601
|
Abstract
Retrograde transport, in which proteins and lipids are shuttled between endosomes and biosynthetic/secretory compartments such as the Golgi apparatus, is crucial for a diverse range of cellular functions. Mechanistic studies that explore the molecular machinery involved in this retrograde trafficking route are shedding light on the functions of transport proteins and are providing fresh insights into possible new therapeutic directions.
Collapse
Affiliation(s)
- Ludger Johannes
- CNRS UMR144, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
602
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel J. Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
603
|
Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 2008; 19:4651-9. [PMID: 18768752 PMCID: PMC2575160 DOI: 10.1091/mbc.e08-03-0312] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/09/2008] [Accepted: 08/26/2008] [Indexed: 12/19/2022] Open
Abstract
In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.
Collapse
Affiliation(s)
- Naonobu Fujita
- *Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima 455-8540, Japan
| | - Mitsuko Hayashi-Nishino
- Department of Cell Biology, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; and
| | - Hiromi Fukumoto
- *Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroko Omori
- *Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akitsugu Yamamoto
- Department of Cell Biology, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; and
| | - Takeshi Noda
- *Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- *Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi-Saitama 332-0012, Japan
| |
Collapse
|
604
|
Abstract
RKTG (Raf kinase trapping to Golgi) is exclusively localized at the Golgi apparatus and functions as a spatial regulator of Raf-1 kinase by sequestrating Raf-1 to the Golgi. Based on the structural similarity with adiponectin receptors, RKTG was predicted to be a seven-transmembrane protein with a cytosolic N-terminus, distinct from classical GPCRs (G-protein-coupled receptors). We analysed in detail the topology and functional domains of RKTG in this study. We determined that the N-terminus of RKTG is localized on the cytosolic side. Two short stretches of amino acid sequences at the membrane proximal to the N- and C-termini (amino acids 61-71 and 299-303 respectively) were indispensable for Golgi localization of RKTG, but were not required for the interaction with Raf-1. The three loops facing the cytosol between the transmembrane domains had different roles in Golgi localization and Raf-1 interaction. While the first cytosolic loop was only important for Golgi localization, the third cytosolic loop was necessary for both Golgi localization and Raf-1 sequestration. Taken together, these findings suggest that RKTG is a type III membrane protein with its N-terminus facing the cytosol and multiple sequences are responsible for its localization at the Golgi apparatus and Raf-1 interaction. As RKTG is the first discovered Golgi protein with seven transmembrane domains, the knowledge derived from this study would not only provide structural information about the protein, but also pave the way for future characterization of the unique functions of RKTG in the regulation of cell signalling.
Collapse
|
605
|
Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 2008; 29:157-71. [PMID: 18936157 DOI: 10.1128/mcb.01082-08] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Atg1 serine/threonine protein kinase and its mammalian homologs ULK1 and ULK2 play critical roles during the activation of autophagy. Previous studies have demonstrated that the conserved C-terminal domain (CTD) of ULK1 controls the regulatory function and localization of the protein. Here, we explored the role of kinase activity and intramolecular interactions to further understand ULK function. We demonstrate that the dominant-negative activity of kinase-dead mutants requires a 7-residue motif within the CTD. Our data lead to a model in which the functions of ULK1 and ULK2 are controlled by autophosphorylation and conformational changes involving exposure of the CTD. Additional mapping indicates that the CTD contains other distinct regions that direct membrane association and interaction with the putative human homologue of Atg13, which we have here characterized. Atg13 is required for autophagy and Atg9 trafficking during autophagy. However, Atg13 does not bind the 7-residue dominant-negative motif in the CTD of ULK proteins nor is the inhibitory activity of the CTDs rescued by Atg13 ectopic expression, suggesting that in mammalian cells, the CTD may interact with additional autophagy proteins.
Collapse
|
606
|
Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19:5360-72. [PMID: 18843052 DOI: 10.1091/mbc.e08-01-0080] [Citation(s) in RCA: 912] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
607
|
Turcotte S, Sutphin PD, Giaccia AJ. Targeted therapy for the loss of von Hippel-Lindau in renal cell carcinoma: a novel molecule that induces autophagic cell death. Autophagy 2008; 4:944-6. [PMID: 18769110 PMCID: PMC2803726 DOI: 10.4161/auto.6785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radiation and conventional cytotoxic chemotherapies are ineffective in treating renal cancer. Approximately 75 percent of renal cell carcinoma (RCC) is associated with an inactivation of the tumor suppressor gene von Hippel-Lindau (VHL). We exploited the possibility of targeting VHL-deficient RCC through synthetic lethality using a high-throughput screening approach. In this screen, STF-62247 was identified to be selectively toxic and growth inhibitory to renal cells lacking VHL. We recently demonstrated that the cytotoxicity of STF-62247 is due to dysregulated autophagy. Furthermore, the reduction of protein levels of essential autophagy pathway components such as Atg5, Atg7 and Atg9 reduces sensitivity of VHL-deficient cells to killing by STF-62247. Loss of proteins involved in Golgi trafficking sensitized RCC with wild-type VHL to killing by STF-62247, indicating a potential role for these proteins as a target of the compound. Our study supports the concept of using synthetic lethality to selectively kill VHL-deficient cells that represents a new type of targeted therapy for the treatment of RCC.
Collapse
Affiliation(s)
- Sandra Turcotte
- Department of Radiation Oncology; Stanford University School of Medicine; Stanford, California USA
| | - Patrick D. Sutphin
- Department of Radiation Oncology; Stanford University School of Medicine; Stanford, California USA
| | - Amato J. Giaccia
- Department of Radiation Oncology; Stanford University School of Medicine; Stanford, California USA
| |
Collapse
|
608
|
He C, Baba M, Cao Y, Klionsky DJ. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 2008; 19:5506-16. [PMID: 18829864 DOI: 10.1091/mbc.e08-05-0544] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is the degradation of a cell's own components within lysosomes (or the analogous yeast vacuole), and its malfunction contributes to a variety of human diseases. Atg9 is the sole integral membrane protein required in formation of the initial sequestering compartment, the phagophore, and is proposed to play a key role in membrane transport; the phagophore presumably expands by vesicular addition to form a complete autophagosome. It is not clear through what mechanism Atg9 functions at the phagophore assembly site (PAS). Here we report that Atg9 molecules self-associate independently of other known autophagy proteins in both nutrient-rich and starvation conditions. Mutational analyses reveal that self-interaction is critical for anterograde transport of Atg9 to the PAS. The ability of Atg9 to self-interact is required for both selective and nonselective autophagy at the step of phagophore expansion at the PAS. Our results support a model in which Atg9 multimerization facilitates membrane flow to the PAS for phagophore formation.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
609
|
Abstract
The cell biological phenomenon of autophagy (or ;self-eating') has attracted increasing attention in recent years. In this review, we first address the cell biological functions of autophagy, and then discuss recent insights into the role of autophagy in animal development, particularly in C. elegans, Drosophila and mouse. Work in these and other model systems has also provided evidence for the involvement of autophagy in disease processes, such as neurodegeneration, tumorigenesis, pathogenic infection and aging. Insights gained from investigating the functions of autophagy in normal development should increase our understanding of its roles in human disease and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Alicia Meléndez
- Department of Biology, Queens College, Flushing, NY 11367, USA.
| | | |
Collapse
|
610
|
Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 2008; 14:90-102. [PMID: 18598947 PMCID: PMC2819422 DOI: 10.1016/j.ccr.2008.06.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/02/2008] [Accepted: 06/09/2008] [Indexed: 02/07/2023]
Abstract
Renal cell carcinomas (RCCs) are refractory to standard therapies. The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in 75% of RCCs. By screening for small molecules selectively targeting VHL-deficient RCC cells, we identified STF-62247. STF-62247 induces cytotoxicity and reduces tumor growth of VHL-deficient RCC cells compared to genetically matched cells with wild-type VHL. STF-62247-stimulated toxicity occurs in a HIF-independent manner through autophagy. Reduction of protein levels of essential autophagy pathway components reduces sensitivity of VHL-deficient cells to STF-62247. Using a yeast deletion pool, we show that loss of proteins involved in Golgi trafficking increases killing by STF-62247. Thus, we have found a small molecule that selectively induces cell death in VHL-deficient cells, representing a paradigm shift for targeted therapy.
Collapse
Affiliation(s)
- Sandra Turcotte
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Denise A Chan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patrick D Sutphin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Hay
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand, Private Bag 92019, Auckland, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand, Private Bag 92019, Auckland, New Zealand
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
611
|
Diaz F, Moraes CT. Mitochondrial biogenesis and turnover. Cell Calcium 2008; 44:24-35. [PMID: 18395251 PMCID: PMC3175594 DOI: 10.1016/j.ceca.2007.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Abstract
Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
- Department of Cell Biology and Anatomy, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|
612
|
Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 2008; 19:3290-8. [PMID: 18508918 DOI: 10.1091/mbc.e07-12-1292] [Citation(s) in RCA: 574] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a potent intracellular degradation process with pivotal roles in health and disease. Atg8, a lipid-conjugated ubiquitin-like protein, is required for the formation of autophagosomes, double-membrane vesicles responsible for the delivery of cytoplasmic material to lysosomes. How and when Atg8 functions in this process, however, is not clear. Here we show that Atg8 controls the expansion of the autophagosome precursor, the phagophore, and give the first real-time, observation-based temporal dissection of the autophagosome formation process. We demonstrate that the amount of Atg8 determines the size of autophagosomes. During autophagosome biogenesis, Atg8 forms an expanding structure and later dissociates from the site of vesicle formation. On the basis of the dynamics of Atg8, we present a multistage model of autophagosome formation. This model provides a foundation for future analyses of the functions and dynamics of known autophagy-related proteins and for screening new genes.
Collapse
Affiliation(s)
- Zhiping Xie
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
613
|
Yoshimori T, Noda T. Toward unraveling membrane biogenesis in mammalian autophagy. Curr Opin Cell Biol 2008; 20:401-7. [PMID: 18472412 DOI: 10.1016/j.ceb.2008.03.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 01/07/2023]
Abstract
Autophagy is a unique form of membrane trafficking, which delivers macromolecules and organelles from the cytoplasm to lysosomes for degradation. This fundamental and ubiquitous process in eukaryotic cells is mediated by the double-membrane-bound structures called autophagosomes, which transiently emerge in the cytoplasm. The recent remarkable explosion of knowledge of autophagy has revealed its multiple roles, especially in mammals; in addition to its basic role in turnover and reuse of cellular constituents, the process unexpectedly functions in elimination of invading bacteria and antigen presentation. Analysis of mammalian homologs of the autophagy-related (Atg) proteins identified in yeast has shed light on not only the common molecular mechanisms underlying autophagosome formation, but also specialized mechanisms that are related to the diverse functions and complex regulation of autophagy in higher organisms.
Collapse
Affiliation(s)
- Tamotsu Yoshimori
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
614
|
Abstract
Autophagy is an evolutionary conserved mechanism in eukaryotic cells that is known to process redundant or defective cellular proteins and organelles. The recent renewal of interest in autophagy research has led to a significant expansion in our understanding of the importance of autophagy in cellular health and disease. This invited review summarizes key elements of autophagy research, emphasizes those of particular interest to gastroenterologists, and offers insights into present and future research directions.
Collapse
|
615
|
Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-25. [PMID: 18448665 DOI: 10.1091/mbc.e07-12-1231] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy is a mechanism of degradation of cytoplasmic components in all eukaryotic cells. In macroautophagy, cytoplasmic components are wrapped by double-membrane structures called autophagosomes, whose formation involves unique membrane dynamics, i.e., de novo formation of a double-membrane sac called the isolation membrane and its elongation. However, the precise regulatory mechanism of isolation membrane formation and elongation remains unknown. In this study, we showed that Golgi-resident small GTPase Rab33B (and Rab33A) specifically interacts with Atg16L, an essential factor in isolation membrane formation, in a guanosine triphosphate-dependent manner. Expression of a GTPase-deficient mutant Rab33B (Rab33B-Q92L) induced the lipidation of LC3, which is an essential process in autophagosome formation, even under nutrient-rich conditions, and attenuated macroautophagy, as judged by the degradation of p62/sequestosome 1. In addition, overexpression of the Rab33B binding domain of Atg16L suppressed autophagosome formation. Our findings suggest that Rab33 modulates autophagosome formation through interaction with Atg16L.
Collapse
Affiliation(s)
- Takashi Itoh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
616
|
Hara T, Takamura A, Kishi C, Iemura SI, Natsume T, Guan JL, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. ACTA ACUST UNITED AC 2008; 181:497-510. [PMID: 18443221 PMCID: PMC2364687 DOI: 10.1083/jcb.200712064] [Citation(s) in RCA: 762] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51–like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.
Collapse
Affiliation(s)
- Taichi Hara
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | | | |
Collapse
|
617
|
van der Vaart A, Mari M, Reggiori F. A Picky Eater: Exploring the Mechanisms of Selective Autophagy in Human Pathologies. Traffic 2008; 9:281-9. [DOI: 10.1111/j.1600-0854.2007.00674.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
618
|
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PGH, Clark RSB, Clarke SG, Clavé C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Dröge W, Dron M, Dunn WA, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fésüs L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, González-Estévez C, Gorski S, Gottlieb RA, Häussinger D, He YW, Heidenreich K, Hill JA, Høyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jäättelä M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JAKW, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, et alKlionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PGH, Clark RSB, Clarke SG, Clavé C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Dröge W, Dron M, Dunn WA, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fésüs L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, González-Estévez C, Gorski S, Gottlieb RA, Häussinger D, He YW, Heidenreich K, Hill JA, Høyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jäättelä M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JAKW, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovács AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, López-Otín C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Meléndez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Münz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nürnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin ECM, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Tallóczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcátegui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4:151-75. [PMID: 18188003 PMCID: PMC2654259 DOI: 10.4161/auto.5338] [Show More Authors] [Citation(s) in RCA: 1859] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
619
|
|
620
|
Abstract
Autophagy and phagocytosis are evolutionarily ancient processes functioning in capture and digestion of material found in the cellular interior and exterior, respectively. In their most primordial form, both processes are involved in cellular metabolism and feeding, supplying cells with externally obtained particulate nutrients or using portions of cell's own cytoplasm to generate essential nutrients and energy at times of starvation. Although autophagy and phagocytosis are commonly treated as completely separate biological phenomena, they are topologically similar and can be, at least morphologically, viewed as different manifestations of a spectrum of related processes. Autophagy is the process of sequestering portions of cellular interior (cytosol and intracellular organelles) into a membranous organelle (autophagosome), whereas phagocystosis is its topological equivalent engaged in sequestering cellular exterior. Both autophagosomes and phagosomes mature into acidified, degradative organelles, termed autolysosomes and phagolysosomes, respectively. The basic role of autophagy as a nutritional process, and that of phagocytosis where applicable, has survived in present-day organisms ranging from yeast to man. It has in addition evolved into a variety of specialized processes in metazoans, with a major role in cellular/cytoplasmic homeostasis. In humans, autophagy has been implicated in many health and disease states, including cancer, neurodegeneration, aging and immunity, while phagocytosis plays a role in immunity and tissue homeostasis. Autophagy and phagocytosis cooperate in the latter two processes. In this chapter, we briefly review the regulatory and execution stages of both autophagy and phagocytosis.
Collapse
Affiliation(s)
- Vojo Deretic
- Health Sciences Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
621
|
Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:207-47. [PMID: 18544495 DOI: 10.1016/s1937-6448(07)66005-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macroautophagy is a self-digesting pathway responsible for the removal of long-lived proteins and organelles by the lysosomal compartment. Parts of the cytoplasm are first segregated in double-membrane-bound autophagosomes, which then undergo a multistep maturation process including fusion with endosomes and lysosomes. The segregated cytoplasm is then degraded by the lysosomal hydrolases. The discovery of ATG genes has greatly enhanced our understanding of the mechanisms of this pathway. Two novel ubiquitin-like protein conjugation systems were shown to function during autophagosome formation. Autophagy has been shown to play a role in a wide variety of physiological processes including energy metabolism, organelle turnover, growth regulation, and aging. Impaired autophagy can lead to diseases such as cardiomyopathy and cancer. This review summarizes current knowledge about the formation and maturation of autophagosomes, the role of macroautophagy in various physiological and pathological conditions, and the signaling pathways that regulate this process in mammalian cells.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- Division of Biochemistry, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
622
|
Abstract
The methods described are designed to enable the assignment of an intracellular localization of secretory proteins, either soluble or membrane associated, to later secretory compartments, such as the trans-Golgi network (TGN) or endosome. These two subcellular compartments are closely linked through extensive protein trafficking, in both an anterograde and a retrograde direction. These compartments are likely to be important in the formation of autophagosomes during the process of autophagy. Our current knowledge of how autophagosomes form is scarce, and further investigation into the role that other subcellular compartments have in this process is needed.
Collapse
Affiliation(s)
- Andrew Young
- Cancer Research UK, London Research Institute, London, UK
| | | |
Collapse
|
623
|
Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A, Seux M, Nowak J, Gonzalez CD, Iovanna JL, Vaccaro MI. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 2007; 282:37124-33. [PMID: 17940279 DOI: 10.1074/jbc.m706956200] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a degradation process of cytoplasmic cellular constituents, which serves as a survival mechanism in starving cells, and it is characterized by sequestration of bulk cytoplasm and organelles in double-membrane vesicles called autophagosomes. Autophagy has been linked to a variety of pathological processes such as neurodegenerative diseases and tumorigenesis, which highlights its biological and medical importance. We have previously characterized the vacuole membrane protein 1 (VMP1) gene, which is highly activated in acute pancreatitis, a disease associated with morphological changes resembling autophagy. Here we show that VMP1 expression triggers autophagy in mammalian cells. VMP1 expression induces the formation of ultrastructural features of autophagy and recruitment of the microtubule-associated protein 1 light-chain 3 (LC3), which is inhibited after treatment with the autophagy inhibitor 3-methiladenine. VMP1 is induced by starvation and rapamycin treatments. Its expression is necessary for autophagy, because VMP1 small interfering RNA inhibits autophagosome formation under both autophagic stimuli. VMP1 is a transmembrane protein that co-localizes with LC3, a marker of the autophagosomes. It interacts with Beclin 1, a mammalian autophagy initiator, through the VMP1-Atg domain, which is essential for autophagosome formation. VMP1 endogenous expression co-localizes with LC3 in pancreas tissue undergoing pancreatitis-induced autophagy. Finally, VMP1 stable expression targeted to pancreas acinar cell in transgenic mice induces autophagosome formation. Our results identify VMP1 as a novel autophagy-related membrane protein involved in the initial steps of the mammalian cell autophagic process.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Physiology, School of Medicine, University of Buenos Aires, and CEMIC University Hospital, 4102 Av. E. Galvan, Buenos Aires C1431FWO, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
624
|
Abstract
Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles and proteins. Central to this process is the formation of autophagosomes, double-membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the past decade many autophagy-related genes, ATG, have been identified that are required for selective and/or nonselective autophagic functions. In all types of autophagy, a core molecular machinery has a critical role in forming sequestering vesicles, the autophagosome, which is the hallmark morphological feature of this dynamic process. Additional components allow autophagy to adapt to the changing needs of the cell.
Collapse
Affiliation(s)
- Zhiping Xie
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
625
|
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2007; 90:313-23. [PMID: 17928127 DOI: 10.1016/j.biochi.2007.08.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/31/2007] [Indexed: 02/07/2023]
Abstract
Macroautophagy or autophagy is a vacuolar degradative pathway terminating in the lysosomal compartment after forming a cytoplasmic vacuole or autophagosome that engulfs macromolecules and organelles. The original discovery that ATG (AuTophaGy related) genes in yeast are involved in the formation of autophagosomes has greatly increased our knowledge of the molecular basis of autophagy, and its role in cell function that extends far beyond non-selective degradation. The regulation of autophagy by signaling pathways overlaps the control of cell growth, proliferation, cell survival and death. The evolutionarily conserved TOR (Target of Rapamycin) kinase complex 1 plays an important role upstream of the Atg1 complex in the control of autophagy by growth factors, nutrients, calcium signaling and in response to stress situations, including hypoxia, oxidative stress and low energy. The Beclin 1 (Atg6) complex, which is involved in the initial step of autophagosome formation, is directly targeted by signaling pathways. Taken together, these data suggest that multiple signaling checkpoints are involved in regulating autophagosome formation.
Collapse
Affiliation(s)
- Sophie Pattingre
- INSERM U756, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
626
|
Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 2007; 17:422-7. [PMID: 17804237 DOI: 10.1016/j.tcb.2007.07.009] [Citation(s) in RCA: 753] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/01/2007] [Accepted: 07/01/2007] [Indexed: 12/19/2022]
Abstract
Accumulation of reactive oxygen species (ROS) is an oxidative stress to which cells respond by activating various defense mechanisms or, finally, by dying. At low levels, however, ROS act as signaling molecules in various intracellular processes. Autophagy, a process by which eukaryotic cells degrade and recycle macromolecules and organelles, has an important role in the cellular response to oxidative stress. Here, we review recent reports suggesting a regulatory role for ROS of mitochondrial origin as signaling molecules in autophagy, leading, under different circumstances, to either survival or cell death. We then discuss the relationship between mitochondria and autophagosomes and propose that mitochondria have an essential role in autophagosome biogenesis.
Collapse
Affiliation(s)
- Ruth Scherz-Shouval
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
627
|
Espert L, Codogno P, Biard-Piechaczyk M. Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J Mol Med (Berl) 2007; 85:811-23. [PMID: 17340132 PMCID: PMC7080067 DOI: 10.1007/s00109-007-0173-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/31/2007] [Accepted: 02/12/2007] [Indexed: 12/26/2022]
Abstract
Autophagy is a cellular process involved in the degradation and turn-over of long-lived proteins and organelles, which can be subjected to suppression or further induction in response to different stimuli. According to its essential role in cellular homeostasis, autophagy has been implicated in several pathologies including cancer, neurodegeneration and myopathies. More recently, autophagy has been described as a mechanism of both innate and adaptive immunity against intracellular bacteria and viruses. In this context, autophagy has been proposed as a protective mechanism against viral infection by degrading the pathogens into autolysosomes. This is strengthened by the fact that several proteins involved in interferon (IFN) signalling pathways are linked to autophagy regulation. However, several viruses have evolved strategies to divert IFN-mediated pathways and autophagy to their own benefit. This review provides an overview of the autophagic process and its involvement in the infection by different viral pathogens and of the connections existing between autophagy and proteins involved in IFN signalling pathways.
Collapse
Affiliation(s)
- Lucile Espert
- CPBS, UM1, UM2, CNRS, Institut de Biologie, 4, Bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| | - Patrice Codogno
- CPBS, UM1, UM2, CNRS, Institut de Biologie, 4, Bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
- INSERM U756, Faculté de Pharmacie, Université Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Martine Biard-Piechaczyk
- CPBS, UM1, UM2, CNRS, Institut de Biologie, 4, Bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| |
Collapse
|
628
|
Morvan J, Salinas S, Neubrand VE. Meeting report: Seventh Annaberg EMBO Workshop 'Membrane traffic in the secretory pathway', Goldegg, Austria, 9-14 January 2007. Traffic 2007; 8:1111-9. [PMID: 17651089 DOI: 10.1111/j.1600-0854.2007.00596.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joëlle Morvan
- Secretory Pathways Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
629
|
Chan EYW, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 2007; 282:25464-74. [PMID: 17595159 DOI: 10.1074/jbc.m703663200] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a vital response to nutrient starvation. Here, we screened a kinase-specific siRNA library using an autophagy assay in human embryonic kidney 293 cells that measures lipidation of the marker protein GFP-LC3 following amino acid starvation. This screen identified ULK1 in addition to other novel candidates that could be confirmed with multiple siRNAs. Knockdown of ULK1, but not the related kinase ULK2, inhibited the autophagic response. Also, ULK1 knockdown inhibited rapamycin-induced autophagy consistent with a role downstream of mTOR. Overexpression of ULK1 inhibited autophagy and this inhibition was independent of its kinase activity. Deletion of the PDZ domain-binding Val-Tyr-Ala motif at the ULK1 C terminus generated a more potent dominant-negative protein. Further deletions revealed that the minimal ULK1 dominant-negative region could be mapped to residues 1-351. Full-length ULK1 localized to cytoplasmic structures, some of which were GFP-LC3-positive, and this localization required the conserved C-terminal domain. In contrast, ULK1-(1-351) was diffuse in the cytoplasm. These experiments reveal at least two domains in ULK1 which likely function via unique sets of effectors to regulate autophagy.
Collapse
Affiliation(s)
- Edmond Y W Chan
- Secretory Pathways Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
630
|
Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245-53. [PMID: 17475204 PMCID: PMC2756107 DOI: 10.1016/j.abb.2007.03.034] [Citation(s) in RCA: 1223] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/25/2007] [Indexed: 12/14/2022]
Abstract
Mitochondria are the essential site of aerobic energy production in eukaryotic cells. Reactive oxygen species (ROS) are an inevitable by-product of mitochondrial metabolism and can cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the consequence of disease processes. Therefore, maintaining a healthy population of mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the major degradative pathway in mitochondrial turnover, and we use the term mitophagy to refer to mitochondrial degradation by autophagy. Although long assumed to be a random process, increasing evidence indicates that mitophagy is a selective process. This review provides an overview of the process of mitophagy, the possible role of the mitochondrial permeability transition in mitophagy and the importance of mitophagy in turnover of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Insil Kim
- Center for Cell Death, Injury and Regeneration, Departments of Pharmaceutical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - John J. Lemasters
- Center for Cell Death, Injury and Regeneration, Departments of Pharmaceutical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina
| |
Collapse
|
631
|
Abstract
Autophagy/macroautophagy is known for its role in cellular homeostasis, development, cell survival, aging, immunity, cancer and neurodegeneration. However, until recently, the mechanisms by which autophagy contributes to these important processes were largely unknown. The demonstration of a direct cross-talk between autophagy and NF-kappaB opens up new frontiers for deciphering the role of autophagy in diverse biological processes. Here, we review our current understanding of autophagy, with a focus on its role in tumor suppression, NF-kappaB inactivation and selective protein degradation in mammals. We also list some most intriguing and outstanding questions that are likely to engage researchers in the near future.
Collapse
Affiliation(s)
- Gutian Xiao
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
632
|
Yorimitsu T, Klionsky DJ. Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 2007; 17:279-85. [PMID: 17481899 DOI: 10.1016/j.tcb.2007.04.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/28/2007] [Accepted: 04/23/2007] [Indexed: 12/19/2022]
Abstract
Autophagy is connected to a surprising range of cellular processes, including the stress response, developmental remodeling, organelle homeostasis and disease pathophysiology. The inducible, predominant form of autophagy, macroautophagy, involves dynamic membrane rearrangements, culminating in the formation of a double-membrane cytosolic vesicle, an autophagosome, which sequesters cytoplasm and organelles. The signal transduction mechanisms that regulate autophagy are poorly understood and have focused on extracellular nutrient sensing. Similarly, little is known about the contribution of the endomembrane organelles to autophagy-related processes. Recent studies have provided interesting links between these topics, revealing that the secretory pathway provides membrane for autophagosome formation, and that autophagy has an important role in organelle homeostasis.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Life Sciences Institute and Departments of Molecular, Cellular & Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
633
|
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6:304-12. [PMID: 17396135 DOI: 10.1038/nrd2272] [Citation(s) in RCA: 838] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a dynamic process of subcellular degradation, which has recently sparked great interest as it is now recognized to be involved in various developmental processes and various diseases including cancer and neurodegeneration. Autophagy can function as a cytoprotective mechanism; however, it also has the capacity to cause cell death. A better understanding of autophagy is needed to allow its manipulation for therapeutic purposes, and new insights into the molecular mechanisms of autophagy are now leading to the discovery of exciting new potential drug targets.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK.
| | | | | | | |
Collapse
|
634
|
Scott RC, Juhász G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 2007; 17:1-11. [PMID: 17208179 PMCID: PMC1865528 DOI: 10.1016/j.cub.2006.10.053] [Citation(s) in RCA: 491] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 02/09/2023]
Abstract
BACKGROUND To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell-growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, resulting in part from the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1. RESULTS We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild-type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself. CONCLUSIONS Our results reveal a central role for Atg1 in mounting a coordinated autophagic response and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.
Collapse
Affiliation(s)
- Ryan C Scott
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
635
|
He C, Song H, Yorimitsu T, Monastyrska I, Yen WL, Legakis JE, Klionsky DJ. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. ACTA ACUST UNITED AC 2007; 175:925-35. [PMID: 17178909 PMCID: PMC2064702 DOI: 10.1083/jcb.200606084] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a conserved degradative pathway that is induced in response to various stress and developmental conditions in eukaryotic cells. It allows the elimination of cytosolic proteins and organelles in the lysosome/vacuole. In the yeast Saccharomyces cerevisiae, the integral membrane protein Atg9 (autophagy-related protein 9) cycles between mitochondria and the preautophagosomal structure (PAS), the nucleating site for formation of the sequestering vesicle, suggesting a role in supplying membrane for vesicle formation and/or expansion during autophagy. To better understand the mechanisms involved in Atg9 cycling, we performed a yeast two-hybrid–based screen and identified a peripheral membrane protein, Atg11, that interacts with Atg9. We show that Atg11 governs Atg9 cycling through the PAS during specific autophagy. We also demonstrate that the integrity of the actin cytoskeleton is essential for correct targeting of Atg11 to the PAS. We propose that a pool of Atg11 mediates the anterograde transport of Atg9 to the PAS that is dependent on the actin cytoskeleton during yeast vegetative growth.
Collapse
Affiliation(s)
- Congcong He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
636
|
Abstract
Components involved in vesicle trafficking processes such as secretion, endocytosis, and autophagy are gaining recognition as important regulators and effectors of target of rapamycin (TOR) signaling. A recent report by now implicates Pmr1, a secretory pathway Ca(2+)/Mn(2+) ATPase located in the Golgi apparatus, as a novel regulator of TOR and its downstream targets in yeast.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology & Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|