651
|
Nishida-Aoki N, Ochiya T. Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles. Cell Mol Life Sci 2015; 72:1849-61. [PMID: 25563488 PMCID: PMC4412282 DOI: 10.1007/s00018-014-1811-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) exhibit many functions in biological activities. Recent studies have shown that miRNAs exist outside cells and are transferred between cells. Extracellular miRNAs are protected from ribonucleases found in body fluids through binding to specific proteins or by being encapsulated in lipid bilayer vesicles. Here, we review the mechanisms of the secretion and uptake as well as the functions of extracellular miRNAs, particularly those encapsulated in extracellular vesicles. Extracellular vesicles are related to cancer progression, and some miRNAs in extracellular vesicles are associated with cancer cells. We describe the transfer of cancer-related miRNAs between cancer cells and non-cancerous cells. Finally, we discuss the anticipated applications of miRNAs present in extracellular vesicles in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nao Nishida-Aoki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | |
Collapse
|
652
|
Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2014; 16:24-43. [PMID: 25488940 DOI: 10.15252/embr.201439363] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes-which are extracellular vesicles that function in intercellular communication-may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Yong Cheng
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Prachi P Singh
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| | - Victoria L Smith
- Department of Biological Sciences, Eck Institute for Global Health University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
653
|
Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 2014; 5:5649. [DOI: 10.1038/ncomms6649] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
|
654
|
Lässer C. Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 2014; 15:103-17. [DOI: 10.1517/14712598.2015.977250] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
655
|
Hofmann D, Tenzer S, Bannwarth MB, Messerschmidt C, Glaser SF, Schild H, Landfester K, Mailänder V. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS NANO 2014; 8:10077-10088. [PMID: 25244389 DOI: 10.1021/nn502754c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rational design of nanocarriers for drug delivery approaches requires an unbiased knowledge of uptake mechanisms and intracellular trafficking pathways. Here we dissected these processes using a quantitative proteomics approach. We isolated intracellular vesicles containing superparamagnetic iron oxide polystyrene nanoparticles and analyzed their protein composition by label-free quantitative mass spectrometry. The proteomic snapshot of organelle marker proteins revealed that an atypical macropinocytic-like mechanism mediated the entry of nanoparticles. We show that the entry mechanism is controlled by actin reorganization, atypical macropinocytic signaling, and ADP-ribosylation factor 1. Additionally, our proteomics data demonstrated a central role for multivesicular bodies and multilamellar lysosomes in trafficking and final nanoparticle storage. This was confirmed by confocal microscopy and cryo-TEM measurements. By quantitatively analyzing the protein composition of nanoparticle-containing vesicles, our study clearly defines the routes of nanoparticle entry, intracellular trafficking, and the proteomic milieu of a nanoparticle-containing vesicle.
Collapse
Affiliation(s)
- Daniel Hofmann
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
656
|
Inoue S, Kondo S, Parichy DM, Watanabe M. Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes. Pigment Cell Melanoma Res 2014; 27:190-200. [PMID: 24734316 DOI: 10.1111/pcmr.12192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skin pigment pattern formation in zebrafish requires pigment-cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N-glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries.
Collapse
|
657
|
Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol 2014; 30:255-89. [DOI: 10.1146/annurev-cellbio-101512-122326] [Citation(s) in RCA: 3537] [Impact Index Per Article: 321.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marina Colombo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| |
Collapse
|
658
|
Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014; 5:442. [PMID: 25278937 PMCID: PMC4165315 DOI: 10.3389/fimmu.2014.00442] [Citation(s) in RCA: 1016] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted.
Collapse
Affiliation(s)
- Zoraida Andreu
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa , Madrid , Spain
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa , Madrid , Spain
| |
Collapse
|
659
|
Abstract
Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Claude Boucheix
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Eric Rubinstein
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| |
Collapse
|
660
|
Kajimoto T, Okada T, Miya S, Zhang L, Nakamura SI. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 2014; 4:2712. [PMID: 24231649 DOI: 10.1038/ncomms3712] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/03/2013] [Indexed: 02/08/2023] Open
Abstract
During late endosome maturation, cargo molecules are sorted into intralumenal vesicles (ILVs) of multivesicular endosomes (MVEs), and are either delivered to lysosomes for degradation or fused with the plasma membranes for exosome release. The mechanism underlying formation of exosomal ILVs and cargo sorting into ILVs destined for exosome release is still unclear. Here we show that inhibitory G protein (Gi)-coupled sphingosine 1-phosphate (S1P) receptors regulate exosomal MVE maturation. Gi-coupled S1P receptors on MVEs are constitutively activated through a constant supply of S1P via autocrine activation within organelles. We also found that the continuous activation of Gi-coupled S1P receptors on MVEs is essential for cargo sorting into ILVs destined for exosome release. Our results reveal a mechanism underlying ESCRT-independent maturation of exosomal MVEs.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
661
|
Endosome maturation, transport and functions. Semin Cell Dev Biol 2014; 31:2-10. [DOI: 10.1016/j.semcdb.2014.03.034] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
|
662
|
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29:116-25. [PMID: 24959705 DOI: 10.1016/j.ceb.2014.05.004] [Citation(s) in RCA: 1366] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/19/2022]
Abstract
Although observed for several decades, the release of membrane-enclosed vesicles by cells into their surrounding environment has been the subject of increasing interest in the past few years, which led to the creation, in 2012, of a scientific society dedicated to the subject: the International Society for Extracellular Vesicles. Convincing evidence that vesicles allow exchange of complex information fuelled this rise in interest. But it has also become clear that different types of secreted vesicles co-exist, with different intracellular origins and modes of formation, and thus probably different compositions and functions. Exosomes are one sub-type of secreted vesicles. They form inside eukaryotic cells in multivesicular compartments, and are secreted when these compartments fuse with the plasma membrane. Interestingly, different families of molecules have been shown to allow intracellular formation of exosomes and their subsequent secretion, which suggests that even among exosomes different sub-types exist.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France
| | - Mercedes Tkach
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France; Paris Sciences et Lettres (PSL*), Paris F-75005, France.
| |
Collapse
|
663
|
Abstract
Live-cell imaging reveals the endolysosomal system as a complex and highly dynamic network of interacting compartments. Distinct types of endosomes are discerned by kinetic, molecular, and morphological criteria. Although none of these criteria, or combinations thereof, can capture the full complexity of the endolysosomal system, they are extremely useful for experimental purposes. Some membrane domain specializations and specific morphological characteristics can only be seen by ultrastructural analysis after preparation for electron microscopy (EM). Immuno-EM allows a further discrimination of seemingly identical compartments by their molecular makeup. In this review we provide an overview of the ultrastructural characteristics and membrane organization of endosomal compartments, along with their organizing machineries.
Collapse
Affiliation(s)
- Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris F-75248, France Structure and Membrane Compartments CNRS UMR144, Paris F-75248, France
| |
Collapse
|
664
|
Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014; 28:3-13. [PMID: 24769058 DOI: 10.1016/j.semcancer.2014.04.009] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Although the molecular mechanisms that regulate the loading of proteins into exosomes have been studied for years, the sorting of RNA has been elusive until recently. Here we review the molecular mechanisms that control the sorting of molecules into exosomes, with special attention to the sorting of RNA. We also discuss how the cellular context affects the composition of exosomes, and thus the outcome of the communication between the exosome-producer and recipient cells, with particular focus on the communication between tumor cells and with cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Francesc Baixauli
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain.
| | - María Mittelbrunn
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
665
|
Wei AH, He X, Li W. Hypopigmentation in Hermansky-Pudlak syndrome. J Dermatol 2014; 40:325-9. [PMID: 23668540 DOI: 10.1111/1346-8138.12025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding tendency, and ceroid deposition which often leads to death in midlife. Currently, nine genes have been identified as causative for HPS in humans. Hypopigmentation is the prominent feature of HPS, attributable to the disrupted biogenesis of melanosome, a member of the lysosome-related organelle (LRO) family. Current understanding of the cargo transporting mechanisms into the melanosomes expands our knowledge of the pathogenesis of hypopigmentation in HPS patients.
Collapse
Affiliation(s)
- Ai-Hua Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
666
|
Wu X, Hammer JA. Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 2014; 29:1-7. [PMID: 24662021 DOI: 10.1016/j.ceb.2014.02.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/20/2023]
Abstract
The pigmentation of skin and hair in mammals is driven by the creation within melanocytes of melanosomes, a specialized pigment-producing organelle, and the subsequent intercellular transfer of this organelle to keratinocytes. This latter process is absolutely required for visible pigmentation and effective photo-protection because it serves to disperse the pigment in skin and hair. Therefore, the transfer of melanosomes from the melanocyte to the keratinocyte is as important for the biological endpoint of mammalian pigmentation as the biogenesis of this fascinating organelle. Here we review new findings that shed light on, and raise additional questions about, the mechanism of this enigmatic process.
Collapse
Affiliation(s)
- Xufeng Wu
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
667
|
Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J 2014; 281:2214-27. [PMID: 24605801 DOI: 10.1111/febs.12775] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/06/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Exosomes are released by cells after fusion of multivesicular bodies with the plasma membrane. The molecular mechanism of this process is still unclear. We investigated the role of sphingolipids and flotillins, which constitute a raft-associated family of proteins, in the release of exosomes. Interestingly, our results show that dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase, seemed to affect the composition of exosomes released from PC-3 cells. However, the inhibition of ceramide formation from the de novo pathway by fumonisin B1 did not affect exosome secretion. Moreover, in contrast to findings obtained with other cell lines published so far, inhibition of neutral sphingomyelinase 2, an enzyme that catalyzes the formation of ceramide from sphingomyelin, did not inhibit the secretion of exosomes in PC-3 cells. Finally, small interfering RNA-mediated downregulation of flotillin-1 and flotillin-2 did not significantly change the levels of released exosomes as such, but seemed to affect the composition of exosomes. In conclusion, our results reveal the involvement of glycosphingolipids and flotillins in the release of exosomes from PC-3 cells, and indicate that the role of ceramide in exosome formation may be cell-dependent.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
668
|
Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavík J, Machala M, Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 2014; 5:3477. [PMID: 24637612 DOI: 10.1038/ncomms4477] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/20/2014] [Indexed: 12/17/2022] Open
Abstract
Exosomes are small vesicles that are secreted by cells and act as mediators of cell to cell communication. Because of their potential therapeutic significance, important efforts are being made towards characterizing exosomal contents. However, little is known about the mechanisms that govern exosome biogenesis. We have recently shown that the exosomal protein syntenin supports exosome production. Here we identify the small GTPase ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2) as regulators of syntenin exosomes. ARF6 and PLD2 affect exosomes by controlling the budding of intraluminal vesicles (ILVs) into multivesicular bodies (MVBs). ARF6 also controls epidermal growth factor receptor degradation, suggesting a role in degradative MVBs. Yet ARF6 does not affect HIV-1 budding, excluding general effects on Endosomal Sorting Complexes Required for Transport. Our study highlights a novel pathway controlling ILV budding and exosome biogenesis and identifies an unexpected role for ARF6 in late endosomal trafficking.
Collapse
Affiliation(s)
- Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Frédérique Lembo
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Aude Rubio
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Carole Baron Gaillard
- 1] Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France [2] Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Jérôme Bouchet
- 1] Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France [2] CNRS, URA-1961, 75015 Paris, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212, Centre National de la Recherche Scientifique, and Université de Strasbourg, 67084 Strasbourg, France
| | - Josef Slavík
- Veterinary Research Institute, Hudcova 70, CZ-621 00 Brno, Czech Republic
| | - Miroslav Machala
- Veterinary Research Institute, Hudcova 70, CZ-621 00 Brno, Czech Republic
| | - Pascale Zimmermann
- 1] Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France [2] Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
669
|
Escudero CA, Lazo OM, Galleguillos C, Parraguez JI, Lopez-Verrilli MA, Cabeza C, Leon L, Saeed U, Retamal C, Gonzalez A, Marzolo MP, Carter BD, Court FA, Bronfman FC. The p75 neurotrophin receptor evades the endolysosomal route in neuronal cells, favouring multivesicular bodies specialised for exosomal release. J Cell Sci 2014; 127:1966-79. [PMID: 24569882 DOI: 10.1242/jcs.141754] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The p75 neurotrophin receptor (p75, also known as NGFR) is a multifaceted signalling receptor that regulates neuronal physiology, including neurite outgrowth, and survival and death decisions. A key cellular aspect regulating neurotrophin signalling is the intracellular trafficking of their receptors; however, the post-endocytic trafficking of p75 is poorly defined. We used sympathetic neurons and rat PC12 cells to study the mechanism of internalisation and post-endocytic trafficking of p75. We found that p75 internalisation depended on the clathrin adaptor protein AP2 and on dynamin. More surprisingly, p75 evaded the lysosomal route at the level of the early endosome, instead accumulating in two different types of endosomes, Rab11-positive endosomes and multivesicular bodies (MVBs) positive for CD63, a marker of the exosomal pathway. Consistently, depolarisation by KCl induced the liberation of previously endocytosed full-length p75 into the extracellular medium in exosomes. Thus, p75 defines a subpopulation of MVBs that does not mature to lysosomes and is available for exosomal release by neuronal cells.
Collapse
Affiliation(s)
- Claudia A Escudero
- Faculty of Biological Sciences, Physiology Department, Pontificia Universidad Católica, Santiago, CP 8331010, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
670
|
Edgar JR, Eden ER, Futter CE. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 2014; 15:197-211. [PMID: 24279430 PMCID: PMC4253088 DOI: 10.1111/tra.12139] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/08/2023]
Abstract
Multivesicular endosomes/bodies (MVBs) contain intraluminal vesicles (ILVs) that bud away from the cytoplasm. Multiple mechanisms of ILV formation have been identified, but the relationship between different populations of ILVs and MVBs remains unclear. Here, we show in HeLa cells that different ILV subpopulations can be distinguished by size. EGF stimulation promotes the formation of large ESCRT-dependent ILVs, whereas depletion of the ESCRT-0 component, Hrs, promotes the formation of a uniformly sized population of small ILVs, the formation of which requires CD63. CD63 has previously been implicated in ESCRT-independent sorting of PMEL in MVBs and transfected PMEL is present on the small ILVs that form on Hrs depletion. Upregulation of CD63-dependent ILV formation by Hrs depletion indicates that Hrs and CD63 regulate competing machineries required for the generation of distinct ILV subpopulations. Taken together our results indicate that ILV size is influenced by their cargo and mechanism of formation and suggest a competitive relationship between ESCRT-dependent and -independent mechanisms of ILV formation within single MVBs.
Collapse
Affiliation(s)
- James R Edgar
- UCL Institute of Ophthalmology11-43 Bath Street, London, EC1V 9EL, UK
| | - Emily R Eden
- UCL Institute of Ophthalmology11-43 Bath Street, London, EC1V 9EL, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
671
|
Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, Vattulainen I, Ekroos K, Sandvig K. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1302-9. [PMID: 24046871 DOI: 10.1016/j.bbalip.2013.04.011] [Citation(s) in RCA: 530] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating an extraordinary discrimination of lipids sorted into these microvesicles. In particular, exosomes are highly enriched in glycosphingolipids, sphingomyelin, cholesterol, and phosphatidylserine (mol% of total lipids). Furthermore, lipid species, even of classes not enriched in exosomes, were selectively included in exosomes. Finally, it was found that there is an 8.4-fold enrichment of lipids per mg of protein in exosomes. The detailed lipid composition provided in this study may be useful to understand the mechanism of exosome formation, release and function. Several of the lipids enriched in exosomes could potentially be used as cancer biomarkers.
Collapse
Affiliation(s)
- Alicia Llorente
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital,-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
672
|
Membrane bending: the power of protein imbalance. Trends Biochem Sci 2013; 38:576-84. [DOI: 10.1016/j.tibs.2013.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 01/02/2023]
|
673
|
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126:5553-65. [PMID: 24105262 DOI: 10.1242/jcs.128868] [Citation(s) in RCA: 875] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Collapse
Affiliation(s)
- Marina Colombo
- Institut Curie Section Recherche, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
674
|
Abstract
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
675
|
Wendler F, Bota-Rabassedas N, Franch-Marro X. Cancer becomes wasteful: emerging roles of exosomes(†) in cell-fate determination. J Extracell Vesicles 2013; 2:22390. [PMID: 24223259 PMCID: PMC3823269 DOI: 10.3402/jev.v2i0.22390] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/18/2013] [Accepted: 08/21/2013] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have been widely recognized for their role in intercellular communication of the immune response system. In the past few years, significance has been given to exosomes in the induction and modulation of cell-fate-inducing signalling pathways, such as the Hedgehog (Hh), Wnts, Notch, transforming growth factor (TGF-β), epidermal growth factor (EGF) and fibroblast growth factor (FGF) pathways, placing them in the wider context of development and also of cancer. These protein families induce signalling cascades responsible for tissue specification, homeostasis and maintenance. Exosomes contribute to cell-fate signal secretion, and vice versa exosome secretion can be induced by these proteins. Interestingly, exosomes can also transfer their mRNA to host cells or modulate the signalling pathways directly by the removal of downstream effector molecules from the cell. Surprisingly, much of what we know about the function of exosomes in cell determination is gathered from pathological transformed cancer cells and wound healing while data about their biogenesis and biology in normal developing and adult tissue lag behind. In this report, we will summarize some of the published literature and point to current advances and questions in this fast-developing topic. In a brief foray, we will also update and shortly discuss their potential in diagnosis and targeted cancer treatment.
Collapse
Affiliation(s)
- Franz Wendler
- past address: CNRS UMR, Inserm UMR, Institute de Biologie Valrose (IBV), Centre de Biochemie, Nice, France
| | | | | |
Collapse
|
676
|
Burgoyne T, Jolly R, Martin-Martin B, Seabra MC, Piccirillo R, Schiaffino MV, Futter CE. Expression of OA1 limits the fusion of a subset of MVBs with lysosomes - a mechanism potentially involved in the initial biogenesis of melanosomes. J Cell Sci 2013; 126:5143-52. [PMID: 24006264 PMCID: PMC3828590 DOI: 10.1242/jcs.128561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multivesicular endosomes/bodies (MVBs) deliver proteins, such as activated EGF receptor (EGFR), to the lysosome for degradation, and, in pigmented cells, MVBs containing PMEL are an initial stage in melanosome biogenesis. The mechanisms regulating numbers and fate of different populations of MVB are unclear. Here, we focus on the role of the G-protein-coupled receptor OA1 (also known as GPR143), which is expressed exclusively in pigmented cells and mutations in which cause the most common type of ocular albinism. When exogenously expressing PMEL, HeLa cells have been shown to form MVBs resembling early stage melanosomes. To focus on the role of OA1 in the initial stages of melanosome biogenesis we take advantage of the absence of the later stages of melanosome maturation in HeLa cells to determine whether OA1 activity can regulate MVB number and fate. Expression of wild-type but not OA1 mutants carrying inactivating mutations or deletions causes MVB numbers to increase. Whereas OA1 expression has no effect on delivery of EGFR-containing MVBs to the lysosome, it inhibits the lysosomal delivery of PMEL and PMEL-containing MVBs accumulate. We propose that OA1 activity delays delivery of PMEL-containing MVBs to the lysosome to allow time for melanin synthesis and commitment to melanosome biogenesis.
Collapse
Affiliation(s)
- Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | |
Collapse
|
677
|
Kraft S, Jouvin MH, Kulkarni N, Kissing S, Morgan ES, Dvorak AM, Schröder B, Saftig P, Kinet JP. The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. THE JOURNAL OF IMMUNOLOGY 2013; 191:2871-8. [PMID: 23945142 DOI: 10.4049/jimmunol.1202323] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell (MC) activation through the high-affinity IgE receptor FcεRI leads to the release of mediators involved in immediate-type allergic reactions. Although Abs against the tetraspanins CD63 and CD81 inhibit FcεRI-induced MC degranulation, the intrinsic role of these molecules in FcεRI-induced MC activation is unknown. In MCs, CD63 is expressed at the cell surface and in lysosomes (particularly secretory lysosomes that contain allergic mediators). In this study, we investigated the role of CD63 in MC using a CD63 knockout mouse model. CD63-deficiency did not affect in vivo MC numbers and tissue distribution. Bone marrow-derived MC developed normally in the absence of CD63 protein. However, CD63-deficient bone marrow-derived MC showed a significant decrease in FcεRI-mediated degranulation, but not PMA/ionomycin-induced degranulation, as shown by β-hexosaminidase release assays. The secretion of TNF-α, which is both released from granules and synthesized de novo upon MC activation, was also decreased. IL-6 secretion and production of the lipid mediator leukotriene C₄ were unaffected. There were no ultrastructural differences in granule content and morphology, late endosomal/lysosomal marker expression, FcεRI-induced global tyrosine phosphorylation, and Akt phosphorylation. Finally, local reconstitution in genetically MC-deficient Kit(w/w-v) mice was unaffected by the absence of CD63. However, the sites reconstituted with CD63-deficient MC developed significantly attenuated cutaneous anaphylactic reactions. These findings demonstrate that the absence of CD63 results in a significant decrease of MC degranulation, which translates into a reduction of acute allergic reactions in vivo, thus identifying CD63 as an important component of allergic inflammation.
Collapse
Affiliation(s)
- Stefan Kraft
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
678
|
Abstract
The concept that extracellular vesicles may act as paracrine/endocrine effectors is based on the evidence that they are able to transport bioactive molecules between cells, either within a defined microenvironment or remotely, by entering the biologic fluids. Extracellular vesicles, including exosomes and microvesicles, may deliver lipids and various functional transcripts, released from the cell of origin, to target cells. Since extracellular vesicles contain defined patterns of mRNA, microRNA, long non-coding RNA, and occasionally genomic DNA, they may transfer genetic information which induces transient or persistent phenotypic changes in recipient cells. In this review, we will discuss potential physiologic and pathological implications of extracellular vesicles, as well as the diagnostic and therapeutic opportunities that they may provide.
Collapse
Affiliation(s)
- Ciro Tetta
- Department of Molecular Biotechnology and Health Science and Department of Medical Sciences and Fresenius Medical Care, Translational Center for Regenerative Medicine, University of Torino, Via Nizza 52, Turin, Italy
| | - Ezio Ghigo
- Department of Molecular Biotechnology and Health Science and Department of Medical Sciences and Fresenius Medical Care, Translational Center for Regenerative Medicine, University of Torino, Via Nizza 52, Turin, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnology and Health Science and Department of Medical Sciences and Fresenius Medical Care, Translational Center for Regenerative Medicine, University of Torino, Via Nizza 52, Turin, Italy
| | - Maria Chiara Deregibus
- Department of Molecular Biotechnology and Health Science and Department of Medical Sciences and Fresenius Medical Care, Translational Center for Regenerative Medicine, University of Torino, Via Nizza 52, Turin, Italy
| | - Giovanni Camussi
- Department of Molecular Biotechnology and Health Science and Department of Medical Sciences and Fresenius Medical Care, Translational Center for Regenerative Medicine, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
679
|
Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 2013; 14:14240-69. [PMID: 23839094 PMCID: PMC3742242 DOI: 10.3390/ijms140714240] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/08/2023] Open
Abstract
The development of human cancers is a multistep process in which normal cells acquire characteristics that ultimately lead to their conversion into cancer cells. Many obstacles must be overcome for this process to occur; of these obstacles, is the ability to survive an inhospitable microenvironment. It is recognized that the intercommunication between tumor cells and their surrounding microenvironment is essential to overcoming this obstacle and for the tumor to progress, metastasize and establish itself at distant sites. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication, as they carry lipids, proteins, mRNAs and microRNAs that can be transferred to a recipient cell via fusion of the exosome with the target cell membrane. In the context of cancer cells, this process entails the transfer of cancer-promoting cellular contents to surrounding cells within the tumor microenvironment or into the circulation to act at distant sites, thereby enabling cancer progression. In this process, the transfer of exosomal microRNAs to a recipient cell where they can regulate target gene expression is of particular interest, both in understanding the basic biology of cancer progression and for the development of therapeutic approaches. This review discusses the exosome-mediated intercellular communication via microRNAs within the tumor microenvironment in human cancers, with a particular focus on breast cancer exosomes.
Collapse
|
680
|
Schwake M, Schröder B, Saftig P. Lysosomal membrane proteins and their central role in physiology. Traffic 2013; 14:739-48. [PMID: 23387372 DOI: 10.1111/tra.12056] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 12/19/2022]
Abstract
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non-mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.
Collapse
Affiliation(s)
- Michael Schwake
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | | | | |
Collapse
|
681
|
BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proc Natl Acad Sci U S A 2013; 110:10658-63. [PMID: 23754390 DOI: 10.1073/pnas.1220748110] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloids are often associated with pathologic processes such as in Alzheimer's disease (AD), but can also underlie physiological processes such as pigmentation. Formation of pathological and functional amyloidogenic substrates can require precursor processing by proteases, as exemplified by the generation of Aβ peptide from amyloid precursor protein (APP) by beta-site APP cleaving enzyme (BACE)1 and γ-secretase. Proteolytic processing of the pigment cell-specific Melanocyte Protein (PMEL) is also required to form functional amyloid fibrils during melanogenesis, but the enzymes involved are incompletely characterized. Here we show that the BACE1 homologue BACE2 processes PMEL to generate functional amyloids. BACE2 is highly expressed in pigment cells and Bace2(-/-) but not Bace1(-/-) mice display coat color defects, implying a specific role for BACE2 during melanogenesis. By using biochemical and morphological analyses, combined with RNA silencing, pharmacologic inhibition, and BACE2 overexpression in a human melanocytic cell line, we show that BACE2 cleaves the integral membrane form of PMEL within the juxtamembrane domain, releasing the PMEL luminal domain into endosomal precursors for the formation of amyloid fibrils and downstream melanosome morphogenesis. These studies identify an amyloidogenic substrate of BACE2, reveal an important physiological role for BACE2 in pigmentation, and highlight analogies in the generation of PMEL-derived functional amyloids and APP-derived pathological amyloids.
Collapse
|
682
|
Marks MS, Heijnen HFG, Raposo G. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 2013; 25:495-505. [PMID: 23726022 DOI: 10.1016/j.ceb.2013.04.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
Abstract
Lysosome-related organelles (LROs) comprise a group of cell type-specific subcellular compartments with unique composition, morphology and structure that share some features with endosomes and lysosomes and that function in varied processes such as pigmentation, hemostasis, lung plasticity and immunity. In recent years, studies of genetic diseases in which LRO functions are compromised have provided new insights into the mechanisms of LRO biogenesis and the regulated secretion of LRO contents. These insights have revealed previously unappreciated specialized endosomal sorting processes in all cell types, and are expanding our views of the plasticity of the endosomal and secretory systems in adapting to cell type-specific needs.
Collapse
Affiliation(s)
- Michael S Marks
- Department of Pathology & Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
683
|
Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F. Silencing of human papillomavirus (HPV)E6/E7oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 2013; 133:1631-42. [DOI: 10.1002/ijc.28164] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Anja Honegger
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers; German Cancer Research Center (DKFZ); Heidelberg; Germany
| |
Collapse
|
684
|
Abstract
Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, F-75248 Paris, Cedex 05, France.
| | | |
Collapse
|
685
|
Theos AC, Watt B, Harper DC, Janczura KJ, Theos SC, Herman KE, Marks MS. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell Melanoma Res 2013; 26:470-86. [PMID: 23452376 DOI: 10.1111/pcmr.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
Abstract
Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.
Collapse
Affiliation(s)
- Alexander C Theos
- Department of Pathology & Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
686
|
Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, Vázquez J, Yáñez-Mó M. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 2013; 288:11649-61. [PMID: 23463506 DOI: 10.1074/jbc.m112.445304] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles are emerging as a potent mechanism of intercellular communication because they can systemically exchange genetic and protein material between cells. Tetraspanin molecules are commonly used as protein markers of extracellular vesicles, although their role in the unexplored mechanisms of cargo selection into exosomes has not been addressed. For that purpose, we have characterized the intracellular tetraspanin-enriched microdomain (TEM) interactome by high throughput mass spectrometry, in both human lymphoblasts and their derived exosomes, revealing a clear pattern of interaction networks. Proteins interacting with TEM receptors cytoplasmic regions presented a considerable degree of overlap, although some highly specific CD81 tetraspanin ligands, such as Rac GTPase, were detected. Quantitative proteomics showed that TEM ligands account for a great proportion of the exosome proteome and that a selective repertoire of CD81-associated molecules, including Rac, is not correctly routed to exosomes in cells from CD81-deficient animals. Our data provide evidence that insertion into TEM may be necessary for protein inclusion into the exosome structure.
Collapse
Affiliation(s)
- Daniel Perez-Hernandez
- Laboratory of Protein Chemistry and Proteomics, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
687
|
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26:300-15. [PMID: 23350640 DOI: 10.1111/pcmr.12067] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
688
|
Leonhardt RM, Vigneron N, Hee JS, Graham M, Cresswell P. Critical residues in the PMEL/Pmel17 N-terminus direct the hierarchical assembly of melanosomal fibrils. Mol Biol Cell 2013; 24:964-81. [PMID: 23389629 PMCID: PMC3608505 DOI: 10.1091/mbc.e12-10-0742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asp-73, Pro-75, Trp-153, and Trp-160 are essential residues in the PMEL NTR that are required for functional fibril formation. The NTR is necessary in cis to drive the downstream PKD into an amyloid core matrix, which subsequently incorporates and stabilizes the RPT domain–containing, MαC fibril–associated fragment. PMEL (also called Pmel17 or gp100) is a melanocyte/melanoma-specific glycoprotein that plays a critical role in melanosome development by forming a fibrillar amyloid matrix in the organelle for melanin deposition. Although ultimately not a component of mature fibrils, the PMEL N-terminal region (NTR) is essential for their formation. By mutational analysis we establish a high-resolution map of this domain in which sequence elements and functionally critical residues are assigned. We show that the NTR functions in cis to drive the aggregation of the downstream polycystic kidney disease (PKD) domain into a melanosomal core matrix. This is essential to promote in trans the stabilization and terminal proteolytic maturation of the repeat (RPT) domain–containing MαC units, precursors of the second fibrillogenic fragment. We conclude that during melanosome biogenesis the NTR controls the hierarchical assembly of melanosomal fibrils.
Collapse
Affiliation(s)
- Ralf M Leonhardt
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
689
|
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013. [DOI: 78495111110.1242/jcs.128868' target='_blank'>'"<>78495111110.1242/jcs.128868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1242/jcs.128868','', '10.1016/j.devcel.2011.08.019')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
78495111110.1242/jcs.128868" />
Abstract
Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis remain so far unclear although they constitute targets to modulate exosome formation and therefore are a promising tool to understand their functions. We have performed an RNA interference screen targeting twenty-three components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1, or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EV, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, the screen did not allow to conclude on their involvement in exosome biogenesis. Interestingly, silencing of ALIX increased MHC II exosomal secretion, due to an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a higher heterogeneity in size, and higher MHC II and lower CD63 contents in vesicles recovered from DCs as compared to HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Collapse
|
690
|
Beckett K, Monier S, Palmer L, Alexandre C, Green H, Bonneil E, Raposo G, Thibault P, Le Borgne R, Vincent JP. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 2013; 14:82-96. [PMID: 23035643 PMCID: PMC4337976 DOI: 10.1111/tra.12016] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022]
Abstract
Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless-expressing Drosophila S2 cells, Wingless is present on exosome-like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless-containing exosome-like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome-like vesicles. Using these exosome markers and a cell-based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless-expressing cells.
Collapse
Affiliation(s)
- Karen Beckett
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
691
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
692
|
Mades A, Gotthardt K, Awe K, Stieler J, Döring T, Füser S, Prange R. Role of human sec63 in modulating the steady-state levels of multi-spanning membrane proteins. PLoS One 2012; 7:e49243. [PMID: 23166619 PMCID: PMC3499540 DOI: 10.1371/journal.pone.0049243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
The Sec61 translocon of the endoplasmic reticulum (ER) membrane forms an aqueous pore, allowing polypeptides to be transferred across or integrated into membranes. Protein translocation into the ER can occur co- and posttranslationally. In yeast, posttranslational translocation involves the heptameric translocase complex including its Sec62p and Sec63p subunits. The mammalian ER membrane contains orthologs of yeast Sec62p and Sec63p, but their function is poorly understood. Here, we analyzed the effects of excess and deficit Sec63 on various ER cargoes using human cell culture systems. The overexpression of Sec63 reduces the steady-state levels of viral and cellular multi-spanning membrane proteins in a cotranslational mode, while soluble and single-spanning ER reporters are not affected. Consistent with this, the knock-down of Sec63 increases the steady-state pools of polytopic ER proteins, suggesting a substrate-specific and regulatory function of Sec63 in ER import. Overexpressed Sec63 exerts its down-regulating activity on polytopic protein levels independent of its Sec62-interacting motif, indicating that it may not act in conjunction with Sec62 in human cells. The specific action of Sec63 is further sustained by our observations that the up-regulation of either Sec62 or two other ER proteins with lumenal J domains, like ERdj1 and ERdj4, does not compromise the steady-state level of a multi-spanning membrane reporter. A J domain-specific mutation of Sec63, proposed to weaken its interaction with the ER resident BiP chaperone, reduces the down-regulating capacity of excess Sec63, suggesting an involvement of BiP in this process. Together, these results suggest that Sec63 may perform a substrate-selective quantity control function during cotranslational ER import.
Collapse
Affiliation(s)
- Andreas Mades
- Department of Medicine III, Hematology and Oncology, Johannes Gutenberg-University School of Medicine, Mainz, Germany
| | - Katherina Gotthardt
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karin Awe
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jens Stieler
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tatjana Döring
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabine Füser
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Reinhild Prange
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
693
|
Reglero-Real N, Marcos-Ramiro B, Millán J. Endothelial membrane reorganization during leukocyte extravasation. Cell Mol Life Sci 2012; 69:3079-99. [PMID: 22573182 PMCID: PMC11114893 DOI: 10.1007/s00018-012-0987-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/22/2012] [Accepted: 03/29/2012] [Indexed: 12/30/2022]
Abstract
Leukocyte trafficking from the bloodstream to inflamed tissues across the endothelial barrier is an essential response in innate immunity. Leukocyte adhesion, locomotion, and diapedesis induce signaling in endothelial cells and this is accompanied by a profound reorganization of the endothelial cell surfaces that is only starting to be unveiled. Here we review the current knowledge on the leukocyte-mediated alterations of endothelial membrane dynamics and their role in promoting leukocyte extravasation. The formation of protein- and lipid-mediated cell adhesion nanodomains at the endothelial apical surface, the extension of micrometric apical membrane docking structures, which are derived from microvilli and embrace adhered leukocytes, as well as the vesicle-trafficking pathways that are required for efficient leukocyte diapedesis, are discussed. The coordination between these different endothelial membrane-remodeling events probably provides the road map for transmigrating leukocytes to find exit points in the vessel wall, in a context of severe mechanical and inflammatory stress. A better understanding of how vascular endothelial cells respond to immune cell adhesion should enable new therapeutic strategies to be developed that can abrogate uncontrolled leukocyte extravasation in inflammatory diseases.
Collapse
Affiliation(s)
- Natalia Reglero-Real
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Beatriz Marcos-Ramiro
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
694
|
Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 2012; 27:85-99. [PMID: 22505665 DOI: 10.1152/physiol.00043.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes.
Collapse
Affiliation(s)
- Anand Sitaram
- Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
695
|
Fairn GD, Grinstein S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol 2012; 33:397-405. [DOI: 10.1016/j.it.2012.03.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/24/2012] [Indexed: 01/18/2023]
|
696
|
Abstract
Multivesicular bodies (MVBs) are unique organelles in the endocytic pathway that contain vesicles in their lumen. Sorting and incorporation of material into such vesicles is a critical cellular process that has been intensely studied following discovery of the ESCRT (endosomal sorting complex required for transport) machinery just more than a decade ago. In this review, we summarize current understanding of the cellular functions of MVBs and how the ESCRT machinery contributes to MVB morphogenesis. We also highlight the importance of MVBs and ESCRTs in human health. We identify critical areas in which further mechanistic and spatiotemporal studies in living cells will advance this exciting area of research.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
697
|
Dores MR, Chen B, Lin H, Soh UJK, Paing MM, Montagne WA, Meerloo T, Trejo J. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. ACTA ACUST UNITED AC 2012; 197:407-19. [PMID: 22547407 PMCID: PMC3341166 DOI: 10.1083/jcb.201110031] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
698
|
Ancot F, Leroy C, Muharram G, Lefebvre J, Vicogne J, Lemiere A, Kherrouche Z, Foveau B, Pourtier A, Melnyk O, Giordano S, Chotteau-Lelievre A, Tulasne D. Shedding-generated Met receptor fragments can be routed to either the proteasomal or the lysosomal degradation pathway. Traffic 2012; 13:1261-72. [PMID: 22672335 DOI: 10.1111/j.1600-0854.2012.01384.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/05/2023]
Abstract
The receptor tyrosine kinase Met and its ligand, the hepatocyte growth factor/scatter factor, are essential for embryonic development, whereas deregulation of Met signaling pathways is associated with tumorigenesis and metastasis. The presenilin-regulated intramembrane proteolysis (PS-RIP) is involved in ligand-independent downregulation of Met. This proteolytic process involves shedding of the Met extracellular domain followed by γ-secretase cleavage, generating labile intracellular fragments degraded by the proteasome. We demonstrate here that upon shedding both generated Met N- and C-terminal fragments are degraded directly in the lysosome, with C-terminal fragments escaping γ-secretase cleavage. PS-RIP and lysosomal degradation are complementary, because their simultaneous inhibition induces synergistic accumulation of fragments. Met N-terminal fragments associate with the high-affinity domain of HGF/SF, confirming its decoy activity which could be reduced through their routing to the lysosome at the expense of extracellular release. Finally, the DN30 monoclonal antibody inducing Met shedding promotes receptor degradation through induction of both PS-RIP and the lysosomal pathway. Thus, we demonstrate that Met shedding initiates a novel lysosomal degradation which participates to ligand-independent downregulation of the receptor.
Collapse
Affiliation(s)
- Frédéric Ancot
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille 1, Université de Lille 2, Lille cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
699
|
Raposo G. Graça Raposo: melanosomes, more than skin deep. Interviewed by Caitlin Sedwick. J Cell Biol 2012; 197:572-3. [PMID: 22641342 PMCID: PMC3365493 DOI: 10.1083/jcb.1975pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Raposo studies the biogenesis of melanosomes as exemplars of lysosome-related organelles.
Collapse
|
700
|
Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 2012; 352:33-47. [PMID: 22610588 PMCID: PMC3602607 DOI: 10.1007/s00441-012-1428-2] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer's, Parkinson's and Huntington's disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molecular mechanisms underlying the intercellular transfer of these proteinaceous aggregates are poorly understood. Various transfer modes of misfolded proteins including continuous cell-cell contacts such as nanotubes, unconventional secretion or microvesicle/exosome-associated dissemination have been suggested. Cells can release proteins, lipids and nucleic acids by vesicular exocytosis pathways destined for horizontal transfer. Encapsulation into microvesicular/exosomal vehicles not only protects these molecules from degradation and dilution in the extracellular space but also facilitates delivery over large distances, e.g. within the blood flow or interstitial fluid. Specific surface ligands might allow the highly efficient and targeted uptake of these vesicles by recipient cells. In this review, we focus on the cell biology and function of neuronal microvesicles/exosomes and discuss the evidence for pathogenic intercellular protein transfer mediated by vesicular carriers.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Psychiatry and Psychotherapy, University Medicine Goettingen, Von-Siebold-Str.5, 37075, Goettingen, Germany.
| | | |
Collapse
|