601
|
The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J 2017; 474:1453-1466. [PMID: 28408430 DOI: 10.1042/bcj20160780] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
Much attention has recently been focussed on the lysosome as a signalling hub. Following the initial discovery that localisation of the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), to the lysosome was essential for mTORC1 activation, the field has rapidly expanded to reveal the role of the lysosome as a platform permitting the co-ordination of several homeostatic signalling pathways. Much is now understood about how the lysosome contributes to amino acid sensing by mTORC1, the involvement of the energy-sensing kinase, AMP-activated protein kinase (AMPK), at the lysosome and how both AMPK and mTORC1 signalling pathways feedback to lysosomal biogenesis and regeneration following autophagy. This review will cover the classical role of the lysosome in autophagy, the dynamic signalling interactions which take place on the lysosomal surface and the multiple levels of cross-talk which exist between lysosomes, AMPK and mTORC1.
Collapse
|
602
|
Abstract
INTRODUCTION Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.
Collapse
Affiliation(s)
- Kenneth A Myers
- a Epilepsy Research Centre, Department of Medicine , The University of Melbourne, Austin Health , Heidelberg , Victoria , Australia.,b Department of Paediatrics , Royal Children's Hospital, The University of Melbourne , Flemington , Victoria , Australia
| | - Ingrid E Scheffer
- a Epilepsy Research Centre, Department of Medicine , The University of Melbourne, Austin Health , Heidelberg , Victoria , Australia.,b Department of Paediatrics , Royal Children's Hospital, The University of Melbourne , Flemington , Victoria , Australia.,c The Florey Institute of Neuroscience and Mental Health , Heidelberg , Victoria , Australia
| |
Collapse
|
603
|
Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 2017; 45:72-82. [PMID: 28411448 PMCID: PMC5545101 DOI: 10.1016/j.ceb.2017.02.012] [Citation(s) in RCA: 451] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/05/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Abstract
mTOR [mechanistic target of rapamycin] is a serine/threonine protein kinase that, as part of mTORC1 (mTOR complex 1), acts as an important molecular connection between nutrient signals and the metabolic processes indispensable for cell growth. While there has been pronounced interest in the upstream mechanisms regulating mTORC1, the full range of downstream molecular targets through which mTORC1 signaling stimulates cell growth is only recently emerging. It is now evident that mTORC1 promotes cell growth primarily through the activation of key anabolic processes. Through a diverse set of downstream targets, mTORC1 promotes the biosynthesis of macromolecules, including proteins, lipids, and nucleotides to build the biomass underlying cell, tissue, and organismal growth. Here, we focus on the metabolic functions of mTORC1 as they relate to the control of cell growth. As dysregulated mTORC1 underlies a variety of human diseases, including cancer, diabetes, autoimmune diseases, and neurological disorders, understanding the metabolic program downstream of mTORC1 provides insights into its role in these pathological states.
Collapse
Affiliation(s)
- Issam Ben-Sahra
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
604
|
Tsai MH, Chan CK, Chang YC, Yu YT, Chuang ST, Fan WL, Li SC, Fu TY, Chang WN, Liou CW, Chuang YC, Ng CC, Hwang DY, Lim KS. DEPDC5
mutations in familial and sporadic focal epilepsy. Clin Genet 2017; 92:397-404. [DOI: 10.1111/cge.12992] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- M.-H. Tsai
- Department of Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
- Department of Nursing; Meiho University; Pingtung Taiwan
| | - C.-K. Chan
- Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Y.-C. Chang
- Department of Pediatric Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Y.-T. Yu
- Department of Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - S.-T. Chuang
- Department of Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - W.-L. Fan
- Whole Genome Research Core Laboratory of Human Diseases; Chang Gung Medical Foundation; Keelung Taiwan
| | - S.-C. Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - T.-Y. Fu
- Department of Pathology and Laboratory Medicine; Kaohsiung Veteran General Hospital; Kaohsiung Taiwan
| | - W.-N. Chang
- Department of Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - C.-W. Liou
- Department of Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Y.-C. Chuang
- Department of Neurology; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - C.-C. Ng
- Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - D.-Y. Hwang
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| | - K.-S. Lim
- Division of Neurology, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
605
|
Ghosh J, Kapur R. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Exp Hematol 2017; 50:13-21. [PMID: 28342808 DOI: 10.1016/j.exphem.2017.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1)-p70 ribosomal protein kinase 1 (S6K1) signaling pathway occurs frequently in acute myeloid leukemia (AML) patients. This pathway also plays a critical role in maintaining normal cellular processes. Given the importance of leukemia stem cells (LSCs) in the development of minimal residual disease, it is critical to use therapeutic interventions that target the LSC population to prevent disease relapse. The mTORC1-S6K1 pathway has been identified as an important regulator of hematopoietic stem cell (HSC) and LSC functions. Both HSC and LSC functions require regulation of key cellular processes including proliferation, metabolism, and autophagy, which are regulated by mTORC1 pathway. Despite the mTORC1-S6K1 pathway being a critical regulator of AML initiation and progression, inhibitors of this pathway alone have yielded mixed results in clinical studies. Recent studies have identified strategies to develop new mTORC1-S6K1 inhibitors such as RapaLink-1, which could circumvent the drug resistance observed in AML cells and in LSCs. Here, we review recent advances made in identifying the role of different components of this pathway in the regulation of HSCs and LSCs and discuss possible therapeutic approaches.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
606
|
Yang W, Yang LF, Song ZQ, Shah SZA, Cui YY, Li CS, Zhao HF, Gao HL, Zhou XM, Zhao DM. PRAS40 alleviates neurotoxic prion peptide-induced apoptosis via mTOR-AKT signaling. CNS Neurosci Ther 2017; 23:416-427. [PMID: 28294542 DOI: 10.1111/cns.12685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/04/2023] Open
Abstract
AIMS The proline-rich Akt substrate of 40-kDa (PRAS40) protein is a direct inhibitor of mTORC1 and an interactive linker between the Akt and mTOR pathways. The mammalian target of rapamycin (mTOR) is considered to be a central regulator of cell growth and metabolism. Several investigations have demonstrated that abnormal mTOR activity may contribute to the pathogenesis of several neurodegenerative disorders and lead to cognitive deficits. METHODS Here, we used the PrP peptide 106-126 (PrP106-126 ) in a cell model of prion diseases (also known as transmissible spongiform encephalopathies, TSEs) to investigate the mechanisms of mTOR-mediated cell death in prion diseases. RESULTS We have shown that, upon stress caused by PrP106-126 , the mTOR pathway activates and contributes to cellular apoptosis. Moreover, we demonstrated that PRAS40 down-regulates mTOR hyperactivity under stress conditions and alleviates neurotoxic prion peptide-induced apoptosis. The effect of PRAS40 on apoptosis is likely due to an mTOR/Akt signaling. CONCLUSION PRAS40 inhibits mTORC1 hyperactivation and plays a key role in protecting cells against neurotoxic prion peptide-induced apoptosis. Thus, PRAS40 is a potential therapeutic target for prion disease.
Collapse
Affiliation(s)
- Wei Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China.,Hebei Institute of Animal Science and Veterinary Medicine, Baoding, China
| | - Li-Feng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Zhi-Qi Song
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yong-Yong Cui
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chao-Si Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hua-Fen Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Hong-Li Gao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiang-Mei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - De-Ming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
607
|
Post-absorptive muscle protein turnover affects resistance training hypertrophy. Eur J Appl Physiol 2017; 117:853-866. [PMID: 28280974 DOI: 10.1007/s00421-017-3566-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. Our goal was to determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover. METHODS Healthy young men (n = 31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3 days/week for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET. RESULTS RET increased strength (12-40%), LBM (~5%), MT (~15%) and myofiber CSA (~20%) (p < 0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21%, respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r = 0.555, p = 0.003) with the change in muscle thickness. CONCLUSION Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training.
Collapse
|
608
|
Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MCJ, Bruxner TJC, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davì MV, Landoni L, Malpaga A, Miotto M, Whitehall VLJ, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LMS, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, et alScarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MCJ, Bruxner TJC, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davì MV, Landoni L, Malpaga A, Miotto M, Whitehall VLJ, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LMS, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017; 543:65-71. [PMID: 28199314 DOI: 10.1038/nature21063] [Show More Authors] [Citation(s) in RCA: 678] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.
Collapse
Affiliation(s)
- Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Vincenzo Corbo
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Rita T Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Amber L Johns
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - David K Miller
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Andrea Mafficini
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Borislav Rusev
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Maria Scardoni
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Davide Antonello
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Stefano Barbi
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Katarzyna O Sikora
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Sara Cingarlini
- Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Caterina Vicentini
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Skye McKay
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Michael C J Quinn
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Timothy J C Bruxner
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Suzanne McLean
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Craig Nourse
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Matthew J Anderson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - J Lynn Fink
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Stephen H Kazakoff
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shivashankar Hiriyur Nagaraj
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Eliana Amato
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Irene Dalai
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Samantha Bersani
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Ivana Cataldo
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Angelo P Dei Tos
- Department of Pathology, General Hospital of Treviso, Department of Medicine, University of Padua, Italy
| | - Paola Capelli
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Maria Vittoria Davì
- Department of Medicine, Section of Endocrinology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Anna Malpaga
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Marco Miotto
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Vicki L J Whitehall
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- The University of Queensland, School of Medicine, Brisbane 4006, Australia
- Pathology Queensland, Brisbane 4006, Australia
| | - Barbara A Leggett
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- The University of Queensland, School of Medicine, Brisbane 4006, Australia
- Royal Brisbane and Women's Hospital, Department of Gastroenterology and Hepatology, Brisbane 4006, Australia
| | - Janelle L Harris
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
| | - Jonathan Harris
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marc D Jones
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Jeremy Humphris
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Lorraine A Chantrill
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Venessa Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Adnan M Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Christopher J Scarlett
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia
| | - Andreia Pinho
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Ilse Rooman
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Christopher Toon
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jianmin Wu
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China
| | - Mark Pinese
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Mark Cowley
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Andrew Barbour
- Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia
| | - Amanda Mawson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Emily S Humphrey
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Emily K Colvin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Anatomical Pathology. St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | - Jessica A Lovell
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
- Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK
| | - Fraser Duthie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- Department of Pathology, Queen Elizabeth University Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK
| | - Marie-Claude Gingras
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA
- Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA
| | - William E Fisher
- Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA
| | - Rebecca A Dagg
- Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Loretta M S Lau
- Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Michael Lee
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Hilda A Pickett
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Roger R Reddel
- Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Jaswinder S Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia
- University of Sydney. Sydney, New South Wales 2006, Australia
| | - James G Kench
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- University of Sydney. Sydney, New South Wales 2006, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Neil D Merrett
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- School of Medicine, Western Sydney University, Penrith, New South Wales 2175, Australia
| | - Krishna Epari
- Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia
| | - Nam Q Nguyen
- Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | - Nikolajs Zeps
- School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia 6009, Australia
- St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia
- Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia
| | - Massimo Falconi
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Michele Simbolo
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Giovanni Butturini
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - George Van Buren
- Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA
| | - Stefano Partelli
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Matteo Fassan
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
| | - Anthony J Gill
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- University of Sydney. Sydney, New South Wales 2006, Australia
| | - David A Wheeler
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA
| | - Elizabeth A Musgrove
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Claudio Bassi
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - Giampaolo Tortora
- Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Paolo Pederzoli
- Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, 3010, Victoria, Australia
| |
Collapse
|
609
|
Abstract
For almost all cells, nutrient availability, from glucose to amino acids, dictates their growth or developmental programs. This nutrient availability is closely coupled to the overall intracellular metabolic state of the cell. Therefore, cells have evolved diverse, robust and versatile modules to sense intracellular metabolic states, activate signaling outputs and regulate outcomes to these states. Yet, signaling and metabolism have been viewed as important but separate. This short review attempts to position aspects of intracellular signaling from a metabolic perspective, highlighting how conserved, core principles of metabolic sensing and signaling can emerge from an understanding of metabolic regulation. I briefly explain the nature of metabolic sensors, using the example of the AMP activated protein kinase (AMPK) as an "energy sensing" hub. Subsequently, I explore how specific central metabolites, particularly acetyl-CoA, but also S -adenosyl methionine and SAICAR, can act as signaling molecules. I extensively illustrate the nature of a metabolic signaling hub using the specific example of the Target of Rapamycin Complex 1 (TORC1), and amino acid sensing. A highlight is the emergence of the lysosome/vacuole as a metabolic and signaling hub. Finally, the need to expand our understanding of the intracellular dynamics (in concentration and localization) of several metabolites, and their signaling hubs is emphasized.
Collapse
Affiliation(s)
- Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS Campus, GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
610
|
Perucca P, Scheffer IE, Harvey AS, James PA, Lunke S, Thorne N, Gaff C, Regan BM, Damiano JA, Hildebrand MS, Berkovic SF, O’Brien TJ, Kwan P. Real-world utility of whole exome sequencing with targeted gene analysis for focal epilepsy. Epilepsy Res 2017; 131:1-8. [DOI: 10.1016/j.eplepsyres.2017.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/30/2016] [Accepted: 02/04/2017] [Indexed: 01/05/2023]
|
611
|
Peng M, Yin N, Li MO. SZT2 dictates GATOR control of mTORC1 signalling. Nature 2017; 543:433-437. [PMID: 28199315 DOI: 10.1038/nature21378] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/22/2016] [Indexed: 12/28/2022]
Abstract
Mechanistic target of rapamycin complex 1 (TORC1) integrates nutrient signals to control cell growth and organismal homeostasis across eukaryotes. The evolutionarily conserved GATOR complex regulates mTORC1 signalling through Rag GTPases, and GATOR1 displays GTPase activating protein (GAP) activity for RAGA and RAGB (RAGA/B) and GATOR2 has been proposed to be an inhibitor of GATOR1. Furthermore, the metazoan-specific SESN proteins function as guanine nucleotide dissociation inhibitors (GDIs) for RAGA/B, and interact with GATOR2 with unknown effects. Here we show that SZT2 (seizure threshold 2), a metazoan-specific protein mutated in epilepsy, recruits a fraction of mammalian GATOR1 and GATOR2 to form a SZT2-orchestrated GATOR (SOG) complex with an essential role in GATOR- and SESN-dependent nutrient sensing and mTORC1 regulation. The interaction of SZT2 with GATOR1 and GATOR2 was synergistic, and an intact SOG complex was required for its localization at the lysosome. SZT2 deficiency resulted in constitutive mTORC1 signalling in cells under nutrient-deprived conditions and neonatal lethality in mice, which was associated with failure to inactivate mTORC1 during fasting. Hyperactivation of mTORC1 in SZT2-deficient cells could be partially corrected by overexpression of the GATOR1 component DEPDC5, and by the lysosome-targeted GATOR2 component WDR59 or lysosome-targeted SESN2. These findings demonstrate that SZT2 has a central role in dictating GATOR-dependent nutrient sensing by promoting lysosomal localization of SOG, and reveal an unexpected function of lysosome-located GATOR2 in suppressing mTORC1 signalling through SESN recruitment.
Collapse
Affiliation(s)
- Min Peng
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Na Yin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
612
|
KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 2017; 543:438-442. [PMID: 28199306 PMCID: PMC5360989 DOI: 10.1038/nature21423] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 kinase (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy1–3. Amino acids are a key input, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation4. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RagA, and GATOR2, a positive regulator of unknown molecular function. Here, we identify a four-membered protein complex (KICSTOR) composed of the KPTN, ITFG2, C12orf66, and SZT2 gene products as required for amino acid or glucose deprivation to inhibit mTORC1 in cultured cells. In mice lacking SZT2, mTORC1 signaling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds to GATOR1 and recruits it, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Interestingly, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signaling5–10. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signaling that, like GATOR1, is mutated in human disease11,12.
Collapse
|
613
|
Norambuena A, Wallrabe H, McMahon L, Silva A, Swanson E, Khan SS, Baerthlein D, Kodis E, Oddo S, Mandell JW, Bloom GS. mTOR and neuronal cell cycle reentry: How impaired brain insulin signaling promotes Alzheimer's disease. Alzheimers Dement 2017; 13:152-167. [PMID: 27693185 PMCID: PMC5318248 DOI: 10.1016/j.jalz.2016.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
A major obstacle to presymptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle reentry (CCR) mediated by amyloid-β oligomers (AβOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AβO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AβOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AβOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.
Collapse
Affiliation(s)
- Andrés Norambuena
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Antonia Silva
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Eric Swanson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Shahzad S Khan
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Daniel Baerthlein
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Erin Kodis
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Salvatore Oddo
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - James W Mandell
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
614
|
Ebner M, Sinkovics B, Szczygieł M, Ribeiro DW, Yudushkin I. Localization of mTORC2 activity inside cells. J Cell Biol 2017; 216:343-353. [PMID: 28143890 PMCID: PMC5294791 DOI: 10.1083/jcb.201610060] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
mTORC2 integrates extracellular cues with pathways controlling growth and proliferation, but the spatial control of mTORC2 activity is unclear. Using a new reporter, Ebner et al. show that endogenous mTORC2 activity localizes to plasma membrane, mitochondrial, and endosomal pools, which display distinct sensitivity to growth factors. Activation of protein kinase Akt via its direct phosphorylation by mammalian target of rapamycin (mTOR) complex 2 (mTORC2) couples extracellular growth and survival cues with pathways controlling cell growth and proliferation, yet how growth factors target the activity of mTORC2 toward Akt is unknown. In this study, we examine the localization of the obligate mTORC2 component, mSin1, inside cells and report the development of a reporter to examine intracellular localization and regulation by growth factors of the endogenous mTORC2 activity. Using a combination of imaging and biochemical approaches, we demonstrate that inside cells, mTORC2 activity localizes to the plasma membrane, mitochondria, and a subpopulation of endosomal vesicles. We show that unlike the endosomal pool, the activity and localization of mTORC2 via the Sin1 pleckstrin homology domain at the plasma membrane is PI3K and growth factor independent. Furthermore, we show that membrane recruitment is sufficient for Akt phosphorylation in response to growth factors. Our results indicate the existence of spatially separated mTORC2 populations with distinct sensitivity to PI3K inside cells and suggest that intracellular localization could contribute to regulation of mTORC2 activity toward Akt.
Collapse
Affiliation(s)
- Michael Ebner
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, Vienna BioCenter, 1030 Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Benjamin Sinkovics
- Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria.,Center for Molecular Biology, Student Services, University of Vienna, 1030 Vienna, Austria
| | - Magdalena Szczygieł
- Vienna BioCenter Summer School Program, Division of Systems Biology of Signal Transduction, 69120 Heidelberg, Germany
| | | | - Ivan Yudushkin
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, Vienna BioCenter, 1030 Vienna, Austria .,Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
615
|
González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 2017; 36:397-408. [PMID: 28096180 DOI: 10.15252/embj.201696010] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases.
Collapse
|
616
|
Kwon O, Kwak D, Ha SH, Jeon H, Park M, Chang Y, Suh PG, Ryu SH. Nudix-type motif 2 contributes to cancer proliferation through the regulation of Rag GTPase-mediated mammalian target of rapamycin complex 1 localization. Cell Signal 2017; 32:24-35. [PMID: 28089905 DOI: 10.1016/j.cellsig.2017.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023]
Abstract
Lysosomal localization of mammalian target of rapamycin complex 1 (mTORC1) is a critical step for activation of the molecule. Rag GTPases are essential for this translocation. Here, we demonstrate that Nudix-type motif 2 (NUDT2) is a novel positive regulator of mTORC1 activation. Activation of mTORC1 is impaired in NUDT2-silenced cells. Mechanistically, NUDT2 binds to Rag GTPase and controls mTORC1 translocation to the lysosomal membrane. Furthermore, NUDT2-dependent mTORC1 regulation is critical for proliferation of breast cancer cells, as NUDT2-silenced cells arrest in G0/G1 phases. Taken together, these results show that NUDT2 is a novel complex formation enhancing factor regulating mTORC1-Rag GTPase signaling that is crucial for cell growth control.
Collapse
Affiliation(s)
- Ohman Kwon
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Dongoh Kwak
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Sang Hoon Ha
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Hyeona Jeon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Mangeun Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Yeonho Chang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Pann-Ghill Suh
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea
| | - Sung Ho Ryu
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| |
Collapse
|
617
|
Kamada Y. Novel tRNA function in amino acid sensing of yeast Tor complex1. Genes Cells 2017; 22:135-147. [DOI: 10.1111/gtc.12462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshiaki Kamada
- Laboratory of Biological Diversity; National Institute for Basic Biology; Okazaki 444-8585 Japan
- Department of Basic Biology; School of Life Science; The Graduate University for Advanced Studies (SOKENDAI); Okazaki 444-8585 Japan
| |
Collapse
|
618
|
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett 2017; 667:27-39. [PMID: 28082152 PMCID: PMC5846849 DOI: 10.1016/j.neulet.2017.01.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Genetic variation can influence response to antiepileptic drug (AED) treatment through various effector processes. Metabolism of many AEDs is mediated by the cytochrome P450 (CYP) family; some of the CYPs have allelic variants that may affect serum AED concentrations. ‘Precision medicine’ focuses on the identification of an underlying genetic aetiology allowing personalised therapeutic choices. Certain human leukocyte antigen, HLA, alleles are associated with an increased risk of idiosyncratic adverse drug reactions. New results are emerging from large-scale multinational efforts, likely imminently to add knowledge of value from a pharmacogenetic perspective.
There is high variability in the response to antiepileptic treatment across people with epilepsy. Genetic factors significantly contribute to such variability. Recent advances in the genetics and neurobiology of the epilepsies are establishing the basis for a new era in the treatment of epilepsy, focused on each individual and their specific epilepsy. Variation in response to antiepileptic drug treatment may arise from genetic variation in a range of gene categories, including genes affecting drug pharmacokinetics, and drug pharmacodynamics, but also genes held to actually cause the epilepsy itself. From a purely pharmacogenetic perspective, there are few robust genetic findings with established evidence in epilepsy. Many findings are still controversial with anecdotal or less secure evidence and need further validation, e.g. variation in genes for transporter systems and antiepileptic drug targets. The increasing use of genetic sequencing and the results of large-scale collaborative projects may soon expand the established evidence. Precision medicine treatments represent a growing area of interest, focussing on reversing or circumventing the pathophysiological effects of specific gene mutations. This could lead to a dramatic improvement of the effectiveness and safety of epilepsy treatments, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Whilst much has been written about epilepsy pharmacogenetics, there does now seem to be building momentum that promises to deliver results of use in clinic.
Collapse
Affiliation(s)
- Simona Balestrini
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom; Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, and Epilepsy Society, Chalfont-St-Peter, Bucks, United Kingdom.
| |
Collapse
|
619
|
Vega-Rubin-de-Celis S, Peña-Llopis S, Konda M, Brugarolas J. Multistep regulation of TFEB by MTORC1. Autophagy 2017; 13:464-472. [PMID: 28055300 DOI: 10.1080/15548627.2016.1271514] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The master regulator of lysosome biogenesis, TFEB, is regulated by MTORC1 through phosphorylation at S211, and a S211A mutation increases nuclear localization. However, TFEBS211A localizes diffusely in both cytoplasm and nucleus and, as we show, retains regulation by MTORC1. Here, we report that endogenous TFEB is phosphorylated at S122 in an MTORC1-dependent manner, that S122 is phosphorylated in vitro by recombinant MTOR, and that S122 is important for TFEB regulation by MTORC1. Specifically, nuclear localization following MTORC1 inhibition is blocked by a S122D mutation (despite S211 dephosphorylation). Furthermore, such a mutation inhibits lysosomal biogenesis induced by Torin1. These data reveal a novel mechanism of TFEB regulation by MTORC1 essential for lysosomal biogenesis.
Collapse
Affiliation(s)
- Silvia Vega-Rubin-de-Celis
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel Peña-Llopis
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Meghan Konda
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - James Brugarolas
- a Kidney Cancer Program, Simmons Comprehensive Cancer Center , University of Texas Southwestern Medical Center , Dallas , TX , USA.,b Department of Internal Medicine, Hematology/Oncology Division , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
620
|
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is an evolutionarily conserved genuine protein kinase, which phosphorylates serine/threonine in response to growth factors and nutrients. It functions as a catalytic core in two distinct multiprotein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes cell growth and proliferation by positively regulating translation, transcription, and lipid biosynthesis in response to growth factors and amino acids, whereas it inhibits autophagy, an essential degradation and recycling pathway. mTORC2 regulates cell survival and cytoskeleton organization. Mechanistic insights into the function and regulation of mTOR complexes have been provided in various experimental settings and monitoring mTOR activity has been a most valuable way to judge whether levels of environmental cues such nutrients and growth factors can satisfy cellular needs for cell growth, proliferation, and autophagic response. Here, we describe useful methods to access mTOR activity in different experimental settings.
Collapse
Affiliation(s)
- S Hong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - K Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
621
|
Burger BJ, Rose S, Bennuri SC, Gill PS, Tippett ML, Delhey L, Melnyk S, Frye RE. Autistic Siblings with Novel Mutations in Two Different Genes: Insight for Genetic Workups of Autistic Siblings and Connection to Mitochondrial Dysfunction. Front Pediatr 2017; 5:219. [PMID: 29075622 PMCID: PMC5643424 DOI: 10.3389/fped.2017.00219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is high, yet the etiology of this disorder is still uncertain. Advancements in genetic analysis have provided the ability to identify potential genetic changes that may contribute to ASD. Interestingly, several genetic syndromes have been linked to metabolic dysfunction, suggesting an avenue for treatment. In this case study, we report siblings with ASD who had similar initial phenotypic presentations. Whole exome sequencing (WES) revealed a novel c.795delT mutation in the WDR45 gene affecting the girl, which was consistent with her eventual progression to a Rett-like syndrome phenotype including seizures along with a stereotypical cyclic breathing pattern. Interestingly, WES identified that the brother harbored a novel heterozygous Y1546H variant in the DEP domain-containing protein 5 (DEPDC5) gene, consistent with his presentation. Both siblings underwent a metabolic workup that demonstrated different patterns of mitochondrial dysfunction. The girl demonstrated statistically significant elevations in mitochondrial activity of complex I + III in both muscle and fibroblasts and increased respiration in peripheral blood mononuclear cells (PBMCs) on Seahorse Extracellular Flux analysis. The boy demonstrates a statistically significant decrease in complex IV activity in buccal epithelium and decreased respiration in PBMCs. These cases highlight the differences in genetic abnormalities even in siblings with ASD phenotypes as well as highlights the individual role of novel mutations in the WDR45 and DEPDC5 genes. These cases demonstrate the importance of advanced genetic testing combined with metabolic evaluations in the workup of children with ASD.
Collapse
Affiliation(s)
- Barrett J Burger
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shannon Rose
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Marie L Tippett
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stepan Melnyk
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
622
|
Tinuper P, Bisulli F. From nocturnal frontal lobe epilepsy to Sleep-Related Hypermotor Epilepsy: A 35-year diagnostic challenge. Seizure 2017; 44:87-92. [DOI: 10.1016/j.seizure.2016.11.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
|
623
|
Gai Z, Wang Q, Yang C, Wang L, Deng W, Wu G. Structural mechanism for the arginine sensing and regulation of CASTOR1 in the mTORC1 signaling pathway. Cell Discov 2016; 2:16051. [PMID: 28066558 PMCID: PMC5187391 DOI: 10.1038/celldisc.2016.51] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The mTOR complex I (mTORC1) signaling pathway controls many metabolic processes and is regulated by amino acid signals, especially arginine. CASTOR1 has been identified as the cytosolic arginine sensor for the mTORC1 pathway, but the molecular mechanism of how it senses arginine is elusive. Here, by determining the crystal structure of human CASTOR1 in complex with arginine, we found that an exquisitely tailored pocket, carved between the NTD and the CTD domains of CASTOR1, is employed to recognize arginine. Mutation of critical residues in this pocket abolished or diminished arginine binding. By comparison with structurally similar aspartate kinases, a surface patch of CASTOR1-NTD on the opposite side of the arginine-binding site was identified to mediate direct physical interaction with its downstream effector GATOR2, via GATOR2 subunit Mios. Mutation of this surface patch disrupted CASTOR1’s recognition and inhibition of GATOR2, revealed by in vitro pull-down assay. Normal mode (NM) analysis revealed an ‘open’-to-‘closed’ conformational change for CASTOR1, which is correlated to the switching between the exposing and concealing of its GATOR2-binding residues, and is most likely related to arginine binding. Interestingly, the GATOR2-binding sites on the two protomers of CASTOR1 dimer face the same direction, which prompted us to propose a model for how dimerization of CASTOR1 relieves the inhibition of GATOR1 by GATOR2. Our study thus provides a thorough analysis on how CASTOR1 recognizes arginine, and describes a possible mechanism of how arginine binding induces the inter-domain movement of CASTOR1 to affect its association with GATOR2.
Collapse
Affiliation(s)
- Zhongchao Gai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University , Shanghai, China
| | - Qian Wang
- National Center for Protein Science Shanghai , Shanghai, China
| | - Can Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University , Shanghai, China
| | - Lei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University , Shanghai, China
| | - Wei Deng
- National Center for Protein Science Shanghai , Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
624
|
Abstract
Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.
Collapse
Affiliation(s)
- Vinod K Mony
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA
| | - Shawna Benjamin
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA
| | - Eyleen J O'Rourke
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA.,c Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
625
|
|
626
|
Betschinger J. Charting Developmental Dissolution of Pluripotency. J Mol Biol 2016; 429:1441-1458. [PMID: 28013029 DOI: 10.1016/j.jmb.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
The formation of tissues and organs during metazoan development begs fundamental questions of cellular plasticity: How can the very same genome program have diverse cell types? How do cell identity programs unfold during development in space and time? How can defects in these mechanisms cause disease and also provide opportunities for therapeutic intervention? And ultimately, can developmental programs be exploited for bioengineering tissues and organs? Understanding principle designs of cellular identity and developmental progression is crucial for providing answers. Here, I will discuss how the capture of embryonic pluripotency in murine embryonic stem cells (ESCs) in vitro has allowed fundamental insights into the molecular underpinnings of a developmental cell state and how its ordered disassembly during differentiation prepares for lineage specification.
Collapse
Affiliation(s)
- Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
627
|
Wei Y, Reveal B, Cai W, Lilly MA. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:3859-3867. [PMID: 27672113 PMCID: PMC5144957 DOI: 10.1534/g3.116.035337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
TORC1 regulates metabolism and growth in response to a large array of upstream inputs. The evolutionarily conserved trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation. In humans, the GATOR1 complex has been implicated in a wide array of pathologies including cancer and hereditary forms of epilepsy. However, the precise role of GATOR1 in animal physiology remains largely undefined. Here, we characterize null mutants of the GATOR1 components nprl2, nprl3, and iml1 in Drosophila melanogaster We demonstrate that all three mutants have inappropriately high baseline levels of TORC1 activity and decreased adult viability. Consistent with increased TORC1 activity, GATOR1 mutants exhibit a cell autonomous increase in cell growth. Notably, escaper nprl2 and nprl3 mutant adults have a profound locomotion defect. In line with a nonautonomous role in the regulation of systemic metabolism, expressing the Nprl3 protein in the fat body, a nutrient storage organ, and hemocytes but not muscles and neurons rescues the motility of nprl3 mutants. Finally, we show that nprl2 and nprl3 mutants fail to activate autophagy in response to amino acid limitation and are extremely sensitive to both amino acid and complete starvation. Thus, in Drosophila, in addition to maintaining baseline levels of TORC1 activity, the GATOR1 complex has retained a critical role in the response to nutrient stress. In summary, the TORC1 inhibitor GATOR1 contributes to multiple aspects of the development and physiology of Drosophila.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Brad Reveal
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Weili Cai
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mary A Lilly
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
628
|
Lipina C, Hundal HS. Is REDD1 a Metabolic Éminence Grise? Trends Endocrinol Metab 2016; 27:868-880. [PMID: 27613400 PMCID: PMC5119498 DOI: 10.1016/j.tem.2016.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023]
Abstract
Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
629
|
De Bandt JP. Leucine and Mammalian Target of Rapamycin-Dependent Activation of Muscle Protein Synthesis in Aging. J Nutr 2016; 146:2616S-2624S. [PMID: 27934653 DOI: 10.3945/jn.116.234518] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
The preservation or restoration of muscle mass is of prime importance for healthy aging. However, aging has been repeatedly shown to be associated with resistance of muscle to the anabolic effects of feeding. Leucine supplementation has been proposed as a possible strategy because of its regulatory role on protein homeostasis. Indeed, it acts independently of growth factors and leads to enhanced cap-dependent mRNA translation initiation and increased protein synthesis. Leucine acts as a signaling molecule directly at the muscle level via the activation of mammalian/mechanistic target of rapamycin complex 1 (mTORC1). However, in aged muscle, mTORC1 activation seems to be impaired, with decreased sensitivity and responsiveness of muscle protein synthesis to amino acids, whereas the phosphorylation state of several components of this signaling pathway appears to be higher in the basal state. This may stem from specific age-related impairment of muscle signaling and from decreased nutrient and growth factor delivery to the muscle. Whether aging per se affects mTORC1 signaling remains to be established, because aging is frequently associated with inadequate protein intake, decreased insulin sensitivity, inactivity, inflammatory processes, etc. Whatever its origin, this anabolic resistance to feeding can be mitigated by quantitative and qualitative manipulation of protein supply, such as leucine supplementation; however, there remains the question of possible adverse effects of long-term, high-dose leucine supplementation in terms of insulin resistance and tumorigenesis.
Collapse
Affiliation(s)
- Jean-Pascal De Bandt
- EA4466 PRETRAM, Nutrition Biology Laboratory, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
630
|
Bonaglia MC, Giorda R, Epifanio R, Bertuzzo S, Marelli S, Gerard M, Andrieux J, Zanotta N, Zucca C. Partial deletion of DEPDC5 in a child with focal epilepsy. Epilepsia Open 2016; 1:140-144. [PMID: 29588938 PMCID: PMC5719828 DOI: 10.1002/epi4.12012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 11/07/2022] Open
Abstract
We report on a child, aged 47/12 years, with borderline intelligence quotient, normal brain magnetic resonance imaging, and focal epilepsy. The polysomnographic electroencephalogram recording revealed asynchronous central spikes at both brain hemispheres resembling the features observed in focal idiopathic epileptic syndromes. Array comparative genomic hybridization analysis revealed a 32-kb partial deletion of the DEP domain-containing protein 5 (DEPDC5) gene, involved in a wide spectrum of inherited focal epileptic syndromes. The parental origin of the deletion could not be fully ascertained because the pregnancy had been achieved through anonymous egg donation and insemination by intracytoplasmic sperm injection. However, we demonstrate that the deletion, shared by all alternatively spliced isoforms of DEPDC5, produces a transcript presumably generating a DEPDC5 protein missing the entire DEP domain. Our findings suggest that partial deletion of DEPDC5 may be sufficient to cause the focal epilepsy in our patient, highlighting the importance of the DEP domain in DEPDC5 function. This study expands the phenotypic spectrum of DEPDC5 to sporadic forms of focal idiopathic epilepsy and underscores the fact that partial deletions, albeit probably very rare, are part of the genetic spectrum of DEPDC5 mutations.
Collapse
Affiliation(s)
- Maria Clara Bonaglia
- Cytogenetics LaboratoryScientific InstituteIRCCS Eugenio MedeaBosisio PariniLeccoItaly
| | - Roberto Giorda
- Molecular Biology LaboratoryScientific InstituteIRCCS Eugenio MedeaBosisio PariniLeccoItaly
| | - Roberta Epifanio
- Unit of Clinical NeurophysiologyScientific Institute, IRCCS Eugenio MedeaBosisio PariniLeccoItaly
| | - Sara Bertuzzo
- Cytogenetics LaboratoryScientific InstituteIRCCS Eugenio MedeaBosisio PariniLeccoItaly
| | - Susan Marelli
- Medical Genetic ServiceEugenio Medea Scientific InstituteBosisio PariniLeccoItaly
| | - Marion Gerard
- Laboratory of Medical GeneticsJeanne de France HospitalCHRU de LilleFrance
| | - Joris Andrieux
- Laboratory of Medical GeneticsJeanne de France HospitalCHRU de LilleFrance
| | - Nicoletta Zanotta
- Unit of Clinical NeurophysiologyScientific Institute, IRCCS Eugenio MedeaBosisio PariniLeccoItaly
| | - Claudio Zucca
- Unit of Clinical NeurophysiologyScientific Institute, IRCCS Eugenio MedeaBosisio PariniLeccoItaly
| |
Collapse
|
631
|
A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nat Commun 2016; 7:13254. [PMID: 27869123 PMCID: PMC5121333 DOI: 10.1038/ncomms13254] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Amino acids (aa) are not only building blocks for proteins, but also signalling molecules, with the mammalian target of rapamycin complex 1 (mTORC1) acting as a key mediator. However, little is known about whether aa, independently of mTORC1, activate other kinases of the mTOR signalling network. To delineate aa-stimulated mTOR network dynamics, we here combine a computational–experimental approach with text mining-enhanced quantitative proteomics. We report that AMP-activated protein kinase (AMPK), phosphatidylinositide 3-kinase (PI3K) and mTOR complex 2 (mTORC2) are acutely activated by aa-readdition in an mTORC1-independent manner. AMPK activation by aa is mediated by Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). In response, AMPK impinges on the autophagy regulators Unc-51-like kinase-1 (ULK1) and c-Jun. AMPK is widely recognized as an mTORC1 antagonist that is activated by starvation. We find that aa acutely activate AMPK concurrently with mTOR. We show that AMPK under aa sufficiency acts to sustain autophagy. This may be required to maintain protein homoeostasis and deliver metabolite intermediates for biosynthetic processes. mTORC1 is known to mediate the signalling activity of amino acids. Here, the authors combine modelling with experiments and find that amino acids acutely stimulate mTORC2, IRS/PI3K and AMPK, independently of mTORC1. AMPK activation through CaMKKβ sustains autophagy under non-starvation conditions.
Collapse
|
632
|
Reif PS, Tsai MH, Helbig I, Rosenow F, Klein KM. Precision medicine in genetic epilepsies: break of dawn? Expert Rev Neurother 2016; 17:381-392. [DOI: 10.1080/14737175.2017.1253476] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Philipp Sebastian Reif
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Meng-Han Tsai
- Division of Brain Function & Epilepsy, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ingo Helbig
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center Hessen, Department of Neurology, University Hospitals Giessen & Marburg, and Philipps-University Marburg, Marburg, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center Hessen, Department of Neurology, University Hospitals Giessen & Marburg, and Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
633
|
Møller RS, Weckhuysen S, Chipaux M, Marsan E, Taly V, Bebin EM, Hiatt SM, Prokop JW, Bowling KM, Mei D, Conti V, de la Grange P, Ferrand-Sorbets S, Dorfmüller G, Lambrecq V, Larsen LHG, Leguern E, Guerrini R, Rubboli G, Cooper GM, Baulac S. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. NEUROLOGY-GENETICS 2016; 2:e118. [PMID: 27830187 PMCID: PMC5089441 DOI: 10.1212/nxg.0000000000000118] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022]
Abstract
Objective: To assess the prevalence of somatic MTOR mutations in focal cortical dysplasia (FCD) and of germline MTOR mutations in a broad range of epilepsies. Methods: We collected 20 blood-brain paired samples from patients with FCD and searched for somatic variants using deep-targeted gene panel sequencing. Germline mutations in MTOR were assessed in a French research cohort of 93 probands with focal epilepsies and in a diagnostic Danish cohort of 245 patients with a broad range of epilepsies. Data sharing among collaborators allowed us to ascertain additional germline variants in MTOR. Results: We detected recurrent somatic variants (p.Ser2215Phe, p.Ser2215Tyr, and p.Leu1460Pro) in the MTOR gene in 37% of participants with FCD II and showed histologic evidence for activation of the mTORC1 signaling cascade in brain tissue. We further identified 5 novel de novo germline missense MTOR variants in 6 individuals with a variable phenotype from focal, and less frequently generalized, epilepsies without brain malformations, to macrocephaly, with or without moderate intellectual disability. In addition, an inherited variant was found in a mother–daughter pair with nonlesional autosomal dominant nocturnal frontal lobe epilepsy. Conclusions: Our data illustrate the increasingly important role of somatic mutations of the MTOR gene in FCD and germline mutations in the pathogenesis of focal epilepsy syndromes with and without brain malformation or macrocephaly.
Collapse
Affiliation(s)
- Rikke S Møller
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Sarah Weckhuysen
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Mathilde Chipaux
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Elise Marsan
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Valerie Taly
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - E Martina Bebin
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Susan M Hiatt
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Jeremy W Prokop
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Kevin M Bowling
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Davide Mei
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Valerio Conti
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Pierre de la Grange
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Sarah Ferrand-Sorbets
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Georg Dorfmüller
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Virginie Lambrecq
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Line H G Larsen
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Eric Leguern
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Renzo Guerrini
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Guido Rubboli
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Gregory M Cooper
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| | - Stéphanie Baulac
- The Danish Epilepsy Centre Filadelfia (R.S.M., G.R.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Sorbonne Universités (S.W., E.M., V.L., E.L., S.B.), UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, AP-HP, Institut du cerveau et la moelle (ICM)-Hôpital Pitié-Salpêtrière, Paris, France; Epilepsy Unit (S.W., V.L.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; Neurogenetics Group (S.W.), VIB-Department of Molecular Genetics; Laboratory of Neurogenetics (S.W.), Institute Born-Bunge, University of Antwerp, Belgium; Department of Neurology (S.W.), University Hospital Antwerp, Belgium; Department of Pediatric Neurosurgery (M.C., S.F.-S., G.D.), Fondation Rothschild, Paris, France; Université Paris Sorbonne Cité (V.T.), INSERM UMR-S1147 MEPPOT, CNRS SNC5014, Centre Universitaire des Saints-Pères, Paris, France; Department of Neurology (E.M.B.), University of Alabama at Birmingham; HudsonAlpha Institute for Biotechnology (S.M.H., J.W.P., K.M.B., G.M.C.), Huntsville, AL; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (D.M., V.C., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; Genosplice (P.d.l.G.), Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Amplexa Genetics (L.H.G.L.), Odense, Denmark; Department of Genetics and Cytogenetics (E.L., S.B.), AP-HP Groupe hospitalier Pitié-Salpêtrière, Paris, France; and University of Copenhagen (G.R.), Denmark
| |
Collapse
|
634
|
Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Front Pharmacol 2016; 7:395. [PMID: 27826244 PMCID: PMC5079084 DOI: 10.3389/fphar.2016.00395] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR), via its two distinct multiprotein complexes, mTORC1, and mTORC2, plays a central role in the regulation of cellular growth, metabolism, and migration. A dysregulation of the mTOR pathway has in turn been implicated in several pathological conditions including insulin resistance and cancer. Overactivation of mTORC1 and disruption of mTORC2 function have been reported to induce insulin resistance. On the other hand, aberrant mTORC1 and mTORC2 signaling via either genetic alterations or increased expression of proteins regulating mTOR and its downstream targets have contributed to cancer development. These underlined the attractiveness of mTOR as a therapeutic target to overcome both insulin resistance and cancer. This review summarizes the evidence supporting the notion of intermittent, low dose rapamycin for treating insulin resistance. It further highlights recent data on the continuous use of high dose rapamycin analogs and related second generation mTOR inhibitors for cancer eradication, for overcoming chemoresistance and for tumor stem cell suppression. Within these contexts, the potential challenges associated with the use of mTOR inhibitors are also discussed.
Collapse
Affiliation(s)
- Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Louis Z Wang
- Department of Pharmacy, Faculty of Science, National University of SingaporeSingapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sheng Hsuan Tseng
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Shang Jun Loo
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
635
|
Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, Clark J, Ktistakis NT. Dynamics of mTORC1 activation in response to amino acids. eLife 2016; 5. [PMID: 27725083 PMCID: PMC5059141 DOI: 10.7554/elife.19960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere. DOI:http://dx.doi.org/10.7554/eLife.19960.001 Cells in all organisms must constantly measure the amount of nutrients available to them in order to be healthy and grow properly. For example, cells use a complex sensing system to measure how many amino acids – the building blocks of proteins – are available to them. One enzyme called mTOR alerts the cell to amino acid levels. When amino acids are available, mTOR springs into action and turns on the production of proteins in the cell. However, when amino acids are scarce, mTOR turns off, which slows down protein production and causes the cell to begin scavenging amino acids by digesting parts of itself. Studies of mTOR have shown that the protein cannot turn on until it visits the surface of small sacks in the cell called lysosomes. These are the major sites within cell where proteins and other molecules are broken down. Scientists know how mTOR gets to the lysosomes, but not how quickly the process occurs. Now, Manifava, Smith et al. have used microscopes to record live video of the mTOR enzyme as it interacts with amino acids revealing the whole process takes place in just a few minutes. In the experiments, a fluorescent tag was added to part of mTOR to make the protein visible under a microscope. The video showed that, in human cells supplied with amino acids, mTOR reaches the lysosomes within 2 minutes of the amino acids becoming available. Then, within 3-4 minutes the mTOR turns on and leaves the lysosome. Even though the mTOR has left the lysosome, it somehow remembers that amino acids are available and stays active. The experiments show that mTOR’s brief interaction with the lysosome switches it on and keeps it on even after mTOR leaves. Future studies will be needed to determine exactly how mTOR remembers its interaction with the lysosome and stays active afterwards. DOI:http://dx.doi.org/10.7554/eLife.19960.002
Collapse
Affiliation(s)
- Maria Manifava
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Matthew Smith
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Sergio Rotondo
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon Walker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
636
|
Abstract
The lysosome has long been viewed as the recycling center of the cell. However, recent discoveries have challenged this simple view and have established a central role of the lysosome in nutrient-dependent signal transduction. The degradative role of the lysosome and its newly discovered signaling functions are not in conflict but rather cooperate extensively to mediate fundamental cellular activities such as nutrient sensing, metabolic adaptation, and quality control of proteins and organelles. Moreover, lysosome-based signaling and degradation are subject to reciprocal regulation. Transcriptional programs of increasing complexity control the biogenesis, composition, and abundance of lysosomes and fine-tune their activity to match the evolving needs of the cell. Alterations in these essential activities are, not surprisingly, central to the pathophysiology of an ever-expanding spectrum of conditions, including storage disorders, neurodegenerative diseases, and cancer. Thus, unraveling the functions of this fascinating organelle will contribute to our understanding of the fundamental logic of metabolic organization and will point to novel therapeutic avenues in several human diseases.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143;
| | - Roberto Zoncu
- Department of Molecular and Cellular Biology and Paul F. Glenn Center for Aging Research, University of California, Berkeley, California 94720;
| |
Collapse
|
637
|
Roohi A, Hojjat-Farsangi M. Recent advances in targeting mTOR signaling pathway using small molecule inhibitors. J Drug Target 2016; 25:189-201. [PMID: 27632356 DOI: 10.1080/1061186x.2016.1236112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted-based cancer therapy (TBCT) or personalized medicine is one of the main treatment modalities for cancer that has been developed to decrease the undesirable effects of chemotherapy. Targeted therapy inhibits the growth of tumor cells by interrupting with particular molecules required for tumorigenesis and proliferation of tumor cells rather than interfering with dividing normal cells. Therefore, targeted therapies are anticipated to be more efficient than former tumor treatment agents with minimal side effects on non-tumor cells. Small molecule inhibitors (SMIs) are currently one of the most investigated anti-tumor agents of TBCT. These small organic agents target several vital molecules involved in cell biological processes and induce target cells apoptosis and necrosis. Mechanistic (mammalian) target of rapamycin (mTOR) complexes (mTORC1/2) control different intracellular processes, including growth, proliferation, angiogenesis and metabolism. Signaling pathways, in which mTOR complexes are involved in are usually dysregulated in various tumors and have been shown to be ideal targets for SMIs. Currently, different mTOR-SMIs are in the clinic for the treatment of cancer patients, and several others are in preclinical or clinical settings. In this review, we summarize recent advances in developing different mTOR inhibitors, which are currently in preclinical and clinical investigations or have been approved for cancer treatment.
Collapse
Affiliation(s)
- Azam Roohi
- a Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hojjat-Farsangi
- b Department of Oncology-Pathology, Immune and Gene therapy Lab , Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute , Stockholm , Sweden.,c Department of Immunology, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran
| |
Collapse
|
638
|
Kamiński MM, Liedmann S, Milasta S, Green DR. Polarization and asymmetry in T cell metabolism. Semin Immunol 2016; 28:525-534. [DOI: 10.1016/j.smim.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
|
639
|
Brady OA, Diab HI, Puertollano R. Rags to riches: Amino acid sensing by the Rag GTPases in health and disease. Small GTPases 2016; 7:197-206. [PMID: 27580159 PMCID: PMC5129890 DOI: 10.1080/21541248.2016.1218990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023] Open
Abstract
The Rags represent a unique family of evolutionarily conserved, heterodimeric, lysosome-localized small GTPases that play an indispensible role in regulating cellular metabolism in response to various amino acid signaling mechanisms. Rapid progress in the field has begun to unveil a picture in which Rags act as central players in translating information regarding cellular amino acid levels by modulating their nucleotide binding status through an ensemble of support proteins localized in and around the lysosomes. By cooperating with other signaling pathways that converge on the lysosomes, Rags promote anabolic processes through positively affecting mTORC1 signaling in the presence of abundant amino acids. Conversely, Rag inactivation plays an indispensible role in switching cellular metabolism into a catabolic paradigm by promoting the activity of the master lysosomal/autophagic transcription factors TFEB and TFE3. Precise control of Rag signaling is necessary for cells to adapt to constantly changing cellular demands and emerging evidence has highlighted their importance in a wide variety of developmental and pathological conditions.
Collapse
Affiliation(s)
- Owen A. Brady
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heba I. Diab
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
640
|
Xia J, Wang R, Zhang T, Ding J. Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling. Cell Discov 2016; 2:16035. [PMID: 27648300 PMCID: PMC5020642 DOI: 10.1038/celldisc.2016.35] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanistic Target Of Rapamycin Complex 1 (mTORC1) is central to the cellular response to changes in nutrient signals such as amino acids. CASTOR1 is shown to be an arginine sensor, which plays an important role in the activation of the mTORC1 pathway. In the deficiency of arginine, CASTOR1 interacts with GATOR2, which together with GATOR1 and Rag GTPases controls the relocalization of mTORC1 to lysosomes. The binding of arginine to CASTOR1 disrupts its association with GATOR2 and hence activates the mTORC1 signaling. Here, we report the crystal structure of CASTOR1 in complex with arginine at 2.5 Å resolution. CASTOR1 comprises of four tandem ACT domains with an architecture resembling the C-terminal allosteric domains of aspartate kinases. ACT1 and ACT3 adopt the typical βαββαβ topology and function in dimerization via the conserved residues from helices α1 of ACT1 and α5 of ACT3; whereas ACT 2 and ACT4, both comprising of two non-sequential regions, assume the unusual ββαββα topology and contribute an arginine-binding pocket at the interface. The bound arginine makes a number of hydrogen-bonding interactions and extensive hydrophobic contacts with the surrounding residues of the binding pocket. The functional roles of the key residues are validated by mutagenesis and biochemical assays. Our structural and functional data together reveal the molecular basis for the arginine-binding specificity of CASTOR1 in the arginine-dependent activation of the mTORC1 signaling.
Collapse
Affiliation(s)
- Jing Xia
- School of Life Sciences, Shanghai University , Shanghai, China
| | - Rong Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Tianlong Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jianping Ding
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
641
|
Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 2016; 214:653-64. [PMID: 27621362 PMCID: PMC5021098 DOI: 10.1083/jcb.201607005] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation.
Collapse
Affiliation(s)
- Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
642
|
Dyachok J, Earnest S, Iturraran EN, Cobb MH, Ross EM. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism. J Biol Chem 2016; 291:22414-22426. [PMID: 27587390 DOI: 10.1074/jbc.m116.732511] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation.
Collapse
Affiliation(s)
- Julia Dyachok
- From the Department of Pharmacology.,Green Center for Systems Biology, and.,McDermott Center for Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | | | - Erica N Iturraran
- From the Department of Pharmacology.,Green Center for Systems Biology, and
| | | | - Elliott M Ross
- From the Department of Pharmacology, .,Green Center for Systems Biology, and
| |
Collapse
|
643
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
644
|
Maki M, Takahara T, Shibata H. Multifaceted Roles of ALG-2 in Ca(2+)-Regulated Membrane Trafficking. Int J Mol Sci 2016; 17:ijms17091401. [PMID: 27571067 PMCID: PMC5037681 DOI: 10.3390/ijms17091401] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
ALG-2 (gene name: PDCD6) is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate directly or indirectly with the plasma membrane or organelle membranes involving the endosomal sorting complex required for transport (ESCRT) system, coat protein complex II (COPII)-dependent ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2 dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the subnetwork of interacting proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
645
|
Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget 2016; 6:31233-40. [PMID: 26378060 PMCID: PMC4741600 DOI: 10.18632/oncotarget.5180] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/20/2015] [Indexed: 12/02/2022] Open
Abstract
Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases.
Collapse
|
646
|
Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 2016; 536:229-33. [PMID: 27487210 PMCID: PMC4988899 DOI: 10.1038/nature19079] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids. In mammals arginine is particularly important, promoting diverse physiological effects such as immune cell activation, insulin secretion, and muscle growth, largely mediated through activation of mTORC1 (refs 4, 5, 6, 7). Arginine activates mTORC1 upstream of the Rag family of GTPases, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting Cellular Arginine Sensor for mTORC1 (CASTOR1). However, the mechanism by which the mTORC1 pathway detects and transmits this arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two Aspartate kinase, Chorismate mutase, TyrA (ACT) domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient, amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor.
Collapse
Affiliation(s)
- Robert A. Saxton
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge MA 02142, USA
| | - Lynne Chantranupong
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge MA 02142, USA
| | - Kevin E. Knockenhauer
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Thomas U. Schwartz
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - David M. Sabatini
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge MA 02142, USA
| |
Collapse
|
647
|
Apelt L, Knockenhauer KE, Leksa NC, Benlasfer N, Schwartz TU, Stelzl U. Systematic Protein-Protein Interaction Analysis Reveals Intersubcomplex Contacts in the Nuclear Pore Complex. Mol Cell Proteomics 2016; 15:2594-606. [PMID: 27194810 PMCID: PMC4974338 DOI: 10.1074/mcp.m115.054627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
The nuclear pore complex (NPC) enables transport across the nuclear envelope. It is one of the largest multiprotein assemblies in the cell, built from about 30 proteins called nucleoporins (Nups), organized into distinct subcomplexes. Structure determination of the NPC is a major research goal. The assembled ∼40-112 MDa NPC can be visualized by cryoelectron tomography (cryo-ET), while Nup subcomplexes are studied crystallographically. Docking the crystal structures into the cryo-ET maps is difficult because of limited resolution. Further, intersubcomplex contacts are not well characterized. Here, we systematically investigated direct interactions between Nups. In a comprehensive, structure-based, yeast two-hybrid interaction matrix screen, we mapped protein-protein interactions in yeast and human. Benchmarking against crystallographic and coaffinity purification data from the literature demonstrated the high coverage and accuracy of the data set. Novel intersubcomplex interactions were validated biophysically in microscale thermophoresis experiments and in intact cells through protein fragment complementation. These intersubcomplex interaction data provide direct experimental evidence toward possible structural arrangements of architectural elements within the assembled NPC, or they may point to assembly intermediates. Our data favors an assembly model in which major architectural elements of the NPC, notably the Y-complex, exist in different structural contexts within the scaffold.
Collapse
Affiliation(s)
- Luise Apelt
- From the ‡Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany
| | | | - Nina C Leksa
- §Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge
| | - Nouhad Benlasfer
- From the ‡Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany
| | - Thomas U Schwartz
- §Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge
| | - Ulrich Stelzl
- From the ‡Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany; ¶Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| |
Collapse
|
648
|
Fultang L, Vardon A, De Santo C, Mussai F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int J Cancer 2016; 139:501-9. [PMID: 26913960 DOI: 10.1002/ijc.30051] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Renewed interest in the use of therapeutic enzymes combined with an improved knowledge of cancer cell metabolism, has led to the translation of several arginine depletion strategies into early phase clinical trials. Arginine auxotrophic tumors are reliant on extracellular arginine, due to the downregulation of arginosuccinate synthetase or ornithine transcarbamylase-key enzymes for intracellular arginine recycling. Engineered arginine catabolic enzymes such as recombinant human arginase (rh-Arg1-PEG) and arginine deiminase (ADI-PEG) have demonstrated cytotoxicity against arginine auxotrophic tumors. In this review, we discuss the molecular events triggered by extracellular arginine depletion that contribute to tumor cell death.
Collapse
Affiliation(s)
- Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ashley Vardon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
649
|
Yoon MS, Son K, Arauz E, Han JM, Kim S, Chen J. Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling. Cell Rep 2016; 16:1510-1517. [PMID: 27477288 DOI: 10.1016/j.celrep.2016.07.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022] Open
Abstract
Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here, we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding, but not tRNA charging activity of LRS, is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism and fill a gap in the amino acid-sensing mTORC1 signaling network.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| | - Kook Son
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA
| | - Edwin Arauz
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA
| | - Jung Min Han
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 120-749, Republic of Korea; College of Pharmacy, Yonsei University, Incheon 406-840, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA.
| |
Collapse
|
650
|
Abstract
The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.
Collapse
Affiliation(s)
- Riko Hatakeyama
- a Department of Biology , University of Fribourg , Fribourg , Switzerland
| | | |
Collapse
|