601
|
Cristofoletti C, Bresin A, Fioretti M, Russo G, Narducci MG. Combined High-Throughput Approaches Reveal the Signals Driven by Skin and Blood Environments and Define the Tumor Heterogeneity in Sézary Syndrome. Cancers (Basel) 2022; 14:cancers14122847. [PMID: 35740513 PMCID: PMC9221051 DOI: 10.3390/cancers14122847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sézary syndrome (SS) is a leukemic and incurable variant of cutaneous T-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes in the blood, lymph nodes, and skin. With the exception of allogenic transplantation, no curative chance is available to treat SS, and it is a priority to find new therapies that target SS cells within all disease compartments. This review aims to summarize the more recent analyses conducted on skin- and blood-derived SS cells concurrently obtained from the same SS patients. The results highlighted that skin-SS cells were more active/proliferating with respect to matched blood SS cells that instead appeared quiescent. These data shed the light on the possibility to treat blood and skin SS cells with different compounds, respectively. Moreover, this review recaps the more recent findings on the heterogeneity of circulating SS cells that presented a series of novel markers that could improve diagnosis, prognosis and therapy of this lymphoma. Abstract Sézary syndrome (SS) is an aggressive variant of cutaneous t-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes—the SS cells—mainly in blood, lymph nodes, and skin. The tumor spread pattern of SS makes this lymphoma a unique model of disease that allows a concurrent blood and skin sampling for analysis. This review summarizes the recent studies highlighting the transcriptional programs triggered by the crosstalk between SS cells and blood–skin microenvironments. Emerging data proved that skin-derived SS cells show consistently higher activation/proliferation rates, mainly driven by T-cell receptor signaling with respect to matched blood SS cells that instead appear quiescent. Biochemical analyses also demonstrated an hyperactivation of PI3K/AKT/mTOR, a targetable pathway by multiple inhibitors currently in clinical trials, in skin SS cells compared with a paired blood counterpart. These results indicated that active and quiescent SS cells coexist in this lymphoma, and that they could be respectively treated with different therapeutics. Finally, this review underlines the more recent discoveries into the heterogeneity of circulating SS cells, highlighting a series of novel markers that could improve the diagnosis and that represent novel therapeutic targets (GPR15, PTPN13, KLRB1, and ITGB1) as well as new genetic markers (PD-1 and CD39) able to stratify SS patients for disease aggressiveness.
Collapse
|
602
|
Tuo B, Chen Z, Dang Q, Chen C, Zhang H, Hu S, Sun Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis 2022; 13:539. [PMID: 35676257 PMCID: PMC9177590 DOI: 10.1038/s41419-022-04949-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Tumour immunity plays an important role in the development of cancer. Tumour immunotherapy is an important component of antitumour therapy. Exosomes, a type of extracellular vesicle, act as mediators of intercellular communication and molecular transfer and play an essential role in tumour immunity. Circular RNAs (circRNAs) are a new type of noncoding RNA that are enriched within exosomes. In this review, we describe the effects of exosomal circRNAs on various immune cells and the mechanisms of these effects, including macrophages, neutrophils, T cells, and Natural killer (NK) cells. Next, we elaborate on the latest progress of exosome extraction. In addition, the function of exosomal circRNAs as a potential prognostic and drug sensitivity marker is described. We present the great promise of exosomal circRNAs in regulating tumour immunity, predicting patient outcomes, and evaluating drug efficacy.
Collapse
Affiliation(s)
- Baojing Tuo
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhuang Chen
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Qin Dang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chen Chen
- grid.207374.50000 0001 2189 3846School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Hao Zhang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shengyun Hu
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhenqiang Sun
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
603
|
Classification of Muscle Invasive Bladder Cancer to Predict Prognosis of Patients Treated with Immunotherapy. J Immunol Res 2022; 2022:6737241. [PMID: 35677536 PMCID: PMC9170513 DOI: 10.1155/2022/6737241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Recently, immunotherapies have been approved for advanced muscle invasive bladder cancer (MIBC) treatment, but only a small fraction of MIBC patients could achieve a durable drug response. Our study is aimed at identifying tumor microenvironment (TME) subtypes that have different immunotherapy response rates. Methods The mRNA expression profiles of MIBC samples from seven discovery datasets (GSE13507, GSE31684, GSE32548, GSE32894, GSE48075, GSE48276, and GSE69795) were analyzed to identify TME subtypes. The identified TME subtypes were then validated by an independent dataset (TCGA-MIBC). The subtype-related biomarkers were discovered using computational analyses and then utilized to establish a random forest predictive model. The associations of TME subtypes with immunotherapy therapeutic responses were investigated in a group of patients who had been treated with immunotherapy. A prognostic index model was constructed using the subtype-related biomarkers. Two nomograms were built by the subtype-related biomarkers or the clinical parameters. Results Two TME subtypes, including ECM-enriched class (EC) and immune-enriched class (IC), were found. EC was associated with greater extracellular matrix (ECM) pathways, and IC was correlated with immune pathways, respectively. Overall survival was significantly greater for tumors classified as IC, whereas the EC subtype had a worse prognosis. A total of nine genes (AKAP12, APOL3, CXCL13, CXCL9, GBP4, LRIG1, PEG3, PODN, and PTPRD) were selected by computational analyses to construct the random forest model. The area under the curve (AUC) values for this model were 0.827 and 0.767 in the testing and external validation datasets, respectively. Therapeutic response rates were greater in IC patients than in EC patients (28 percent vs. 18 percent). Patients with a high prognostic index had a poorer prognosis than those with a low prognostic index. The nomogram constructed from nine genes and stage achieved a C-index of 0.71. Conclusion The present investigation defined two distinct TME subtypes and developed models to assess immunotherapeutic treatment outcomes.
Collapse
|
604
|
Zheng Z, Zhang X, Bai J, Long L, Liu D, Zhou Y. PGM1 suppresses colorectal cancer cell migration and invasion by regulating the PI3K/AKT pathway. Cancer Cell Int 2022; 22:201. [PMID: 35614441 PMCID: PMC9134613 DOI: 10.1186/s12935-022-02545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphoglucomutase 1 (PGM1) is known for its involvement in cancer pathogenesis. However, its biological role in colorectal cancer (CRC) has remained unknown. Here, we studied the functions and mechanisms of PGM1 in CRC. METHODS We verified PGM-1 as a differentially expressed gene (DEG) by employing a comprehensive strategy of TCGA-COAD dataset mining and computational biology. Relative levels of PGM-1 in CRC tumors and adjoining peritumoral tissues were determined by qRT-PCR, western blotting (WB), and immunohistochemical (IHC) staining in a tissue microarray. PGM1 functions were analyzed by CCK8, EdU, colony formation, cell cycle, apoptosis, and Transwell migration and invasion assays. The influence of PGM1 was further investigated by studying tumor formation in vivo. RESULTS The levels of PGM1 mRNA and protein were both reduced in CRC tissues, and the reductions were related to CRC pathology and overall survival. PGM1 knockdown stimulated both cell proliferation and colony formation, and inhibited cell cycle arrest and apoptosis, while overexpression of PGM1 produced the opposite effects in CRC cells both in vivo and in vitro. Furthermore, the effects of PGM1 were related to the PI3K/ AKT pathway. CONCLUSION We verified that PGM1 suppresses CRC progression via the PI3K/AKT pathway. These results suggest the potential for targeting PGM1 in treatment of CRC.
Collapse
Affiliation(s)
- Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jian Bai
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Di Liu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
605
|
Ghasemi K, Ghasemi K. MSX-122: Is an effective small molecule CXCR4 antagonist in cancer therapy? Int Immunopharmacol 2022; 108:108863. [PMID: 35623288 DOI: 10.1016/j.intimp.2022.108863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Chemokines, a subgroup of cytokines along with their receptors, are involved in various biologic processes and regulation of a wide range of immune responses in different physiologic and pathologic states such as tissue repair, infection, and inflammation. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled receptor (GPCR), has one identified natural ligand termed stromal-derived factor-1(SDF-1 or CXCL12). Evidence demonstrated that the ligation of SDF-1 to CXCR4 initiates several intracellular signaling pathways, regulating cell proliferation, survival, chemotaxis, migration, angiogenesis, adhesion, as well as bone marrow (BM)-resident cells homing and mobilization. Additionally, CXCR4 is expressed by tumor cells in blood malignancies and solid tumors. Therefore, CXCR4 is considered a potential therapeutic target in cancer therapy, and CXCR4 antagonists, including AMD3100, MSX-122, BPRCX807, WZ811, Motixafortide, TN14003, AMD3465, and AMD1170, have been employed in experimental and clinical studies to enhance cancer therapy. MSX-122 is a specific small-molecule antagonist of CXCR4/CXCL12 and the only orally available non-peptide CXCR4 antagonist with promising anti-cancer properties. Studies have shown that MSX-122 is particularly important in treating metastatic cancers and has great therapeutic potential. Accordingly, this review summarized the characteristics of MSX-122 and its effects on the CXCL12/CXCR4 axis as well as cancer therapy.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy, Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy, Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
606
|
Gong X, Li N, Sun C, Li Z, Xie H. A Four-Gene Prognostic Signature Based on the TEAD4 Differential Expression Predicts Overall Survival and Immune Microenvironment Estimation in Lung Adenocarcinoma. Front Pharmacol 2022; 13:874780. [PMID: 35600867 PMCID: PMC9114646 DOI: 10.3389/fphar.2022.874780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: TEA domain transcription factor 4 (TEAD4) is a member of the transcriptional enhancer factor (TEF) family of transcription factors, which is studied to be linked to the tumorigenesis and progression of various forms of cancers, including lung adenocarcinoma (LUAD). However, the specific function of this gene in the progression of LUAD remains to be explored. Method: A total of 19 genes related to the Hippo pathway were analyzed to identify the significant genes involved in LUAD progression. The TCGA-LUAD data (n = 585) from public databases were mined, and the differentially expressed genes (DEGs) in patients with the differential level of TEAD4 were identified. The univariate Cox regression, zero LASSO regression coefficients, and multivariate Cox regression were performed to identify the independent prognostic signatures. The immune microenvironment estimation in the two subgroups, including immune cell infiltration, HLA family genes, and immune checkpoint genes, was assessed. The Gene Set Enrichment Analysis (GSEA) and GO were conducted to analyze the functional enrichment of DEGs between the two risk groups. The potential drugs for the high-risk subtypes were forecasted via the mode of action (moa) module of the connectivity map (CMap) database. Results:TEAD4 was found to be significantly correlated with poor prognosis in LUAD-patients. A total of 102 DEGs in TEAD4-high vs. TEAD4-low groups were identified. Among these DEGs, four genes (CPS1, ANLN, RHOV, and KRT6A) were identified as the independent prognostic signature to conduct the Cox risk model. The immune microenvironment estimation indicated a strong relationship between the high TEAD4 expression and immunotherapeutic resistance. The GSEA and GO showed that pathways, including cell cycle regulation, were enriched in the high-risk group, while immune response-related and metabolism biological processes were enriched in the low-risk group. Several small molecular perturbagens targeting CFTR or PLA2G1B, by the mode of action (moa) modules of the glucocorticoid receptor agonist, cyclooxygenase inhibitor, and NFkB pathway inhibitor, were predicted to be suited for the high-risk subtypes based on the high TEAD4 expression. Conclusion: The current study revealed TEAD4 is an immune regulation–related predictor of prognosis and a novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Ning Li
- Cardiovascular Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Chen Sun
- Hematology Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| |
Collapse
|
607
|
Sun S, Chen J, Weng C, Lu Y, Cai C, Lv B. Identification of AKIRIN2 as a potential biomarker and correlation with immunotherapy in gastric adenocarcinoma by integrated bioinformatics analysis. Sci Rep 2022; 12:8400. [PMID: 35589807 PMCID: PMC9120157 DOI: 10.1038/s41598-022-12531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 12/07/2022] Open
Abstract
Gastric adenocarcinoma is major type of gastric cancer that endangers human health. AKIRIN2 has been shown to be associated with cholangiocarcinoma promoting invasion and angiogenesis. In this study, AKIRIN2 is highly expressed in Gastric adenocarcinoma through bioinformatics analysis based on Stomach adenocarcinoma samples data from The Cancer Genome Atlas. Correlation analysis showed that the high-expression of AKIRIN2 was associated with poor survival rate compared to the low-expression group. Univariate and multivariate Cox regression analyses determined the correlation between clinical characteristics and overall survival. Next, the correlation between AKIRIN2 and immune infiltration was evaluated. The distribution of 24 immune cells and their correlation with the expression of AKIRIN2 were explored using the immune cell database. In addition, three Immune cell methods were used to verify the positive correlation between immune cells and AKIRIN2. Also, Genomics of Drug Sensitivity in Cancer database was utilized to verify the correlation between AKIRIN2 expression level and the efficacy of chemotherapy and immunotherapy. The results showed that AKIRIN2 is an effective biomarker of Gastric adenocarcinoma prognosis, which can guide chemotherapy and immunotherapy and clarify the progress of Gastric adenocarcinoma promoted by immune microenvironment.
Collapse
Affiliation(s)
- Shaopeng Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chunyan Weng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifan Lu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Cai
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.
| |
Collapse
|
608
|
Liu Z, Fang B, Cao J, Zhou Q, Zhu F, Fan L, Xue L, Huang C, Bo H. LINC00313 regulates the metastasis of testicular germ cell tumors through epithelial-mesenchyme transition and immune pathways. Bioengineered 2022; 13:12141-12155. [PMID: 35575252 PMCID: PMC9275957 DOI: 10.1080/21655979.2022.2073128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Testicular germ cell tumor (TGCT) is a relatively rare entity tumor, accounting for only 1% of all male cancers. However, it is the most common solid tumor in young men between 15 and 34 years old. Long noncoding RNAs (lncRNAs) are involved in various physiological and pathological processes. However, the functions of lncRNAs in TGCT have only rarely been investigated. LncRNAs associated with TGCT were identified using Gene Expression Omnibus (GEO) database and UCSC XENA database data mining. The effects of LINC00313 on NCCIT cell migration and invasion were evaluated in transwell assays. The expression levels of epithelial-mesenchyme transition (EMT)-related proteins in cells knockdown of LINC00313 were analyzed by Western blot. Correlation analyses between lncRNA LINC00313 expression and copy number variation (CNV) and immune cell infiltration were carried out using The Cancer Genome Atl as (TCGA) data. The effect of Panobinostatin targeting LINC00313 in TGCT cells was investigated. We observed higher LINC00313 expression in TGCT. The migratory and invasive properties of TGCT cells were augmented by LINC00313, likely via its effects on modulating the expression of epithelial-mesenchyme transition (EMT) related proteins: CTNNB1, ZEB1, CDH2, Snail and VIM. Moreover, LINC00313 expression and CNV correlated negatively with the infiltration of immune cells. In addition, Panobinostat might be a possible candidate drug to target LINC00313 in TGCT. LINC00313 performs important pro-migration and invasion functions in the pathogenesis of TGCT. LINC00313 could be used as diagnostic, prognostic, immune marker and therapeutic target to develop effective treatment of TGCT.
Collapse
Affiliation(s)
- Zhizhong Liu
- Department of Urology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianyin Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chuan Huang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| |
Collapse
|
609
|
Morisaki T, Morisaki T, Kubo M, Morisaki S, Nakamura Y, Onishi H. Lymph Nodes as Anti-Tumor Immunotherapeutic Tools: Intranodal-Tumor-Specific Antigen-Pulsed Dendritic Cell Vaccine Immunotherapy. Cancers (Basel) 2022; 14:cancers14102438. [PMID: 35626042 PMCID: PMC9140043 DOI: 10.3390/cancers14102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In the field of cancer therapy, lymph nodes are important not only as targets for metastases resection but also as prudent target organs for cancer immunotherapy. Lymph nodes comprise a complete structure for the accumulation of a large number of T cells and their distribution throughout the body after antigen presentation and activation of dendritic cells. This review highlights current topics on the importance of lymph node structure in antitumor immunotherapy and intranodal-antigen-presenting mature dendritic cell vaccine therapy. We also discuss the rationale behind intranodal injection methods and their applications in neoantigen vaccine therapy, a new cancer immunotherapy. Abstract Hundreds of lymph nodes (LNs) are scattered throughout the body. Although each LN is small, it represents a complete immune organ that contains almost all types of immunocompetent and stromal cells functioning as scaffolds. In this review, we highlight the importance of LNs in cancer immunotherapy. First, we review recent reports on structural and functional properties of LNs as sites for antitumor immunity and discuss their therapeutic utility in tumor immunotherapy. Second, we discuss the rationale and background of ultrasound (US)-guided intranodal injection methods. In addition, we review intranodal administration therapy of tumor-specific-antigen-pulsed matured dendritic cells (DCs), including neoantigen-pulsed vaccines.
Collapse
Affiliation(s)
- Takashi Morisaki
- Fukuoka General Cancer Clinic, Fukuoka 812-0018, Japan;
- Correspondence: ; Tel.: +81-922827696; Fax: +81-924056376
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (T.M.); (M.K.)
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (T.M.); (M.K.)
| | - Shinji Morisaki
- Fukuoka General Cancer Clinic, Fukuoka 812-0018, Japan;
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University; Fukuoka 812-8582, Japan;
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University; Fukuoka 812-8582, Japan;
| |
Collapse
|
610
|
Borzdziłowska P, Bednarek I. The Effect of α-Mangostin and Cisplatin on Ovarian Cancer Cells and the Microenvironment. Biomedicines 2022; 10:biomedicines10051116. [PMID: 35625852 PMCID: PMC9138353 DOI: 10.3390/biomedicines10051116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Ovarian cancer is one of the cancers that, unfortunately, is detected at a late stage of development. The current use of treatment has many side effects. Notably, up to 20% of patients show cisplatin resistance. We assess the effects of cisplatin and/or α-mangostin, a natural plant derivative, on ovarian cancer cells and on the cancer cell microenvironment. The effect of cisplatin and/or α-mangostin on the following cells of ovarian cancer lines: A2780, TOV-21G, and SKOV-3 was verified using the XTT cytotoxicity assay. The separate and combined effects of tested drugs on ovarian cancer cell viability were assessed. We assessed the influence of chemotherapeutic agents on the possibility of modulating the microenvironment. For this purpose, we isolated exosomes from drug-treated and untreated ovarian cancer cells. We estimated the differences in the amounts of exosomes released from cancer cells (NTA technique). We also examined the effects of isolated exosome fractions on normal human cells (NHDF human fibroblast line). In the present study, we demonstrate that treatment of A2780, SKOV-3, and TOV-21G cells with α-mangostin in combination with cisplatin can allow a reduction in cisplatin concentration while maintaining the same cytotoxic effect. Ovarian cancer cells release a variable number of exosomes into the microenvironment when exposed to α-mangostin and/or cisplatin. However, it is important to note that the cargo carried by exosomes released from drug-treated cells may be significantly different.
Collapse
|
611
|
Coria-Domínguez L, Vallejo-Armenta P, Luna-Gutiérrez M, Ocampo-García B, Gibbens-Bandala B, García-Pérez F, Ramírez-Nava G, Santos-Cuevas C, Ferro-Flores G. [ 99mTc]Tc-iFAP Radioligand for SPECT/CT Imaging of the Tumor Microenvironment: Kinetics, Radiation Dosimetry, and Imaging in Patients. Pharmaceuticals (Basel) 2022; 15:ph15050590. [PMID: 35631416 PMCID: PMC9143259 DOI: 10.3390/ph15050590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Tumor microenvironment fibroblasts overexpress the fibroblast activation protein (FAP). We recently reported the preclinical evaluation of [99mTc]Tc-iFAP as a new SPECT radioligand capable of detecting FAP. This research aimed to evaluate the kinetic and dosimetric profile of [99mTc]Tc-iFAP in healthy volunteers, and to assess the radioligand uptake by different solid tumors in three cancer patients. [99mTc]Tc-iFAP was obtained from lyophilized formulations prepared under GMP conditions with >98% radiochemical purity. Whole-body scans of six healthy subjects were obtained at 0.5, 2, 4, and 24 h after [99mTc]Tc-iFAP (740 MBq) administration. A 2D-planar/3D-SPECT hybrid activity quantitation method was used to fit the biokinetic models of the source organs (volume of interest: VOI) as exponential functions (A(t)VOI). The total nuclear transformations (N) that occurred in the source organs were calculated from the mathematical integration (0,∞) of A(t)VOI. The OLINDA code was used to estimate the radiation doses. Three treatment-naive patients (breast, lung, and cervical cancer) with a prior [18F]FDG PET/CT scan underwent whole-body, chest, and abdominal SPECT/CT scanning after [99mTc]Tc-iFAP (740 MBq) administration. Both imaging methods were compared visually and quantitatively. Oncological diagnoses were performed histopathologically. The results showed favorable [99mTc]Tc-iFAP biodistribution and kinetics due to rapid blood activity removal (t1/2α = 2.22 min and t1/2β = 90 min) and mainly renal clearance. The mean radiation equivalent doses were 5.2 ± 0.8 mSv for the kidney and 1.7 ± 0.3 mSv for the liver after administration of 740 MBq. The effective dose was 2.3 ± 0.4 mSv/740 MBq. [99mTc]Tc-iFAP demonstrated high and reliable uptake in the primary tumor lesions and lymph node metastases in patients with breast, cervical, and lung cancer, which correlated with that detected by [18F]FDG PET/CT. The tumor microenvironment molecular imaging from cancer patients obtained in this research validates the performance of additional clinical studies to determine the utility of [99mTc]Tc-iFAP in the diagnosis and prognosis of different types of solid tumors.
Collapse
Affiliation(s)
- Luis Coria-Domínguez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Paola Vallejo-Armenta
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Brenda Gibbens-Bandala
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Francisco García-Pérez
- Department of Nuclear Medicine, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico;
| | - Gerardo Ramírez-Nava
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Correspondence: (G.R.-N.); (C.S.-C.); (G.F.-F.)
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Correspondence: (G.R.-N.); (C.S.-C.); (G.F.-F.)
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Correspondence: (G.R.-N.); (C.S.-C.); (G.F.-F.)
| |
Collapse
|
612
|
Alarm Signal S100-Related Signature Is Correlated with Tumor Microenvironment and Predicts Prognosis in Glioma. DISEASE MARKERS 2022; 2022:4968555. [PMID: 35592707 PMCID: PMC9113871 DOI: 10.1155/2022/4968555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Glioma are the most common malignant central nervous system tumor and are characterized by uncontrolled proliferation and resistance to therapy. Dysregulation of S100 proteins may augment tumor initiation, proliferation, and metastasis by modulating immune response. However, the comprehensive function and prognostic value of S100 proteins in glioma remain unclear. Here, we explored the expression profiles of 17 S100 family genes and constructed a high-efficient prediction model for glioma based on CGGA and TCGA datasets. Immune landscape analysis displayed that the distribution of immune scores, ESTIMATE scores, and stromal scores, as well as infiltrating immune cells (macrophages M0/M1/M2, T cell CD4+ naïve, Tregs, monocyte, neutrophil, and NK activated), were significant different between risk-score subgroups. Overall, we demonstrated the value of S100 protein-related signature in the prediction of glioma patients’ prognosis and determined its relationship with the tumor microenvironment (TME) in glioma.
Collapse
|
613
|
Dai L, Tao Y, Shi Z, Liang W, Hu W, Xing Z, Zhou S, Guo X, Fu X, Wang X. SOCS3 Acts as an Onco-immunological Biomarker With Value in Assessing the Tumor Microenvironment, Pathological Staging, Histological Subtypes, Therapeutic Effect, and Prognoses of Several Types of Cancer. Front Oncol 2022; 12:881801. [PMID: 35600392 PMCID: PMC9122507 DOI: 10.3389/fonc.2022.881801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family contains eight members, including SOCS1–7 and CIS, and SOCS3 has been shown to inhibit cytokine signal transduction in various signaling pathways. Although several studies have currently shown the correlations between SOCS3 and several types of cancer, no pan-cancer analysis is available to date. We used various computational tools to explore the expression and pathogenic roles of SOCS3 in several types of cancer, assessing its potential role in the pathogenesis of cancer, in tumor immune infiltration, tumor progression, immune evasion, therapeutic response, and prognostic. The results showed that SOCS3 was downregulated in most The Cancer Genome Atlas (TCGA) cancer datasets but was highly expressed in brain tumors, breast cancer, esophageal cancer, colorectal cancer, and lymphoma. High SOCS3 expression in glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG) were verified through immunohistochemical experiments. GEPIA and Kaplan–Meier Plotter were used, and this bioinformatics analysis showed that high SOCS3 expression was associated with a poor prognosis in the majority of cancers, including LGG and GBM. Our analysis also indicated that SOCS3 may be involved in tumor immune evasion via immune cell infiltration or T-cell exclusion across different types of cancer. In addition, SOCS3 methylation was negatively correlated with mRNA expression levels, worse prognoses, and dysfunctional T-cell phenotypes in various types of cancer. Next, different analytical methods were used to select genes related to SOCS3 gene alterations and carcinogenic characteristics, such as STAT3, SNAI1, NFKBIA, BCL10, TK1, PGS1, BIRC5, TMC8, and AFMID, and several biological functions were identified between them. We found that SOCS3 was involved in cancer development primarily through the JAK/STAT signaling pathway and cytokine receptor activity. Furthermore, SOCS3 expression levels were associated with immunotherapy or chemotherapy for numerous types of cancer. In conclusion, this study showed that SOCS3 is an immune-oncogenic molecule that may possess value as a biomarker for diagnosis, treatment, and prognosis of several types of cancer in the future.
Collapse
Affiliation(s)
- Lirui Dai
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Yiran Tao
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zimin Shi
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhe Xing
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Shaolong Zhou
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyang Guo
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xudong Fu
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xinjun Wang
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
- *Correspondence: Xinjun Wang,
| |
Collapse
|
614
|
Shim S, Lee S, Hisham Y, Kim S, Nguyen TT, Taitt AS, Hwang J, Jhun H, Park HY, Lee Y, Yeom SC, Kim SY, Kim YG, Kim S. A Paradoxical Effect of Interleukin-32 Isoforms on Cancer. Front Immunol 2022; 13:837590. [PMID: 35281008 PMCID: PMC8913503 DOI: 10.3389/fimmu.2022.837590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer development depending on the cancer type. In most cancers, it was found that the high expression of IL-32 was associated with more proliferative and progression of cancer. However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a wide range of functions based on its dominant isoform and surrounding environment. IL-32β, for example, was found mostly in different types of cancer and associated with cancer expansion. This observation is legitimate since cancer exhibits some hypoxic environment and IL-32β was known to be induced under hypoxic conditions. However, IL-32θ interacts directly with protein kinase C-δ reducing NF-κB and STAT3 levels to inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied. Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this review, we address that the paradoxical effect of IL-32 on cancer is attributed to the dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32 seems to have a contradictory role in cancer. However, investigating multiple IL-32 isoforms could explain this doubt and bring us closer to using them in therapy.
Collapse
Affiliation(s)
- Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Yasmin Hisham
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Tam T Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Afeisha S Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Jihyeong Hwang
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju, South Korea
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, South Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Collage of Medicine, Inje University, Busan, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
615
|
Sullivan L, Pacheco RR, Kmeid M, Chen A, Lee H. Tumor Stroma Ratio and Its Significance in Locally Advanced Colorectal Cancer. Curr Oncol 2022; 29:3232-3241. [PMID: 35621653 PMCID: PMC9139914 DOI: 10.3390/curroncol29050263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is the third leading cause of cancer-related death, and its incidence is rising in the younger patient population. In the past decade, research has unveiled several processes (underlying tumorigenesis, many of which involve interactions between tumor cells and the surrounding tissue or tumor microenvironment (TME). Interactions between components of the TME are mediated at a sub-microscopic level. However, the endpoint of those interactions results in morphologic changes which can be readily assessed at microscopic examination of biopsy and resection specimens. Among these morphologic changes, alteration to the tumor stroma is a new, important determinant of colorectal cancer progression. Different methodologies to estimate the proportion of tumor stroma relative to tumor cells, or tumor stroma ratio (TSR), have been developed. Subsequent validation has supported the prognostic value, reproducibility and feasibility of TSR in various subgroups of colorectal cancer. In this manuscript, we review the literature surrounding TME in colorectal cancer, with a focus on tumor stroma ratio.
Collapse
|
616
|
Liu H, Liu Y, Hai R, Liao W, Luo X. The role of circadian clocks in cancer: Mechanisms and clinical implications. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
617
|
Role of Anti-Angiogenic Factors in the Pathogenesis of Breast Cancer: A Review of Therapeutic Potential. Pathol Res Pract 2022; 236:153956. [DOI: 10.1016/j.prp.2022.153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
618
|
Shu Q, Zhou Y, Zhu Z, Chen X, Fang Q, Zhong L, Chen Z, Fang L. A Novel Risk Model Based on Autophagy-Related LncRNAs Predicts Prognosis and Indicates Immune Infiltration Landscape of Patients With Cutaneous Melanoma. Front Genet 2022; 13:885391. [PMID: 35571053 PMCID: PMC9101482 DOI: 10.3389/fgene.2022.885391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cutaneous melanoma (CM) is a malignant tumor with a high incidence rate and poor prognosis. Autophagy plays an essential role in the development of CM; however, the role of autophagy-related long noncoding RNAs (lncRNAs) in this process remains unknown. Human autophagy-related genes were extracted from the Human Autophagy Gene Database and screened for autophagy-related lncRNAs using Pearson correlation. Multivariate Cox regression analysis was implemented to identify ten autophagy-related lncRNAs associated with prognosis, and a risk model was constructed. The Kaplan-Meier survival curve showed that the survival probability of the high-risk group was lower than that of the low-risk group. A novel predictive model was constructed to investigate the independent prognostic value of the risk model. The nomogram results showed that the risk score was an independent prognostic signature that distinguished it from other clinical characteristics. The immune infiltration landscape of the low-risk and high-risk groups was further investigated. The low-risk groups displayed higher immune, stromal, and ESTIMATE scores and lower tumor purity. The CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms indicated a notable gap in immune cells between the low- and high-risk groups. Ten autophagy-related lncRNAs were significantly correlated with immune cells. Finally, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) results demonstrated that autophagy-related lncRNA-mediated and immune-related signaling pathways are crucial factors in regulating CM. Altogether, these data suggest that constructing a risk model based on ten autophagy-related lncRNAs can accurately predict prognosis and indicate the tumor microenvironment of patients with CM. Thus, our study provides a new perspective for the future clinical treatment of CM.
Collapse
Affiliation(s)
- Qi Shu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yi Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, China
| | - Zhengjie Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xi Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qilu Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Like Zhong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Luo Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
619
|
Zhang W, Xiao P, Tang J, Wang R, Wang X, Wang F, Ruan J, Yu S, Tang J, Huang R, Zhao X. m6A Regulator-Mediated Tumour Infiltration and Methylation Modification in Cervical Cancer Microenvironment. Front Immunol 2022; 13:888650. [PMID: 35572541 PMCID: PMC9098799 DOI: 10.3389/fimmu.2022.888650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant internal mRNA modification in eukaryotic cells. There is accumulating evidence that m6A methylation can play a significant role in the early diagnosis and treatment of cancers. However, the mechanism underlying the involvement of m6A in cervical cancer remains unclear. Methods Here, we examined the m6A modification patterns of immune cells in the tumour microenvironments (TMEs) of 306 patients with cervical cancer from The Cancer Genome Atlas dataset and analysed the relations between them according to 32 m6A regulators. Immune infiltration in the TME of cervical cancer was analysed using the CIBERSORT algorithm and single-sample gene set enrichment analysis. The m6Ascore was structured though principal component analysis. Results Two different m6A modification patterns were detected in 306 patients with cervical cancer, designated as m6Acluster A and B. The immune cell infiltration characteristics and biological behaviour differed between the two patterns, with m6Acluster A showing a higher level of immune infiltration. The samples were also divided into two genomic subtypes according to 114 m6A regulatory genes shown to be closely correlated with prognosis on univariate Cox regression analysis. Survival analysis showed that gene cluster B was related to better survival than gene cluster A. Most of the m6A regulators showed higher expression in gene cluster B than in gene cluster A. Single-sample gene set enrichment analysis indicated a higher level of immune cell infiltration in gene cluster A. The m6Ascore signature was examined to determine the m6A modification patterns in cervical cancer. Patients with a high m6Ascore showed better survival, while the low m6Ascore group had a higher mutation frequency and better response to treatment. Conclusions This study showed that m6A modification patterns play important roles in cervical cancer. Analysis of m6A modification patterns will yield an improved understanding of the TME in cervical cancer, and facilitate the development of better immunotherapy strategies.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Pei Xiao
- Center for Non-Communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jiayi Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Junpu Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Rongrong Huang,
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Rongrong Huang,
| |
Collapse
|
620
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
621
|
Mezzasoma L, Bellezza I, Romani R, Talesa VN. Extracellular Vesicles and the Inflammasome: An Intricate Network Sustaining Chemoresistance. Front Oncol 2022; 12:888135. [PMID: 35530309 PMCID: PMC9072732 DOI: 10.3389/fonc.2022.888135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1β (IL-1β) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1β production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1β production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.
Collapse
|
622
|
Amano Y, Kihara A, Hasegawa M, Miura T, Matsubara D, Fukushima N, Nishino H, Mori Y, Niki T. Clinicopathological and Prognostic Significance of Stromal Patterns in Oral Squamous Cell Carcinoma. Front Med (Lausanne) 2022; 9:859144. [PMID: 35492308 PMCID: PMC9051019 DOI: 10.3389/fmed.2022.859144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Stromal patterns (SP), especially desmoplastic reactions, have recently gained attention as indicators of malignant potential in cancer. In this study, we explored the clinicopathological and prognostic significance of the SP in oral squamous cell carcinoma (OSCC). Materials and Methods We reviewed 232 cases of surgically resected OSCC that were not treated with neoadjuvant chemoradiotherapy. We categorized the SP of the OSCC into four groups: immune/inflammatory (84 cases), mature (14 cases), intermediate (78 cases), or immature (56 cases). Results The SP category was significantly associated with various clinicopathological factors, such as the histological grade, lymphovascular invasion, neural invasion, and a diffuse invasion pattern. For each of the factors, the immune/inflammatory type was associated with favorable categories, while the immature type was associated with unfavorable categories (p ≤ 0.001). The SP category was also shown to be a prognostic predictor: the 5-year relapse-free survival (RFS) rate was 72.0% for the immune/inflammatory type, 66.7% for the intermediate/mature type, and 31.2% for the immature type (p < 0.0001), and the 5-year overall survival (OS) rate was 85.1% for the immune/inflammatory type, 76.4% for the intermediate/mature type, and 50.0% for the immature type (p < 0.0001). In multivariate analyses, the SP category was identified as an independent prognostic factor for RFS and OS. Conclusion Our SP categorization method provides valuable prognostic information in OSCC.
Collapse
Affiliation(s)
- Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
- *Correspondence: Yusuke Amano
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Masayo Hasegawa
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Noriyoshi Fukushima
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
623
|
In the Tumor Microenvironment, ETS1 Is an Oncogenic Immune Protein: An Integrative Pancancer Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7730433. [PMID: 35463077 PMCID: PMC9033344 DOI: 10.1155/2022/7730433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Background Previous research suggested that ETS1 (ETS proto-oncogene 1, transcription factor) could be useful for cancer immunotherapy. The processes underlying its therapeutic potential, on the other hand, have yet to be thoroughly investigated. The purpose of this study was to look into the relationship between ETS1 expression and immunity. Methods TCGA and GEO provide raw data on 33 different cancers as well as GSE67501, GSE78220, and IMvigor210. In addition, we looked at ETS1's genetic changes, expression patterns, and survival studies. The linkages between ETS1 and TME, as well as its association with immunological processes/elements and the major histocompatibility complex, were explored to effectively understand the role of ETS1 in cancer immunotherapy. Three distinct immunotherapeutic cohorts were employed to examine the relationship between ETS1 and immunotherapeutic response. Results ETS1 expression was shown to be high in tumor tissue. ETS1 overexpression is linked to a worse clinical outcome in individuals with overall survival. Immune cell infiltration, immunological modulators, and immunotherapeutic signs are all linked to ETS1. Overexpression of ETS1 is linked to immune-related pathways. However, no statistically significant link was found between ETS1 and immunotherapeutic response. Conclusions ETS1 may be a reliable biomarker for tumor prognosis and a viable prospective therapeutic target for human cancer immunotherapy (e.g., KIRP, MESO, BLCA, KIRC, and THYM).
Collapse
|
624
|
Firoz A, Ali HM, Rehman S, Rather IA. Gastric Cancer and Viruses: A Fine Line between Friend or Foe. Vaccines (Basel) 2022; 10:vaccines10040600. [PMID: 35455349 PMCID: PMC9025827 DOI: 10.3390/vaccines10040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer (GC) is a significant health concern worldwide, with a GLOBOCAN estimate of 1.08 million novel cases in 2020. It is the leading cause of disability-adjusted life years lost to cancer, with the fourth most common cancer in males and the fifth most common cancer in females. Strategies are pursued across the globe to prevent gastric cancer progression as a significant fraction of gastric cancers have been linked to various pathogenic (bacterial and viral) infections. Early diagnosis (in Asian countries), and non-invasive and surgical treatments have helped manage this disease with 5-year survival for stage IA and IB tumors ranging between 60% and 80%. However, the most prevalent aggressive stage III gastric tumors undergoing surgery have a lower 5-year survival rate between 18% and 50%. These figures point to a need for more efficient diagnostic and treatment strategies, for which the oncolytic viruses (OVs) appear to have some promise. OVs form a new therapeutic agent class that induces anti-tumor immune responses by selectively killing tumor cells and inducing systemic anti-tumor immunity. On the contrary, several oncogenic viruses have been shown to play significant roles in malignancy progression in the case of gastric cancer. Therefore, this review evaluates the current state of research and advances in understanding the dual role of viruses in gastric cancer.
Collapse
Affiliation(s)
- Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia
- Correspondence: (S.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Correspondence: (S.R.); (I.A.R.)
| |
Collapse
|
625
|
Abnormal phenotype of Nrf2 is associated with poor prognosis through hypoxic/VEGF-A-Rap1b/VEGFR2 pathway in gastric cancer. Aging (Albany NY) 2022; 14:3293-3312. [PMID: 35417854 PMCID: PMC9037254 DOI: 10.18632/aging.204013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Metastasis is the major cause of death in gastric cancer patients and altered expression of Nrf2 is associated with cancer development. This study assessed Nrf2 and HO-1 expression and hypoxia-induced Nrf2 expression in the promotion of metastatic potential of gastric cancer cells, the relationship of Rap1b and Nrf2 was also discussed. Nrf2 and HO-1 expression were significantly associated with clinicopathological characteristic and were independent prognostic predictors in gastric cancer patients. Hypoxia up-regulated the expression of Nrf2, HO-1 and HIF-1α, whereas knockdown of Nrf2 inhibited cell invasion capacity and reduced the expression of Nrf2, HO-1 and HIF-1α. Patients in the Rap1b (+) Nrf2 (+) group had worst overall survival compared with those from other groups. Knockdown of Rap1b and Nrf2 significantly inhibited cell invasion capacity in the common group compared with the other groups. Hypoxia or VEGF-A facilitated the nuclear translocation of Nrf2 through Rap1b or VEGFR2. Hypoxia or VEGF-A did not induce the phosphorylation of P-Erk1/2 and P-Akt after knockdown of Rap1b or VEGFR2. Hypoxia promoted the gastric cancer malignant behavior through the upregulation of Rap1b and Nrf2. Hypoxia/VEGF-A-Rap1b/VEGFR2 facilitated the nuclear translocation of Nrf2. Targeting Rap1b and Nrf2 may be a novel therapeutic strategy for gastric cancer.
Collapse
|
626
|
Lin Y, Kong DX, Zhang YN. Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:852194. [PMID: 35463305 PMCID: PMC9023803 DOI: 10.3389/fonc.2022.852194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common malignancy globally, and many people with CRC suffer the fate of death. Due to the importance of CRC and its negative impact on communities, treatment strategies to control it or increase patient survival are being studied. Traditional therapies, including surgery and chemotherapy, have treated CRC patients. However, with the advancement of science, we are witnessing the emergence of novel therapeutic approaches such as immunotherapy for CRC treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can affect various biological events, regulate the immune system, and even treat diseases like human malignancies. CRC has recently shown that the gut microorganism pattern can alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of course, this is also true of traditional therapies because it has been revealed that gut microbiota can also reduce the side effects of chemotherapy. Therefore, this review summarized the effects of gut microbiota on CRC immunotherapy.
Collapse
Affiliation(s)
- Yan Lin
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| | - De-Xia Kong
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| |
Collapse
|
627
|
Abd Al Moaty MN, El Ashry ESH, Awad LF, Ibrahim NA, Abu-Serie MM, Barakat A, Altowyan MS, Teleb M. Enhancing the Anticancer Potential of Targeting Tumor-Associated Metalloenzymes via VEGFR Inhibition by New Triazolo[4,3-a]pyrimidinone Acyclo C-Nucleosides Multitarget Agents. Molecules 2022; 27:molecules27082422. [PMID: 35458618 PMCID: PMC9026109 DOI: 10.3390/molecules27082422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation.
Collapse
Affiliation(s)
- Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - El Sayed Helmy El Ashry
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
- Correspondence: (L.F.A.); (A.B.)
| | - Nihal Ahmed Ibrahim
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (E.S.H.E.A.); (N.A.I.)
| | - Marwa Muhammad Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (L.F.A.); (A.B.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| |
Collapse
|
628
|
Lu X, Liu X. Establishment and Analysis of Hypoxia-Related Model in Oral Squamous Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6602648. [PMID: 35432823 PMCID: PMC9010158 DOI: 10.1155/2022/6602648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world. Hypoxia is closely related to immunity in tumor microenvironment and also affects the prognosis of patients. However, there is still a lack of articles related to tumor hypoxia in oral squamous cell carcinoma. Therefore, we aimed to develop a hypoxia model for future application in patient prognosis analysis and immunotherapy. The transcriptome and survival information of OSCC were downloaded from GEO database. The Cox regression model of the lasso method was used to identify prognostic genes and develop gene characteristics based on hypoxia immunity. According to the median risk value, the patients were divided into high-risk group and low-risk group. Then, the estimated algorithm was used to estimate the relationship between hypoxia and immune status. At the same time, we evaluated the correlation and expression differences of immune-related genes between different risk groups. By using the lasso model, we identified two genes, including PFKP and SERPINE1, to construct gene signatures for risk stratification. We observed that both genes were highly expressed in the high-risk group, which was not conducive to the prognosis of the tumor. In addition, in the analysis of the degree of immune infiltration, we observed that there were differences in the content of a variety of immune cells between the two groups. It can be seen that there were great differences in the immune cells constituting the tumor microenvironment in oral squamous cell carcinoma. There remain significant differences in the expression levels of multitudinous immune-related genes. These immune-related genes include CCL chemokines, Chemokine (C-X-C motif) ligand (CXCL), CD antigens, HSP family, interferon family, and interleukin family. The hypoxia-immune-based gene signature represents a promising tool for risk stratification tool in oral squamous cell carcinoma cancer. It might serve as a prognostic classifier for clinical decision-making regarding individualized prognostication and treatment and follow-up scheduling.
Collapse
Affiliation(s)
- Xingwei Lu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- No. 1 Ctomatology Department, The Volgograd State Medical University Volgograd Regional Clinical Hospital Volgograd, Volgograd Oblast, Russia
| | - Xingguang Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
629
|
Li J, Su L, Xiao X, Wu F, Du G, Guo X, Kong F, Yao J, Zhu H. Development and Validation of Novel Prognostic Models for Immune-Related Genes in Osteosarcoma. Front Mol Biosci 2022; 9:828886. [PMID: 35463956 PMCID: PMC9019688 DOI: 10.3389/fmolb.2022.828886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has shown excellent therapeutic effects on various malignant tumors; however, to date, immunotherapy for osteosarcoma is still suboptimal. In this study, we performed comprehensive bioinformatic analysis of immune-related genes (IRGs) and tumor-infiltrating immune cells (TIICs). Datasets of differentially expressed IRGs were extracted from the GEO database (GSE16088). The functions and prognostic values of these differentially expressed IRGs were systematically investigated using a series of bioinformatics methods. In addition, CCK8 and plate clone formation assays were used to explore the effect of PGF on osteosarcoma cells, and twenty-nine differentially expressed IRGs were identified, of which 95 were upregulated and 34 were downregulated. Next, PPI was established for Identifying Hub genes and biology networks by Cytoscape. Six IRGs (APLNR, TPM2, PGF, CD86, PROCR, and SEMA4D) were used to develop an overall survival (OS) prediction model, and two IRGs (HLA-B and PGF) were used to develop a relapse-free survival (RFS) prediction model. Compared with the low-risk patients in the training cohort (GSE39058) and TARGET validation cohorts, high-risk patients had poorer OS and RFS. Using these identified IRGs, we used OS and RFS prediction nomograms to generate a clinical utility model. The risk scores of the two prediction models were associated with the infiltration proportions of some TIICs, and the activation of memory CD4 T-cells was associated with OS and RFS. CD86 was associated with CTLA4 and CD28 and influenced the infiltration of different TIICs. In vitro experiments showed that the knockdown of PGF inhibited the proliferation and viability of osteosarcoma cells. In conclusion, these findings help us better understand the prognostic roles of IRGs and TIICs in osteosarcoma, and CD86 and PGF may serve as specific immune targets.
Collapse
Affiliation(s)
- Junqing Li
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Li Su
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Xing Xiao
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Feiran Wu
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Guijuan Du
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Xinjun Guo
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Fanguo Kong
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Jie Yao
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- *Correspondence: Jie Yao, ; Huimin Zhu,
| | - Huimin Zhu
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- *Correspondence: Jie Yao, ; Huimin Zhu,
| |
Collapse
|
630
|
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60:56. [PMID: 35362541 DOI: 10.3892/ijo.2022.5346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNAs that have been recently regarded as functionally active. CircRNAs are remarkably stable and known to possess several biological functions such as microRNA sponging, regulating transcription and splicing and occasionally acting as polypeptide‑producing templates. CircRNAs show tissue‑specific expression and have been reported to be associated with the progression of several types of malignancies. Given the recent progress in genome sequencing and bioinformatics techniques, a rapid increment in the biological role of circRNAs has been observed. Concurrently, the patent search from different patent databases shows that the patent number of circRNA is increasing very quickly. These phenomena reveal a rapid development of the technological landscape. In the present review, the recent progress on circRNAs in various kinds of cancer has been investigated and their function as biomarkers or therapeutic targets and their technological landscape have been appreciated. A new insight into circRNAs structure and functional capabilities in cancer has been reviewed. Continually increasing knowledge on their critical role during cancer progression is projecting them as biomarkers or therapeutic targets for various kinds of cancer. Thus, recent updates on the functional role of circRNAs in terms of the technological landscape, clinical opportunities (biomarkers and therapeutic targets), and challenges in cancer have been illustrated.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Shreya Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
631
|
Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol 2022; 86:624-644. [DOI: 10.1016/j.semcancer.2022.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
|
632
|
Li X, Geng X, Chen Z, Yuan Z. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacol Res 2022; 179:106218. [DOI: 10.1016/j.phrs.2022.106218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
633
|
Zhou Y, Nan P, Li C, Mo H, Zhang Y, Wang H, Xu D, Ma F, Qian H. Upregulation of MTA1 in Colon Cancer Drives A CD8 + T Cell-Rich But Classical Macrophage-Lacking Immunosuppressive Tumor Microenvironment. Front Oncol 2022; 12:825783. [PMID: 35350571 PMCID: PMC8957956 DOI: 10.3389/fonc.2022.825783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background The MTA1 protein encoded by metastasis-associated protein 1 (MTA1) is a key component of the ATP-dependent nucleosome remodeling and deacetylase (NuRD) complex, which is widely upregulated in cancers. MTA1 extensively affects downstream gene expression by participating in chromatin remodeling. Although it was defined as a metastasis-associated gene in first reports and metastasis is a process prominently affected by the tumor microenvironment, whether it affects the microenvironment has not been investigated. In our study, we elucidated the regulatory effect of MTA1 on tumor-associated macrophages (TAMs) and how this regulation affects the antitumor effect of cytotoxic T lymphocytes (CTLs) in the tumor microenvironment of colorectal cancer. Methods We detected the cytokines affected by MTA1 expression via a cytokine antibody array in control HCT116 cells and HCT116 cells overexpressing MTA1. Multiplex IHC staining was conducted on a colorectal cancer tissue array from our cancer cohort. Flow cytometry (FCM) was performed to explore the polarization of macrophages in the coculture system and the antitumor killing effect of CTLs in the coculture system. Bioinformatics analysis was conducted to analyze the Cancer Genome Atlas (TCGA) colorectal cancer cohort and single-cell RNA-seq data to assess the immune infiltration status of the TCGA colorectal cancer cohort and the functions of myeloid cells. Results MTA1 upregulation in colorectal cancer was found to drive an immunosuppressive tumor microenvironment. In the tumor microenvironment of MTA1-upregulated colorectal cancer, although CD8+ T cells were significantly enriched, macrophages were significantly decreased, which impaired the CTL effect of the CD8+ T cells on tumor cells. Moreover, upregulated MTA1 in tumor cells significantly induced infiltrated macrophages into tumor-associated macrophage phenotypes and further weakened the cytotoxic effect of CD8+ T cells. Conclusion Upregulation of MTA1 in colorectal cancer drives an immunosuppressive tumor microenvironment by decreasing the microphages from the tumor and inducing the residual macrophages into tumor-associated microphage phenotypes to block the activation of the killing CTL, which contributes to cancer progression.
Collapse
Affiliation(s)
- Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Haijuan Wang
- The Editorial Office of Infectious Diseases & Immunity, Chinese Medical Journals Publishing House Co., Ltd, Beijing, China
| | - Dongkui Xu
- Department of VIP, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
634
|
Dunn ZS, Li YR, Yu Y, Lee D, Gibbons A, Kim JJ, Zhou TY, Li M, Nguyen M, Cen X, Zhou Y, Wang P, Yang L. Minimally Invasive Preclinical Monitoring of the Peritoneal Cavity Tumor Microenvironment. Cancers (Basel) 2022; 14:1775. [PMID: 35406547 PMCID: PMC8997523 DOI: 10.3390/cancers14071775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Intraperitoneal (i.p.) experimental models in mice can recapitulate the process of i.p. dissemination in abdominal cancers and may help uncover critical information about future successful clinical treatments. i.p. cellular composition is studied in preclinical models addressing a wide spectrum of other pathophysiological states such as liver cirrhosis, infectious disease, autoimmunity, and aging. The peritoneal cavity is a multifaceted microenvironment that contains various immune cell populations, including T, B, NK, and various myeloid cells, such as macrophages. Analysis of the peritoneal cavity is often obtained by euthanizing mice and performing terminal peritoneal lavage. This procedure inhibits continuous monitoring of the peritoneal cavity in a single mouse and necessitates the usage of more mice to assess the cavity at multiple timepoints, increasing the cost, time, and variability of i.p. studies. Here, we present a simple, novel method termed in vivo intraperitoneal lavage (IVIPL) for the minimally invasive monitoring of cells in the peritoneal cavity of mice. In this proof-of-concept, IVIPL provided real-time insights into the i.p. tumor microenvironment for the development and study of ovarian cancer therapies. Specifically, we studied CAR-T cell therapy in a human high-grade serous ovarian cancer (HGSOC) xenograft mouse model, and we studied the immune composition of the i.p. tumor microenvironment (TME) in a mouse HGSOC syngeneic model.
Collapse
Affiliation(s)
- Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; (Z.S.D.); (P.W.)
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Alicia Gibbons
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - James Joon Kim
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Tian Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Mulin Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Mya Nguyen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Xinjian Cen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; (Z.S.D.); (P.W.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Y.); (D.L.); (A.G.); (J.J.K.); (T.Y.Z.); (M.L.); (M.N.); (X.C.); (Y.Z.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
635
|
Demetriades M, Zivanovic M, Hadjicharalambous M, Ioannou E, Ljujic B, Vucicevic K, Ivosevic Z, Dagovic A, Milivojevic N, Kokkinos O, Bauer R, Vavourakis V. Interrogating and Quantifying In Vitro Cancer Drug Pharmacodynamics via Agent-Based and Bayesian Monte Carlo Modelling. Pharmaceutics 2022; 14:749. [PMID: 35456583 PMCID: PMC9029523 DOI: 10.3390/pharmaceutics14040749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The effectiveness of chemotherapy in cancer cell regression is often limited by drug resistance, toxicity, and neoplasia heterogeneity. However, due to the significant complexities entailed by the many cancer growth processes, predicting the impact of interference and symmetry-breaking mechanisms is a difficult problem. To quantify and understand more about cancer drug pharmacodynamics, we combine in vitro with in silico cancer models. The anti-proliferative action of selected cytostatics is interrogated on human colorectal and breast adenocarcinoma cells, while an agent-based computational model is employed to reproduce experiments and shed light on the main therapeutic mechanisms of each chemotherapeutic agent. Multiple drug administration scenarios on each cancer cell line are simulated by varying the drug concentration, while a Bayesian-based method for model parameter optimisation is employed. Our proposed procedure of combining in vitro cancer drug screening with an in silico agent-based model successfully reproduces the impact of chemotherapeutic drugs in cancer growth behaviour, while the mechanisms of action of each drug are characterised through model-derived probabilities of cell apoptosis and division. We suggest that our approach could form the basis for the prospective generation of experimentally-derived and model-optimised pharmacological variables towards personalised cancer therapy.
Collapse
Affiliation(s)
- Marios Demetriades
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Myrianthi Hadjicharalambous
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Eleftherios Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Biljana Ljujic
- Faculty of Medical Sciences, Human Genetics, University of Kragujevac, 34000 Kragujevac, Serbia; (B.L.); (Z.I.)
| | - Ksenija Vucicevic
- Department for Pharmaceutical Technologies, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Zeljko Ivosevic
- Faculty of Medical Sciences, Human Genetics, University of Kragujevac, 34000 Kragujevac, Serbia; (B.L.); (Z.I.)
| | - Aleksandar Dagovic
- Oncology and Radiotherapy Centre, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nevena Milivojevic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.Z.); (N.M.)
| | - Odysseas Kokkinos
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
| | - Roman Bauer
- Department of Computer Science, University of Surrey, Guilford GU2 7XH, UK
| | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus; (M.D.); (M.H.); (E.I.); (O.K.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
636
|
Targeted Endoradiotherapy with Lu 2O 3-iPSMA/-iFAP Nanoparticles Activated by Neutron Irradiation: Preclinical Evaluation and First Patient Image. Pharmaceutics 2022; 14:pharmaceutics14040720. [PMID: 35456554 PMCID: PMC9026501 DOI: 10.3390/pharmaceutics14040720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is expressed in a variety of cancer cells, while the fibroblast activation protein (FAP) is expressed in the microenvironment of tumors. Previously, we reported the ability of iPSMA and iFAP ligands to specifically target PSMA and FAP proteins, as well as the preparation of stable 177Lu2O3 nanoparticles (<100 nm) functionalized with target-specific peptides. This research aimed to evaluate the dosimetry and therapeutic response of Lu2O3-iPSMA and Lu2O3-iFAP nanoparticles activated by neutron irradiation to demonstrate their potential for theranostic applications in nuclear medicine. The biokinetic behavior, radiation absorbed dose, and metabolic activity ([18F]FDG/micro-PET, SUV) in preclinical tumor tissues (athymic mice), following treatment with 177Lu2O3-iPSMA, 177Lu2O3-iFAP or 177Lu2O3 nanoparticles, were assessed. One patient with multiple colorectal liver metastases (PSMA-positive) received 177Lu2O3-iPSMA under a “compassionate use” protocol. Results indicated no significant difference (p < 0.05) between 177Lu2O3-iPSMA and 177Lu2O3-iFAP, regarding tumor radiation absorbed doses (105 ± 14 Gy, 99 ± 12 Gy and 58 ± 7 Gy for 177Lu2O3-iPSMA, 177Lu2O3-iFAP, and 177Lu2O3, respectively) and tumor metabolic activity (SUV of 0.421 ± 0.092, 0.375 ± 0.104 and 1.821 ± 0.891 for 177Lu2O3-iPSMA, 177Lu2O3-iFAP, and 177Lu2O3, respectively) in mice after treatment, which correlated with the observed therapeutic response. 177Lu2O3-iPSMA and 177Lu2O3-iFAP significantly inhibited tumor progression, due to the prolonged tumor retention and a combination of 177Lu radiotherapy and iPSMA or iFAP molecular recognition. There were negligible uptake values in non-target tissues and no evidence of liver and renal toxicity. The doses received by the patient’s liver metastases (42−210 Gy) demonstrated the potential of 177Lu2O3-iPSMA for treating colorectal liver metastases.
Collapse
|
637
|
Bao T, Wang Z, Xu J. Immune-Related lncRNAs Pairs to Construct a Novel Signature for Predicting Prognosis in Gastric Cancer. Front Surg 2022; 9:807778. [PMID: 35402492 PMCID: PMC8985853 DOI: 10.3389/fsurg.2022.807778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Immune-related long non-coding RNAs (irlncRNAs) appear valuable in predicting prognosis in patients with cancer. In this study, we used a fresh modeling algorithm to construct irlncRNAs signature and then assessed its predictive value for prognosis, tumor immune infiltration, and chemotherapy efficacy in gastric cancer (GC) patients. Materials and Methods The raw transcriptome data were extracted from the Cancer Genome Atlas (TCGA). Patients were randomly divided into the training and testing cohort. irlncRNAs were identified through co-expression analysis, after which differentially expressed irlncRNA (DEirlncRNA) pairs were identified. Next, we developed a model to distinguish between high- or low-risk groups in GC patients through univariate and LASSO regression analyses. A ROC curve was used to verify this model. After subgrouping patients according to the median risk score, we investigated the connection between the risk score of GC and clinicopathological characteristics. Functional enrichment analysis was also performed. Results We find that the results indicate that immune-related lncRNA signaling has essential value in predicting prognosis, and it may be potential to measure the Efficacy for immunotherapy. This feature may be a guide to the selection of GC immunotherapy. Conclusion Our data revealed that immune-related lncRNA signaling had essential value in predicting prognosis, and it may be potentially used to measure the efficacy for immunotherapy. This feature may also be used to guide the selection of GC immunotherapy.
Collapse
|
638
|
S100A8 as a Promising Biomarker and Oncogenic Immune Protein in the Tumor Microenvironment: An Integrative Pancancer Analysis. JOURNAL OF ONCOLOGY 2022; 2022:6947652. [PMID: 35646116 PMCID: PMC9132702 DOI: 10.1155/2022/6947652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022]
Abstract
Background S100 Calcium Binding Protein A8 (S100A8) is beneficial for cancer immunotherapy. However, the processes underlying its therapeutic potential have not been completely studied. Methods The Cancer Genome Atlas provides raw data on 33 different cancer types. GEO made available GSE67501, GSE78220, and IMvigor210. We investigated S100A8's genetic changes, expression patterns, and survival studies. The linkages between S100A8 and TME, as well as its association with immunological processes/elements and the major histocompatibility complex, were explored to effectively understand the role of S100A8 in cancer immunotherapy. Three distinct immunotherapeutic cohorts were employed to examine the relationship between S100A8 and immunotherapeutic response. Results S100A8 expression was high in tumor tissue. The overexpression of S100A8 is associated with poor clinical outcome in patients with overall survival. S100A8 is associated with immune cell infiltration, immunological modulators, and immunotherapeutic indicators. S100A8 overexpression is connected to immune-related pathways. However, no statistically significant connection between S100A8 and immunotherapeutic response was identified. Conclusions S100A8 may be a reliable biomarker for tumor prognosis and a viable prospective therapeutic target for human cancer immunotherapy (e.g., GBM, KIRC, LGG, and LIHC).
Collapse
|
639
|
Wang Y, Song M, Gao B. EF-Hand Domain-Containing Protein D2 (EFHD2) Correlates with Immune Infiltration and Predicts the Prognosis of Patients: A Pan-Cancer Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4878378. [PMID: 35341013 PMCID: PMC8941500 DOI: 10.1155/2022/4878378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
Background EF-hand domain-containing protein D2 (EFHD2) has recently been reported to participate in initiation of cancer. More evidence indicates that EFHD2 plays an important role in tumors, but the pan-cancer analysis of EFHD2 is still very limited. Methods In this study, we downloaded the original mRNA expression data and SNP data of 33 kinds of tumor data. The gene expression data of different tissues were downloaded from the GTEX database, combined with TCGA data and corrected to calculate the difference of gene expression. The data of total survival time (OS) and progression-free survival (PFS) of TCGA patients were downloaded from the Xena database to further survey the relationship between the EFHD2 expression and prognosis. The CIBERSORT algorithm was used to analyze the RNA-seq data of 33 kinds of cancer patients in different subgroups. In this study, NCI-60 drug sensitivity data and RNA-seq data were downloaded to explore the relationship between genes and common antineoplastic drug sensitivity through correlation analysis. In this study, GSEA analysis was carried out from the Molecular Signature database through the packages of "clusterprofiler" and "enrichplot." By comparing the differences of signal pathways between high and low gene expression groups, the possible molecular mechanism of prognostic differences among 33 kinds of tumors was determined. Results Our results indicated that EFHD2 was highly expressed in 23 kinds of tumors. In addition, EFHD2 was associated with stage in many kinds of tumors. The expression of EFHD2 was closely related to the OS of 12 kinds of cancer patients. In addition, Kaplan-Meier- (KM-) plot survival analysis indicated that the high expression of EFHD2 was related to the poor OS of 5 kinds of cancer, and the expression of EFHD2 was closely related to the PFI of 5 kinds of cancer patients. The expression of EFHD2 was closely related to immune infiltration, among which 18 cancers were significantly correlated with CD8T cells, 14 cancers were significantly correlated with T regulatory (Tregs) cells, 15 cancers were significantly correlated with CD4 memory activated Tcells, and EFHD2 was significantly correlated with common tumor-related regulatory genes such as TGF beta signaling, TNFA signaling, hypoxia, scorch death, DNA repair, autophagy, and iron death-related genes. The expression level of EFHD2 was significantly correlated with each tumor of TMB, including STAD, SARC, ACC, THYM, KICH, THCA, and TGCT. In MSI, there were significant differences in THYM, STAD, THCA, and TGCT. We used the CellMiner database to explore the sensitivity between EFHD2 gene and common antineoplastic drugs and found that the prediction of high expression of EFHD2 was related to the resistance of many antineoplastic drugs. In renal cell carcinoma, the high expression of EFHD2 is mainly concentrated in ALLOGRAFT_REJECTION, REACTIVE_OXYGEN_SPECIES_PATHWAY, INTERFERON_GAMMA_RESPONSE, IL6_JAK_STAT3_SIGNALING, INTERFERON_ALPHA_RESPONSE, and other signal pathways. GO results showed that the genes were mainly enriched in response to interferon-gamma, antigen processing and presentation, cellular response to interferon-gamma, and other pathways. KEGG results demonstrated that EFHD2 was mainly rich in phagosome, Epstein-Barr virus infection, Staphylococcus aureus infection, and other pathways. The results of Kaplan-Meier survival analysis demonstrated that the high expression of EFHD2 was significantly related to the poor prognosis. Conclusion Our findings highlight the predictive value of EFHD2 in cancer and provide a potential research direction for elucidating the role of EFHD2 in tumorigenesis and drug resistance.
Collapse
Affiliation(s)
- Yu Wang
- Nanjing Medical University, 211103, China
| | - Meiqi Song
- Haerbing Medical University, 150076, China
| | - Binbin Gao
- Nanjing Medical University, 211103, China
| |
Collapse
|
640
|
Shen J, Han L, Xue Y, Li C, Jia H, Zhu K. Ropivacaine Inhibits Lung Cancer Cell Malignancy Through Downregulation of Cellular Signaling Including HIF-1α In Vitro. Front Pharmacol 2022; 12:806954. [PMID: 35280249 PMCID: PMC8905340 DOI: 10.3389/fphar.2021.806954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Ropivacaine is widely used to induce regional anesthesia during lung cancer surgery. Previous studies reported that amide-linked local anesthetics, e.g., ropivacaine, affected the biological behavior of lung adenocarcinoma cells, but the conclusion is controversial and warrants further study. This study set out to investigate the biological effects of ropivacaine on cultured lung cancer cells and underlying mechanisms. Methods: Lung cancer cell lines (A549 and H1299) were cultured and then treated with or without ropivacaine (0.5, 1, and 2 mM) for 48 or 72 h. Their proliferation, migration, and invasion together with cell death and molecules including hypoxia inducible factor (HIF)-1α, VEGF, matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 expression associated with these changes were determined. Results: Ropivacaine significantly inhibited proliferation and migration, invasion, and cell death in a concentration-dependent manner in both cell lines. Ropivacaine also promoted cell death and induced a concentration- and time-dependent cell arrest towards the G0/G1 phase. Expression of VEGF, MMP-1, MMP-2, MMP-9, and HIF-1α in both cell lines was also inhibited by ropivacaine in a concentration-related manner. Conclusion: Our data indicated that ropivacaine inhibited lung cancer cell malignancy, which may be associated with downregulation of cell-survival-associated cellular molecules. The translational value of the current work is subjected to further study.
Collapse
Affiliation(s)
- Junmei Shen
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Han
- Department of Blood Transfusion, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongxian Xue
- Scientific Research Center, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huiqun Jia
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kangsheng Zhu
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
641
|
Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:894-915. [PMID: 35141049 PMCID: PMC8803965 DOI: 10.1016/j.omtn.2022.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects. Aptamers are single-chained oligonucleotides that bind their targets with high specificity and affinity owing to their three-dimensional (3D) structures, and they are one potential way to address this need. In particular, bispecific aptamers (bsApts) have been shown to induce artificial immune synapses that promote T cell activation and subsequent tumor cell lysis in various in vitro and in vivo pre-clinical models. We discuss these advances here, along with gaps in bsApt biology at both the cellular and resident tissue levels that should be addressed to accelerate their translation into the clinic. The broad application, minimal production cost, and relative lack of immunogenicity of bsApts give them some ideal qualities for manipulating the immune system. Building upon lessons from other novel therapies, bsApts could soon provide clinicians with an immunomodulating toolbox that is not only potent and efficacious but exercises a wide therapeutic index.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
642
|
Romayor I, García-Vaquero ML, Márquez J, Arteta B, Barceló R, Benedicto A. Discoidin Domain Receptor 2 Expression as Worse Prognostic Marker in Invasive Breast Cancer. Breast J 2022; 2022:5169405. [PMID: 35711892 PMCID: PMC9187291 DOI: 10.1155/2022/5169405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/10/2022] [Indexed: 01/01/2023]
Abstract
Discoidin domain receptor 2 (DDR2) is arising as a promising therapeutic target in breast carcinoma (BC). The ability of DDR2 to bind to collagen promotes protumoral responses in cancer cells that influence the tumor microenvironment (TME). Nonetheless, the interrelation between DDR2 expression and TME modulation during BC progression remains poorly known. For this reason, we aim to evaluate the correlation between intratumoral expression of DDR2 and the infiltration of the main TME cell populations, cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs). First, collagen and DDR2 expression levels were analyzed in human invasive BC samples. Then, DDR2 status correlation with tumor aggressiveness and patient survival were retrieved from different databases. Subsequently, the main pathways, cell types, and tissues correlated with DDR2 expression in BC were obtained through bioinformatics approach. Finally, we studied the association of DDR2 expression with the recruitment of CAFs and TAMs. Our findings showed that, together with the expected overexpression of TME markers, DDR2 was upregulated in tumor samples. Besides, we uncovered that altered TME markers were linked to DDR2 expression in invasive BC patients. Consequently, DDR2 modulates the stromal reaction through CAFs and TAMs infiltration and could be used as a potential worse prognostic factor in the treatment response of invasive BC.
Collapse
Affiliation(s)
- Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Marina Luque García-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca9, Spain
| | - Joana Márquez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ramón Barceló
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Oncology Service, Basurto University Hospital, 48002 Bilbao, Spain
| | - Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
643
|
Ye X, Deng X, Wen J, Li Y, Zhang M, Cai Z, Liu G, Wang H, Cai J. Folate Receptor-Alpha Targeted 7x19 CAR- γδT Suppressed Triple-Negative Breast Cancer Xenograft Model in Mice. JOURNAL OF ONCOLOGY 2022; 2022:2112898. [PMID: 35295709 PMCID: PMC8920629 DOI: 10.1155/2022/2112898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the worst prognosis subtype of breast cancer due to lack of specific targets. Recent studies have shown that immunotherapy may solve that problem by targeting folate receptor-alpha (FRα). METHODS Gene modified γδ T cells were manufactured to express FRa specific chimeric antigen receptor (FRa CAR) and secrete interleukin-7 (IL-7) and chemokine C-C motif ligand 19 (CCL19). CAR-γδT cells that secrete IL-7 and CCL19 (7 × 19 CAR-γδT) were evaluated for their antitumor activity both in vitro and in vivo. RESULTS 7 × 19 CAR-γδT showed remarkable antitumor activity in vitro. Combined with PBMC, 7 × 19 CAR-γδT inhibited TNBC xenograft model growth superiorly compared with single-application or conventional CAR-γδT cells. Histopathological analyses showed increased DC or T cells infiltration to tumor tissues. CONCLUSION Taken together, our results showed that 7 × 19 CAR-γδT have remarkable anti-TNBC tumor activity and showed a broad application prospect in the treatment of incurable TNBC patients.
Collapse
Affiliation(s)
- Xueshuai Ye
- Department of Surgery, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
- Department of Oncology & Surgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Xinna Deng
- Department of Oncology & Surgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Junye Wen
- Department of Oncology & Surgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Yang Li
- Department of Surgery, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, Shijiazhuang 050051, Hebei Province, China
| | - Mengya Zhang
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, Shijiazhuang 050051, Hebei Province, China
| | - Ziqi Cai
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, Shijiazhuang 050051, Hebei Province, China
| | - Guan Liu
- Department of Surgery, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, Shijiazhuang 050051, Hebei Province, China
| | - Hezhi Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai City 200032, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
- Department of Oncology & Surgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
644
|
Du Y, Cao M, Liu Y, He Y, Yang C, Zhang G, Fan Y, Gao F. Tumor microenvironment remodeling modulates macrophage phenotype in breast cancer lymphangiogenesis. FASEB J 2022; 36:e22248. [PMID: 35239213 DOI: 10.1096/fj.202101230r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 01/28/2023]
Abstract
Hyaluronan (HA) is dynamically remodeled in tumor microenvironment (TME) and is reported to be closely related to tumor lymphatic metastasis by inducing lymphangiogenesis. Macrophages are known to be involved in neo-lymphatic vessels formation. However, few studies have investigated the role of HA-mediated TME remodeling on macrophages-dependent lymphangiogenesis. We previously showed that HA could drive macrophages to acquire the M2 phenotype. In this study, we attempt to study the crosstalk between HA in TME and macrophages dependent lymphangiogenesis. First, we found that the abundant assembly of HA in breast cancer tissue was accompanied by increased infiltration of macrophages featured by expressing lymphatic endothelial markers. Then, to further identify the remodeling of HA in regulating macrophage phenotype, we used HA fragments which are usually enriched in TME for this purpose. Our results showed that the reconstructed HA could induce bone marrow-derived macrophages (BMDMs) to express markers of lymphatic endothelium and form tube-like structures, suggesting a novel function of HA from TME on macrophages-dependent lymphangiogenesis. Finally, we found that inhibition of the HA-TLR4 pathway could reduce the ability of BMDMs to exhibit lymphatic endothelial phenotype. Our results provide new insight into tumor microenvironment remodeling and macrophages in breast cancer lymphangiogenesis.
Collapse
Affiliation(s)
- Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Youben Fan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| |
Collapse
|
645
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
646
|
Su ZY, Siak PY, Leong CO, Cheah SC. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front Oncol 2022; 12:840467. [PMID: 35311066 PMCID: PMC8924466 DOI: 10.3389/fonc.2022.840467] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre of Cancer and Stem Cells Research, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
647
|
Medulloblastoma: Immune microenvironment and targeted nano-therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
648
|
Carlos-Reyes Á, Romero-Garcia S, Contreras-Sanzón E, Ruiz V, Prado-Garcia H. Role of Circular RNAs in the Regulation of Immune Cells in Response to Cancer Therapies. Front Genet 2022; 13:823238. [PMID: 35186039 PMCID: PMC8847670 DOI: 10.3389/fgene.2022.823238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (CircRNAs) are a class of small endogenous noncoding RNA that are formed by means of either the spliceosome or lariat-type splicing. CircRNAs have multiple regulatory functions and have been detected in different cell types, like normal, tumor and immune cells. CircRNAs have been suggested to regulate T cell functions in response to cancer. CircRNAs can enter into T cells and promote the expression of molecules that either trigger antitumoral responses or promote suppression and the consequent evasion to the immune response. Additionally, circRNAs may promote tumor progression and resistance to anticancer treatment in different types of neoplasias. In this minireview we discuss the impact of circRNAs and its function in the regulation of the T-cells in immune response caused by cancer therapies.
Collapse
Affiliation(s)
- Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| | | | | | - Víctor Ruiz
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| |
Collapse
|
649
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
650
|
Hu Y, Gao S, Khan AR, Yang X, Ji J, Xi Y, Zhai G. Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opin Drug Deliv 2022; 19:221-234. [PMID: 35164610 DOI: 10.1080/17425247.2022.2042512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects. AREAS COVERED This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors. EXPERT OPINION Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.
Collapse
Affiliation(s)
- Yue Hu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Shan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Government of Punjab, Specialized HealthCare and Medical Education Department, Lahore, Pakistan
| | - Xiaoye Yang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|