601
|
Wang N, Fallavollita L, Nguyen L, Burnier J, Rafei M, Galipeau J, Yakar S, Brodt P. Autologous bone marrow stromal cells genetically engineered to secrete an igf-I receptor decoy prevent the growth of liver metastases. Mol Ther 2009; 17:1241-9. [PMID: 19367255 DOI: 10.1038/mt.2009.82] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Liver metastases respond poorly to current therapy and remain a frequent cause of cancer-related mortality. We reported previously that tumor cells expressing a soluble form of the insulin-like growth factor-I receptor (sIGFIR) lost the ability to metastasize to the liver. Here, we sought to develop a novel therapeutic approach for prevention of hepatic metastasis based on sustained in vivo delivery of the soluble receptor by genetically engineered autologous bone marrow stromal cells. We found that when implanted into mice, these cells secreted high plasma levels of sIGFIR and inhibited experimental hepatic metastases of colon and lung carcinoma cells. In hepatic micrometastases, a reduction in intralesional angiogenesis and increased tumor cell apoptosis were observed. The results show that the soluble receptor acted as a decoy to abort insulin-like growth factor-I receptor (IGF-IR) functions during the early stages of metastasis and identify sustained sIGFIR delivery by cell-based vehicles as a potential approach for prevention of hepatic metastasis.
Collapse
Affiliation(s)
- Ni Wang
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
602
|
Rumjahn SM, Yokdang N, Baldwin KA, Thai J, Buxton ILO. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis. Br J Cancer 2009; 100:1465-70. [PMID: 19367276 PMCID: PMC2694426 DOI: 10.1038/sj.bjc.6604998] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
P2Y purine nucleotide receptors (P2YRs) promote endothelial cell tubulogenesis through breast cancer cell-secreted nucleoside diphosphate kinase (NDPK). We tested the hypothesis that activated P2Y(1) receptors transactivate vascular endothelial growth factor receptor (VEGFR-2) in angiogenic signaling. P2Y(1)R stimulation (10 microM 2-methyl-thio-ATP (2MS-ATP)) of angiogenesis is suppressed by the VEGFR-2 tyrosine kinase inhibitor, SU1498 (1 microM). Phosphorylation of VEGFR-2 by 0.0262 or 2.62 nM VEGF was comparable with 0.01 or 10 microM 2MS-ATP stimulation of the P2Y(1)R. 2MS-ATP, and VEGF stimulation increased tyrosine phosphorylation at tyr1175. 2MS-ATP (0.1-10 microM) also stimulated EC tubulogenesis in a dose-dependent manner. The addition of sub-maximal VEGF (70 pM) in the presence of increasing concentrations of 2MS-ATP yielded additive effects at 2MS-ATP concentrations <3 microM, whereas producing saturated and less than additive effects at > or =3 microM. We propose that the VEGF receptor can be activated in the absence of VEGF, and that the P2YR-VEGFR2 interaction and resulting signal transduction is a critical determinant of vascular homoeostasis and tumour-mediated angiogenesis.
Collapse
Affiliation(s)
- S M Rumjahn
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
603
|
Hubbard RD, Bamaung NY, Fidanze SD, Erickson SA, Palazzo F, Wilsbacher JL, Zhang Q, Tucker LA, Hu X, Kovar P, Osterling DJ, Johnson EF, Bouska J, Wang J, Davidsen SK, Bell RL, Sheppard GS. Development of multitargeted inhibitors of both the insulin-like growth factor receptor (IGF-IR) and members of the epidermal growth factor family of receptor tyrosine kinases. Bioorg Med Chem Lett 2009; 19:1718-21. [PMID: 19217287 DOI: 10.1016/j.bmcl.2009.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Emerging clinical and pre-clinical data indicate that both insulin-like growth factor receptor (IGF-IR) and members of the epidermal growth factor (EGF) family of receptor tyrosine kinases (RTKs) exhibit significant cross-talk in human cancers. Therefore, a small molecule that successfully inhibits the signaling of both classes of oncogenic kinases might provide an attractive agent for chemotherapeutic use. Herein, we disclose the structure activity relationships that led to the synthesis and biological characterization of 14, a novel small molecule inhibitor of both IGF-IR and members of the epidermal growth factor family of RTKs.
Collapse
Affiliation(s)
- Robert D Hubbard
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
604
|
Ivanov AS, Shishkov SV. Synthesis of imatinib: a convergent approach revisited. MONATSHEFTE FUR CHEMIE 2009. [DOI: 10.1007/s00706-008-0105-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
605
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
606
|
Konopleva M, Tabe Y, Zeng Z, Andreeff M. Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 2009; 12:103-13. [PMID: 19632887 PMCID: PMC3640296 DOI: 10.1016/j.drup.2009.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 02/03/2023]
Abstract
In hematological malignancies, there are dynamic interactions between leukemic cells and cells of the bone marrow microenvironment. Specific niches within the bone marrow microenvironment provide a sanctuary for subpopulations of leukemic cells to evade chemotherapy-induced death and allow acquisition of a drug-resistant phenotype. This review focuses on molecular and cellular biology of the normal hematopoietic stem cell and the leukemia stem cell niche, and of the molecular pathways critical for microenvironment/leukemia interactions. The key emerging therapeutic targets include chemokine receptors (CXCR4), adhesion molecules (VLA4 and CD44), and hypoxia-related proteins HIF-1alpha and VEGF. Finally, the genetic and epigenetic abnormalities of leukemia-associated stroma will be discussed. This complex interplay provides a rationale for appropriately tailored molecular therapies targeting not only leukemic cells but also their microenvironment to ensure improved outcomes in leukemia.
Collapse
Affiliation(s)
- Marina Konopleva
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030,Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Yoko Tabe
- Department of Clinical Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Michael Andreeff
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030,Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
607
|
Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, Loo HL, Aung MO, Lim SG, Ullrich A. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 2009; 50:118-27. [PMID: 19008009 DOI: 10.1016/j.jhep.2008.08.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/22/2008] [Accepted: 08/29/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS FGFR4, a member of the fibroblast growth factor receptor family, has been recently associated with progression of melanoma, breast and head and neck carcinoma. Given its uniquely high expression in the liver, we investigated its contributory role to hepatocellular carcinoma (HCC). METHODS We performed a comprehensive sequencing of full-length FGFR4 transcript in 57 tumor/normal HCC tissue pairs, and quantified their mRNA expressions. Notable mutations and expression patterns were correlated with patient data. Clinically significant trends were examined in in vitro models. RESULTS We found eight genetic alterations including two highly frequent polymorphisms (V10I and G338R). Secretion of alpha-fetoprotein (AFP), a HCC biomarker, was increased among patients bearing homozygous Arg388 alleles. One-third of these patients exhibited increased FGFR4 mRNA expression in the matched tumor/normal tissue. Subsequent in vitro perturbation of FGFR4 signaling through both FGF19-stimulation and FGFR4 silencing confirmed a mechanistic link between FGFR4 activities and tumor aggressiveness. More importantly, inhibition of FGFR activity with PD173074 exquisitely blocked HuH7 (high FGFR4 expression) proliferation as compared to control cell lines. CONCLUSIONS FGFR4 contributes significantly to HCC progression by modulating AFP secretion, proliferation and anti-apoptosis. Its frequent overexpression in patients renders its inhibition a novel and much needed pharmacological approach against HCC.
Collapse
Affiliation(s)
- Han Kiat Ho
- Singapore OncoGenome Laboratory, Institute of Medical Biology, A *STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
608
|
Brunello A, Saia G, Bedogni A, Scaglione D, Basso U. Worsening of osteonecrosis of the jaw during treatment with sunitinib in a patient with metastatic renal cell carcinoma. Bone 2009; 44:173-5. [PMID: 18849018 DOI: 10.1016/j.bone.2008.08.132] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/21/2008] [Accepted: 08/28/2008] [Indexed: 11/19/2022]
Abstract
We report on the potential association of suspected bisphosphonate-associated osteonecrosis of the jaw (BRONJ) recurrence with the use of the novel antiangiogenic drug sunitinib. A 59 year-old patient affected by metastatic renal cell carcinoma (RCC) and established BRONJ experienced consecutive episodes of painful jaw infection with cutaneous fistula and bone sequestration which occurred during active treatment with sunitinib, improved after discontinuation and antibiotic therapy, then rapidly worsened with resumption of sunitinib. We hypothesize that the potent antiangiogenic activity of sunitinib may amplify the inhibition of bone remodeling exerted by aminobisphosphonates entrapped within the osteonecrotic mineral matrix, antagonize mucosal healing and expose to infections during treatment. This supports the emerging role of soft-tissue damage in the pathogenesis of osteonecrosis of the jaw.
Collapse
|
609
|
Sirica AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14:7033-58. [PMID: 19084911 PMCID: PMC2776834 DOI: 10.3748/wjg.14.7033] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and signaling of epidermal growth factor receptor (ErbB) family receptor tyrosine kinases, most notably that of ErbB2 and ErbB1, have been implicated in the molecular pathogenesis of intrahepatic cholangiocarcinoma. Constitutive overexpression of ErbB2 and/or ErbB1 in malignant cholangiocytes has raised interest in the possibility that agents which selectively target these receptors could potentially be effective in cholangiocarcinoma therapy. However, current experience with such ErbB-directed therapies have at best produced only modest responses in patients with biliary tract cancers. This review provides a comprehensive and critical analysis of both preclinical and clinical studies aimed at assessing the role of altered ErbB2 and/or ErbB1 expression, genetic modifications, and dysregulated signaling on cholangiocarcinoma development and progression. Specific limitations in experimental approaches that have been used to assess human cholangiocarcinoma specimens for ErbB2 and/or ErbB1 overexpression and gene amplification are discussed. In addition, current rodent models of intrahepatic cholangiocarcinogenesis associated with constitutive ErbB2 overexpression are reviewed. Select interactive relationships between ErbB2 or ErbB1 with other relevant molecular signaling pathways associated with intrahepatic cholangiocarcinoma development and progression are also detailed, including those linking ErbB receptors to bile acid, cyclooxygenase-2, interleukin-6/gp130, transmembrane mucins, hepatocyte growth factor/Met, and vascular endothelial growth factor signaling. Lastly, various factors that can limit therapeutic efficacy of ErbB-targeted agents against cholangiocarcinoma are considered.
Collapse
|
610
|
Translational research in complex etiopathogenesis and therapy of hematological malignancies: the specific role of tyrosine kinases signaling and inhibition. Med Oncol 2008; 26:437-44. [PMID: 19051068 DOI: 10.1007/s12032-008-9143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
During the recent genomics and proteomics era, high-resolution, genome-wide approaches have revealed numerous promising new drug targets and disease biomarkers, accelerating and emphasizing the need for targeted molecular therapy compounds. Significant progress has been made in understanding the pathogenesis of hematological malignancies there by, revealing new drug targets. Introduction of multiple new technologies in cancer research have significantly improved the drug discovery process, leading to key success in targeted cancer therapeutics, including tyrosine kinase inhibitors. The studies of receptor tyrosine kinases and their role in malignant transformation are already translated from the preclinical level (cell-based and animal models) to clinical studies, enabling the more complete understanding of tumor cell biology and improvement of tumor therapy.
Collapse
|
611
|
Katanasaka Y, Ida T, Asai T, Shimizu K, Koizumi F, Maeda N, Baba K, Oku N. Antiangiogenic cancer therapy using tumor vasculature-targeted liposomes encapsulating 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one, SU5416. Cancer Lett 2008; 270:260-8. [DOI: 10.1016/j.canlet.2008.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 02/21/2008] [Accepted: 05/08/2008] [Indexed: 01/12/2023]
|
612
|
Mimeault M, Batra SK. Recent advances in the development of novel anti-cancer drugs targeting cancer stem/progenitor cells. Drug Dev Res 2008. [DOI: 10.1002/ddr.20273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
613
|
Fischer H, Taylor N, Allerstorfer S, Grusch M, Sonvilla G, Holzmann K, Setinek U, Elbling L, Cantonati H, Grasl-Kraupp B, Gauglhofer C, Marian B, Micksche M, Berger W. Fibroblast growth factor receptor-mediated signals contribute to the malignant phenotype of non-small cell lung cancer cells: therapeutic implications and synergism with epidermal growth factor receptor inhibition. Mol Cancer Ther 2008; 7:3408-19. [PMID: 18852144 PMCID: PMC2879863 DOI: 10.1158/1535-7163.mct-08-0444] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fibroblast growth factors (FGF) and their high-affinity receptors (FGFR) represent an extensive cellular growth and survival system. Aim of this study was to evaluate the contribution of FGF/FGFR-mediated signals to the malignant growth of non-small cell lung cancer (NSCLC) and to assess their potential as targets for therapeutic interventions. Multiple FGFR mRNA splice variants were coexpressed in NSCLC cells (n = 16) with predominance of FGFR1. Accordingly, both expression of a dominant-negative FGFR1 (dnFGFR1) IIIc-green fluorescent protein fusion protein and application of FGFR small-molecule inhibitors (SU5402 and PD166866) significantly reduced growth, survival, clonogenicity, and migratory potential of the majority of NSCLC cell lines. Moreover, dnFGFR1 expression completely blocked or at least significantly attenuated s.c. tumor formation of NSCLC cells in severe combined immunodeficient mice. Xenograft tumors expressing dnFGFR1 exhibited significantly reduced size and mitosis rate, enhanced cell death, and decreased tissue invasion. When FGFR inhibitors were combined with chemotherapy, antagonistic to synergistic in vitro anticancer activities were obtained depending on the application schedule. In contrast, simultaneous blockage of FGFR- and epidermal growth factor receptor-mediated signals exerted synergistic effects. In summary, FGFR-mediated signals in cooperation with those transmitted by epidermal growth factor receptor are involved in growth and survival of human NSCLC cells and should be considered as targets for combined therapeutic approaches.
Collapse
Affiliation(s)
- Hendrik Fischer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Ninon Taylor
- Third Medical Department of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Sigrid Allerstorfer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Gudrun Sonvilla
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Klaus Holzmann
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Ulrike Setinek
- Institute of Pathology and Bacteriology, Hospital Baumgartner Höhe, Vienna, Austria and
| | - Leonilla Elbling
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Heidelinde Cantonati
- Institute of Pathology and Bacteriology, Hospital Baumgartner Höhe, Vienna, Austria and
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Christine Gauglhofer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Michael Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| |
Collapse
|
614
|
Immunotherapy in head and neck cancer: current practice and future possibilities. The Journal of Laryngology & Otology 2008; 123:19-28. [PMID: 18761763 DOI: 10.1017/s0022215108003356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The survival of patients with head and neck squamous cell carcinoma has changed little over the last 30 years. However, with recent advances in the fields of cellular and molecular immunology, there is renewed optimism with regards to the development of novel methods of early diagnosis, prognosis estimation and treatment improvement for patients with head and neck squamous cell carcinoma. Here, we present a critical review of the recent advances in tumour immunology, and of the current efforts to apply new immunotherapeutic techniques in the treatment of head and neck squamous cell carcinoma.
Collapse
|
615
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The major etiologies and risk factors for HCC development are well defined and some of the steps involved in hepatocarcinogenesis have been elucidated in recent years. Therapeutic options that can be applied in curative or palliative intention are available and are dependent on the HCC stage. The therapeutic options fall into five main categories: (1) surgical interventions, including tumor resection and liver transplantation, (2) percutaneous interventions, including ethanol injection and radiofrequency thermal ablation, (3) transarterial interventions, including embolization and chemoembolization, (4) radiation therapy, and (5) drugs as well as gene and immune therapies. Until recently, no therapy existed for patients with advanced HCC. In 2007 a multikinase inhibitor (sorafenib) showed for the first time a significant increase in overall survival in patients with advanced HCC. Furthermore, several other agents that target different factors of hepatocarcinogenesis (eg, epidermal growth factor, insulin-like growth factors, hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, platelet-derived growth factor, and the transforming growth factors-alpha and -beta), have emerged and been tested in clinical trials. This review gives an overview of the current therapeutic strategies and their clinical impact.
Collapse
Affiliation(s)
| | - Robert Thimme
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| | - Hubert E Blum
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| |
Collapse
|
616
|
Giannopoulou E, Antonacopoulou A, Floratou K, Papavassiliou AG, Kalofonos HP. Dual targeting of EGFR and HER-2 in colon cancer cell lines. Cancer Chemother Pharmacol 2008; 63:973-81. [DOI: 10.1007/s00280-008-0820-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/24/2022]
|
617
|
Acute hepatic failure following monotherapy with sunitinib for ovarian cancer. Cancer Chemother Pharmacol 2008; 63:971-2. [PMID: 18716778 DOI: 10.1007/s00280-008-0814-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
|
618
|
Kuhn D, Weskamp N, Hüllermeier E, Klebe G. Functional classification of protein kinase binding sites using Cavbase. ChemMedChem 2008; 2:1432-47. [PMID: 17694525 DOI: 10.1002/cmdc.200700075] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increasingly, drug-discovery processes focus on complete gene families. Tools for analyzing similarities and differences across protein families are important for the understanding of key functional features of proteins. Herein we present a method for classifying protein families on the basis of the properties of their active sites. We have developed Cavbase, a method for describing and comparing protein binding pockets, and show its application to the functional classification of the binding pockets of the protein family of protein kinases. A diverse set of kinase cavities is mutually compared and analyzed in terms of recurring functional recognition patterns in the active sites. We are able to propose a relevant classification based on the binding motifs in the active sites. The obtained classification provides a novel perspective on functional properties across protein space. The classification of the MAP and the c-Abl kinases is analyzed in detail, showing a clear separation of the respective kinase subfamilies. Remarkable cross-relations among protein kinases are detected, in contrast to sequence-based classifications, which are not able to detect these relations. Furthermore, our classification is able to highlight features important in the optimization of protein kinase inhibitors. Using small-molecule inhibition data we could rationalize cross-reactivities between unrelated kinases which become apparent in the structural comparison of their binding sites. This procedure helps in the identification of other possible kinase targets that behave similarly in "binding pocket space" to the kinase under consideration.
Collapse
Affiliation(s)
- Daniel Kuhn
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
619
|
Hubbard RD, Wilsbacher JL. Advances towards the development of ATP-competitive small-molecule inhibitors of the insulin-like growth factor receptor (IGF-IR). ChemMedChem 2008; 2:41-6. [PMID: 17089440 DOI: 10.1002/cmdc.200600174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Robert D Hubbard
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | |
Collapse
|
620
|
LoRusso PM, Eder JP. Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin Investig Drugs 2008; 17:1013-28. [DOI: 10.1517/13543784.17.7.1013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Patricia M LoRusso
- Barbara Ann Karmanos Cancer Institute/ Wayne State University, Hudson-Webber
| | - Joseph Paul Eder
- Clinical Research Discovery Medicine Oncology, AstraZeneca LP, 35 Gatehouse Drive, Waltham, MA 02451, USA ;
| |
Collapse
|
621
|
|
622
|
Abstract
The process of blood vessel proliferation, known as angiogenesis, is essential during embryonic development and organogenesis. In adult life, it participates in normal tissue repair, wound healing, and cyclical growth of the corpus luteum and the endometrium. Crucial as it is, angiogenesis can become pathological, and abnormal angiogenesis contributes to the pathogenesis of inflammatory and neoplasic diseases. The present review highlights the evidence for the role of angiogenesis in HCC (hepatocellular carcinoma) and discusses the increasing importance of inhibitors of angiogenesis in HCC therapy.
Collapse
|
623
|
Kimura H, Ng JMY, Curran T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 2008; 13:249-60. [PMID: 18328428 DOI: 10.1016/j.ccr.2008.01.027] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/20/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
The Hedgehog (Hh) pathway plays critical roles in normal development and in tumorigenesis. We generated Gli-luciferase transgenic mice to evaluate the Smo inhibitor, HhAntag, by whole animal functional imaging. HhAntag rapidly reduced systemic luciferase activity in 10- to 14-day-old mice following oral dosing. Although pathway activity was restored 2 days after drug removal, brief inhibition caused permanent defects in bone growth. HhAntag inhibited proliferation and promoted differentiation of chondrocytes, leading to dramatic expansion of the hypertrophic zone. After drug removal, osteoblasts invaded the cartilage plate, mineralization occurred, and there was premature fusion of the growth plate resulting in permanent disruption of bone epiphyses.
Collapse
MESH Headings
- Administration, Oral
- Aging/metabolism
- Animals
- Animals, Newborn
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/toxicity
- Bone Remodeling/drug effects
- Bone and Bones/drug effects
- Bone and Bones/embryology
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Calcification, Physiologic/drug effects
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cerebellar Neoplasms/drug therapy
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Dose-Response Relationship, Drug
- Growth Plate/drug effects
- Growth Plate/pathology
- Hedgehog Proteins/metabolism
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Medulloblastoma/drug therapy
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Microscopy, Video
- Osteogenesis/drug effects
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/drug effects
- Smoothened Receptor
- Time Factors
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Hiromichi Kimura
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | |
Collapse
|
624
|
Zhu AX. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 2008; 112:250-9. [PMID: 18041064 DOI: 10.1002/cncr.23175] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well appreciated that hepatocellular carcinoma (HCC) represents one of the most challenging malignancies of worldwide importance. In fact, HCC is the fifth most common cancer and the third most common cause of cancer-related death globally. The incidence rates for HCC in the U.S. and Western Europe have been rising. Unresectable or metastatic HCC carries a poor prognosis, and systemic therapy with cytotoxic agents provides marginal benefit. Because of the poor track record of systemic therapy in HCC, there has been a sense of nihilism for this disease in the oncology community for decades. However, with the arrival of newly developed, molecularly targeted agents and the success of some of these agents in other traditionally challenging cancers, such as renal cell carcinoma, there has been renewed interest in developing novel systemic therapy in HCC. At the recent Annual Meeting of the American Society of Clinical Oncology, results of a phase 3, randomized, placebo-controlled trial were presented in which sorafenib demonstrated improved survival in patients with advanced HCC. This landmark study represents the first agent that has demonstrated an improved overall survival benefit in this disease and sets the new standard for first-line treatment of advanced HCC. For this review, the author concisely summarized the current status of molecularly targeted agents that are under clinical development in advanced HCC.
Collapse
Affiliation(s)
- Andrew X Zhu
- Tucker Gosnell Center for Gastrointestinal Cancers, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
625
|
Abstract
Small molecules, a growing class of targeted therapies, have flourished over the last decade. With increased knowledge on molecular cell signaling, targeted therapy has been refined to targeting molecular targets upstream from the nucleus that are key players in the communication system that regulates cancer cell growth. This article reviews the mechanisms of small molecules with a particular emphasis on tyrosine kinase inhibitors, as well as the literature that supports the current clinical use in the treatment of a variety of solid and hematological malignancies.
Collapse
Affiliation(s)
- Anita A. Garcia
- Department of Pharmacy, Kaiser Permanente Health Foundation, Denver, Colorado,
| |
Collapse
|
626
|
Kitzmann AS, Baratz KH, Mohney BG, Pulido JS, Cameron JD, Lee ES, Leof EB. Histologic studies of the intraocular toxicity of imatinib mesylate in rabbits. Eye (Lond) 2008; 22:712-4. [DOI: 10.1038/sj.eye.6703092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
627
|
|
628
|
Sanmartín C, Domínguez MV, Cordeu L, Cubedo E, García-Foncillas J, Font M, Palop JA. Synthesis and Biological Evaluation of 2,4,6-Functionalized Derivatives of Pyrido[2,3-d]pyrimidines as Cytotoxic Agents and Apoptosis Inducers. Arch Pharm (Weinheim) 2007; 341:28-41. [DOI: 10.1002/ardp.200700133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
629
|
Chua KN, Ma J, Thiery JP. Targeted therapies in control of EMT in carcinoma and fibrosis. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddmec.2008.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
630
|
Abstract
The epidermal growth factor (EGF) family comprises multiple mediators such as transforming growth factor-alpha, amphiregulin, heparin binding-EGF, and epiregulin, which are crucially involved in the tissue-specific proliferation/differentiation homeostasis. Typically, they act in an autocrine and paracrine manner on their specific cell membrane receptor and mount an effective reparative response to any attack to biophysical integrity. In addition, the EGFR can be activated by transactivation from a variety of G-protein-coupled receptors, integrins, and cytokine receptors, so that it acts as the major transducer of disparate cell functions, including changes in proliferation rate, cellular shape, attachment and motility, and regulation of proinflammatory activation. However, numerous experimental observations indicate that the different EGFR ligands are not redundant, but may rather provide distinct and specific contributions to keratinocyte functions. Importantly, increasing evidence now suggests that the EGFR pathway has a major impact on the inflammatory/immune reactions of the skin, in the apparent effort of enhancing innate immune defense while opposing overactivation of keratinocyte pro-inflammatory functions. This review covers the molecular mechanisms and functions activated by this major growth factor system in the regulation of keratinocyte biology and focuses on the complex contribution of EGFR signaling to the inflammatory processes in the skin.
Collapse
|
631
|
Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR, Fu LW, Ambudkar SV, Chen ZS. Erlotinib (Tarceva, OSI-774) Antagonizes ATP-Binding Cassette Subfamily B Member 1 and ATP-Binding Cassette Subfamily G Member 2–Mediated Drug Resistance. Cancer Res 2007; 67:11012-20. [DOI: 10.1158/0008-5472.can-07-2686] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
632
|
Gibson S, Sebire NJ, Anderson J. Platelet-derived growth factor receptors and ligands are up-regulated in paediatric fibromatoses. Histopathology 2007; 51:752-7. [PMID: 17944929 DOI: 10.1111/j.1365-2559.2007.02868.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Platelet-derived growth factors (PDGF) and their receptors (PDGFR) play an essential role in pathways involved in the regulation of cell proliferation, growth and function. Overexpression of PDGF/R is reported in a wide range of solid tumours. The aim was to determine levels of PDGF/R expression in paediatric fibromatoses and myofibromatosis. METHODS AND RESULTS Quantitative real-time polymerase chain reaction was used to examine the expression level of alpha and beta isoforms of PDGF/R in 17 fibromatoses, four myofibromatoses and three dermatofibrosarcoma protuberans (DFSP) in children. Fifteen of 17 (88%) fibromatoses and all myofibromatoses and DFSPs demonstrated increased expression of PDGFalpha and beta compared with a panel of normal tissues. In terms of the cognate receptors, 13/17 (76%) fibromatoses demonstrated increased expression for PDGFRalpha and Rbeta, whereas 3/4 myofibromatoses demonstrated increased expression of PDGFRalpha and all four had increased PDGFRbeta expression. All DFSPs were associated with increased expression of both PDGFRalpha and PDGFRbeta compared with normal control tissues. CONCLUSIONS Increased expression of PDGF/Ralphabeta may play an important role in the mechanism of growth of these paediatric fibromatous lesions and warrants further investigation, since novel therapeutic interventions could potentially be developed in the light of the expression patterns.
Collapse
Affiliation(s)
- S Gibson
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | | | | |
Collapse
|
633
|
McGregor MJ. A Pharmacophore Map of Small Molecule Protein Kinase Inhibitors. J Chem Inf Model 2007; 47:2374-82. [DOI: 10.1021/ci700244t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Malcolm J. McGregor
- EMD Serono Research Institute, One Technology Place, Rockland, Massachusetts 02370
| |
Collapse
|
634
|
Hubbard RD, Bamaung NY, Palazzo F, Zhang Q, Kovar P, Osterling DJ, Hu X, Wilsbacher JL, Johnson EF, Bouska J, Wang J, Bell RL, Davidsen SK, Sheppard GS. Pyrazolo[3,4-d]pyrimidines as potent inhibitors of the insulin-like growth factor receptor (IGF-IR). Bioorg Med Chem Lett 2007; 17:5406-9. [PMID: 17689078 DOI: 10.1016/j.bmcl.2007.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 02/03/2023]
Abstract
A high throughput screen of Abbott's compound repository revealed that the pyrazolo[3,4-d]pyrimidine class of kinase inhibitors possessed moderate potency for IGF-IR, a promising target for cancer chemotherapy. The synthesis and subsequent optimization of this class of compounds led to the discovery of 14, a compound that possesses in vivo IGF-IR inhibitory activity.
Collapse
Affiliation(s)
- Robert D Hubbard
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
635
|
Mukherjee A, Dhadda AS, Shehata M, Chan S. Lapatinib: a tyrosine kinase inhibitor with a clinical role in breast cancer. Expert Opin Pharmacother 2007; 8:2189-204. [PMID: 17714070 DOI: 10.1517/14656566.8.13.2189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lapatinib is a dual (ErbB-1 and ErB-2) receptor tyrosine kinase inhibitor (TKI) that was recently approved by the FDA for the treatment of advanced breast cancer. It shows synergy with trastuzumab, and has demonstrated clinical activity in trastuzumab-resistant tumour. This paper reviews the drug development of lapatinib from preclinical studies to the pivotal Phase III trial and ongoing clinical studies. Areas of interest include the advantages of small molecule TKIs versus antibodies in targeting HER receptors and the efficacy of lapatinib in the treatment of cerebral metastases. The surprisingly high response rate in inflammatory breast cancer raises the possibility of other novel predictive biomarkers. The potential for combination and sequencing with other biological and cytotoxic agents is both exciting and challenging.
Collapse
Affiliation(s)
- A Mukherjee
- Nottingham University Hospitals NHS Trust (City Hospital Campus), Department of Clinical Oncology, Nottingham, UK.
| | | | | | | |
Collapse
|
636
|
Juillerat-Jeanneret L, Schmitt F. Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 2007; 27:574-90. [PMID: 17022028 DOI: 10.1002/med.20086] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most therapeutic drugs distribute to the whole body, which results in general toxicity and poor acceptance of the treatments by patients. The targeted delivery of chemotherapeutics to defined cells, either stromal or cancer cells in cancer lesions, or defined inflammatory cells in immunological disorders, is one of the main challenges and a very active field of research in the development of treatment strategies to minimize side-effects of drugs. Disease-associated cells express molecules, including proteases, receptors, or adhesion molecules, that are different or differently expressed than their normal counterparts. Therefore one goal in the field of targeted therapies is to develop chemically derivatized drugs or drug vectors able to target defined cells via specific recognition mechanisms and also able to overcome biological barriers. This article will review the approaches which have been explored to achieve these goals and will discuss in more detail three examples (i) the use of nanostructures to take advantage of increased vascular permeability in some human diseases, (ii) the targeting of therapeutic drugs to an organ, the brain, protected against foreign molecules by the blood-brain barrier, and (iii) the use of the folate receptor to target either tumor cells or activated macrophages.
Collapse
|
637
|
Lijnen HR, Van Hoef B, Kemp D, Collen D. Inhibition of vascular endothelial growth factor receptor tyrosine kinases impairs adipose tissue development in mouse models of obesity. Biochim Biophys Acta Gen Subj 2007; 1770:1369-73. [PMID: 17616257 DOI: 10.1016/j.bbagen.2007.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/24/2022]
Abstract
We have studied the effect of PTK787 (Vatalanib), an inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, on adipose tissue development. Oral administration of PTK787 for 4 weeks (2 mg/g high fat diet, HFD) to C57Bl/6 mice resulted in a significant reduction in total body weight and of subcutaneous (SC) and gonadal (GON) adipose tissue mass, as compared to control animals fed HFD only (all p<0.0005). In the GON adipose tissue adipocytes were hypertrophic after PTK787 treatment. Blood vessel size and density were not significantly affected by PTK787 treatment. Expression of Flk-1 (VEGFR-2) mRNA was significantly reduced in SC and GON adipose tissues of PTK787 treated mice. De novo fat pad formation following injection of preadipocytes in NUDE mice was significantly (p<0.005) impaired by PTK787 administration (2 mg/g HFD for 4 weeks), without associated effect on blood vessel size or density. Thus, in nutritionally induced murine obesity models, oral administration of the VEGFR tyrosine kinases inhibitor PTK787 resulted in reduced adipose tissue development.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N1, Herestraat 49, Box 911, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
638
|
Buckstein R, Meyer R, Seymour L, Biagi J, MacKay H, Laurie S, Eisenhauer E. Phase II testing of sunitinib: the National Cancer Institute of Canada Clinical Trials Group IND Program Trials IND.182-185. Curr Oncol 2007; 14:154-61. [PMID: 17710208 PMCID: PMC1948864 DOI: 10.3747/co.2007.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sunitinib (SU11248) is an orally bioavailable inhibitor that affects the receptor tyrosine kinases involved in tumour proliferation and angiogenesis, including vascular endothelial growth factor (VEGF) receptors 1, 2, 3, and platelet-derived growth factor receptors alpha (PDGFRA) and beta (PDGFRB). Because angiogenesis is necessary for the growth and metastasis of solid tumours, and VEGF is believed to have a pivotal role in that process, SUNITINIB treatment may have broad-spectrum clinical utility. In the present article, we discuss the biologic and clinical rationales that have recently led the Investigational New Drug Program of the National Cancer Institute of Canada Clinical Trials Group to initiate four phase ii trials testing this agent in the following four different tumour types: relapsed diffuse large cell lymphoma, malignant pleural mesothelioma, locally advanced or metastatic cervical cancer and recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma.
Collapse
Affiliation(s)
- R. Buckstein
- Division of Hematology, Odette Cancer Center, Toronto, Ontario
| | - R.M. Meyer
- National Cancer Institute of Canada Clinical Trials Group, Queens University, Kingston, Ontario
| | - L. Seymour
- National Cancer Institute of Canada Clinical Trials Group, Queens University, Kingston, Ontario
| | - J. Biagi
- Cancer Centre of Southeastern Ontario, Kingston, Ontario
| | - H. MacKay
- The Princess Margaret Hospital, Toronto, Ontario
| | - S. Laurie
- Ottawa Regional Cancer Centre, Ottawa, Ontario
| | - E. Eisenhauer
- National Cancer Institute of Canada Clinical Trials Group, Queens University, Kingston, Ontario
| |
Collapse
|
639
|
Ali O, Wharton J, Gibbs JSR, Howard L, Wilkins MR. Emerging therapies for pulmonary arterial hypertension. Expert Opin Investig Drugs 2007; 16:803-18. [PMID: 17501693 DOI: 10.1517/13543784.16.6.803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension is characterised by increased pulmonary vascular resistance due to increased vascular tone and structural remodelling of pulmonary vessels. The therapies that are in use so far have been developed to correct endothelial dysfunction and reduce vasomotor tone. These treatments have a limited effect on the remodelling process and, increasingly, the focus is turning to potent strategies for inhibiting vascular proliferation and promoting vascular apoptosis. Multiple novel targets have been uncovered over the last 5 years and several are now in early clinical trials. At present, it is clear that there is no single treatment for the condition. Although this is the case, studies are investigating the role of combining therapies that are already established.
Collapse
Affiliation(s)
- Omar Ali
- Imperial College London, Experimental Medicine & Toxicology, Hammersmith Hospital, London, UK
| | | | | | | | | |
Collapse
|
640
|
Henrich CJ, Goncharova EI, Wilson JA, Gardella RS, Johnson TR, McMahon JB, Takada K, Bokesch HR, Gustafson KR. Natural products active in aberrant c-Kit signaling. Chem Biol Drug Des 2007; 69:321-30. [PMID: 17539824 DOI: 10.1111/j.1747-0285.2007.00508.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of modulators of constitutively active, kinase domain mutants of c-Kit has proved to be very difficult. Therefore, a high-throughput differential cytotoxicity assay was developed to screen for compounds that preferentially kill cells expressing constitutively active c-Kit. The cells used in the assay, murine IC2 mast cells, express either the D814Y activating mutation (functionally equivalent to human D816Y) or wild type protein. This assay is robust and highly reproducible. When applied to libraries of natural product extracts (followed by assay-guided fractionation), two differentially active compounds were identified. To assess possible mechanisms of action, the active compounds were tested for inhibitory activity against a panel of signaling enzymes (including wild type and mutant c-Kit). Neither of the compounds significantly affected any of the 73 enzymes tested. The effects of commercially available modulators of known signaling components were also assessed using the screening assay. None of these inhibitors reproduced the differential activity seen with the natural products. Finally, both compounds were found to affect mitochondrial potential in cells expressing c-Kit(D814Y). These results suggest that the newly identified natural products may provide new avenues for intervention in aberrant c-Kit signaling pathways.
Collapse
Affiliation(s)
- Curtis J Henrich
- Molecular Targets Development Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
641
|
Abstract
During recent years, significant advances have been made in the field of molecular therapy in urologic oncology, mainly for advanced renal cell carcinoma. In this hitherto largely treatment-refractory disease, several agents have been developed targeting the von Hippel-Lindau metabolic pathway which is involved in carcinogenesis and progression of the majority of renal cell carcinomas. Although cure may not be expected, new drugs, such as the multikinase inhibitors sorafenib and sunitinib and the mammalian target of rapamycine inhibitor temsirolimus, frequently stabilize the disease course and may improve survival. Fewer data are available supporting molecular therapies in prostate, bladder, and testicular cancers. Preliminary data suggest a potential role of high-dose calcitriol and thalidomide in hormone-refractory prostate cancer, whereas targeted therapies in bladder and testicular cancers are still more or less limited to single-case experiences. The great theoretical potential and the multitude of possible targets and drug combinations, however, support further research into this exciting field of medical treatment of urologic malignancies.
Collapse
Affiliation(s)
- Michael Froehner
- Department of Urology, University Hospital, Technical University of Dresden, Dresden, Germany.
| | | | | |
Collapse
|
642
|
Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 2007; 19:2013-23. [PMID: 17681753 DOI: 10.1016/j.cellsig.2007.06.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
The Epidermal growth factor receptor (EGFR) is a membrane spanning glycoprotein, which frequently has been implicated in various cancer types. The mechanisms by which EGFR becomes oncogenic are numerous and are often specific for each cancer type. In some tumors, EGFR is activated by autocrine/paracrine growth factor loops, whereas in others activating mutations promote EGFR signaling. Overexpression and/or amplification of the EGFR gene are prevalent in many cancer types leading to aberrant EGFR signaling. In addition, failure to attenuate receptor signaling by receptor downregulation can also lead to cellular transformation. Heterodimerization of EGFR with ErbB2 inhibits downregulation of EGFR and thereby prolongs growth factor signaling. This also indicates that cross-talk between EGFR and heterologous receptor systems serves as another mechanism for oncogenic activation of EGFR. Because of its role in tumor promotion, the EGFR has been intensely studied as a therapeutic target. There are currently two major mechanisms by which the EGFR is targeted: antibodies binding to the extracellular domain of EGFR and small-molecule tyrosine-kinase inhibitors. However, tumorigenesis is a multi-step process involving several mutations, which might explain why EGFR therapeutics has only been partially successful. This highlights the importance of pinpointing the mechanisms by which EGFR becomes oncogenic in a particular cancer. In this review, each of the above mentioned mechanisms will be discussed, as a detailed molecular and genetic understanding of how EGFR contributes to the malignant phenotype might offer new promise for the design, development and clinical evaluation of future tumor-specific anticancer approaches.
Collapse
Affiliation(s)
- Roza Zandi
- Department of Radiation Biology, The Finnsen Centre, Copenhagen University Hospital, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
643
|
Mimeault M, Batra SK. Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev 2007; 26:203-14. [PMID: 17273942 DOI: 10.1007/s10555-007-9052-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The in vitro and in vivo characterization of adult stem cells has allowed researchers to identify certain specific functional features to each tissue-specific stem cell. Moreover, recent studies revealed that their malignant counterparts, the cancer progenitor cells with stem cell-like properties, may assume a crucial role for the initiation and progression of locally invasive cancers into disseminated and incurable disease states. Therefore, a new direction in cancer research appears necessary in considering the critical functions of cancer progenitor cells. In this review, we discuss recent concepts on the critical roles of tumorigenic and migrating cancer progenitor cells in carcinogenesis. Particularly, we describe the tumorigenic cascades that are frequently activated through the interplay of diverse hormones, growth factors, cytokines and integrins in cancer progenitor cells versus their further differentiated progeny. The emphasis is on the oncogenic signaling pathways activated during the localized cancer progression and micrometastatic events involved in tumor formation at distant sites such as bone marrow. Of therapeutic interest, important information for the selective molecular targeting of cancer progenitor cells, which must now be considered in developing new effective diagnostic and prognostic methods and curative treatments against the most locally advanced and metastatic cancers, is also described.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
644
|
Bachmann PS, Gorman R, Papa RA, Bardell JE, Ford J, Kees UR, Marshall GM, Lock RB. Divergent Mechanisms of Glucocorticoid Resistance in Experimental Models of Pediatric Acute Lymphoblastic Leukemia. Cancer Res 2007; 67:4482-90. [PMID: 17483364 DOI: 10.1158/0008-5472.can-06-4244] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell line models of glucocorticoid resistance in childhood acute lymphoblastic leukemia (ALL) almost invariably exhibit altered glucocorticoid receptor (GR) function. However, these findings are incongruous with those using specimens derived directly from leukemia patients, in which GR alterations are rarely found. Consequently, mechanisms of glucocorticoid resistance in the clinical setting remain largely unresolved. We present a novel paradigm of glucocorticoid resistance in childhood ALL, in which patient biopsies have been directly established as continuous xenografts in immune-deficient mice, without prior in vitro culture. We show that the GRs from six highly dexamethasone-resistant xenografts (in vitro IC(50) >10 micromol/L) exhibit no defects in ligand-induced nuclear translocation and binding to a consensus glucocorticoid response element (GRE). This finding contrasts with five commonly used leukemia cell lines, all of which exhibited defective GRE binding. Moreover, whereas the GRs of dexamethasone-resistant xenografts were transcriptionally active, as assessed by the ability to induce the glucocorticoid-induced leucine zipper (GILZ) gene, resistance was associated with failure to induce the bim gene, which encodes a proapoptotic BH3-only protein. Furthermore, the receptor tyrosine kinase inhibitor, SU11657, completely reversed dexamethasone resistance in a xenograft expressing functional GR, indicating that pharmacologic reversal of glucocorticoid resistance in childhood ALL is achievable.
Collapse
Affiliation(s)
- Petra S Bachmann
- Children's Cancer Institute Australia for Medical Research, The University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
645
|
Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am J Physiol Cell Physiol 2007; 293:C419-28. [PMID: 17475663 DOI: 10.1152/ajpcell.00038.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferation of cyst-lining epithelial cells is an integral part of autosomal dominant polycystic kidney disease (ADPKD) cyst growth. Cytokines and growth factors within cyst fluids are positioned to induce cyst growth. Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor present in ADPKD liver cyst fluids (human 1,128 +/- 78, mouse 2,787 +/- 136 pg/ml) and, to a lesser extent, in ADPKD renal cyst fluids (human 294 +/- 41, mouse 191 +/- 90 pg/ml). Western blotting showed that receptors for VEGF (VEGFR1 and VEGFR2) were present in both normal mouse bile ducts and pkd2(WS25/-) liver cyst epithelial cells. Treatment of pkd2(WS25/-) liver cyst epithelial cells with VEGF (50-50,000 pg/ml) or liver cyst fluid induced a proliferative response. The effect on proliferation of liver cyst fluid was inhibited by SU-5416, a potent VEGF receptor inhibitor. Treatment of pkd2(WS25/-) mice between 4 and 8 mo of age with SU-5416 markedly reduced the cyst volume density of the liver (vehicle 9.9 +/- 4.3%, SU-5416 1.8 +/- 0.7% of liver). SU-5416 treatment between 4 and 12 mo of age markedly protected against increases in liver weight [pkd2(+/+) 4.8 +/- 0.2%, pkd2(WS25/-)-vehicle 10.8 +/- 1.9%, pkd2(WS25/-)-SU-5416 4.8 +/- 0.4% body wt]. The capacity of VEGF signaling to induce in vitro proliferation of pkd2(WS25/-) liver cyst epithelial cells and inhibition of in vivo VEGF signaling to retard liver cyst growth in pkd2(WS25/-) mice indicates that the VEGF signaling pathway is a potentially important therapeutic target in the treatment of ADPKD liver cyst disease.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyst Fluid/metabolism
- Cysts/genetics
- Cysts/metabolism
- Cysts/pathology
- Cysts/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Indoles/pharmacology
- Indoles/therapeutic use
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Diseases/genetics
- Liver Diseases/metabolism
- Liver Diseases/pathology
- Liver Diseases/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Polycystic Kidney, Autosomal Dominant/complications
- Polycystic Kidney, Autosomal Dominant/drug therapy
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Signal Transduction/drug effects
- TRPP Cation Channels/metabolism
- Time Factors
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Claudia R Amura
- Department of Medicine, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | |
Collapse
|
646
|
Affiliation(s)
- Nicholas J Vogelzang
- Nevada Cancer Institute, University of Nevada School of Medicine, Las Vegas, NV, USA
| | | |
Collapse
|
647
|
Leonetti F, Capaldi C, Carotti A. Microwave-assisted solid phase synthesis of Imatinib, a blockbuster anticancer drug. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
648
|
Abstract
PURPOSE OF REVIEW This review summarizes the continuing value of some therapeutic drugs and new agents under development for the treatment of breast cancer. RECENT FINDINGS Overexpression and activation of various growth factor receptors occurs frequently in human breast cancer. Therapeutic approaches mainly involve the epidermal growth factor receptor family, insulin-like growth factor receptor and vascular endothelial growth factor receptor. Therapeutic agents targeting these receptors include the monoclonal antibodies trastuzumab and pertuzumab, and the small-molecule inhibitors gefitinib and erlotinib. Other small-molecule and dual inhibitors are in development, some of which have been demonstrated to have higher efficacy in the treatment of breast cancer. The selective estrogen receptor modulators and aromatase inhibitors continue to be valuable in the endocrine therapy of breast cancer. These drugs have been shown to have higher efficacy than conventional therapy agents, and to have extensive potential, especially in the treatment of postmenopausal women with advanced breast cancer. SUMMARY Approved agents including epidermal growth factor receptor-targeted inhibitor, selective estrogen receptor modulators and aromatase inhibitors continue to be valuable in treating breast cancer. To overcome the acquired resistance caused by these agents and to enhance the therapy effect, the development of new and specific dual inhibitors targeting various growth factor receptors will be important in the future.
Collapse
Affiliation(s)
- Xiao-ping Gao
- Institute of Materia Medica, KangHong Pharmaceutical Goup, Chengdu, People's Republic of China.
| | | |
Collapse
|
649
|
Sosman JA, Puzanov I, Atkins MB. Opportunities and obstacles to combination targeted therapy in renal cell cancer. Clin Cancer Res 2007; 13:764s-769s. [PMID: 17255307 DOI: 10.1158/1078-0432.ccr-06-1975] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The treatment of advanced renal cell carcinoma (RCC) has undergone a major change with the development of potent angiogenesis inhibitors and targeted agents. Several multitargeted tyrosine kinase inhibitors, sorafenib and sunitinib, have already been approved for the treatment of advanced RCC. Temsirolimus (CCI-779), a mammalian target of rapamycin inhibitor, has shown a survival advantage over IFN in advanced, poor-prognosis RCC patients. Bevacizumab, an antibody targeting vascular endothelial growth factor (VEGF) A, has also shown promising clinical activity. Benefits attributable to these agents have been recognized by high objective response rates (sunitinib), significant increases in progression-free survival (sunitinib, sorafenib and bevacizumab), or improved overall survival (temsirolimus). These agents mediate much of their effect through inhibition of the hypoxia-inducible factor (HIF)-VEGF-VEGF receptor axis. Their inhibitory activity for the signaling of platelet-derived growth factor (PDGF) receptor beta or kinases like c-Raf may contribute to the antitumor effects of the multitargeted kinase inhibitors. Nevertheless, all four single agents rarely, if ever, induce complete responses and, at present, all patients develop resistance and, ultimately, progress during therapy. A critical need exists to develop strategies that may increase the degree of the antitumor effects with the hope of inducing more complete responses impeding the onset of or elimination of refractory disease. Combinations of these and other targeted agents may overcome the resistance that develops with single-agent therapy and could be incorporated either as part of initial therapy or later when disease resistance develops. Approaches aimed at combining these agents can be based on the genetics and biology of clear cell RCC. von Hippel-Lindau loss leads to an increase in cellular levels of HIF (HIF-1alpha or HIF-2alpha) leading to increased expression of a number of hypoxia-regulated genes critical to cancer progression. Combinations of targeted agents may block several of these mediators (VEGF, epidermal growth factor receptor, and PDGF), so-called horizontal blockade. Blockade could also take place at two levels of the pathways (vertical blockade), either at HIF and VEGF or at VEGF and VEGF receptor signaling. Many of the above strategies are ongoing and will require careful phase 1 determination of toxicity and even more rigorous phase 2 analysis before moving onto phase 3 trials.
Collapse
Affiliation(s)
- Jeffrey A Sosman
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
650
|
Abstract
Sunitinib (SU011248) is an oral small molecular tyrosine kinase inhibitor that exhibits potent antiangiogenic and antitumor activity. Tyrosine kinase inhibitors such as SU6668 and SU5416 (semaxanib) demonstrated poor pharmacologic properties and limited efficacy; therefore, sunitinib was rationally designed and chosen for its high bioavailability and its nanomolar-range potency against the antiangiogenic receptor tyrosine kinases (RTKs)--vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR). Sunitinib inhibits other tyrosine kinases including, KIT, FLT3, colony-stimulating factor 1 (CSF-1), and RET, which are involved in a number of malignancies including small-cell lung cancer, GI stromal tumors (GISTs), breast cancer, acute myelogenous leukemia, multiple endocrine neoplasia types 2A and 2B, and familial medullary thyroid carcinoma. Sunitinib demonstrated robust antitumor activity in preclinical studies resulting not only in tumor growth inhibition, but tumor regression in models of colon cancer, non-small-cell lung cancer, melanoma, renal carcinoma, and squamous cell carcinoma, which were associated with inhibition of VEGFR and PDGFR phosphorylation. Clinical activity was demonstrated in neuroendocrine, colon, and breast cancers in phase II studies, whereas definitive efficacy has been demonstrated in advanced renal cell carcinoma and in imatinib-refractory GISTs, leading to US Food and Drug Administration approval of sunitinib for treatment of these two diseases. Studies investigating sunitinib alone in various tumor types and in combination with chemotherapy are ongoing. The clinical benchmarking of this small-molecule inhibitor of members of the split-kinase domain family of RTKs will lead to additional insights regarding the biology, potential biomarkers, and clinical utility of agents that target multiple signaling pathways in tumor, stromal, and endothelial compartments.
Collapse
Affiliation(s)
- Laura Q M Chow
- Department of Medical Oncology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|