601
|
López-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA. Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 2011; 23:236-51. [PMID: 22095946 DOI: 10.1681/asn.2011030310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3(-/-) mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3(-/-) mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway.
Collapse
Affiliation(s)
- Jesús M López-Guisa
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
602
|
Abstract
1. Kidney pericytes were recently identified as collagen Iα1-producing cells in healthy kidney, but the developmental, physiological and pathological roles of kidney pericytes remain poorly understood. Pericytes are stromal-derived cells that envelop and have intimate connections with adjacent capillary endothelial cells (EC). Recent studies in the eye and brain have revealed that pericytes are crucial for angiogenesis, vascular stability and vessel integrity. 2. In response to kidney injury, pericytes promptly migrate away from the capillary wall into the interstitial space. Here, pericytes are activated and differentiate into scar-forming myofibroblasts. In the absence of pericytes, peritubular capillaries are destabilized, leading to vascular regression. Consequently, capillary loss and fibrosis following kidney injury are intimately linked and hinge centrally around pericyte detachment from EC. 3. Kinetic mathematical modelling has demonstrated that pericytes are the major source of myofibroblasts in the fibrotic kidney. Comprehensive genetic fate mapping studies of nephron epithelia or kidney stroma has demonstrated that epithelial cells do not migrate outside of the epithelial compartment to become myofibroblasts; rather, interstitial pericytes are progenitors of scar-forming myofibroblasts. Bidirectional signalling between pericytes and EC is necessary for pericyte detachment from peritubular capillaries. 4. In the present review, we summarize the pathologically vital roles of kidney pericytes in fibrosis, including our new findings. The study of kidney pericytes and endothelial-pericyte cross-talk will identify novel therapeutic targets for currently incurable chronic kidney diseases.
Collapse
Affiliation(s)
- Yujiro Kida
- Renal Division and Center for Lung Biology, Department of Medicine and Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
603
|
Sugiyama N, Kohno M, Yokoyama T. Inhibition of the p38 MAPK pathway ameliorates renal fibrosis in an NPHP2 mouse model. Nephrol Dial Transplant 2011; 27:1351-8. [PMID: 22076433 DOI: 10.1093/ndt/gfr550] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nephronophthisis (NPHP), the most frequent genetic cause of end-stage kidney disease in children and young adults, is characterized by a variable number of renal cysts associated with cortical tubular atrophy and interstitial fibrosis. The p38 mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling pathway involved in the production of profibrotic mediators. The relationship between p38 MAPK and renal fibrosis in NPHP2 is unknown. METHODS We administered a selective p38 MAPK inhibitor, FR167653, in a NPHP2 mouse model (inv/inv, invΔC mice) from 3 to 6 weeks old, and the kidneys were examined at 6 weeks of age. Phosphorylation of p38 MAPK (p-p38 MAPK) protein levels, the degree of renal fibrosis, messenger RNA (mRNA) levels for extracellular matrix genes and mRNA levels for transforming growth factor in the kidneys were studied. Effect of an extracellular signal-regulated protein kinase (ERK) kinase (MEK) inhibitor on renal fibrosis was also evaluated. RESULTS Expression of extracellular matrix genes and p-p38 MAPK were increased in the NPHP2 mouse model kidney. FR167653 successfully decreased p-p38 MAPK levels, the degree of fibrosis and extracellular matrix gene expressions. However, the FR167653 did not prevent cyst expansion, abnormal cell proliferation and acceleration of apoptosis and did not influence ERK activation. In contrast, MEK inhibition reduced both cyst expansion and fibrosis without affecting p38 MAPK activation. CONCLUSIONS These results suggest that inhibition of p38 MAPK reduced renal fibrosis but not cyst expansion, cell proliferation and apoptosis in NPHP2 model mice. Our results suggest that p38 MAPK and ERK signaling pathways independently affect renal fibrosis in inv mutant mice.
Collapse
Affiliation(s)
- Noriyuki Sugiyama
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
604
|
Wang JH, Newbury LJ, Knisely AS, Monia B, Hendry BM, Sharpe CC. Antisense knockdown of Kras inhibits fibrosis in a rat model of unilateral ureteric obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:82-90. [PMID: 22074740 DOI: 10.1016/j.ajpath.2011.09.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/26/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
Abstract
Tubulointerstitial fibrosis is the hallmark of chronic kidney disease and is characterized by an increase in the number and activity of interstitial fibroblasts and by excessive matrix deposition. Ras is an intracellular signaling molecule involved in cell proliferation and differentiation. It has recently been implicated in the pathogenesis of renal fibrosis. Of the three different isoforms of Ras (Kirsten, Harvey, and Neural), we previously demonstrated that the Kirsten isoform is key in the control of renal fibroblast proliferation in vitro. In this study, we used gene therapy in the form of antisense oligonucleotides (ASOs) specifically to silence Kras (alias Ki-ras) expression in a rat model of renal fibrosis caused by unilateral ureteric obstruction. We demonstrate that renal Kras expression increases by 70% in this model compared with sham-operated animals and that treatment with ASOs can reduce total renal Kras by >90% to levels well below basal. This silencing is associated with a dramatic inhibition of interstitial fibrosis, a fivefold reduction in α-smooth muscle actin expression, and a 2.4-fold reduction in collagen I deposition. This inhibition was observed despite histologic evidence of marked interstitial inflammation. These findings demonstrate that silencing Kras expression can markedly inhibit renal fibrosis. This strategy should be considered as a new potential therapeutic avenue.
Collapse
Affiliation(s)
- Jia-Hui Wang
- Department of Renal Medicine, King's College Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
605
|
Abstract
The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease.
Collapse
Affiliation(s)
- Maria Luisa S Sequeira Lopez
- University of Virginia School of Medicine, 409 Lane Road, MR4 Building, Room 2001, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
606
|
Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada SI. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 2011; 124:3654-64. [PMID: 22045730 DOI: 10.1242/jcs.086629] [Citation(s) in RCA: 476] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation of adipocytes and collagen type-I-producing cells (fibrosis) is observed in muscular dystrophies. The origin of these cells had been largely unknown, but recently we identified mesenchymal progenitors positive for platelet-derived growth factor receptor alpha (PDGFRα) as the origin of adipocytes in skeletal muscle. However, the origin of muscle fibrosis remains largely unknown. In this study, clonal analyses show that PDGFRα(+) cells also differentiate into collagen type-I-producing cells. In fact, PDGFRα(+) cells accumulated in fibrotic areas of the diaphragm in the mdx mouse, a model of Duchenne muscular dystrophy. Furthermore, mRNA of fibrosis markers was expressed exclusively in the PDGFRα(+) cell fraction in the mdx diaphragm. Importantly, TGF-β isoforms, known as potent profibrotic cytokines, induced expression of markers of fibrosis in PDGFRα(+) cells but not in myogenic cells. Transplantation studies revealed that fibrogenic PDGFRα(+) cells mainly derived from pre-existing PDGFRα(+) cells and that the contribution of PDGFRα(-) cells and circulating cells was limited. These results indicate that mesenchymal progenitors are the main origin of not only fat accumulation but also fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
607
|
Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 2011; 80:915-925. [DOI: 10.1038/ki.2011.217] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
608
|
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Youhua Liu
- Department of Pathology, University of Pittsburgh, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
609
|
Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011; 21:193-215. [PMID: 21839917 DOI: 10.1016/j.devcel.2011.07.001] [Citation(s) in RCA: 1945] [Impact Index Per Article: 138.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pericytes, the mural cells of blood microvessels, have recently come into focus as regulators of vascular morphogenesis and function during development, cardiovascular homeostasis, and disease. Pericytes are implicated in the development of diabetic retinopathy and tissue fibrosis, and they are potential stromal targets for cancer therapy. Some pericytes are probably mesenchymal stem or progenitor cells, which give rise to adipocytes, cartilage, bone, and muscle. However, there is still confusion about the identity, ontogeny, and progeny of pericytes. Here, we review the history of these investigations, indicate emerging concepts, and point out problems and promise in the field of pericyte biology.
Collapse
Affiliation(s)
- Annika Armulik
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
610
|
Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DCH, Zheng G. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; 2011:567305. [PMID: 22007144 PMCID: PMC3191826 DOI: 10.1155/2011/567305] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
E-Cadherin/β-catenin complex plays an important role in maintaining epithelial integrity and disrupting this complex affect not only the adhesive repertoire of a cell, but also the Wnt-signaling pathway. Aberrant expression of the complex is associated with a wide variety of human malignancies and disorders of fibrosis resulting from epithelial-mesenchymal transition. These associations provide insights into the complexity that is likely responsible for the fibrosis/tumor suppressive action of E-cadherin/β-catenin.
Collapse
Affiliation(s)
- Xinrui Tian
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
- Department of Respiratory, Second Hospital of Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Zhuola Liu
- Department of Respiratory, Second Hospital of Shanxi Medical University, Shanxi, Taiyuan 030001, China
| | - Bo Niu
- Biotechnology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianlin Zhang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Thian Kui Tan
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - So Ra Lee
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - Ye Zhao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - David C. H. Harris
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
611
|
Karén J, Rodriguez A, Friman T, Dencker L, Sundberg C, Scholz B. Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro. PLoS One 2011; 6:e24954. [PMID: 21966390 PMCID: PMC3178576 DOI: 10.1371/journal.pone.0024954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels.
Collapse
Affiliation(s)
- Jakob Karén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Rodriguez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tomas Friman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lennart Dencker
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Christian Sundberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Women and Children's Health, Uppsala University Hospital, Uppsala, Sweden
- * E-mail:
| | - Birger Scholz
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
612
|
Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine Growth Factor Rev 2011; 22:221-9. [PMID: 21924665 DOI: 10.1016/j.cytogfr.2011.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein 7 (BMP7) is a member of the transforming growth factor-β (TGF-β) superfamily of growth factors. In recent years, it has become clear that BMP7 is a very pleiotropic growth factor. As described in this review, it plays a pivotal role in the development of bone and kidney, and has only recently been demonstrated to also be crucially involved in differentiation of brown adipose tissue. Because BMP7 thus controls the development and maintenance of many physiological processes in the human body, aberrant expression of BMP7 is associated with a variety of diseases. This review gives a broad overview on the involvement of BMP7 in several pathological conditions, such as incomplete fracture healing, osteoarthritis, the development of bone metastases, renal fibrosis and obesity. Furthermore, the therapeutic potential of BMP7 in these disease states is discussed.
Collapse
|
613
|
Asada N, Takase M, Nakamura J, Oguchi A, Asada M, Suzuki N, Yamamura KI, Nagoshi N, Shibata S, Rao TN, Fehling HJ, Fukatsu A, Minegishi N, Kita T, Kimura T, Okano H, Yamamoto M, Yanagita M. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest 2011; 121:3981-90. [PMID: 21911936 DOI: 10.1172/jci57301] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/26/2011] [Indexed: 12/19/2022] Open
Abstract
In chronic kidney disease, fibroblast dysfunction causes renal fibrosis and renal anemia. Renal fibrosis is mediated by the accumulation of myofibroblasts, whereas renal anemia is mediated by the reduced production of fibroblast-derived erythropoietin, a hormone that stimulates erythropoiesis. Despite their importance in chronic kidney disease, the origin and regulatory mechanism of fibroblasts remain unclear. Here, we have demonstrated that the majority of erythropoietin-producing fibroblasts in the healthy kidney originate from myelin protein zero-Cre (P0-Cre) lineage-labeled extrarenal cells, which enter the embryonic kidney at E13.5. In the diseased kidney, P0-Cre lineage-labeled fibroblasts, but not fibroblasts derived from injured tubular epithelial cells through epithelial-mesenchymal transition, transdifferentiated into myofibroblasts and predominantly contributed to fibrosis, with concomitant loss of erythropoietin production. We further demonstrated that attenuated erythropoietin production in transdifferentiated myofibroblasts was restored by the administration of neuroprotective agents, such as dexamethasone and neurotrophins. Moreover, the in vivo administration of tamoxifen, a selective estrogen receptor modulator, restored attenuated erythropoietin production as well as fibrosis in a mouse model of kidney fibrosis. These findings reveal the pathophysiological roles of P0-Cre lineage-labeled fibroblasts in the kidney and clarify the link between renal fibrosis and renal anemia.
Collapse
Affiliation(s)
- Nariaki Asada
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
614
|
Chase K, Lawler DF, McGill LD, Miller S, Nielsen M, Lark KG. Age relationships of postmortem observations in Portuguese Water Dogs. AGE (DORDRECHT, NETHERLANDS) 2011; 33:461-473. [PMID: 20845083 PMCID: PMC3168605 DOI: 10.1007/s11357-010-9181-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
A dog model has been used to evaluate histological changes arising from senescence. Autopsies of 145 Portuguese Water Dogs have been used to evaluate the individual and group "state of health" at time of death. For each dog, weights or dimensions of organs or tissues were obtained, together with histological evaluation of tissues. Twenty-three morphological metrics correlated significantly to age at death. Many of these involved muscles; others were associated with derivatives of embryonic foregut. The latter included lengths of the small intestine and trachea as well as weights of the stomach and some lung lobes. Nearly all of the dogs examined had histological changes in multiple tissues, ranging from two to 12 per dog. Associations among pathologies included inflammatory bowel disease with osteoporosis and dental calculus/periodontitis with atherosclerosis and amyloidosis. In addition, two clusters of histological changes were correlated to aging: hyperplasia, frequency of adenomas, and hemosiderosis constituted one group; inflammation, plasmacytic and lymphocytic infiltration, fibrosis, and atrophy, another. Heritability analysis indicated that many of the changes in tissue/organ morphology or histology could be heritable and possibly associated with IGF1, but more autopsies will be required to substantiate these genetic relationships.
Collapse
Affiliation(s)
- Kevin Chase
- Department of Biology, University of Utah, 257 South 1400 E., Room 201, Salt Lake City, UT 84112 USA
| | | | - Lawrence D. McGill
- Animal Reference Pathology Division, ARUP, 500 Chipeta Way, Salt Lake City, UT 84108 USA
| | - Shawn Miller
- Department of Biology, University of Utah, 257 South 1400 E., Room 201, Salt Lake City, UT 84112 USA
| | - Mark Nielsen
- Department of Biology, University of Utah, 257 South 1400 E., Room 201, Salt Lake City, UT 84112 USA
| | - Karl G. Lark
- Department of Biology, University of Utah, 257 South 1400 E., Room 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
615
|
|
616
|
Abstract
Although infectiological stimuli, environmental factors and genotypic features are known to contribute to the initiation and perpetuation of systemic sclerosis (SSc), its etiology still remains to be enigmatic, and less elusive insights are to be achieved by ongoing and future investigations. Being characterized, however, as chronic autoimmune disease with excessive collagen accumulation in skin, synovia and visceral organs such as lung, heart, and digestive tract along with obliterating angiopathy, the pathophysiology of SSc can be summarized as being based on imbalances of the cellular and humoral immune system, vascular dysfunction and activation of resident connective tissue cells. A complex interplay between these major components manages to establish and maintain the inability of the vasculature to adequately react to the need for dilatation, constriction and growth of new vessels, to cause the increased deposition of extracellular matrix constituents as well as to facilitate immunological disarrangement. Despite parallels to the chicken and egg causality dilemma, all of these account for what later clinicians observe in patients suffering from Raynaud's phenomenon, digital ulcers, sclerodactyly, rigidity of the face, microstomia, sicca syndrome, dyspnea, dry cough, pulmonary hypertension, palpitations, syncopes, renal insufficiency, dysphagia, gastroesophageal reflux, dyspepsia, generalized arthralgias, but also dyspareunia, or erectile dysfunction.
Collapse
Affiliation(s)
- Matthias Geyer
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University of Giessen, Kerckhoff-Klinik, Bad Nauheim, Germany
| | | |
Collapse
|
617
|
Chen G, Lin SC, Chen J, He L, Dong F, Xu J, Han S, Du J, Entman ML, Wang Y. CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J Am Soc Nephrol 2011; 22:1876-86. [PMID: 21816936 DOI: 10.1681/asn.2010080881] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although fibroblasts are responsible for the production and deposition of extracellular matrix in renal fibrosis, their origin is controversial. Circulating fibroblast precursors may contribute to the pathogenesis of renal fibrosis, but the signaling mechanisms underlying the recruitment of bone marrow-derived fibroblast precursors into the kidney in response to injury are incompletely understood. Here, in the unilateral ureteral obstruction model of renal fibrosis, tubular epithelial cells upregulated the chemokine CXCL16 in obstructed kidneys, and circulating fibroblast precursors expressed the CXCL16 receptor, CXCR6. Compared with wild-type mice, CXCL16-knockout mice accumulated significantly fewer bone marrow-derived fibroblast precursors in obstructed kidneys. CXCL16-knockout mice also exhibited significantly fewer CD45-, collagen I-, and CXCR6-triple-positive fibroblast precursors in injured kidneys. Furthermore, targeted deletion of CXCL16 inhibited myofibroblast activation, reduced collagen deposition, and suppressed expression of collagen I and fibronectin. In conclusion, CXCL16 contributes to the pathogenesis of renal fibrosis by recruiting bone marrow-derived fibroblast precursors.
Collapse
Affiliation(s)
- Gang Chen
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
618
|
Pinzani M. Epithelial-mesenchymal transition in chronic liver disease: fibrogenesis or escape from death? J Hepatol 2011; 55:459-65. [PMID: 21320559 DOI: 10.1016/j.jhep.2011.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 12/13/2022]
Abstract
The possibility that epithelial-mesenchymal transition (EMT) could contribute to hepatic fibrogenesis in chronic liver diseases as reported in other organs, particularly the kidney, reinforced the concept that activated hepatic stellate cells were not the only key players in the hepatic fibrogenic process and that other cell types, either hepatic (i.e. portal fibroblast) or extrahepatic (bone marrow-derived cells and circulating fibrocytes) could contribute to this process. The possibility of the rapid mobilization of a large amount of fibrogenic cells by EMT after liver tissue injury made this phenomenon a relevant and suitable target for anti-fibrogenic strategies. Following an initial enthusiasm for the discovery of this novel pathway in fibrogenesis and the publication of a several highly quoted papers, more recent research has started to cast serious doubts upon the real relevance of this phenomenon in human fibrogenetic disorders. The debate on the authenticity of EMT or at least on its real contribution to the fibrogenic process has become very animated, sometimes reaching levels of "religious" integralism. The overall result is a general confusion on the meaning and on the definition of several key aspects. The aim of this article is to analyze and discuss the evidence supporting or confuting this possibility in order to reach reasonable and useful conclusions.
Collapse
Affiliation(s)
- Massimo Pinzani
- Dipartimento di Medicina Interna, Center for Research, High Education and Transfer "DENOThe", Università degli Studi di Firenze, Viale G.B. Morgagni, 85, 50134 Firenze, Italy.
| |
Collapse
|
619
|
Zhou C, Shan Y, Zhao H, He P. Biological effects of lentivirus-mediated shRNA targeting collagen type I on the mesangial cells of rats. Ren Fail 2011; 33:334-40. [PMID: 21401360 DOI: 10.3109/0886022x.2011.559679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM To investigate the effects of lentivirus-mediated shRNA targeting collagen type I on the mesangial cells of rats and the feasibility of lentivirus-mediated shRNA delivery through renal parenchyma injection. METHODS Anti-collagen type I shRNA lentiviral vector was constructed, and rat mesangial cells were transfected with transfection enhancer (control group), blank lentiviral vectors (pSC-GFP group), and pSC-GFP/Col I lentiviral vectors (pSC-GFP/Col I group). Transfection efficiency and cell cycle were determined by flow cytometry. RT-PCR and Western blot were performed to detect the mRNA and protein expressions of Col I. Cell proliferation was evaluated by 3-(4,5)-dimethylthiahiazo-3, 5-di-phenytetrazolium-romide (MTT) assay and direct counting, and apoptosis was detected using AnnexinV/PE staining. The feasibility of renal parenchyma injection of lentiviral vectors was assessed. RESULTS The transfection efficiency was 75.42%. The expressions of collagen type I in pSC-GFP/Col I group was markedly decreased when compared with the other two groups. PSC-GFP/Col I group was higher than pSC-GFP group in the inhibition efficiency of mesangial cell after transfection. Results revealed that pSC-GFP/Col I transfection induced apoptosis to a certain extent. The proportion of cells in G2/M phase in pSC-GFP/Col I group and pSC-GFP group was higher than that in control group after of transfection. Moreover, cells arrested in S phase were markedly increased. Our results also revealed renal injection of lentivirus-mediated shRNA was feasible. CONCLUSION Lentivirus-mediated shRNA targeting collagen type I could stably and efficiently transfect rat mesangial cells and significantly suppressed collagen type I expressions with acceptable safety. Renal injection of Col I lentivirus-mediated shRNA was also feasible.
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Nephrology, Navy General Hospital, Haidian, Beijing, PR China.
| | | | | | | |
Collapse
|
620
|
Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol 2011; 301:F793-801. [PMID: 21775484 DOI: 10.1152/ajprenal.00273.2011] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
621
|
Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisén J. A pericyte origin of spinal cord scar tissue. Science 2011; 333:238-42. [PMID: 21737741 DOI: 10.1126/science.1203165] [Citation(s) in RCA: 647] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is limited regeneration of lost tissue after central nervous system injury, and the lesion is sealed with a scar. The role of the scar, which often is referred to as the glial scar because of its abundance of astrocytes, is complex and has been discussed for more than a century. Here we show that a specific pericyte subtype gives rise to scar-forming stromal cells, which outnumber astrocytes, in the injured spinal cord. Blocking the generation of progeny by this pericyte subtype results in failure to seal the injured tissue. The formation of connective tissue is common to many injuries and pathologies, and here we demonstrate a cellular origin of fibrosis.
Collapse
Affiliation(s)
- Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
622
|
Meng LQ, Tang JW, Wang Y, Zhao JR, Shang MY, Zhang M, Liu SY, Qu L, Cai SQ, Li XM. Astragaloside IV synergizes with ferulic acid to inhibit renal tubulointerstitial fibrosis in rats with obstructive nephropathy. Br J Pharmacol 2011; 162:1805-18. [PMID: 21232035 PMCID: PMC3081123 DOI: 10.1111/j.1476-5381.2011.01206.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The combination of Chinese herbs, Astragali Radix and Angelicae Sinensis Radix, could alleviate renal interstitial fibrosis. Astragaloside IV (AS-IV) and ferulic acid (FA) are the two major active constituents in this combination. In this study, we employed rats with unilateral ureteral obstruction to determine whether AS-IV and FA have the same renoprotective effects and investigated the mechanisms of this action. EXPERIMENTAL APPROACH Renal pathological changes were evaluated after treatment with AS-IV, FA or AS-IV + FA (AF) for 10 days. Meanwhile, the expression of transforming growth factor β1 (TGF-β1), fibronectin, α-smooth muscle actin (α-SMA), phosphorylation of c-Jun NH2-terminal kinase (p-JNK) and nitric oxide (NO) production in kidney were determined. The expressions of fibronectin, α-SMA, mitogen-activated protein kinases [JNK, extracellular signal-regulated kinases (ERK), P38] in TGF-β1-treated NRK-49F cells or interleukin-1-treated HK-2 cells after AS-IV, FA or AF were assessed. KEY RESULTS AF alleviated the infiltration of mononuclear cells, tubular atrophy and interstitial fibrosis; reduced the expression of fibronectin, α-SMA, TGF-β1 and p-JNK; and dramatically increased the production of NO in obstructed kidneys. Neither AS-IV nor FA alone improved renal damage, but both increased NO production. AF inhibited α-SMA and fibronectin expression in NRK-49F or HK-2 cells. Furthermore, AF significantly inhibited IL-1β-induced JNK phosphorylation, without affecting ERK or P38 phosphorylation. Neither AS-IV nor FA alone had any effect on the cells. CONCLUSIONS AND IMPLICATIONS AS-IV synergizes with FA to alleviate renal tubulointerstitial fibrosis; this was associated with inhibition of tubular epithelial–mesenchymal transdifferentiation (EMT) and fibroblast activation, as well as an increase in NO production in the kidney.
Collapse
Affiliation(s)
- L Q Meng
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
623
|
Abstract
Chronic liver injuries of different etiologies eventually lead to fibrosis, a scarring process associated with increased and altered deposition of extracellular matrix in the liver. Progression of fibrosis has a major worldwide clinical impact due to the high number of patients affected by chronic liver disease which can lead to severe complications, expensive treatment, a possible need for liver transplantation, and death. Liver fibrogenesis is characterized by activation of hepatic stellate cells and other extracellular matrix producing cells. Liver fibrosis may regress following specific therapeutic interventions. Other than removing agents causing chronic liver damage, no antifibrotic drug is currently available in clinical practice. The extent of liver fibrosis is variable between individuals, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. Until recently it was believed that this process was irreversible. However, emerging experimental and clinical evidence is starting to show that even cirrhosis in its early stages is potentially reversible.
Collapse
Affiliation(s)
- Mona H Ismail
- Department of Internal Medicine, Division of Gastroenterology, King Fahad University Hospital, Al-Khobar, Saudi Arabia
| | - Massimo Pinzani
- Dipartimento di Medicina Interna Center for Research, High Education and Transfer, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
624
|
Ismail MH, Pinzani M. Reversal of hepatic fibrosis: pathophysiological basis of antifibrotic therapies. HEPATIC MEDICINE : EVIDENCE AND RESEARCH 2011. [PMID: 24367223 DOI: 10.2147/hmer.s905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic liver injuries of different etiologies eventually lead to fibrosis, a scarring process associated with increased and altered deposition of extracellular matrix in the liver. Progression of fibrosis has a major worldwide clinical impact due to the high number of patients affected by chronic liver disease which can lead to severe complications, expensive treatment, a possible need for liver transplantation, and death. Liver fibrogenesis is characterized by activation of hepatic stellate cells and other extracellular matrix producing cells. Liver fibrosis may regress following specific therapeutic interventions. Other than removing agents causing chronic liver damage, no antifibrotic drug is currently available in clinical practice. The extent of liver fibrosis is variable between individuals, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. Until recently it was believed that this process was irreversible. However, emerging experimental and clinical evidence is starting to show that even cirrhosis in its early stages is potentially reversible.
Collapse
Affiliation(s)
- Mona H Ismail
- Department of Internal Medicine, Division of Gastroenterology, King Fahad University Hospital, Al-Khobar, Saudi Arabia
| | - Massimo Pinzani
- Dipartimento di Medicina Interna Center for Research, High Education and Transfer, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
625
|
Crawford C, Kennedy-Lydon TM, Callaghan H, Sprott C, Simmons RL, Sawbridge L, Syme HM, Unwin RJ, Wildman SSP, Peppiatt-Wildman CM. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol (Oxf) 2011; 202:241-51. [PMID: 21624094 DOI: 10.1111/j.1748-1716.2011.02310.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We hypothesized that extracellular nucleotides, established as being released from renal tubular epithelial cells, act at pericytes to regulate vasa recta capillary diameter. METHODS A rat live kidney slice model and video imaging techniques were used to investigate the effects of extracellular nucleotides on in situ (subsurface) vasa recta diameter at pericyte and non-pericyte sites. In addition, RT-qPCR was used to quantify P2 receptor mRNA expression in isolated vasa recta. RESULTS Extracellular ATP, UTP, benzylbenzyl ATP (BzATP) or 2-methylthioATP (2meSATP) evoked a significantly greater vasoconstriction of subsurface vasa recta at pericytes than at non-pericyte sites. The rank order of agonist potency was BzATP = 2meSATP > ATP = UTP. The vasoconstriction evoked at pericyte sites by ATP was significantly attenuated by the P2 receptor antagonists suramin, pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) or Reactive Blue-2 (RB-2). UTP-evoked vasoconstriction at pericytes was attenuated by suramin or RB-2 but not PPADS. Interestingly, suramin or PPADS, when applied in the absence of a P2 receptor agonist, evoked a weak but significant vasoconstriction of vasa recta at pericyte sites, suggesting tonic vasodilation by nucleotides. Significant levels of P2X(1, 3 and 7) and P2Y(4 and 6) receptor mRNA were detected in vasa recta. CONCLUSION Extracellular nucleotides act at pericytes to cause vasoconstriction of in situ vasa recta. Pharmacological characterization, supported by RT-qPCR data, suggests that P2X(1 and 7) and P2Y(4) receptors mediate nucleotide-evoked vasoconstriction of vasa recta by pericytes. We propose that nucleotides released from renal tubular epithelial cells, in close proximity to vasa recta capillaries, are key in regulating renal medullary blood flow.
Collapse
Affiliation(s)
- C Crawford
- Urinary System Physiology Unit, Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
626
|
Hills CE, Squires PE. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 2011; 22:131-9. [PMID: 21757394 DOI: 10.1016/j.cytogfr.2011.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transforming Growth Factor-beta (TGF-β) is a pro-sclerotic cytokine widely associated with the development of fibrosis in diabetic nephropathy. Central to the underlying pathology of tubulointerstitial fibrosis is epithelial-to-mesenchymal transition (EMT), or the trans-differentiation of tubular epithelial cells into myofibroblasts. This process is accompanied by a number of key morphological and phenotypic changes culminating in detachment of cells from the tubular basement membrane and migration into the interstitium. Ultimately these cells reside as activated myofibroblasts and further exacerbate the state of fibrosis. A large body of evidence supports a role for TGF-β and downstream Smad signalling in the development and progression of renal fibrosis. Here we discuss a role for TGF-β as the principle effector in the development of renal fibrosis in diabetic nephropathy, focusing on the role of the TGF-β1 isoform and its downstream signalling intermediates, the Smad proteins. Specifically we review evidence for TGF-β1 induced EMT in both the proximal and distal regions of the nephron and describe potential therapeutic strategies that may target TGF-β1 activity.
Collapse
Affiliation(s)
- Claire E Hills
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
627
|
Liu N, Tolbert E, Pang M, Ponnusamy M, Yan H, Zhuang S. Suramin inhibits renal fibrosis in chronic kidney disease. J Am Soc Nephrol 2011; 22:1064-75. [PMID: 21617121 DOI: 10.1681/asn.2010090956] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The activation of cytokine and growth factor receptors associates with the development and progression of renal fibrosis. Suramin is a compound that inhibits the interaction of several cytokines and growth factors with their receptors, but whether suramin inhibits the progression of renal fibrosis is unknown. Here, treatment of cultured renal interstitial fibroblasts with suramin inhibited their activation induced by TGF-β1 and serum. In a mouse model of obstructive nephropathy, administration of a single dose of suramin immediately after ureteral obstruction abolished the expression of fibronectin, largely suppressed expression of α-SMA and type I collagen, and reduced the deposition of extracellular matrix proteins. Suramin also decreased the expression of multiple cytokines including TGF-β1 and reduced the interstitial infiltration of leukocytes. Moreover, suramin decreased expression of the type II TGF-β receptor, blocked phosphorylation of the EGF and PDGF receptors, and inactivated several signaling pathways associated with the progression of renal fibrosis. In a rat model of CKD, suramin abrogated proteinuria, limited the decline of renal function, and prevented glomerular and tubulointerstitial damage. Collectively, these findings indicate that suramin is a potent antifibrotic agent that may have therapeutic potential for patients with fibrotic kidney diseases.
Collapse
Affiliation(s)
- Na Liu
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island, USA
| | | | | | | | | | | |
Collapse
|
628
|
Kato N, Kosugi T, Sato W, Ishimoto T, Kojima H, Sato Y, Sakamoto K, Maruyama S, Yuzawa Y, Matsuo S, Kadomatsu K. Basigin/CD147 promotes renal fibrosis after unilateral ureteral obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:572-9. [PMID: 21281789 DOI: 10.1016/j.ajpath.2010.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/03/2010] [Accepted: 10/01/2010] [Indexed: 12/20/2022]
Abstract
Regardless of their primary causes, progressive renal fibrosis and tubular atrophy are the main predictors of progression to end-stage renal disease. Basigin/CD147 is a multifunctional molecule-it induces matrix metalloproteinases and hyaluronan, for example-and has been implicated in organ fibrosis. However, the relationship between basigin and organ fibrosis has been poorly studied. We investigated basigin's role in renal fibrosis using a unilateral ureteral obstruction model. Basigin-deficient mice (Bsg(-/-)) demonstrated significantly less fibrosis after surgery than Bsg(+/+) mice. Fewer macrophages had infiltrated in Bsg(-/-) kidneys. Consistent with these in vivo data, primary cultured tubular epithelial cells from Bsg(-/-) mice produced less matrix metalloproteinase and exhibited less motility on stimulation with transforming growth factor β. Furthermore, Bsg(-/-) embryonic fibro blasts produced less hyaluronan and α-smooth muscle actin after transforming growth factor β stimulation. Together, these results demonstrate for the first time that basigin is a key regulator of renal fibrosis. Basigin could be a candidate target molecule for the prevention of organ fibrosis.
Collapse
Affiliation(s)
- Noritoshi Kato
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
629
|
Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, Wu KD, Tsai TJ, Duffield JS. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:911-23. [PMID: 21281822 DOI: 10.1016/j.ajpath.2010.10.012] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/27/2010] [Accepted: 10/14/2010] [Indexed: 11/20/2022]
Abstract
Microvascular pericytes and perivascular fibroblasts have recently been identified as the source of scar-producing myofibroblasts that appear after injury of the kidney. We show that cross talk between pericytes and endothelial cells concomitantly dictates development of fibrosis and loss of microvasculature after injury. When either platelet-derived growth factor receptor (R)-β signaling in pericytes or vascular endothelial growth factor (VEGF)R2 signaling in endothelial cells was blocked by circulating soluble receptor ectodomains, both fibrosis and capillary rarefaction were markedly attenuated during progressive kidney injury. Blockade of either receptor-mediated signaling pathway prevented pericyte differentiation and proliferation, but VEGFR2 blockade also attenuated recruitment of inflammatory macrophages throughout disease progression. Whereas injury down-regulated angiogenic VEGF164, the dys-angiogenic isomers VEGF120 and VEGF188 were up-regulated, suggesting that pericyte-myofibroblast differentiation triggers endothelial loss by a switch in secretion of VEGF isomers. These findings link fibrogenesis inextricably with microvascular rarefaction for the first time, add new significance to fibrogenesis, and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shuei-Liong Lin
- Renal Division, Department of Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis - evidence for and against. Int J Exp Pathol 2011. [PMID: 21554437 DOI: 10.1111/j.1365-2613.2011.00775.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a well established biological process in metazoan embryological development. Over the past 15 years, investigators have sought to establish whether EMT also occurs in renal epithelial cells, following kidney injury, and to show that the mesenchymal cells formed could give rise to myofibroblasts which populate the renal interstitium, causing fibrosis within it. There is no doubt that proximal tubular epithelial cells (PTECs) can undergo EMT in vitro in response to TGFβ-1 and other inflammatory stimuli. Moreover, the results of experiments with animal models of renal fibrosis and examination of biopsies from patients with chronic kidney disease have lent support to the hypothesis that EMT occurs in vivo. This review discusses some of the key evidence underlying that idea and summarises recent advances in understanding the molecular mechanism underlying the process. Early experiments using mice which were genetically engineered to mark PTECs with the LacZ gene to trace their fate following kidney injury provided evidence supporting the occurrence of EMT. Recently, however, cell lineage tracking experiments using the red fluorescent protein (RFP) as a high-resolution marker for cells of renal epithelial origin did not replicate this result; the interstitial space following kidney injury was devoid of RFP expressing cells, leading the investigators to reject the renal EMT hypothesis.
Collapse
Affiliation(s)
- Maria Fragiadaki
- Imperial College Kidney and Transplant Institute, Imperial College London, Hammersmith Hospital, London, UK
| | | |
Collapse
|
631
|
Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis - evidence for and against. Int J Exp Pathol 2011; 92:143-50. [PMID: 21554437 DOI: 10.1111/j.1365-2613.2011.00775.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a well established biological process in metazoan embryological development. Over the past 15 years, investigators have sought to establish whether EMT also occurs in renal epithelial cells, following kidney injury, and to show that the mesenchymal cells formed could give rise to myofibroblasts which populate the renal interstitium, causing fibrosis within it. There is no doubt that proximal tubular epithelial cells (PTECs) can undergo EMT in vitro in response to TGFβ-1 and other inflammatory stimuli. Moreover, the results of experiments with animal models of renal fibrosis and examination of biopsies from patients with chronic kidney disease have lent support to the hypothesis that EMT occurs in vivo. This review discusses some of the key evidence underlying that idea and summarises recent advances in understanding the molecular mechanism underlying the process. Early experiments using mice which were genetically engineered to mark PTECs with the LacZ gene to trace their fate following kidney injury provided evidence supporting the occurrence of EMT. Recently, however, cell lineage tracking experiments using the red fluorescent protein (RFP) as a high-resolution marker for cells of renal epithelial origin did not replicate this result; the interstitial space following kidney injury was devoid of RFP expressing cells, leading the investigators to reject the renal EMT hypothesis.
Collapse
Affiliation(s)
- Maria Fragiadaki
- Imperial College Kidney and Transplant Institute, Imperial College London, Hammersmith Hospital, London, UK
| | | |
Collapse
|
632
|
Chu AS, Diaz R, Hui JJ, Yanger K, Zong Y, Alpini G, Stanger BZ, Wells RG. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 2011; 53:1685-95. [PMID: 21520179 PMCID: PMC3082729 DOI: 10.1002/hep.24206] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Whether or not cholangiocytes or their hepatic progenitors undergo an epithelial-to-mesenchymal transition (EMT) to become matrix-producing myofibroblasts during biliary fibrosis is a significant ongoing controversy. To assess whether EMT is active during biliary fibrosis, we used Alfp-Cre × Rosa26-YFP mice, in which the epithelial cells of the liver (hepatocytes, cholangiocytes, and their bipotential progenitors) are heritably labeled at high efficiency with yellow fluorescent protein (YFP). Primary cholangiocytes isolated from our reporter strain were able to undergo EMT in vitro when treated with transforming growth factor-β1 alone or in combination with tumor necrosis factor-α, as indicated by adoption of fibroblastoid morphology, intracellular relocalization of E-cadherin, and expression of α-smooth muscle actin (α-SMA). To determine whether EMT occurs in vivo, we induced liver fibrosis in Alfp-Cre × Rosa26-YFP mice using the bile duct ligation (BDL) (2, 4, and 8 weeks), carbon tetrachloride (CCl(4) ) (3 weeks), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; 2 and 3 weeks) models. In no case did we find evidence of colocalization of YFP with the mesenchymal markers S100A4, vimentin, α-SMA, or procollagen 1α2, although these proteins were abundant in the peribiliary regions. CONCLUSION Hepatocytes and cholangiocytes do not undergo EMT in murine models of hepatic fibrosis.
Collapse
Affiliation(s)
- Andrew S. Chu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rosalyn Diaz
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jia-Ji Hui
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Kilangsungla Yanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yiwei Zong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Gianfranco Alpini
- Digestive Disease Research Center, Scott & White; Department of Medicine, Scott & White and Texas A&M HSC COM; Central Texas Veterans HCS, Temple, Texas
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Rebecca G. Wells
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
633
|
|
634
|
Abstract
Stromal fibroblasts are the primary cells of the kidney that produce fibrotic matrix. CD248 is a stromal marker expressed on fibroblasts and pericytes within the human kidney. Here, we tested whether CD248 expression in the kidney colocalizes with fibrosis and if it is associated with known determinants of chronic kidney disease (CKD). CD248 expression was located and quantified in situ by immunohistochemistry in kidney biopsies from 93 patients with IgA nephropathy and compared with 22 archived biopsies encompassing normal kidney tissue as control. In normal kidney tissue, CD248 was expressed by resident pericytes, stromal fibroblasts, and was upregulated in human CKD. The expression was linked to known determinants of renal progression. This relationship was maintained in a multivariate analysis with CD248 expression linked to renal survival. CD248 was expressed by a population of α-smooth muscle actin (SMA)(+) myofibroblasts and α-SMA(-) stromal cells but not expressed on CD45(+) leukocytes. Thus, CD248 defines a subset of stromal cells, including but not limited to some myofibroblasts, linked to albuminuria and tubulointerstitial damage during tissue remodeling in CKD.
Collapse
|
635
|
Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 2011; 31:2392-403. [PMID: 21482667 DOI: 10.1128/mcb.01218-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic exposure of the liver to hepatotoxic agents initiates an aberrant wound healing response marked by proinflammatory, as well as fibrotic, changes, leading to compromised organ structure and function. In a variety of pathological states, correlative links have been established between tissue fibrosis and the expression of transcription factors associated with the induction of epithelial-mesenchymal cell transition (EMT) programs similar to those engaged during development. However, the role played by endogenously derived, EMT-associated transcription factors in fibrotic states in vivo remains undefined. Using a mouse model of acute liver fibrosis, we demonstrate that hepatocytes upregulate the expression of the zinc finger transcriptional repressor, Snail1, during tissue remodeling. Hepatocyte-specific ablation of Snail1 demonstrates that this transcription factor plays a key role in liver fibrosis progression in vivo by triggering the proximal genetic programs that control multiple aspects of fibrogenesis, ranging from growth factor expression and extracellular matrix biosynthesis to the ensuing chronic inflammatory responses that characterize this class of pathological disorders.
Collapse
|
636
|
Crisan M, Corselli M, Chen CW, Péault B. Multilineage stem cells in the adult: a perivascular legacy? Organogenesis 2011; 7:101-4. [PMID: 21593599 PMCID: PMC3142446 DOI: 10.4161/org.7.2.16150] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells proliferate extensively in cultures of unselected, total cell isolates from multiple fetal and adult organs. Perivascular cells, principally pericytes surrounding capillaries and microvessels, but also adventitial cells located around larger arteries and veins, have been recently identified as possible originators of mesenchymal stem cells, first by phenotypic analogies and eventually following stringent cell sorting. While it is clear that purified perivascular cells exhibit multiple mesodermal developmental potentials and become indistinguishable from conventionally derived mesenchymal stem cells after in vitro culture, the possible roles played by these blood vessel-bound cells in organogenesis and adult tissue repair remain elusive. Unsolved questions regarding the identity of mesenchymal stem cells have not compromised the consideration of these cells as outstanding candidates for cell therapies. Better knowledge of the lineage affiliation, tissue distribution and molecular identity of mesenchymal stem cells will contribute to the development of more efficient, safer therapeutic cells.
Collapse
Affiliation(s)
- Mihaela Crisan
- Department of Cell Biology; Erasmus MC Stem Cell Institute; Erasmus University; Rotterdam, The Netherlands
| | - Mirko Corselli
- Orthopaedic Hospital Research Center; University of California at Los Angeles; Los Angeles, CA
| | - Chien-Wen Chen
- Stem Cell Research Center; Children's Hospital; University of Pittsburgh; Pittsburgh, PA USA
| | - Bruno Péault
- Orthopaedic Hospital Research Center; University of California at Los Angeles; Los Angeles, CA
- David Geffen School of Medicine at UCLA and Broad Stem Cell Research Center; University of California at Los Angeles; Los Angeles, CA
- Center For Cardiovascular Science; Queen's Medical Research Institute; University of Edinburgh; Edinburgh, Scotland UK
| |
Collapse
|
637
|
Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 2011; 121:468-74. [PMID: 21370523 DOI: 10.1172/jci44595] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has become widely accepted as a mechanism by which injured renal tubular cells transform into mesenchymal cells that contribute to the development of fibrosis in chronic renal failure. However, an increasing number of studies raise doubts about the existence of this process in vivo. Herein, we review and summarize both sides of this debate, but it is our view that unequivocal evidence supporting EMT as an in vivo process in kidney fibrosis is lacking.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
638
|
Quaggin SE, Kapus A. Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 2011; 80:41-50. [PMID: 21430641 DOI: 10.1038/ki.2011.77] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothesis that epithelial-mesenchymal transition (EMT) might be a contributor to the accumulation of fibroblasts and myofibroblasts (MFs) in the kidney during fibrogenesis was postulated 15 years ago. This paradigm offered an elegant explanation of how the loss of epithelial functions is coupled to the gain of deleterious mesenchymal functions; for example, excessive matrix deposition. Moreover, it interpreted chronic kidney disease in a developmental context: because the tubular epithelium originates from the metanephric mesenchyme, EMT can be viewed as a dedifferentiation process in response to injury, which might serve healing or--if dysregulated--might facilitate fibrosis. Several observations support the role of EMT in renal fibrosis: (1) Tubular cells can transform to fibroblasts and MFs in vitro. (2) Histological 'snapshots' reveal the coexistence of epithelial and mesenchymal markers in transitioning tubular cells in fibrosis models and human kidney diseases. (3) Early lineage-tracing experiments detected mesenchymal markers in the genetically tagged epithelium. However, the paradigm has been recently challenged; new fate-mapping studies found no evidence for the expression of (myo)fibroblast markers in the epithelium during fibrogenesis. This review summarizes the key findings and caveats, aiming at a balanced view, which neither overestimates the role of the epithelium in MF generation nor denies the importance of epithelial plasticity in fibrogenesis.
Collapse
Affiliation(s)
- Susan E Quaggin
- Division of Nephrology, St Michael's Hospital, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
639
|
Abstract
Interstitial fibrosis, associated with extensive accumulation of extracellular matrix constituents in the cortical interstitium, is directly correlated to progression of renal disease. The earliest histological marker of this progression is the accumulation in the interstitium of fibroblasts with the phenotypic appearance of myofibroblasts. These myofibroblasts are contractile cells that express alpha smooth muscle actin and incorporate it into intracellular stress fibres. Although fibroblasts are histologically visible in normal kidneys, there are relatively few of them and proximal tubular epithelial cells predominate. In progressive disease, however, the interstitium becomes filled with myofibroblasts. In this review, we will examine the phenotype and function of fibroblasts and myofibroblasts in the cortical interstitium and the processes that may modulate them.
Collapse
Affiliation(s)
- Soma Meran
- Institute of Nephrology, School of Medicine, University of Cardiff, Heath Park, UK
| | | |
Collapse
|
640
|
Dussaule JC, Guerrot D, Huby AC, Chadjichristos C, Shweke N, Boffa JJ, Chatziantoniou C. The role of cell plasticity in progression and reversal of renal fibrosis. Int J Exp Pathol 2011; 92:151-7. [PMID: 21314743 DOI: 10.1111/j.1365-2613.2011.00760.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The need for novel insights into the mechanisms of progression of renal disease has become urgent during the last several years because of the increasing incidence of chronic renal disease worldwide. Independent of the underlying disease, the subsequent progression of renal fibrosis is characterized mainly by both an exaggerated synthesis and abnormal accumulation of extracellular matrix proteins produced by mesenchymal cells within the kidney. These cells are mainly myofibroblasts deriving from a variety of renal cells such as vascular smooth muscle, mesangial, resident stem, tubular epithelial, vascular endothelial cells or pericytes. The appearance of myofibroblasts is a reversible process, as suggested by studies in experimental models showing regression of renal fibrosis during therapy with antagonists and/or blockers of the renin-angiotensin system. An additional factor that can also affect the mechanisms of progression/regression of fibrosis is the plasticity of podocytes controlling glomerular filtration.
Collapse
Affiliation(s)
- Jean-Claude Dussaule
- Inserm UMR 702, Université Pierre et Marie Curie-Paris VI, Tenon Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
641
|
Abstract
Progression of fibrosis involves interstitial hypercellularity, matrix accumulation, and atrophy of epithelial structures, resulting in loss of normal function and ultimately organ failure. There is common agreement that the fibroblast/myofibroblast is the cell type most responsible for interstitial matrix accumulation and consequent structural deformations associated with fibrosis. During wound healing and progressive fibrotic events, fibroblasts transform into myofibroblasts acquiring smooth muscle features, most notably the expression of alpha-smooth muscle actin and synthesis of mesenchymal cell-related matrix proteins. In renal disease, glomerular mesangial cells also acquire a myofibroblast phenotype and synthesize the same matrix proteins. The origin of interstitial myofibroblasts during fibrosis is a matter of debate, where the cells are proposed to derive from resident fibroblasts, pericytes, perivascular adventitial, epithelial, and/or endothelial sources. Regardless of the origin of the cells, transforming growth factor-beta1 (TGF-β1) is the principal growth factor responsible for myofibroblast differentiation to a profibrotic phenotype and exerts its effects via Smad signaling pathways involving mitogen-activated protein kinase and Akt/protein kinase B. Additionally, reactive oxygen species (ROS) have important roles in progression of fibrosis. ROS are derived from a variety of enzyme sources, of which the nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase family has been identified as a major source of superoxide and hydrogen peroxide generation in the cardiovasculature and kidney during health and disease. Recent evidence indicates that the NAD(P)H oxidase homolog Nox4 is most accountable for ROS-induced fibroblast and mesangial cell activation, where it has an essential role in TGF-β1 signaling of fibroblast activation and differentiation into a profibrotic myofibroblast phenotype and matrix production. Information on the role of ROS in mesangial cell and fibroblast signaling is incomplete, and further research on myofibroblast differentiation during fibrosis is warranted.
Collapse
|
642
|
Kaneyama T, Kobayashi S, Aoyagi D, Ehara T. Tranilast modulates fibrosis, epithelial-mesenchymal transition and peritubular capillary injury in unilateral ureteral obstruction rats. Pathology 2011; 42:564-73. [PMID: 20854076 DOI: 10.3109/00313025.2010.508784] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Tranilast is an anti-allergic compound suppressing transforming growth factor-beta 1 (TGF-β1) induced fibrosis. This study evaluated the efficacy of tranilast to attenuate renal fibrosis induced by unilateral ureteral obstruction (UUO) in rats in relation to epithelial-mesenchymal transition (EMT) and peritubular capillary injury. METHODS Rats were divided into four groups: UUO with vehicle or tranilast and sham operation with vehicle or tranilast. Tranilast (400 mg/kg/day) was administrated to rats for 7 and 14 days after UUO. RESULTS Fibrosis and tubular injuries were attenuated in UUO kidneys with tranilast (Tr-UUO kidneys) compared with UUO kidneys with vehicle (V-UUO kidneys). Decreased E-cadherin and increased vimentin expression in the tubular epithelium and Snail expression in V-UUO kidneys were also attenuated in Tr-UUO kidneys in which heparan sulfate proteoglycan in the tubular basement membrane was preserved and matrix metalloproteinase-2 expression was attenuated. Increased TGF-β1 and phospho-Smad2 expression and increased numbers of myofibroblasts and macrophages in V-UUO kidneys were attenuated by tranilast. Decreased VE-cadherin expression and cytoplasmic swelling of the endothelium of peritubular capillaries that occurred in V-UUO kidneys was prevented by tranilast. CONCLUSIONS Tranilast modulates fibrogenesis by reducing EMT, preventing disintegration of the tubular basement membrane, and reducing peritubular capillary injury in UUO kidneys.
Collapse
Affiliation(s)
- Tomoki Kaneyama
- Department of Histopathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
643
|
Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A 2010; 108:308-13. [PMID: 21173249 DOI: 10.1073/pnas.1017547108] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is the end result of chronic liver disease. Hepatic stellate cells (HSC) are believed to be the major source of collagen-producing myofibroblasts in cirrhotic livers. Portal fibroblasts, bone marrow-derived cells, and epithelial to mesenchymal transition (EMT) might also contribute to the myofibroblast population in damaged livers. Fibroblast-specific protein 1 (FSP1, also called S100A4) is considered a marker of fibroblasts in different organs undergoing tissue remodeling and is used to identify fibroblasts derived from EMT in several organs including the liver. The aim of this study was to characterize FSP1-positive cells in human and experimental liver disease. FSP1-positive cells were increased in human and mouse experimental liver injury including liver cancer. However, FSP1 was not expressed by HSC or type I collagen-producing fibroblasts. Likewise, FSP1-positive cells did not express classical myofibroblast markers, including αSMA and desmin, and were not myofibroblast precursors in injured livers as evaluated by genetic lineage tracing experiments. Surprisingly, FSP1-positive cells expressed F4/80 and other markers of the myeloid-monocytic lineage as evaluated by double immunofluorescence staining, cell fate tracking, flow cytometry, and transcriptional profiling. Similar results were obtained for bone marrow-derived and peritoneal macrophages. FSP1-positive cells were characterized by increased expression of COX2, osteopontin, inflammatory cytokines, and chemokines but reduced expression of MMP3 and TIMP3 compared with Kupffer cells/macrophages. These findings suggest that FSP1 is a marker of a specific subset of inflammatory macrophages in liver injury, fibrosis, and cancer.
Collapse
|
644
|
Abstract
T cells have a well-described role in renal injury, which leads to the secondary development of renal fibrosis. It has generally been assumed that this fibrotic response is an indirect consequence of T cell-mediated renal injury, rather than T cells' being directly involved in fibrosis. Tapmeier et al. now provide evidence that CD4(+) T cells promote interstitial fibrosis in the obstructed mouse kidney in a mechanism that appears to dissociate myofibroblast accumulation and matrix deposition.
Collapse
Affiliation(s)
- David J Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
645
|
Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 2010; 15:8-13. [PMID: 21152947 DOI: 10.1007/s10157-010-0372-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023]
Abstract
Cellular mechanisms have been proposed in the pathogenesis of fibrotic processes in the kidney. In this setting, cell sources underlying the generation of matrix-producing cells in diseased kidneys have been categorized as activated resident stromal cells (e.g., fibroblasts, pericytes), infiltrating bone-marrow-derived cells (e.g., fibrocytes, T cells, macrophages), and cells derived from epithelial-mesenchymal transition/endothelial-mesenchymal transition. Among these cell sources, accumulating evidence has shed light on the involvement of bone-marrow-derived cells, including monocytes/macrophages, and a circulating mesenchymal progenitor cell, fibrocyte, in the progression of fibrosis in kidney. Bone-marrow-derived cells positive for CD45 or CD34, and type 1 (pro)collagen dependent on the chemokine and renin-angiotensin systems migrate into diseased kidneys and enhance synthesis matrix protein, cytokines/chemokines, and profibrotic growth factors, which may promote and escalate chronic inflammatory processes and possible interaction with resident stromal cells, thereby perpetuating kidney fibrosis.
Collapse
Affiliation(s)
- Takashi Wada
- Division of Nephrology, Department of Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan.
| | | | | | | | | | | |
Collapse
|
646
|
Abstract
Renal fibrosis is a key determinant of the progression of renal disease irrespective of the original cause and thus can be regarded as a final common pathway that dictates eventual outcome. The development of renal fibrosis involves many cellular and molecular mediators including leukocytes, myofibroblasts, cytokines, and growth factors, as well as metalloproteinases and their endogenous inhibitors. Study of experimental and human renal disease has shown the involvement of macrophages in renal fibrosis resulting from diverse disease processes. Recent work exploring the nature of both circulating monocytes and tissue macrophages has highlighted their multifaceted phenotype and this impacts their role in renal fibrosis in vivo. In this review we outline the key players in the fibrotic response of the injured kidney and discuss the role of monocytes and macrophages in renal scarring.
Collapse
|
647
|
Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol 2010; 300:F721-33. [PMID: 21123492 DOI: 10.1152/ajprenal.00546.2010] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury induces the loss of renal microvessels, but the fate of endothelial cells and the mechanism of potential vascular endothelial growth factor (VEGF)-mediated protection is unknown. Cumulative cell proliferation was analyzed in the kidney of Sprague-Dawley rats following ischemia-reperfusion (I/R) injury by repetitive administration of BrdU (twice daily) and colocalization in endothelial cells with CD31 or cablin. Proliferating endothelial cells were undetectable for up to 2 days following I/R and accounted for only ∼1% of BrdU-positive cells after 7 days. VEGF-121 preserved vascular loss following I/R but did not affect proliferation of endothelial, perivascular cells or tubular cells. Endothelial mesenchymal transition states were identified by localizing endothelial markers (CD31, cablin, or infused tomato lectin) with the fibroblast marker S100A4. Such structures were prominent within 6 h and sustained for at least 7 days following I/R. A Tie-2-cre transgenic crossed with a yellow fluorescent protein (YFP) reporter mouse was used to trace the fate of endothelial cells and demonstrated interstititial expansion of YFP-positive cells colocalizing with S100A4 and smooth muscle actin following I/R. The interstitial expansion of YFP cells was attenuated by VEGF-121. Multiphoton imaging of transgenic mice revealed the alteration of YFP-positive vascular cells associated with blood vessels characterized by limited perfusion in vivo. Taken together, these data indicate that vascular dropout post-AKI results from endothelial phenotypic transition combined with an impaired regenerative capacity, which may contribute to progressive chronic kidney disease.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular and Integrative Physiology, Indiana Center for Biological Microscopy, Indiana University, Indianapolis, Indiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
648
|
Machida Y, Kitamoto K, Izumi Y, Shiota M, Uchida J, Kira Y, Nakatani T, Miura K. Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. J Pharmacol Sci 2010; 114:464-73. [PMID: 21127386 DOI: 10.1254/jphs.10246fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The role of renal dendritic cells (DCs) in renal fibrosis is unknown. The present study was conducted to examine the relative role of renal DCs and macrophages in the development of renal fibrosis in murine obstructive nephropathy. CD11c-diphtheria toxin receptor (DTR) transgenic mice and CD11b-DTR transgenic mice were subjected to unilateral ureteral obstruction. To conditionally and selectively deplete DCs or macrophages, DT was given to these mice and kidneys were harvested on day 5. Ureteral obstruction elicited renal fibrosis characterized by tubulointerstitial collagen III deposition and accumulation of α-smooth muscle actin-positive cells. Flow cytometric analysis revealed a marked increase in cell counts of F4/80(+) macrophages, F4/80(+) DCs, as well as neutrophils and T cells in the obstructed kidney. DT administration to CD11c-DTR mice led to selective depletion of renal CD11c(+) DCs, but did not affect renal fibrosis. In contrast, administration of DT to CD11b-DTR mice resulted in ablation of all monocyte lineages including macrophages and DCs and attenuated renal fibrosis. Our results do not support the role of renal DCs, but confirm the importance of monocyte lineage cells other than DCs in the development of the early phase of renal fibrosis following ureteral obstruction in mice.
Collapse
Affiliation(s)
- Yuichi Machida
- Department of Urology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
649
|
Fujiwara K, Jindatip D, Kikuchi M, Yashiro T. In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats. Cell Tissue Res 2010; 342:491-5. [PMID: 21086137 DOI: 10.1007/s00441-010-1078-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/08/2010] [Indexed: 11/28/2022]
Abstract
Type I and III collagens widely occur in the rat anterior pituitary gland and are the main components of the extracellular matrix (ECM). Although ECM components possibly play an important role in the function of the anterior pituitary gland, little is known about collagen-producing cells. Type I collagen is a heterotrimer of two α1(I) chains (the product of the col1a1 gene) and one α2(I) chain (the product of the col1a2 gene). Type III collagen is a homotrimer of α1(III) chains (the product of the col3a1 gene). We used in situ hybridization with digoxigenin-labeled cRNA probes to examine the expression of col1a1, col1a2, and col3a1 mRNAs in the pituitary gland of adult rats. mRNA expression for these collagen genes was clearly observed, and cells expressing col1a1, col1a2, and col3a1 mRNA were located around capillaries in the gland. We also investigated the possible double-staining of collagen mRNA and pituitary hormones, S-100 protein (a marker of folliculo-stellate cells), or desmin (a marker of pericytes). Col1a1 and col3a1 mRNA were identified in desmin-immunopositive cells. Thus, only pericytes produce type I and III collagens in the rat anterior pituitary gland.
Collapse
Affiliation(s)
- Ken Fujiwara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | |
Collapse
|
650
|
Sponheim J, Pollheimer J, Olsen T, Balogh J, Hammarström C, Loos T, Kasprzycka M, Sørensen DR, Nilsen HR, Küchler AM, Vatn MH, Haraldsen G. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2804-15. [PMID: 21037074 DOI: 10.2353/ajpath.2010.100378] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-33 (IL-33) is a novel member of the interleukin-1 family that induces mucosal pathology in vivo and may drive fibrosis development and angiogenesis. To address its potential role in inflammatory bowel disease, we explored its tissue expression in biopsy specimens from untreated ulcerative colitis patients, observing a 2.6-fold up-regulation of IL-33 mRNA levels, compared to controls. Immunohistochemical analyses of surgical specimens showed that a prominent source of IL-33 in ulcerative colitis lesions were ulceration-associated myofibroblasts that co-expressed the fibroblast marker heat shock protein 47, platelet-derived growth factor receptor (PDGFR)β, and, in part, the myofibroblast marker α-smooth muscle actin (SMA). In contrast, IL-33-positive myofibroblasts were almost absent near the deep fissures seen in Crohn's disease. A screen of known and putative activators of IL-33 in cultured fibroblasts revealed that the Toll-like receptor-3 agonist poly (I:C) was among the strongest inducers of IL-33 and that it synergized with transforming growth factor-β, a combination also known to boost myofibroblast differentiation. Experimental wound healing in rat skin revealed that the de novo induction of IL-33 in pericytes and the possible activation of scattered, tissue-resident IL-33(+)PDGFRβ(+)αSMA(-) fibroblast-like cells were early events that preceded the later appearance of IL-33(+)PDGFRβ(+)αSMA(+) cells. In conclusion, our data point to a novel role for IL-33 in mucosal healing and wound repair and to an interesting difference between ulcerative colitis and Crohn's disease.
Collapse
Affiliation(s)
- Jon Sponheim
- Department of Internal Medicine, Asker and Baerum Hospital, Vestre Viken Hospital Trust, Rud, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|