested prey accumulated in the predator. This suggests that investigations of exposure through bioconcentration, where trophic interactions and subsequent bioaccumulation of exposed individuals are ignored, underestimate exposure. Wildlife may therefore be exposed to higher levels of behaviourally altering pharmaceuticals than predictions based on commonly used exposure assays and pharmaceutical concentrations found in environmental monitoring programmes.
Collapse
Affiliation(s)
- Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Susanna Piovano
- School of Biological and Chemical Sciences, The University of the South Pacific, Fiji Department of Life Sciences and Systems Biology, University of Torino, 10124 Turin, Italy
| | - Jerker Fick
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Martina Heynen
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Micael Jonsson
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
606
|
Heinen-Kay JL, Noel HG, Layman CA, Langerhans RB. Human-caused habitat fragmentation can drive rapid divergence of male genitalia. Evol Appl 2014; 7:1252-67. [PMID: 25558285 PMCID: PMC4275096 DOI: 10.1111/eva.12223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/24/2014] [Indexed: 11/29/2022] Open
Abstract
The aim of this study rests on three premises: (i) humans are altering ecosystems worldwide, (ii) environmental variation often influences the strength and nature of sexual selection, and (iii) sexual selection is largely responsible for rapid and divergent evolution of male genitalia. While each of these assertions has strong empirical support, no study has yet investigated their logical conclusion that human impacts on the environment might commonly drive rapid diversification of male genital morphology. We tested whether anthropogenic habitat fragmentation has resulted in rapid changes in the size, allometry, shape, and meristics of male genitalia in three native species of livebearing fishes (genus: Gambusia) inhabiting tidal creeks across six Bahamian islands. We found that genital shape and allometry consistently and repeatedly diverged in fragmented systems across all species and islands. Using a model selection framework, we identified three ecological consequences of fragmentation that apparently underlie observed morphological patterns: decreased predatory fish density, increased conspecific density, and reduced salinity. Our results demonstrate that human modifications to the environment can drive rapid and predictable divergence in male genitalia. Given the ubiquity of anthropogenic impacts on the environment, future research should evaluate the generality of our findings and potential consequences for reproductive isolation.
Collapse
Affiliation(s)
- Justa L Heinen-Kay
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
| | - Holly G Noel
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University Raleigh, NC, USA
| | - R Brian Langerhans
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
607
|
Morelle K, Lejeune P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modelling approach. EUR J WILDLIFE RES 2014. [DOI: 10.1007/s10344-014-0872-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
608
|
|
609
|
Smith KR, Barthman-Thompson L, Gould WR, Mabry KE. Effects of natural and anthropogenic change on habitat use and movement of endangered salt marsh harvest mice. PLoS One 2014; 9:e108739. [PMID: 25310800 PMCID: PMC4195649 DOI: 10.1371/journal.pone.0108739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
The northern salt marsh harvest mouse (Reithrodontomys raviventris halicoetes) is an endangered species endemic to the San Francisco Bay Estuary. Using a conservation behavior perspective, we examined how salt marsh harvest mice cope with both natural (daily tidal fluctuations) and anthropogenic (modification of tidal regime) changes in natural tidal wetlands and human-created diked wetlands, and investigated the role of behavioral flexibility in utilizing a human-created environment in the Suisun Marsh. We used radio telemetry to determine refuge use at high tide, space use, and movement rates to investigate possible differences in movement behavior in tidal versus diked wetlands. We found that the vast majority of the time salt marsh harvest mice remain in vegetation above the water during high tides. We also found no difference in space used by mice during high tide as compared to before or after high tide in either tidal or diked wetlands. We found no detectable difference in diurnal or nocturnal movement rates in tidal wetlands. However, we did find that diurnal movement rates for mice in diked wetlands were lower than nocturnal movement rates, especially during the new moon. This change in movement behavior in a relatively novel human-created habitat indicates that behavioral flexibility may facilitate the use of human-created environments by salt marsh harvest mice.
Collapse
Affiliation(s)
- Katherine R. Smith
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- California Department of Fish and Wildlife, Stockton, California, United States of America
| | | | - William R. Gould
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Karen E. Mabry
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
610
|
|
611
|
Rojas JM, Castillo SB, Folguera G, Abades S, Bozinovic F. Coping with daily thermal variability: behavioural performance of an ectotherm model in a warming world. PLoS One 2014; 9:e106897. [PMID: 25207653 PMCID: PMC4160209 DOI: 10.1371/journal.pone.0106897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24±0, 24±4 and 24±8°C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, – i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance.
Collapse
Affiliation(s)
- José M. Rojas
- Departamento de Ecología and Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación e Innovación para el Cambio Climático, Universidad Santo Tomás, Santiago, Chile
| | - Simón B. Castillo
- Departamento de Ecología and Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Folguera
- Filosofía de la Biología Group, Facultad de Ciencias Exactas y Naturales & Facultad de Filosofía y Letras, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sebastián Abades
- Departamento de Ecología and Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Francisco Bozinovic
- Departamento de Ecología and Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
612
|
Dzieweczynski TL, Campbell BA, Marks JM, Logan B. Acute exposure to 17α-ethinylestradiol alters boldness behavioral syndrome in female Siamese fighting fish. Horm Behav 2014; 66:577-84. [PMID: 25161058 DOI: 10.1016/j.yhbeh.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Abstract
The role of anthropogenic sources in generating, maintaining, and influencing behavioral syndromes has recently been identified as an important area of future research. Endocrine disrupting chemicals are prevalent and persistent in aquatic ecosystems worldwide. These chemicals are known to have marked effects on the morphology and behavior of exposed individuals and, as such, may serve as a potential influence on behavioral syndromes. However, both the effects of exposure on behaviors beyond courtship and aggression and how exposure might affect behavioral variation at the individual level are understudied. To address this question, we examined boldness behavior in female Siamese fighting fish in three different assays (Novel Environment, Empty Tank, Shoaling) both before and after they were exposed to the estrogen mimic, 17α-ethinylestradiol (EE2). EE2 influences courtship, aggression, and boldness in males of this species but its effects have not been examined in females, to our knowledge. Females were tested multiple times in each assay before and after exposure so that behavioral consistency could be examined. A behavioral syndrome for boldness and activity level occurred across the three assays. The reductions in boldness and loss of the behavioral syndrome that resulted from EE2 exposure were surprising and suggest that the effects of EE2 exposure on female behavior and physiology should be examined more frequently. This study is one of the first to examine the effects of EE2 in females as well as on correlated behaviors and emphasizes the importance of examining the effects of endocrine disrupting chemicals on individual behavioral variation and consistency.
Collapse
Affiliation(s)
- Teresa L Dzieweczynski
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME 04005, USA.
| | - Brennah A Campbell
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME 04005, USA
| | - Jodi M Marks
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME 04005, USA
| | - Brittney Logan
- Department of Psychology, University of New England, 11 Hills Beach Rd, Biddeford, ME 04005, USA
| |
Collapse
|
613
|
Wild chimpanzees show group differences in selection of agricultural crops. Sci Rep 2014; 4:5956. [PMID: 25090940 PMCID: PMC4121611 DOI: 10.1038/srep05956] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/16/2014] [Indexed: 11/26/2022] Open
Abstract
The ability of wild animals to respond flexibly to anthropogenic environmental changes, including agriculture, is critical to survival in human-impacted habitats. Understanding use of human foods by wildlife can shed light on the acquisition of novel feeding habits and how animals respond to human-driven land-use changes. Little attention has focused on within-species variation in use of human foods or its causes. We examined crop-feeding in two groups of wild chimpanzees – a specialist frugivore – with differing histories of exposure to agriculture. Both groups exploited a variety of crops, with more accessible crops consumed most frequently. However, crop selection by chimpanzees with long-term exposure to agriculture was more omnivorous (i.e., less fruit-biased) compared to those with more recent exposure, which ignored most non-fruit crops. Our results suggest chimpanzees show increased foraging adaptations to cultivated landscapes over time; however, local feeding traditions may also contribute to group differences in crop-feeding in this species. Understanding the dynamic responses of wildlife to agriculture can help predict current and future adaptability of species to fast-changing anthropogenic landscapes.
Collapse
|
614
|
Araújo MS, Langerhans RB, Giery ST, Layman CA. Ecosystem fragmentation drives increased diet variation in an endemic livebearing fish of the Bahamas. Ecol Evol 2014; 4:3298-308. [PMID: 25473482 PMCID: PMC4222216 DOI: 10.1002/ece3.1140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/16/2014] [Accepted: 05/15/2014] [Indexed: 11/08/2022] Open
Abstract
One consequence of human-driven habitat degradation in general, and habitat fragmentation in particular, is loss of biodiversity. An often-underappreciated aspect of habitat fragmentation relates to changes in the ecology of species that persist in altered habitats. In Bahamian wetlands, ecosystem fragmentation causes disruption of hydrological connectivity between inland fragmented wetlands and adjacent marine areas, with the consequent loss of marine piscivores from fragmented sections. We took advantage of this environmental gradient to investigate effects of ecosystem fragmentation on patterns of resource use in the livebearing fish Gambusia hubbsi (Family Poeciliidae), using both population- and individual-level perspectives. We show that fragmentation-induced release from predation led to increased G. hubbsi population densities, which consequently led to lower mean growth rates, likely as a result of higher intraspecific competition for food. This was accompanied by a broadening of dietary niches via increased interindividual diet variation, suggesting a negative effect of predation and a positive effect of intraspecific competition on the degree of diet variation in natural populations. Our results therefore indicate that habitat fragmentation can greatly impact the ecology of resilient populations, with potentially important ecological and evolutionary implications.
Collapse
Affiliation(s)
- Márcio S Araújo
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista "Julio de Mesquita Filho" Rio Claro, Sao Paulo, 13506-900, Brazil
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University Box 7617, Raleigh, North Carolina, 27695-7617
| | - Sean T Giery
- Marine Sciences Program, Department of Biological Sciences, Florida International University 3000 NE 151st St, North Miami, Florida, 33181
| | - Craig A Layman
- Marine Sciences Program, Department of Biological Sciences, Florida International University 3000 NE 151st St, North Miami, Florida, 33181
| |
Collapse
|
615
|
Individual variation in foraging behavior reveals a trade-off between flexibility and performance of a top predator. Behav Ecol Sociobiol 2014; 68:1711-1722. [PMID: 29046598 DOI: 10.1007/s00265-014-1779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is increasing evidence that behavioral flexibility is associated with the ability to adaptively respond to environmental change. Flexibility can be advantageous in some contexts such as exploiting novel resources, but it may come at a cost of accuracy or performance in ecologically relevant tasks, such as foraging. Such trade-offs may, in part, explain why individuals within a species are not equally flexible. Here, we conducted a reversal learning task and predation experiment on a top fish predator, the Northern pike (Esox lucius), to examine individual variation in flexibility and test the hypothesis that an individual's behavioral flexibility is negatively related with its foraging performance. Pikes were trained to receive a food reward from either a red or blue cup and then the color of the rewarded cup was reversed. We found that pike improved over time in how quickly they oriented to the rewarded cup, but there was a bias toward the color red. Moreover, there was substantial variation among individuals in their ability to overcome this red bias and switch from an unrewarded red cup to the rewarded blue cup, which we interpret as consistent variation among individuals in behavioral flexibility. Furthermore, individual differences in behavioral flexibility were negatively associated with foraging performance on ecologically relevant stickleback prey. Our data indicate that individuals cannot be both behaviorally flexible and efficient predators, suggesting a trade-off between these two traits.
Collapse
|
616
|
Senior AM, Nakagawa S, Grimm V. The evolutionary consequences of disrupted male mating signals: an agent-based modelling exploration of endocrine disrupting chemicals in the guppy. PLoS One 2014; 9:e103100. [PMID: 25047080 PMCID: PMC4105596 DOI: 10.1371/journal.pone.0103100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness.
Collapse
Affiliation(s)
- Alistair McNair Senior
- Zoology Department, The University of Otago, Dunedin, Otago, New Zealand
- The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Shinichi Nakagawa
- Zoology Department, The University of Otago, Dunedin, Otago, New Zealand
| | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Brandenburg, Germany
| |
Collapse
|
617
|
Harris SE, O'Neill RJ, Munshi-South J. Transcriptome resources for the white-footed mouse (Peromyscus leucopus): new genomic tools for investigating ecologically divergent urban and rural populations. Mol Ecol Resour 2014; 15:382-94. [PMID: 24980186 DOI: 10.1111/1755-0998.12301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/30/2022]
Abstract
Genomic resources are important and attainable for examining evolutionary change in divergent natural populations of nonmodel species. We utilized two next-generation sequencing (NGS) platforms, 454 and SOLiD 5500XL, to assemble low-coverage transcriptomes of the white-footed mouse (Peromyscus leucopus), a widespread and abundant native rodent in eastern North America. We sequenced liver mRNA transcripts from multiple individuals collected from urban populations in New York City and rural populations in undisturbed protected areas nearby and assembled a reference transcriptome using 1 080 065 954 SOLiD 5500XL (75 bp) reads and 3 052 640 454 GS FLX + reads. The reference contained 40 908 contigs with a N50 = 1044 bp and a total content of 30.06 Megabases (Mb). Contigs were annotated from Mus musculus (39.96% annotated) Uniprot databases. We identified 104 655 high-quality single nucleotide polymorphisms (SNPs) and 65 single sequence repeats (SSRs) with flanking primers. We also used normalized read counts to identify putative gene expression differences in 10 genes between populations. There were 19 contigs significantly differentially expressed in urban populations compared to rural populations, with gene function annotations generally related to the translation and modification of proteins and those involved in immune responses. The individual transcriptomes generated in this study will be used to investigate evolutionary responses to urbanization. The reference transcriptome provides a valuable resource for the scientific community using North American Peromyscus species as emerging model systems for ecological genetics and adaptation.
Collapse
Affiliation(s)
- Stephen E Harris
- Program in Ecology, Evolutionary Biology, & Behavior, The Graduate Center, City University of New York (CUNY), New York, NY, 10016, USA
| | | | | |
Collapse
|
618
|
Greggor AL, Clayton NS, Phalan B, Thornton A. Comparative cognition for conservationists. Trends Ecol Evol 2014; 29:489-95. [PMID: 25043737 PMCID: PMC4153814 DOI: 10.1016/j.tree.2014.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 11/15/2022]
Abstract
Every animal occupies a unique cognitive world based on its sensory capacities, and attentional and learning biases. Behaviour results from the interaction of this cognitive world with the environment. As humans alter environments, cognitive processes ranging from perceptual processes to learned behaviour govern animals' reactions. By harnessing animals' perceptual biases and applying insights from cognitive theory, we can purposefully alter cues to reduce maladaptive responses and shape behaviour. Despite the fundamental connection between cognition and behaviour, the breadth of cognitive theory is underutilised in conservation practice. Bridging these disciplines could augment existing conservation efforts targeting animal behaviour. We outline relevant principles of perception and learning, and develop a step-by-step process for applying aspects of cognition towards specific conservation issues.
Collapse
Affiliation(s)
- Alison L Greggor
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ben Phalan
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Exeter, UK.
| |
Collapse
|
619
|
Kolluru GR, Bertram SM, Chin EH, Dunmeyer CV, Graves JS. Mating behavior and its morphological correlates in two color morphs of Girardinus metallicus (Pisces: Poeciliidae), a species previously thought not to exhibit courtship display. Behav Processes 2014; 106:44-52. [DOI: 10.1016/j.beproc.2014.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/24/2014] [Accepted: 04/07/2014] [Indexed: 02/03/2023]
|
620
|
Sol D, González-Lagos C, Moreira D, Maspons J, Lapiedra O. Urbanisation tolerance and the loss of avian diversity. Ecol Lett 2014; 17:942-50. [DOI: 10.1111/ele.12297] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/20/2014] [Accepted: 04/16/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Daniel Sol
- CREAF; Cerdanyola del Vallès; Catalonia 08193 Spain
- CSIC; Cerdanyola del Vallès; Catalonia 08193 Spain
| | - Cesar González-Lagos
- CREAF; Cerdanyola del Vallès; Catalonia 08193 Spain
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; Valdivia Chile
| | - Darío Moreira
- Department of Biological Sciences; University of Alberta; Edmonton Alberta Canada T6G 2E9
| | - Joan Maspons
- CREAF; Cerdanyola del Vallès; Catalonia 08193 Spain
| | | |
Collapse
|
621
|
Elevational differences in trait response to UV-B radiation by long-toed salamander populations. Oecologia 2014; 175:835-45. [DOI: 10.1007/s00442-014-2957-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 04/16/2014] [Indexed: 11/26/2022]
|
622
|
Mettke-Hofmann C. Cognitive ecology: ecological factors, life-styles, and cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 5:345-60. [PMID: 26308568 DOI: 10.1002/wcs.1289] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Cognitive ecology integrates cognition, ecology, and neurobiology in one topic and has recently broadened into an exciting diversity of themes covering the entire range of cognition and ecological conditions. The review identifies three major environmental factors interacting with cognition: environmental variation (predictable and unpredictable), environmental complexity and predation. Generally, variable environments favor cognitive abilities such as exploration, learning, innovation, memory and also result in larger brains as compared to stable environments. Likewise, cognition is enhanced in complex versus simple environments, whereas the relationship between predation and cognitive abilities can be positive or negative. However, organisms have often evolved entire life-styles (e.g., residency versus migration, food-caching versus noncaching, generalism versus specialism) to deal with these environmental factors. Considering cognition within this framework provides a much more diverse picture of how cognitive abilities evolved in conjunction with other adaptations to environmental challenges. This integrated approach identifies gaps of knowledge and allows the formulation of hypotheses for future testing. Several recently emerged approaches study cognitive abilities at a new and in part highly integrated level. For example, the effect that environment has on the development of cognitive abilities during ontogeny will improve our understanding about cause and effect and gene-environment interactions. Together with two recently emerged highly integrative approaches that link personality and pace-of-life syndromes with cognitive ecology these new directions will improve insight how cognition is interlinked with other major organizational processes. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Claudia Mettke-Hofmann
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
623
|
Munshi-South J, Nagy C. Urban park characteristics, genetic variation, and historical demography of white-footed mouse (Peromyscus leucopus) populations in New York City. PeerJ 2014; 2:e310. [PMID: 24688884 PMCID: PMC3961106 DOI: 10.7717/peerj.310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/25/2014] [Indexed: 01/16/2023] Open
Abstract
Severe fragmentation is a typical fate of native remnant habitats in cities, and urban wildlife with limited dispersal ability are predicted to lose genetic variation in isolated urban patches. However, little information exists on the characteristics of urban green spaces required to conserve genetic variation. In this study, we examine whether isolation in New York City (NYC) parks results in genetic bottlenecks in white-footed mice (Peromyscus leucopus), and test the hypotheses that park size and time since isolation are associated with genetic variability using nonlinear regression and information-theoretic model selection. White-footed mice have previously been documented to exhibit male-biased dispersal, which may create disparities in genetic variation between males and females in urban parks. We use genotypes of 18 neutral microsatellite data and four different statistical tests to assess this prediction. Given that sex-biased dispersal may create disparities between population genetic patterns inferred from bi- vs. uni-parentally inherited markers, we also sequenced a 324 bp segment of the mitochondrial D-loop for independent inferences of historical demography in urban P. leucopus. We report that isolation in urban parks does not necessarily result in genetic bottlenecks; only three out of 14 populations in NYC parks exhibited a signature of a recent bottleneck at 18 neutral microsatellite loci. Mouse populations in larger urban parks, or parks that have been isolated for shorter periods of time, also do not generally contain greater genetic variation than populations in smaller parks. These results suggest that even small networks of green spaces may be sufficient to maintain the evolutionary potential of native species with certain characteristics. We also found that isolation in urban parks results in weak to nonexistent sex-biased dispersal in a species known to exhibit male-biased dispersal in less fragmented environments. In contrast to nuclear loci, mitochondrial D-loop haplotypes exhibited a mutational pattern of demographic expansion after a recent bottleneck or selective sweep. Estimates of the timing of this expansion suggest that it occurred concurrent with urbanization of NYC over the last few dozens to hundreds of years. Given the general non-neutrality of mtDNA in many systems and evidence of selection on related coding sequences in urban P. leucopus, we argue that the P. leucopus mitochondrial genome experienced recent negative selection against haplotypes not favored in isolated urban parks. In general, rapid adaptive evolution driven by urbanization, global climate change, and other human-caused factors is underappreciated by evolutionary biologists, but many more cases will likely be documented in the near future.
Collapse
Affiliation(s)
- Jason Munshi-South
- Department of Biological Sciences and the Louis Calder Center-Biological Field Station, Fordham University , Armonk, NY , USA
| | | |
Collapse
|
624
|
Rodriguez-Martínez S, Carrete M, Roques S, Rebolo-Ifrán N, Tella JL. High urban breeding densities do not disrupt genetic monogamy in a bird species. PLoS One 2014; 9:e91314. [PMID: 24614308 PMCID: PMC3948869 DOI: 10.1371/journal.pone.0091314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
Urbanization causes widespread endangerment of biodiversity worldwide. However, some species successfully colonize cities reaching higher densities than in their rural habitats. In these cases, although urban city dwellers may apparently be taking advantage of these new environments, they also face new ecological conditions that may induce behavioural changes. For example, the frequency of alternative reproductive behaviours such as extra-pair paternity and intraspecific brood parasitism might increase with breeding densities. Here, using a panel of 17 microsatellites, we tested whether increments in breeding densities such as those associated with urban invasion processes alter genetic monogamy in the burrowing owl Athene cunicularia. Our results show low rates of extra-pair paternity (1.47%), but relatively high levels of intraspecific brood parasitism (8.82%). However, we were not able to detect differences in the frequency at which either alternative reproductive behaviour occurs along a strong breeding density gradient. Further research is needed to properly ascertain the role of other social and ecological factors in the frequency at which this species presents alternative reproductive strategies. Meanwhile, our results suggest that genetic monogamy is maintained despite the increment in conspecific density associated with a recent urban invasion process.
Collapse
Affiliation(s)
- Sol Rodriguez-Martínez
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
- * E-mail:
| | - Martina Carrete
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
| | - Séverine Roques
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Natalia Rebolo-Ifrán
- Department of Ecology, Genetics and Evolution, IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José L. Tella
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
625
|
Janssens L, Dinh Van K, Debecker S, Bervoets L, Stoks R. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach. Evol Appl 2014; 7:421-30. [PMID: 24665344 PMCID: PMC3962302 DOI: 10.1111/eva.12141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/04/2013] [Indexed: 01/17/2023] Open
Abstract
The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.
Collapse
Affiliation(s)
- Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| | - Khuong Dinh Van
- Institute of Aquaculture, Nha Trang University Nha Trang, Vietnam
| | - Sara Debecker
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| | - Lieven Bervoets
- Systemic, Physiological and Ecotoxicological Research Group, University of Antwerp Antwerp, Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| |
Collapse
|
626
|
Hickman CR, Watling JI. Leachates from an invasive shrub causes risk-prone behavior in a larval amphibian. Behav Ecol 2014. [DOI: 10.1093/beheco/art121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
627
|
Moczek AP, Kijimoto T, Snell-Rood E, Rocha G, Pespeni M, Kafadar K. Evolutionary and Ecological Genomics of Developmental Plasticity: Novel Approaches and First Insights From the Study of Horned Beetles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:127-48. [DOI: 10.1007/978-94-007-7347-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
628
|
Ortega YK, Greenwood LF, Callaway RM, Pearson DE. Different responses of congeneric consumers to an exotic food resource: who gets the novel resource prize? Biol Invasions 2013. [DOI: 10.1007/s10530-013-0625-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
629
|
High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci Rep 2013; 3:3524. [PMID: 24343659 PMCID: PMC6506441 DOI: 10.1038/srep03524] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/29/2013] [Indexed: 11/08/2022] Open
Abstract
Human-induced rapid environmental changes challenge individuals by creating evolutionarily novel scenarios, where species encounter novel enemies, the new species sometimes being humans themselves. However, little is known about how individuals react to human presence, specifically whether they are able to habituate to human presence, as frequently assumed, or are selected based on their fear of humans. We tested whether fear of humans (measured as flight initiation distance in a diurnal owl) is reduced through habituation to human presence (plasticity) or whether it remains unchanged throughout the individuals' life. Results show an unusually high level of individual consistency in fear of humans throughout the adult lifespan of both rural (r = 0.96) and urban (r = 0.90) birds, lending no support to habituation. Further research should assess the role of inter-individual variability in fear of humans in shaping the distribution of individuals and species in an increasingly humanized world.
Collapse
|
630
|
Varian-Ramos CW, Swaddle JP, Cristol DA. Familial differences in the effects of mercury on reproduction in zebra finches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:316-323. [PMID: 23973883 DOI: 10.1016/j.envpol.2013.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Ecotoxicologists often implicitly assume that populations are homogenous entities in which all individuals have similar responses to a contaminant. However, genetically variable responses occur within populations. This variation can be visualized using dose-response curves of genetically related groups, similar to the way that evolutionary biologists construct reaction norms. We assessed the variation in reproductive success of full-sibling families of captive zebra finches (Taeniopygia guttata) experimentally exposed to methylmercury. We found significant variation among families in the effects of methylmercury on several reproductive parameters. This variation suggests that there may be strong responses to selection for resistant genotypes in contaminated areas. This has important implications for the evolution of tolerance as well as risk assessment and wildlife conservation efforts on sites with legacy contamination.
Collapse
Affiliation(s)
- Claire W Varian-Ramos
- Institute for Integrative Bird Behavior Studies, Biology Department, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187, USA.
| | | | | |
Collapse
|
631
|
Franssen NR, Stewart LK, Schaefer JF. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecol Evol 2013; 3:4648-57. [PMID: 24363894 PMCID: PMC3867901 DOI: 10.1002/ece3.842] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022] Open
Abstract
Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.
Collapse
Affiliation(s)
- Nathan R Franssen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico 167 Castetter Hall, Albuquerque, New Mexico 87131
| | - Laura K Stewart
- Department of Biological Sciences, University of Southern Mississippi Hattiesburg, Mississippi 39406
| | - Jacob F Schaefer
- Department of Biological Sciences, University of Southern Mississippi Hattiesburg, Mississippi 39406
| |
Collapse
|
632
|
Rittman S, Wrinn KM, Evans SC, Webb AW, Rypstra AL. Glyphosate-based herbicide has contrasting effects on prey capture by two co-occurring wolf spider species. J Chem Ecol 2013; 39:1247-53. [PMID: 24122113 DOI: 10.1007/s10886-013-0353-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
Abstract
Anthropogenic substances have the potential to affect animal behavior either because they present a novel stimulus or because they interfere with natural chemical communication pathways. Such shifts can alter the dynamic between predators and potential prey, which might affect population success as well as the strength of food web linkages. We examined the foraging of two wolf spiders, Tigrosa helluo and Pardosa milvina (Araneae, Lycosidae), that are abundant in agroecosystems where they are routinely exposed to herbicides. We tested the hypothesis that the presence of a commercial formulation of a glyphosate-based herbicide would affect the prey capture behavior of these two wolf spiders. We tested the larger Tigrosa foraging on Pardosa or crickets (Acheta domesticus) and the smaller Pardosa foraging on crickets. Tigrosa subdued crickets more quickly and with fewer lunges than it took them to capture Pardosa. The presence of herbicide allowed Tigrosa to orient toward and capture both prey species more quickly but it did not affect the number of lunges required to subdue either prey. Herbicide did not affect the timing of prey capture for Pardosa but it did cause them to use more lunges in the process. Thus, herbicide had contrasting effects on foraging behavior of these two agrobiont predators, which means that it could shift the direction and strength of food web linkages in complex ways.
Collapse
|
633
|
Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 2013; 28:605-13. [DOI: 10.1016/j.tree.2013.06.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/02/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
|
634
|
White SJ, Pipe RK, Fisher A, Briffa M. Asymmetric effects of contaminant exposure during asymmetric contests in the hermit crab Pagurus bernhardus. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
635
|
Miranda AC, Schielzeth H, Sonntag T, Partecke J. Urbanization and its effects on personality traits: a result of microevolution or phenotypic plasticity? GLOBAL CHANGE BIOLOGY 2013; 19:2634-2644. [PMID: 23681984 DOI: 10.1111/gcb.12258] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
Human-altered environmental conditions affect many species at the global scale. An extreme form of anthropogenic alteration is the existence and rapid increase of urban areas. A key question, then, is how species cope with urbanization. It has been suggested that rural and urban conspecifics show differences in behaviour and personality. However, (i) a generalization of this phenomenon has never been made; and (ii) it is still unclear whether differences in personality traits between rural and urban conspecifics are the result of phenotypic plasticity or of intrinsic differences. In a literature review, we show that behavioural differences between rural and urban conspecifics are common and taxonomically widespread among animals, suggesting a significant ecological impact of urbanization on animal behaviour. In order to gain insight into the mechanisms leading to behavioural differences in urban individuals, we hand-raised and kept European blackbirds (Turdus merula) from a rural and a nearby urban area under common-garden conditions. Using these birds, we investigated individual variation in two behavioural responses to the presence of novel objects: approach to an object in a familiar area (here defined as neophilia), and avoidance of an object in a familiar foraging context (defined as neophobia). Neophilic and neophobic behaviours were mildly correlated and repeatable even across a time period of one year, indicating stable individual behavioural strategies. Blackbirds from the urban population were more neophobic and seasonally less neophilic than blackbirds from the nearby rural area. These intrinsic differences in personality traits are likely the result of microevolutionary changes, although we cannot fully exclude early developmental influences.
Collapse
|
636
|
Candolin U, Nieminen A, Nyman J. Indirect effects of human-induced environmental change on offspring production mediated by behavioural responses. Oecologia 2013; 174:87-97. [PMID: 23996229 DOI: 10.1007/s00442-013-2752-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Human-induced rapid environmental changes often cause behavioural alterations in animals. The consequences that these alterations in turn have for the viability of populations are, however, poorly known. We used a population of threespine sticklebacks Gasterosteus aculeatus in the Baltic Sea to investigate the consequences of behavioural responses to human-induced eutrophication for offspring production. The investigated population has been growing during the last decades, and one cause could be increased offspring production. We combined field-based surveys with laboratory-based experiments, and found that an enhanced growth of macroalgae relaxed agonistic interactions among males. This allowed more males to nest, improved hatching success, and increased the number of reproductive cycles that males completed. Thus, the behavioural responses were adaptive at the individual level and increased offspring production. However, a larger proportion of small males of low competitive ability reproduced in dense vegetation. As male size and dominance are heritable, this could influence the genetic composition of the offspring. Together with a higher number of offspring produced, this could influence natural selection and the rate of adaptation to the changing environment. Thus, behavioural responses to a rapid human-induced environmental change can influence offspring production, with potential consequences for population dynamics and evolutionary processes.
Collapse
Affiliation(s)
- Ulrika Candolin
- Department of Biosciences, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
637
|
Harris SE, Munshi-South J, Obergfell C, O’Neill R. Signatures of rapid evolution in urban and rural transcriptomes of white-footed mice (Peromyscus leucopus) in the New York metropolitan area. PLoS One 2013; 8:e74938. [PMID: 24015321 PMCID: PMC3756007 DOI: 10.1371/journal.pone.0074938] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/16/2022] Open
Abstract
Urbanization is a major cause of ecological degradation around the world, and human settlement in large cities is accelerating. New York City (NYC) is one of the oldest and most urbanized cities in North America, but still maintains 20% vegetation cover and substantial populations of some native wildlife. The white-footed mouse, Peromyscusleucopus, is a common resident of NYC's forest fragments and an emerging model system for examining the evolutionary consequences of urbanization. In this study, we developed transcriptomic resources for urban P. leucopus to examine evolutionary changes in protein-coding regions for an exemplar "urban adapter." We used Roche 454 GS FLX+ high throughput sequencing to derive transcriptomes from multiple tissues from individuals across both urban and rural populations. From these data, we identified 31,015 SNPs and several candidate genes potentially experiencing positive selection in urban populations of P. leucopus. These candidate genes are involved in xenobiotic metabolism, innate immune response, demethylation activity, and other important biological phenomena in novel urban environments. This study is one of the first to report candidate genes exhibiting signatures of directional selection in divergent urban ecosystems.
Collapse
Affiliation(s)
- Stephen E. Harris
- Program in Ecology, Evolutionary Biology, & Behavior, The Graduate Center, City University of New York (CUNY), New York, New York, United States of America
| | - Jason Munshi-South
- Louis Calder Center, Fordham University, Armonk, New York, United States of America
| | - Craig Obergfell
- Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Rachel O’Neill
- Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
638
|
Snell-Rood EC, Wick N. Anthropogenic environments exert variable selection on cranial capacity in mammals. Proc Biol Sci 2013; 280:20131384. [PMID: 23966638 DOI: 10.1098/rspb.2013.1384] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is thought that behaviourally flexible species will be able to cope with novel and rapidly changing environments associated with human activity. However, it is unclear whether such environments are selecting for increases in behavioural plasticity, and whether some species show more pronounced evolutionary changes in plasticity. To test whether anthropogenic environments are selecting for increased behavioural plasticity within species, we measured variation in relative cranial capacity over time and space in 10 species of mammals. We predicted that urban populations would show greater cranial capacity than rural populations and that cranial capacity would increase over time in urban populations. Based on relevant theory, we also predicted that species capable of rapid population growth would show more pronounced evolutionary responses. We found that urban populations of two small mammal species had significantly greater cranial capacity than rural populations. In addition, species with higher fecundity showed more pronounced differentiation between urban and rural populations. Contrary to expectations, we found no increases in cranial capacity over time in urban populations-indeed, two species tended to have a decrease in cranial capacity over time in urban populations. Furthermore, rural populations of all insectivorous species measured showed significant increases in relative cranial capacity over time. Our results provide partial support for the hypothesis that urban environments select for increased behavioural plasticity, although this selection may be most pronounced early during the urban colonization process. Furthermore, these data also suggest that behavioural plasticity may be simultaneously favoured in rural environments, which are also changing because of human activity.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, Twin Cities, MN, USA.
| | | |
Collapse
|
639
|
Nemeth Z, Bonier F, MacDougall-Shackleton SA. Coping with Uncertainty: Integrating Physiology, Behavior, and Evolutionary Ecology in a Changing World. Integr Comp Biol 2013; 53:960-4. [DOI: 10.1093/icb/ict089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
640
|
Basille M, Van Moorter B, Herfindal I, Martin J, Linnell JDC, Odden J, Andersen R, Gaillard JM. Selecting habitat to survive: the impact of road density on survival in a large carnivore. PLoS One 2013; 8:e65493. [PMID: 23874381 PMCID: PMC3707854 DOI: 10.1371/journal.pone.0065493] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.
Collapse
Affiliation(s)
- Mathieu Basille
- Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, Florida, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
641
|
Martín J, López P. Effects of global warming on sensory ecology of rock lizards: increased temperatures alter the efficacy of sexual chemical signals. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12128] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales; CSIC; José Gutiérrez Abascal 2 28006 Madrid Spain
| | - Pilar López
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales; CSIC; José Gutiérrez Abascal 2 28006 Madrid Spain
| |
Collapse
|
642
|
Ten unanswered questions in multimodal communication. Behav Ecol Sociobiol 2013; 67:1523-1539. [PMID: 23956487 PMCID: PMC3742419 DOI: 10.1007/s00265-013-1565-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/04/2013] [Accepted: 04/16/2013] [Indexed: 11/19/2022]
Abstract
The study of multimodal communication has become an active and vibrant field. This special issue of Behavioral Ecology and Sociobiology brings together new developments in this rapidly expanding area. In this final contribution to the special issue, I look to the future and discuss ten questions in need of further work, touching on issues ranging from theoretical modeling and the evolution of behavior to molecular mechanisms and the development of behavior. In particular, I emphasize that the use of multimodal communication allows animals to switch between sensory channels when one channel becomes too noisy, and suggest that a better understanding of this process may help us both to understand the evolution of multisensory signaling and to predict the success of species facing environmental changes that affect signaling channels, such as urbanization and climate change. An expanded section is included on the effects of climate change on animal communication across sensory channels, urging researchers to pursue this topic due to the rapidity with which the environment is currently transforming.
Collapse
|
643
|
Robertson BA, Rehage JS, Sih A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 2013; 28:552-60. [PMID: 23756104 DOI: 10.1016/j.tree.2013.04.004] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/11/2013] [Accepted: 04/25/2013] [Indexed: 11/25/2022]
Abstract
Human-induced rapid environmental change (HIREC; e.g., climate change or exotic species) has caused global species declines. Although behavioral plasticity has buffered some species against HIREC, maladaptive behavioral scenarios called 'evolutionary traps' are increasingly common, threatening the persistence of affected species. Here, we review examples of evolutionary traps to identify their anthropogenic causes, behavioral mechanisms, and evolutionary bases, and to better forecast forms of HIREC liable to trigger traps. We summarize a conceptual framework for explaining the susceptibility of animals to traps that integrates the cost-benefit approach of standard behavioral ecology with an evolutionary approach (reaction norms) to understanding cue-response systems (signal detection). Finally, we suggest that a significant revision of conceptual thinking in wildlife conservation and management is needed to effectively eliminate and mitigate evolutionary traps.
Collapse
Affiliation(s)
- Bruce A Robertson
- Division of Science, Mathematics, and Computing, Bard College, Annandale-on-Hudson, NY 12504, USA.
| | | | | |
Collapse
|
644
|
Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, Sih A. Behavioural syndromes and social insects: personality at multiple levels. Biol Rev Camb Philos Soc 2013; 89:48-67. [PMID: 23672739 DOI: 10.1111/brv.12042] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 11/28/2022]
Abstract
Animal personalities or behavioural syndromes are consistent and/or correlated behaviours across two or more situations within a population. Social insect biologists have measured consistent individual variation in behaviour within and across colonies for decades. The goal of this review is to illustrate the ways in which both the study of social insects and of behavioural syndromes has overlapped, and to highlight ways in which both fields can move forward through the synergy of knowledge from each. Here we, (i) review work to date on behavioural syndromes (though not always referred to as such) in social insects, and discuss mechanisms and fitness effects of maintaining individual behavioural variation within and between colonies; (ii) summarise approaches and principles from studies of behavioural syndromes, such as trade-offs, feedback, and statistical methods developed specifically to study behavioural consistencies and correlations, and discuss how they might be applied specifically to the study of social insects; (iii) discuss how the study of social insects can enhance our understanding of behavioural syndromes-research in behavioural syndromes is beginning to explore the role of sociality in maintaining or developing behavioural types, and work on social insects can provide new insights in this area; and (iv) suggest future directions for study, with an emphasis on examining behavioural types at multiple levels of organisation (genes, individuals, colonies, or groups of individuals).
Collapse
Affiliation(s)
- Jennifer M Jandt
- Department of Ecology, Evolutionary and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | |
Collapse
|
645
|
|
646
|
Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.02.017] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
647
|
|
648
|
|
649
|
|
650
|
Snell-Rood EC, Davidowitz G, Papaj DR. Plasticity in Learning Causes Immediate and Trans-Generational Changes in Allocation of Resources. Integr Comp Biol 2013; 53:329-39. [DOI: 10.1093/icb/ict030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|