651
|
Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One 2013; 8:e65539. [PMID: 23762387 PMCID: PMC3677905 DOI: 10.1371/journal.pone.0065539] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/25/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are nuclear effectors of the Hippo pathway. Although they are abundantly expressed in the cytoplasm and nuclei of human colorectal cancer (CRC), and related to tumor proliferation status, there have been few studies on the predictive role of YAP and TAZ expression on the overall survival of patients with CRC. This study investigated YAP and TAZ expression in both CRC patients and colon cancer cell lines, and assessed their prognostic value. METHODS Paraffin-embedded specimens from 168 eligible patients were used to investigate YAP and TAZ expression by immunohistochemistry, and compared with experimental results in colon cancer HCT116 cell line to explore their clinical significance in CRC. RESULTS Statistically significant positive correlations were found between protein expression of YAP and TAZ in CRC tissues. Patients with higher YAP or TAZ expression showed a trend of shorter survival times; more importantly, our cohort study indicated that patients with both YAP and TAZ overexpression presented the worst outcomes. This was supported by multivariate analysis. In HCT116 colon cancer cells, the capacity for proliferation, metastasis, and invasion was dramatically reduced by knockdown of YAP and TAZ expressions by siRNA. CONCLUSIONS Co-overexpression of YAP and TAZ is an independent predictor of prognosis for patients with CRC, and may account for the higher proliferation, metastasis, and poor survival outcome of these patients.
Collapse
|
652
|
Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell 2013; 25:610-22. [PMID: 23747191 DOI: 10.1016/j.devcel.2013.05.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/10/2013] [Accepted: 05/06/2013] [Indexed: 01/18/2023]
Abstract
In embryonic stem (ES) cells and in early mouse embryos, the transcription factor Oct4 is an essential regulator of pluripotency. Oct4 transcriptional targets have been described in ES cell lines; however, the molecular mechanisms by which Oct4 regulates establishment of pluripotency in the epiblast (EPI) have not been fully elucidated. Here, we show that neither maternal nor zygotic Oct4 is required for the formation of EPI cells in the blastocyst. Rather, Oct4 is first required for development of the primitive endoderm (PE), an extraembryonic lineage. EPI cells promote PE fate in neighboring cells by secreting Fgf4, and Oct4 is required for expression of Fgf4, but we show that Oct4 promotes PE development cell-autonomously, downstream of Fgf4 and Mapk. Finally, we show that Oct4 is required for the expression of multiple EPI and PE genes as well as multiple metabolic pathways essential for the continued growth of the preimplantation embryo.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
653
|
Abstract
Complete sequences of animal genomes have revealed a remarkably small and conserved toolbox of signalling pathways, such as TGF-β and WNT that account for all biological diversity. This raises the question as to how such a limited set of cues elaborates so many diverse cell fates and behaviours. It is now clear that components of signalling pathways are physically assembled into higher order networks that ultimately dictate the biological output of pathway activity. Intertwining of pathways is thus emerging as a key feature of a large, integrated and coordinated signalling network that allows cells to read a limited set of extrinsic cues, but mount the diverse responses that underpin successful development and homeostasis. Moreover, this design principle confounds the development of effective therapeutic interventions in complex diseases, such as cancer.
Collapse
Affiliation(s)
- Liliana Attisano
- Department of Biochemistry and Donnelly CCBR, University of Toronto160 College Street, Toronto, ONCanada, M5S 3E1
| | - Jeffrey L. Wrana
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto600 University Avenue, Toronto, ONCanada, M5G 1X5
| |
Collapse
|
654
|
Gao T, Zhou D, Yang C, Singh T, Penzo-Méndez A, Maddipati R, Tzatsos A, Bardeesy N, Avruch J, Stanger BZ. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 2013; 144:1543-53, 1553.e1. [PMID: 23454691 PMCID: PMC3665616 DOI: 10.1053/j.gastro.2013.02.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The Hippo signaling pathway is a context-dependent regulator of cell proliferation, differentiation, and apoptosis in species ranging from Drosophila to humans. In this study, we investigated the role of the core Hippo kinases-Mst1 and Mst2-in pancreatic development and homeostasis. METHODS We used a Cre/LoxP system to create mice with pancreas-specific disruptions in Mst1 and Mst2 (Pdx1-Cre;Mst1(-/-);Mst2(fl/fl) mice), the mammalian orthologs of Drosophila Hippo. We used a transgenic approach to overexpress Yap, the downstream mediator of Hippo signaling, in the developing pancreas of mice. RESULTS Contrary to expectations, the pancreatic mass of Pdx1-Cre;Mst1(-/-);Mst2(fl/fl) mice was reduced compared with wild-type mice, largely because of postnatal de-differentiation of acinar cells into duct-like cells. Development of this phenotype coincided with postnatal reactivation of YAP expression. Ectopic expression of YAP during the secondary transition (a stage at which YAP is normally absent) blocked differentiation of the endocrine and exocrine compartments, whereas loss of a single Yap allele reduced acinar de-differentiation. The phenotype of Pdx1-Cre;Mst1(-/-);Mst2(fl/fl) mice recapitulated cellular and molecular changes observed during chemical-induced pancreatitis in mice. CONCLUSIONS The mammalian Hippo kinases, and YAP, maintain postnatal pancreatic acinar differentiation in mice.
Collapse
Affiliation(s)
- Tao Gao
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Dawang Zhou
- The Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chenghua Yang
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Tarjinder Singh
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alfredo Penzo-Méndez
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ravikanth Maddipati
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alexandros Tzatsos
- The Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel Bardeesy
- The Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph Avruch
- The Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ben Z. Stanger
- Gastroenterology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA,Corresponding author: 421 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; 215-746-5560;
| |
Collapse
|
655
|
Bruce AW. Generating different genetic expression patterns in the early embryo: insights from the mouse model. Reprod Biomed Online 2013; 27:586-92. [PMID: 23768616 DOI: 10.1016/j.rbmo.2013.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022]
Abstract
The divergence of two differentiating extraembryonic cell types (trophectoderm and primitive endoderm) from the pluripotent epiblast population (the source of fetal progenitor cells) by the blastocyst stage of mouse development relies upon the activation and execution of lineage-specific gene expression programmes. While our understanding of the central transcription factor 'effectors' directing these cell-fate choices has accumulated rapidly, what is less clear is how the differential expression of such genes within the diverging lineages is initially generated. This review summarizes and consolidates current understanding. I introduce the traditional concept and importance of a cell's spatial location within the embryo, referencing recent mechanistic and molecular insights relating to cell fate. Additionally, I address the growing body of evidence that suggests that heterogeneities among blastomeres precede, and possibly inform, their spatial segregation in the embryo. I also discuss whether the origins of such early heterogeneity are stochastic and/or indicative of intrinsic properties of the embryo. Lastly, I argue that the robustness and regulative capacity of preimplantation embryonic development may reflect the existence of multiple converging, if not wholly redundant, mechanisms that act together to generate the necessary diversity of inter-cell-lineage gene expression patterns.
Collapse
Affiliation(s)
- Alexander W Bruce
- Laboratory of Developmental Biology and Genetics, Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice (Budweis), Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences in České Budějovice, Branišovská 31, 37005 České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
656
|
Østrup O, Olbricht G, Østrup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS One 2013; 8:e61547. [PMID: 23637850 PMCID: PMC3639270 DOI: 10.1371/journal.pone.0061547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA). While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos showed striking overlap in functional annotation of transcripts during the EGA, suggesting conserved basic mechanisms regulating establishment of totipotency in mammalian development.
Collapse
Affiliation(s)
- Olga Østrup
- Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo and Norwegian Center for Stem Cell Research, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
657
|
Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial,Monodelphis domesticaWagner. Evol Dev 2013; 15:171-85. [DOI: 10.1111/ede.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. T. Morrison
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - N. S. Bantilan
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - V. N. Wang
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - K. M. Nellett
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - Y. P. Cruz
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| |
Collapse
|
658
|
Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 2013; 23:380-9. [PMID: 23607968 DOI: 10.1016/j.tcb.2013.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022]
Abstract
Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.
Collapse
Affiliation(s)
- Ilenia Bernascone
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Madrid 28049, Spain
| | | |
Collapse
|
659
|
Iwasa H, Maimaiti S, Kuroyanagi H, Kawano S, Inami K, Timalsina S, Ikeda M, Nakagawa K, Hata Y. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans. Exp Cell Res 2013; 319:931-45. [DOI: 10.1016/j.yexcr.2013.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 01/12/2023]
|
660
|
Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C, Lim DS, Pawson T, Wrana J, McNeill H. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet 2013; 9:e1003380. [PMID: 23555292 PMCID: PMC3605093 DOI: 10.1371/journal.pgen.1003380] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/29/2013] [Indexed: 12/15/2022] Open
Abstract
Yap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis. We used microarray analysis to identify a suite of novel Yap-dependent genes that function during nephron formation and have been implicated in morphogenesis. Previous in vitro studies have indicated that Yap can respond to mechanical stresses in cultured cells downstream of the small GTPases RhoA. We find that tissue-specific inactivation of the Rho GTPase Cdc42 causes a severe defect in nephrogenesis that strikingly phenocopies loss of Yap. Ablation of Cdc42 decreases nuclear localization of Yap, leading to a reduction of Yap-dependent gene expression. We propose that Yap responds to Cdc42-dependent signals in nephron progenitor cells to activate a genetic program required to shape the functioning nephron. The mammalian kidney undergoes reiterative and stereotypical morphogenetic changes to create the elaborately convoluted adult nephron, the functional filtration unit of the kidney. How these sequential morphological events are controlled remains poorly understood. Here we show that the transcriptional activator Yap is essential in the developing murine kidney. Yap mutants have reduced nephrogenesis and defective morphogenesis. Yap function in nephrogenesis is independent of its previously described role in regulation of cell proliferation and apoptosis. Instead, Yap activity is needed for proper expression of a suite of genes that control cell signaling and cell structure. Remarkably, we find that ablation of Cdc42 phenocopies loss of Yap. We show that Cdc42 is essential for nuclear access of Yap, both in vivo and in tissue culture studies. Taken together, our work shows that Yap and Cdc42 are essential for the cell fate and morphogenesis decisions necessary to shape functioning nephrons, and suggests that Yap functions downstream of Cdc42 during kidney development.
Collapse
Affiliation(s)
- Antoine Reginensi
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rizaldy P. Scott
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alex Gregorieff
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mazdak Bagherie-Lachidan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chaeuk Chung
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dae-Sik Lim
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeff Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
661
|
Hu J, Sun S, Jiang Q, Sun S, Wang W, Gui Y, Song H. Yes-associated protein (yap) is required for early embryonic development in zebrafish (danio rerio). Int J Biol Sci 2013; 9:267-78. [PMID: 23494967 PMCID: PMC3596712 DOI: 10.7150/ijbs.4887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/26/2013] [Indexed: 11/11/2022] Open
Abstract
The hippo (Hpo) signaling pathway plays a critical role in regulation of organ size. The kinase cascade ultimately antagonizes the transcriptional co-activator Yki/YAP, which is a key regulator of cell proliferation and apoptosis. In this study, we performed a knocking down study using antisense morpholino (MO) reagents and found that zebrafish YAP, a key transcriptional co-activator of Hpo pathway, plays a critical role in early embryonic development. At the cellular level, yap inhibition increases apoptosis and decreases cell proliferation. Reduction of yap function severely delays several developmental events, including gastrulation, cardiogenesis and hematopoiesis. Knockdown of yap showed some evidence of ventralization, including reduction of dorsally expressed marker goosecoid (gsc), expansion of ventral marker gata2, disruption of the somites, and reduction in head size. Finally, we performed a preliminary analysis with real-time polymerase chain reaction (qPCR) for the candidate targets of zebrafish Hpo pathway. In conclusion, our results revealed that zebrafish yap coordinately regulates cell proliferation and apoptosis and is required for dorsoventral axis formation, gastrulation, cardiogenesis, hematopoiesis, and somitogenesis.
Collapse
Affiliation(s)
- Jingying Hu
- Department of Biochemistry and Molecular Biology, Shanghai Medical School and Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
662
|
Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 2013; 375:54-64. [PMID: 23261930 DOI: 10.1016/j.ydbio.2012.12.008] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/29/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
Early mammalian embryogenesis is controlled by mechanisms governing the balance between pluripotency and differentiation. The expression of early lineage-specific genes can vary significantly between species, with implications for developmental control and stem cell derivation. However, the mechanisms involved in patterning the human embryo are still unclear. We analyzed the appearance and localization of lineage-specific transcription factors in staged preimplantation human embryos from the zygote until the blastocyst. We observed that the pluripotency-associated transcription factor OCT4 was initially expressed in 8-cell embryos at 3 days post-fertilization (dpf), and restricted to the inner cell mass (ICM) in 128-256 cell blastocysts (6dpf), approximately 2 days later than the mouse. The trophectoderm (TE)-associated transcription factor CDX2 was upregulated in 5dpf blastocysts and initially coincident with OCT4, indicating a lag in CDX2 initiation in the TE lineage, relative to the mouse. Once established, the TE expressed intracellular and cell-surface proteins cytokeratin-7 (CK7) and fibroblast growth factor receptor-1 (FGFR1), which are thought to be specific to post-implantation human trophoblast progenitor cells. The primitive endoderm (PE)-associated transcription factor SOX17 was initially heterogeneously expressed in the ICM where it co-localized with a sub-set of OCT4 expressing cells at 4-5dpf. SOX17 was progressively restricted to the PE adjacent to the blastocoel cavity together with the transcription factor GATA6 by 6dpf. We observed low levels of Laminin expression in the human PE, though this basement membrane component is thought to play an important role in mouse PE cell sorting, suggesting divergence in differentiation mechanisms between species. Additionally, while stem cell lines representing the three distinct cell types that comprise a mouse blastocyst have been established, the identity of cell types that emerge during early human embryonic stem cell derivation is unclear. We observed that derivation from plating intact human blastocysts resulted predominantly in the outgrowth of TE-like cells, which impairs human embryonic stem cell derivation. Altogether, our findings provide important insight into developmental patterning of preimplantation human embryos with potential consequences for stem cell derivation.
Collapse
Affiliation(s)
- Kathy K Niakan
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
663
|
Abstract
During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
664
|
Giakoumopoulos M, Golos TG. Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. J Endocrinol 2013; 216:R33-45. [PMID: 23291503 PMCID: PMC3809013 DOI: 10.1530/joe-12-0433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the placenta is imperative for successful pregnancy establishment, yet the earliest differentiation events of the blastocyst-derived trophectoderm that forms the placenta remain difficult to study in humans. Human embryonic stem cells (hESC) display a unique ability to form trophoblast cells when induced to differentiate either by the addition of exogenous BMP4 or by the formation of cellular aggregates called embryoid bodies. While mouse trophoblast stem cells (TSC) have been isolated from blastocyst outgrowths, mouse ESC do not spontaneously differentiate into trophoblast cells. In this review, we focus on addressing the similarities and differences between mouse TSC differentiation and hESC-derived trophoblast differentiation. We discuss the functional and mechanistic diversity that is found in different species models. Of central importance are the unique signaling events that trigger downstream gene expression that create specific cellular fate decisions. We support the idea that we must understand the nuances that hESC differentiation models display so that investigators can choose the appropriate model system to fit experimental needs.
Collapse
Affiliation(s)
- M Giakoumopoulos
- Wisconsin National Primate Research Center, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | |
Collapse
|
665
|
Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development 2013; 140:965-75. [DOI: 10.1242/dev.091629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.
Collapse
Affiliation(s)
| | - Geoff Shaw
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Claudia Freyer
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Andrew J. Pask
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| |
Collapse
|
666
|
Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis AK. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis 2013; 51:219-33. [PMID: 23349011 DOI: 10.1002/dvg.22368] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
Abstract
The preimplantation period of mouse early embryonic development is devoted to the specification of two extraembryonic tissues and their spatial segregation from the pluripotent epiblast. During this period two cell fate decisions are made while cells gradually lose their totipotency. The first fate decision involves the segregation of the extraembryonic trophectoderm (TE) lineage from the inner cell mass (ICM); the second occurs within the ICM and involves the segregation of the extraembryonic primitive endoderm (PrE) lineage from the pluripotent epiblast (EPI) lineage, which eventually gives rise to the embryo proper. Multiple determinants, such as differential cellular properties, signaling cues and the activity of transcriptional regulators, influence lineage choice in the early embryo. Here, we provide an overview of our current understanding of the mechanisms governing these cell fate decisions ensuring proper lineage allocation and segregation, while at the same time providing the embryo with an inherent flexibility to adjust when perturbed.
Collapse
Affiliation(s)
- Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
667
|
Abstract
Control of cell number is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation or organ degeneration. The Hippo pathway in both Drosophila and mammals regulates cell number by modulating cell proliferation, cell death, and cell differentiation. Recently, numerous upstream components involved in the Hippo pathway have been identified, such as cell polarity, mechanotransduction, and G-protein-coupled receptor (GPCR) signaling. Actin cytoskeleton or cellular tension appears to be the master mediator that integrates and transmits upstream signals to the core Hippo signaling cascade. Here, we review regulatory mechanisms of the Hippo pathway and discuss potential implications involved in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
668
|
Skamagki M, Wicher KB, Jedrusik A, Ganguly S, Zernicka-Goetz M. Asymmetric localization of Cdx2 mRNA during the first cell-fate decision in early mouse development. Cell Rep 2013; 3:442-57. [PMID: 23375373 PMCID: PMC3607255 DOI: 10.1016/j.celrep.2013.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 06/01/2012] [Accepted: 01/07/2013] [Indexed: 11/08/2022] Open
Abstract
A longstanding question in mammalian development is whether the divisions that segregate pluripotent progenitor cells for the future embryo from cells that differentiate into extraembryonic structures are asymmetric in cell-fate instructions. The transcription factor Cdx2 plays a key role in the first cell-fate decision. Here, using live-embryo imaging, we show that localization of Cdx2 transcripts becomes asymmetric during development, preceding cell lineage segregation. Cdx2 transcripts preferentially localize apically at the late eight-cell stage and become inherited asymmetrically during divisions that set apart pluripotent and differentiating cells. Asymmetric localization depends on a cis element within the coding region of Cdx2 and requires cell polarization as well as intact microtubule and actin cytoskeletons. Failure to enrich Cdx2 transcripts apically results in a significant decrease in the number of pluripotent cells. We discuss how the asymmetric localization and segregation of Cdx2 transcripts could contribute to multiple mechanisms that establish different cell fates in the mouse embryo.
Collapse
Affiliation(s)
- Maria Skamagki
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | |
Collapse
|
669
|
Zhang H, Labouesse M. Signalling through mechanical inputs: a coordinated process. J Cell Sci 2013; 125:3039-49. [PMID: 22929901 DOI: 10.1242/jcs.093666] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing awareness that mechanical forces - in parallel to electrical or chemical inputs - have a central role in driving development and influencing the outcome of many diseases. However, we still have an incomplete understanding of how such forces function in coordination with each other and with other signalling inputs in vivo. Mechanical forces, which are generated throughout the organism, can produce signals through force-sensitive processes. Here, we first explore the mechanisms through which forces can be generated and the cellular responses to forces by discussing several examples from animal development. We then go on to examine the mechanotransduction-induced signalling processes that have been identified in vivo. Finally, we discuss what is known about the specificity of the responses to different forces, the mechanisms that might stabilize cells in response to such forces, and the crosstalk between mechanical forces and chemical signalling. Where known, we mention kinetic parameters that characterize forces and their responses. The multi-layered regulatory control of force generation, force response and force adaptation should be viewed as a well-integrated aspect in the greater biological signalling systems.
Collapse
Affiliation(s)
- Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, SooChow University, SuZhou Industrial Park, SuZhou, China. [corrected]
| | | |
Collapse
|
670
|
Lim KT, Gupta MK, Lee SH, Jung YH, Han DW, Lee HT. Possible involvement of Wnt/β-catenin signaling pathway in hatching and trophectoderm differentiation of pig blastocysts. Theriogenology 2013; 79:284-90.e902. [PMID: 23174779 DOI: 10.1016/j.theriogenology.2012.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022]
Abstract
The Wnt/β-catenin signaling pathway plays essential roles in the regulation of cell fate and polarity during embryonic development of many animal species. This study investigated the possible involvement of Wnt/β-catenin signaling pathway during hatching and trophectoderm (TE) development in pig blastocysts. Results showed that β-catenin and DVL3, the key mediators of Wnt/β-catenin signaling, disappeared from the nucleus after blastocyst hatching. Specific inhibition of Wnt/β-catenin signaling pathway, by Dickkopf-1, increased the rate of blastocyst hatching, total nuclear number per blastocyst, and reduced the ratio of inner cell mass (ICM):TE (P < 0.05). In contrast, specific activation of the Wnt/β-catenin signaling pathway, by lithium chloride, reduced the rate of blastocyst hatching, total nuclear number per blastocyst, and increased the ratio of ICM:TE (P < 0.05). The change in the ICM:TE ratio was associated with the change in the number of TE cells but not the ICM cells. Activation or inhibition of Wnt/β-catenin signaling and β-catenin nuclear accumulation, by lithium chloride or Dickkopf-1, also altered the expression of CDX2. These data therefore, suggest the possible involvement of Wnt/β-catenin signaling in regulating hatching and TE fate during the development of pig blastocyst.
Collapse
Affiliation(s)
- Kyung Tae Lim
- Department of Animal Biotechnology, Animal Resources Research Center/Bio-Organ Research Center, Konkuk University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
671
|
Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 2013; 25:247-53. [PMID: 23312716 DOI: 10.1016/j.ceb.2012.12.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/14/2012] [Accepted: 12/26/2012] [Indexed: 01/08/2023]
Abstract
Tissue regeneration is vital to the form and function of an organ. At the core of an organs' ability to self-renew is the stem cell, which maintains homeostasis, and repopulates injured or aged tissue. Tissue damage can dramatically change the dimensions of an organ, and during regeneration, an organ must halt growth once the original tissue dimensions have been restored. Therefore, stem cells must give rise to the appropriate number of differentiated progeny to achieve homeostasis. How this tissue-size checkpoint is regulated and how tissue size information relayed to stem cell compartments is unclear, however, it is likely that these mechanisms are altered during the course of tumorigenesis. An emerging signaling cascade, the Hippo Signaling Pathway, is a broadly conserved potent organ size regulator [1]. However, this pathway does not act alone. A number of examples demonstrate crosstalk between Hippo and other signaling pathways including Wnt, Tgfβ and Notch, with implications for stem cell biology. Here, we focus on these interactions primarily in the context of well characterized stem cell populations.
Collapse
Affiliation(s)
- Evan R Barry
- Stem Cell Program, Chidren's Hospital, Boston, MA 02115, United States
| | | |
Collapse
|
672
|
Chen Y, Wang K, Gong YG, Khoo SK, Leach R. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells. Biochem Biophys Res Commun 2013; 431:197-202. [PMID: 23313847 DOI: 10.1016/j.bbrc.2012.12.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/30/2012] [Indexed: 02/04/2023]
Abstract
Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and EOMES may play critical roles in human iTP cell generation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|
673
|
Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S. Role of TAZ as mediator of Wnt signaling. Cell 2012; 151:1443-56. [PMID: 23245942 DOI: 10.1016/j.cell.2012.11.027] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/06/2012] [Accepted: 11/11/2012] [Indexed: 11/16/2022]
Abstract
Wnt growth factors are fundamental regulators of cell fate, but how the Wnt signal is translated into biological responses is incompletely understood. Here, we report that TAZ, a biologically potent transcriptional coactivator, serves as a downstream element of the Wnt/β-catenin cascade. This function of TAZ is independent from its well-established role as mediator of Hippo signaling. In the absence of Wnt activity, the components of the β-catenin destruction complex--APC, Axin, and GSK3--are also required to keep TAZ at low levels. TAZ degradation depends on phosphorylated β-catenin that bridges TAZ to its ubiquitin ligase β-TrCP. Upon Wnt signaling, escape of β-catenin from the destruction complex impairs TAZ degradation and leads to concomitant accumulation of β-catenin and TAZ. At the genome-wide level, a substantial portion of Wnt transcriptional responses is mediated by TAZ. TAZ activation is a general feature of Wnt signaling and is functionally relevant to mediate Wnt biological effects.
Collapse
Affiliation(s)
- Luca Azzolin
- Department of Biomedical Sciences, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
674
|
Reply to Sasaki et al.: TEAD4 is predominantly cytoplasmic in the inner cell mass of mouse blastocysts. Proc Natl Acad Sci U S A 2012. [DOI: 10.1073/pnas.1217194109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
675
|
Yabuta N, Mukai S, Okamoto A, Okuzaki D, Suzuki H, Torigata K, Yoshida K, Okada N, Miura D, Ito A, Ikawa M, Okabe M, Nojima H. N-terminal truncation of Lats1 causes abnormal cell growth control and chromosomal instability. J Cell Sci 2012; 126:508-20. [PMID: 23230145 DOI: 10.1242/jcs.113431] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tumor suppressors Lats1 and Lats2 are mediators of the Hippo pathway that regulates tissue growth and proliferation. Their N-terminal non-kinase regions are distinct except for Lats conserved domains 1 and 2 (LCD1 and LCD2), which may be important for Lats1/2-specific functions. Lats1 knockout mice were generated by disrupting the N-terminal region containing LCD1 (Lats1(ΔN/ΔN)). Some Lats1(ΔN/ΔN) mice were born safely and grew normally. However, mouse embryonic fibroblasts (MEFs) from Lats1(ΔN/ΔN) mice displayed mitotic defects, centrosomal overduplication, chromosomal misalignment, multipolar spindle formation, chromosomal bridging and cytokinesis failure. They also showed anchorage-independent growth and continued cell cycles and cell growth, bypassing cell-cell contact inhibition similar to tumor cells. Lats1(ΔN/ΔN) MEFs produced tumors in nude mice after subcutaneous injection, although the tumor growth rate was much slower than that of ordinary cancer cells. Yap, a key transcriptional coactivator of the Hippo pathway, was overexpressed and stably retained in Lats1(ΔN/ΔN) MEFs in a cell density independent manner, and Lats2 mRNA expression was downregulated. In conclusion, N-terminally truncated Lats1 induced Lats2 downregulation and Yap protein accumulation, leading to chromosomal instability and tumorigenesis.
Collapse
Affiliation(s)
- Norikazu Yabuta
- Department of Molecular Genetics, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
676
|
Lorthongpanich C, Doris TPY, Limviphuvadh V, Knowles BB, Solter D. Developmental fate and lineage commitment of singled mouse blastomeres. Development 2012; 139:3722-31. [PMID: 22991438 DOI: 10.1242/dev.086454] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Mammalian Development Laboratory, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648.
| | | | | | | | | |
Collapse
|
677
|
Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc Natl Acad Sci U S A 2012; 109:E3389-90; author reply E3391-2. [PMID: 23169672 DOI: 10.1073/pnas.1211810109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
678
|
Nishio M, Hamada K, Kawahara K, Sasaki M, Noguchi F, Chiba S, Mizuno K, Suzuki SO, Dong Y, Tokuda M, Morikawa T, Hikasa H, Eggenschwiler J, Yabuta N, Nojima H, Nakagawa K, Hata Y, Nishina H, Mimori K, Mori M, Sasaki T, Mak TW, Nakano T, Itami S, Suzuki A. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J Clin Invest 2012; 122:4505-18. [PMID: 23143302 DOI: 10.1172/jci63735] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022] Open
Abstract
Mps one binder 1a (MOB1A) and MOB1B are key components of the Hippo signaling pathway and are mutated or inactivated in many human cancers. Here we show that intact Mob1a or Mob1b is essential for murine embryogenesis and that loss of the remaining WT Mob1 allele in Mob1a(Δ/Δ)1b(tr/+) or Mob1a(Δ/+)1b(tr/tr) mice results in tumor development. Because most of these cancers resembled trichilemmal carcinomas, we generated double-mutant mice bearing tamoxifen-inducible, keratinocyte-specific homozygous-null mutations of Mob1a and Mob1b (kDKO mice). kDKO mice showed hyperplastic keratinocyte progenitors and defective keratinocyte terminal differentiation and soon died of malnutrition. kDKO keratinocytes exhibited hyperproliferation, apoptotic resistance, impaired contact inhibition, enhanced progenitor self renewal, and increased centrosomes. Examination of Hippo pathway signaling in kDKO keratinocytes revealed that loss of Mob1a/b altered the activities of the downstream Hippo mediators LATS and YAP1. Similarly, YAP1 was activated in some human trichilemmal carcinomas, and some of these also exhibited MOB1A/1B inactivation. Our results clearly demonstrate that MOB1A and MOB1B have overlapping functions in skin homeostasis, and exert their roles as tumor suppressors by regulating downstream elements of the Hippo pathway.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
679
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
680
|
Zhang K, Dai X, Wallingford MC, Mager J. Depletion of Suds3 reveals an essential role in early lineage specification. Dev Biol 2012; 373:359-72. [PMID: 23123966 DOI: 10.1016/j.ydbio.2012.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Preimplantation development culminates with the emergence of three distinct populations: the inner cell mass, primitive endoderm and trophectoderm. Here, we define the mechanisms underlying the requirement of Suds3 in pre/peri-implantation development. Suds3 knockdown blastocysts exhibit a failure of both trophectoderm proliferation as well as a conspicuous lack of primitive endoderm. Expression of essential lineage factors Nanog, Sox2, Cdx2, Eomes, Elf5 and Sox17 are severely reduced in the absence of Suds3. Importantly, we document deficient FGF4/ERK signaling and show that exogenous FGF4 rescues primitive endoderm formation and trophectoderm proliferation in Suds3 knockdown blastocysts. We also show that Hdac1 knockdown reduces Sox2/FGF4/ERK signaling in blastocysts. Collectively, these data define a role for Suds3 in activation of FGF4/ERK signaling and determine an essential molecular role of Suds3/Sin3/HDAC complexes in lineage specification in vivo.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, 455, 661 N. Pleasant Street, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
681
|
Sonnet W, Rezsöhazy R, Donnay I. Characterization ofTALEgenes expression during the first lineage segregation in mammalian embryos. Dev Dyn 2012; 241:1827-39. [DOI: 10.1002/dvdy.23873] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2012] [Indexed: 11/09/2022] Open
|
682
|
Kulesa PM, Stark DA, Steen J, Lansford R, Kasemeier-Kulesa JC. Watching the assembly of an organ a single cell at a time using confocal multi-position photoactivation and multi-time acquisition. Organogenesis 2012; 5:238-47. [PMID: 20539744 DOI: 10.4161/org.5.4.10482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/15/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
Tracing cell movements in vivo yields important clues to organogenesis, yet it has been challenging to accurately and reproducibly fluorescently mark single and small groups of cells to build a picture of tissue assembly. In the early embryo, the small size (hundreds of cells) of progenitor cell regions has made it easier to identify and selectively mark superficially located cells by glass needle injection. However,during early organogenesis,subregions of interest may be several millions of cells in volume located deeper within the embryo requiring an alternative approach. Here, we combined (confocal and 2-photon) photoactivation cell labeling and multi-position, multi-time imaging to trace single cell and small subgroups of cells in the developing brain and spinal cord. We compared the photostability and photoefficiency of a photoswitchable fluorescent protein, PSCFP2, with a novel nuclear localized H2B-PSCFP2 protein. We showed that both fluorescent proteins have similar photophysical properties and H2B-PSCFP2 is more effective in single cell identification in dense tissue. To accurately and reproducibly fluorescently trace subregions of cells in a 3D tissue volume, we developed a protocol for multi-position photoactivation and multi-time acquisition in the chick spinal cord in up to eight tissue sections. We applied our techniques to address the formation of the sympathetic ganglia,a major component of the autonomic nervous system,and showed there are phenotypic differences between early and later emerging neural crest cells and their positions in the developing ganglia. Thus, targeted fluorescent cell marking by confocal or 2-photon multi-position photoactivation and multi-time acquisition offer a more efficient, less invasive technique to trace cell movements in large regions of interest and move us closer towards mapping the cellular events of organogenesis.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research; Kansas City, MO USA
| | | | | | | | | |
Collapse
|
683
|
McClatchey AI, Yap AS. Contact inhibition (of proliferation) redux. Curr Opin Cell Biol 2012; 24:685-94. [DOI: 10.1016/j.ceb.2012.06.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/14/2012] [Accepted: 06/28/2012] [Indexed: 11/15/2022]
|
684
|
Computational multiscale modeling of embryo development. Curr Opin Genet Dev 2012; 22:613-8. [PMID: 22959149 DOI: 10.1016/j.gde.2012.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022]
Abstract
Recent advances in live imaging and genetics of mammalian development which integrate observations of biochemical activity, cell-cell signaling and mechanical interactions between cells pave the way for predictive mathematical multi-scale modeling. In early mammalian embryo development, two of the most critical events which lead to tissue patterning involve changes in gene expression as well as mechanical interactions between cells. We discuss the relevance of mathematical modeling of multi-cellular systems and in particular in simulating these patterns and describe some of the technical challenges one encounters. Many of these issues are not unique for the embryonic system but are shared by other multi-cellular modeling areas.
Collapse
|
685
|
Schroeder MC, Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol 2012; 23:803-11. [DOI: 10.1016/j.semcdb.2012.06.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/28/2023]
|
686
|
Martínez-Frías ML. Assessing pre-implantation embryo development in mice provides a rationale for understanding potential adverse effects of ART and PGD procedures. Am J Med Genet A 2012; 158A:2526-33. [PMID: 22903927 DOI: 10.1002/ajmg.a.35573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/02/2012] [Indexed: 11/07/2022]
Abstract
Although the molecular events controlling human pre-implantation development remain unclear, mechanisms have been identified by analyzing these stages in mice. Through this approach, considerable insight has been gained into the events that operate to determine the first two cell fate decisions, occurring from zygote formation to the blastocyst prior to implantation. These mechanisms are related to cell polarization, cell division, cell-cell contact, and cell spatial position. Two developmental stages are essential for these processes to proceed adequately. Firstly, the second polar body must anchor to the external membrane during the first mitotic divisions of the embryo as its position is strongly biased to determine the plane of polarity. This in turn has important influence on the fate of the early blastomeres. Secondly, in the transition from the 8- to 16-cell stage, the cells that will form the inner cell mass are determined. Moreover, analyses performed on human oocytes and embryos have identified similar processes to those reported in mice and thus are evolutionarily conserved. Therefore, the understanding of mice pre-implantation embryo development provides a rationale to interpret current results of potential long-term adverse outcomes of Assisted Reproductive Technologies and Pre-implantation Genetic Diagnosis (PGD).
Collapse
|
687
|
McDole K, Zheng Y. Generation and live imaging of an endogenous Cdx2 reporter mouse line. Genesis 2012; 50:775-82. [PMID: 22814996 DOI: 10.1002/dvg.22049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/07/2012] [Accepted: 07/11/2012] [Indexed: 11/06/2022]
Abstract
To understand cell fate specification and maintenance during development, it is essential to visualize both lineage markers and cell behaviors in real time using endogenous markers to report cell fate. We have generated a reporter line in which eGFP is fused to the endogenous locus of Cdx2, a transcription factor essential for trophectoderm specification, allowing us to visualize cell fate decisions in the preimplantation mouse embryo. We used two-photon laser scanning microscopy to visualize expression of the endogenous Cdx2 fusion protein and show that Cdx2 undergoes phases of upregulation. Additionally, we show that as late as the 32-cell stage, outer trophectoderm cells may change their fates by migrating inward and losing Cdx2 expression. Furthermore, the tools and techniques we report allow for dual-colored imaging, which will greatly facilitate the study of not only preimplantation development, but later stages of development and tissues where Cdx2 plays an important role.
Collapse
Affiliation(s)
- Katie McDole
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
688
|
Abstract
The physical and mechanical properties of the cellular microenvironment regulate cell shape and can strongly influence cell fate. How mechanical cues are sensed and transduced to regulate gene expression has long remained elusive. Recently, cues from the extracellular matrix, cell adhesion sites, cell shape and the actomyosin cytoskeleton were found to converge on the regulation of the downstream effectors of the Hippo pathway YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) in vertebrates and Yorkie in flies. This convergence may explain how mechanical signals can direct normal and pathological cell behaviour.
Collapse
|
689
|
Hippo signaling in mammalian stem cells. Semin Cell Dev Biol 2012; 23:818-26. [PMID: 23034192 DOI: 10.1016/j.semcdb.2012.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 11/23/2022]
Abstract
Over the past decade, the Hippo signaling cascade has been linked to organ size regulation in mammals. Indeed, modulation of the Hippo pathway can have potent effects on cellular proliferation and/or apoptosis and a deregulation of the pathway often leads to tumor development. Importantly, emerging evidence indicates that the Hippo pathway can modulate its effects on tissue size by the regulation of stem and progenitor cell activity. This role has recently been associated with the central position of the pathway in sensing spatiotemporal or mechanical cues, and translating them into specific cellular outputs. These results provide an attractive model for how the Hippo cascade might sense and transduce cellular 'neighborhood' cues into activation of tissue-specific stem or progenitors cells. A further understanding of this process could allow the development of new therapies for various degenerative diseases and cancers. Here, we review current and emerging data linking Hippo signaling to progenitor cell function.
Collapse
|
690
|
Abstract
Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.
Collapse
Affiliation(s)
- Efrat Oron
- Yale Stem Cell Center, Department of Genetics, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
691
|
Abstract
Specific cells within the early mammalian embryo have the capacity to generate all somatic lineages plus the germline. This property of pluripotency is confined to the epiblast, a transient tissue that persists for only a few days. In vitro, however, pluripotency can be maintained indefinitely through derivation of stem cell lines. Pluripotent stem cells established from the newly formed epiblast are known as embryonic stem cells (ESCs), whereas those generated from later stages are called postimplantation epiblast stem cells (EpiSCs). These different classes of pluripotent stem cell have distinct culture requirements and gene expression programs, likely reflecting the dynamic development of the epiblast in the embryo. In this chapter we review current understanding of how the epiblast forms and relate this to the properties of derivative stem cells. We discuss whether ESCs and EpiSCs are true counterparts of different phases of epiblast development or are culture-generated phenomena. We also consider the proposition that early epiblast cells and ESCs may represent a naïve ground state without any prespecification of lineage choice, whereas later epiblasts and EpiSCs may be primed in favor of particular fates.
Collapse
Affiliation(s)
- Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, Stem Cell Institute University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
692
|
Hiemer SE, Varelas X. Stem cell regulation by the Hippo pathway. Biochim Biophys Acta Gen Subj 2012; 1830:2323-34. [PMID: 22824335 DOI: 10.1016/j.bbagen.2012.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Hippo pathway coordinates cell proliferation, apoptosis, and differentiation, and has emerged as a major regulator of organ development and regeneration. Central to the mammalian Hippo pathway is the action of the transcriptional regulators TAZ (also known as WWTR1) and YAP, which are controlled by a kinase cascade that is sensitive to mechanosensory and cell polarity cues. SCOPE OF REVIEW We review recent studies focused on the Hippo pathway in embryonic and somatic stem cell renewal and differentiation. MAJOR CONCLUSIONS Accurate control of TAZ and YAP is crucial for the self-renewal of stem cells and in guiding distinct cell fate decisions. In vivo studies have implicated YAP as a key regulator of tissue-specific progenitor cell proliferation and tissue regeneration. Misappropriate activation of nuclear TAZ and YAP transcriptional activity drives tissue overgrowth and is implicated in cancer stem cell-like properties that promote tumor initiation. GENERAL SIGNIFICANCE Understanding the activity and regulation of Hippo pathway effectors will offer insight into human pathologies that evolve from the deregulation of stem cell populations. Given the roles of the Hippo pathway in directing cell fate and tissue regeneration, the discernment of Hippo pathway regulatory cues will be essential for the advancement of regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Samantha E Hiemer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
693
|
Dynamic profiles of Oct-4, Cdx-2 and acetylated H4K5 in in-vivo-derived rabbit embryos. Reprod Biomed Online 2012; 25:358-70. [PMID: 22877942 DOI: 10.1016/j.rbmo.2012.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023]
Abstract
This study documents the spatial and temporal distribution of Oct-4, Cdx-2 and acetylated H4K5 (H4K5ac) by immunocytochemistry staining using in-vivo-derived rabbit embryos at different stages: day-3 compact morulae, day-4 early blastocysts, day-4 expanded blastocysts, day-5 blastocysts, day-6 blastocysts and day-7 blastocysts. The Oct-4 signal was stronger in the inner cell mass (ICM)/epiblast cells than in the trophectoderm (TE) cells in all blastocyst stages except day-4 expanded blastocysts, where the signal was similarly weak in both the ICM and TE cells. The Cdx-2 signal was first detected in a small number of TE cells of day-4 early blastocysts, and became evident in the TE cells exclusively afterwards. A consistently strong H4K5ac signal was observed in the TE cells in all blastocyst stages examined. In particular, this signal was stronger in the TE than in the ICM cells in day-4 early blastocysts, day-4 expanded blastocysts and day-5 blastocysts. Double staining of H4K5ac with either Oct-4 or Cdx-2 on embryos at different blastocyst stages confirmed these findings. This work suggests that day 4 is a critical timing for lineage formation in rabbit embryos. A combination of Oct-4, Cdx-2 and H4K5ac can be used as biomarkers to identify different lineage cells in rabbit blastocysts.
Collapse
|
694
|
Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8+ T cell. Proc Natl Acad Sci U S A 2012; 109:E2223-9. [PMID: 22745171 DOI: 10.1073/pnas.1209115109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During the primary response, the commitment of the CD8(+) T cell to Blimp-1 expression and the terminal differentiation that Blimp-1 induces must be timed so as not to impair the process of clonal expansion. We determined whether the Hippo pathway, which links cell-cell contact to differentiation in other cell lineages, controls Blimp-1 expression. Activating the CD8(+) T cell with antigen and IL-2 causes expression of the core Hippo pathway components, including the pivotal transcriptional cofactor Yap. Contact between activated CD8(+) T cells induces Hippo pathway-mediated Yap degradation and Blimp-1 expression; a Hippo-resistant, stable form of Yap suppresses Blimp-1 expression. Cytotoxic T lymphocyte antigen 4 (CTLA-4) and CD80 comprise the receptor-ligand pair that mediates contact-dependent Hippo pathway activation. In vivo, CD8(+) T cells expressing Hippo resistant-Yap or lacking CTLA-4 have diminished expression of the senescence marker, KLRG1, during a viral infection. The CTLA-4/Hippo pathway/Blimp-1 system may couple terminal differentiation of CD8(+) T cell with the magnitude of clonal expansion.
Collapse
|
695
|
Bai Q, Assou S, Haouzi D, Ramirez JM, Monzo C, Becker F, Gerbal-Chaloin S, Hamamah S, De Vos J. Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev Rep 2012; 8:150-62. [PMID: 21750961 PMCID: PMC3285757 DOI: 10.1007/s12015-011-9301-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trophoblast cell lineage is specified early at the blastocyst stage, leading to the emergence of the trophectoderm and the pluripotent cells of the inner cell mass. Using a double mRNA amplification technique and a comparison with transcriptome data on pluripotent stem cells, placenta, germinal and adult tissues, we report here some essential molecular features of the human mural trophectoderm. In addition to genes known for their role in placenta (CGA, PGF, ALPPL2 and ABCG2), human trophectoderm also strongly expressed Laminins, such as LAMA1, and the GAGE Cancer/Testis genes. The very high level of ABCG2 expression in trophectoderm, 7.9-fold higher than in placenta, suggests a major role of this gene in shielding the very early embryo from xenobiotics. Several genes, including CCKBR and DNMT3L, were specifically up-regulated only in trophectoderm, indicating that the trophoblast cell lineage shares with the germinal lineage a transient burst of DNMT3L expression. A trophectoderm core transcriptional regulatory circuitry formed by 13 tightly interconnected transcription factors (CEBPA, GATA2, GATA3, GCM1, KLF5, MAFK, MSX2, MXD1, PPARD, PPARG, PPP1R13L, TFAP2C and TP63), was found to be induced in trophectoderm and maintained in placenta. The induction of this network could be recapitulated in an in vitro trophoblast differentiation model.
Collapse
Affiliation(s)
- Qiang Bai
- INSERM U1040, Montpellier, 34000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
696
|
Hemberger M. Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med 2012; 44:325-37. [PMID: 22409432 DOI: 10.3109/07853890.2012.663930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract Differentiation of extra-embryonic tissues and organs, notably the placenta, is vital for embryonic development and growth throughout gestation, starting from a few days after fertilization when the trophoblast cell lineage arises until parturition. In utero metabolic programming events may even extend the impact of placental function well into adulthood as they may predispose the offspring to common pathologies such as diabetes and cardiovascular disease. This review summarizes key steps that lead up to formation of a functional placenta. It highlights recent insights that have advanced our view of how early trophoblast expansion is achieved and how sufficient maternal blood supply to the developing fetus is secured. Exciting cumulative data have revealed the importance of a close cross-talk between the embryo proper and extra-embryonic trophoblast cells that involves extracellular matrix components in the establishment of a stem cell-like niche and proliferation compartment. Remarkably, placental function also relies on beneficial interactions between trophoblast cells and maternal immune cells at the implantation site. Our growing knowledge of the molecular mechanisms involved in trophoblast differentiation and function will help to devise informed approaches aimed at deciphering how placentation is controlled in humans as an essential process for reproductive success and long-term health.
Collapse
|
697
|
Lee HJ, Ormandy CJ. Elf5, hormones and cell fate. Trends Endocrinol Metab 2012; 23:292-8. [PMID: 22464677 DOI: 10.1016/j.tem.2012.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 01/05/2023]
Abstract
Recent elucidation of the stem and progenitor cell hierarchies that operate during normal tissue and organ development has provided a foundation for the development of new insights into the disease process. These hierarchies are established by genetic mechanisms, which specify and determine cell fate and act as cell-clade gatekeepers, upon which all multicellular organisms depend for viability. Perturbation of this gatekeeper function characterizes developmentally based diseases, such as cancer. Here, the emerging gatekeeper and master regulatory roles of the ETS transcription factor Elf5 in several diverse developmental scenarios is reviewed, and how this function intersects with hormonal and growth factor mediated regulation of these processes is shown.
Collapse
Affiliation(s)
- Heather J Lee
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
698
|
Kondratiuk I, Bazydlo K, Maleszewski M, Szczepanska K. Delay of polarization event increases the number of Cdx2-positive blastomeres in mouse embryo. Dev Biol 2012; 368:54-62. [PMID: 22609553 DOI: 10.1016/j.ydbio.2012.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/29/2022]
Abstract
During preimplantation mouse embryo development expression of Cdx2 is induced in outer cells, which are the trophectoderm (TE) precursors. The mechanism of Cdx2 upregulation in these cells remains unclear. However, it has been suggested that the cell position and polarization may play a crucial role in this process. In order to elucidate the role of these two parameters in the formation of TE we analyzed the expression pattern of Cdx2 in the embryos in which either the position of cells and the time of polarization or only the position of cells was experimentally disrupted. Such embryos developed from the blastomeres that were isolated from 8-cell embryos either before or after the compaction, i.e. before or after the cell polarization took place. We found that in the embryos developed from polar blastomeres originated from the 8-cell compacted embryo, the experimentally imposed outer position was not sufficient to induce the Cdx2 in these blastomeres which in the intact embryo would form the inner cells. However, when the polarization at the 8-cell stage was disrupted, the embryos developed from such an unpolarized blastomeres showed the increased number of cells expressing Cdx2. We found that in such experimentally obtained embryos the polarization was delayed until the 16-cell stage. These results suggest that the main factor responsible for upregulation of Cdx2 expression in outer blastomeres, i.e. TE precursors, is their polarity.
Collapse
Affiliation(s)
- Ilona Kondratiuk
- Department of Embryology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | |
Collapse
|
699
|
Acloque H, Ocaña OH, Nieto MA. Mutual exclusion of transcription factors and cell behaviour in the definition of vertebrate embryonic territories. Curr Opin Genet Dev 2012; 22:308-14. [PMID: 22560468 DOI: 10.1016/j.gde.2012.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 12/27/2022]
Abstract
Early embryonic territories are transient entities under permanent remodelling to form newly derived cell populations that will eventually give rise to the adult tissues and organs. A vast effort has been devoted to identifying the determinants and mechanisms that define embryonic territories. Indeed, studies in the vertebrate embryo from the morula stage to the segregation of the main embryonic layers-ectoderm, mesoderm and endoderm-have highlighted the importance of the mutual exclusion/repression between pairs of transcription factors, in coordination with the control exerted over cell division, adhesion and motility.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias CSIC-UMH, Avda Ramón y Cajal s/n, San Juan de Alicante, 03550, Spain; UMR 444, INRA-ENVT, Génétique Cellulaire, Toulouse, France
| | | | | |
Collapse
|
700
|
The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell 2012; 3:291-304. [PMID: 22549587 DOI: 10.1007/s13238-012-2919-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 12/16/2022] Open
Abstract
Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis.
Collapse
|