651
|
Long noncoding RNAs: Novel players in colorectal cancer. Cancer Lett 2015; 361:13-21. [DOI: 10.1016/j.canlet.2015.03.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
|
652
|
Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA. Tumour Biol 2015; 36:7615-22. [PMID: 25921283 DOI: 10.1007/s13277-015-3465-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in carcinogenesis and progression. However, the roles and functional mechanisms of lncRNAs in cervical cancer remain largely unknown. In this study, we found that cervical carcinoma high-expressed lncRNA 1 (lncRNA-CCHE1) was significantly upregulated in cervical cancer tissues. The higher expression of CCHE1 was significantly correlated with large tumor size, advanced Federation of Gynecology and Obstetrics stage, uterine corpus invasion, and poor survival. Gain-of-function and loss-of-function experiments demonstrated that CCHE1 overexpression promotes the proliferation of cervical cancer cell. By contrast, the depletion of CCHE1 inhibits the proliferation of cervical cancer cells. RNA pull-down assays confirmed that CCHE1 physically associates with proliferating cell nuclear antigen (PCNA) messenger RNA, consequently enhances the expression of PCNA. The expression of CCHE1 and PCNA is significantly correlated in cervical cancer tissues. The depletion of PCNA abolishes the effects of CCHE1 on the proliferation of cervical cancer cells. Taken together, these findings indicate that CCHE1 plays a pivotal role in cervical cancer cell proliferation via increasing PCNA expression and serves as a potential prognostic biomarker and therapeutic target in human cervical cancer.
Collapse
|
653
|
Angrand PO, Vennin C, Le Bourhis X, Adriaenssens E. The role of long non-coding RNAs in genome formatting and expression. Front Genet 2015; 6:165. [PMID: 25972893 PMCID: PMC4413816 DOI: 10.3389/fgene.2015.00165] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/12/2015] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential but having a pivotal role in numerous biological functions. Long non-coding RNAs act as regulators at different levels of gene expression including chromatin organization, transcriptional regulation, and post-transcriptional control. Misregulation of lncRNAs expression has been found to be associated to cancer and other human disorders. Here, we review the different types of lncRNAs, their mechanisms of action on genome formatting and expression and emphasized on the multifaceted action of the H19 lncRNA.
Collapse
Affiliation(s)
| | - Constance Vennin
- Cell Plasticity and Cancer - Inserm U908, University of Lille Lille, France
| | - Xuefen Le Bourhis
- Cell Plasticity and Cancer - Inserm U908, University of Lille Lille, France
| | - Eric Adriaenssens
- Cell Plasticity and Cancer - Inserm U908, University of Lille Lille, France
| |
Collapse
|
654
|
Spurlock CF, Tossberg JT, Guo Y, Collier SP, Crooke PS, Aune TM. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun 2015; 6:6932. [PMID: 25903499 PMCID: PMC4410435 DOI: 10.1038/ncomms7932] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate an array of biological processes in cells and organ systems. Less is known about their expression and function in lymphocyte lineages. Here we have identified >2000 lncRNAs expressed in human T-cell cultures and those that display a TH lineage-specific pattern of expression and are intragenic or adjacent to TH lineage-specific genes encoding proteins with immunologic functions. One lncRNA cluster selectively expressed by the effector TH2 lineage consists of four alternatively spliced transcripts that regulate the expression of TH2 cytokines, IL-4, IL-5 and IL-13. Genes encoding this lncRNA cluster in humans overlap the RAD50 gene and thus are contiguous with the previously described TH2 locus control region (LCR) in the mouse. Given its genomic synteny with the TH2-LCR, we refer to this lncRNA cluster as TH2-LCR lncRNA.
Collapse
Affiliation(s)
| | - John T. Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, TN 37232
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, TN 37213
| | - Sarah P. Collier
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, TN 37232
| | | | - Thomas M. Aune
- Department of Medicine, Vanderbilt University School of Medicine, TN 37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, TN 37232
| |
Collapse
|
655
|
Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front Genet 2015; 6:145. [PMID: 25954300 PMCID: PMC4407501 DOI: 10.3389/fgene.2015.00145] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a novel class of RNA molecules defined as transcripts longer than 200 nucleotides that lack protein coding potential. They constitute a major, but still poorly characterized part of human transcriptome, however, evidence is growing that they are important regulatory molecules involved in various cellular processes. It is becoming increasingly clear that many lncRNAs are deregulated in cancer and some of them can be important drivers of malignant transformation. On the one hand, some lncRNAs can have highly specific expression in particular types of cancer making them a promising tool for diagnosis. The expression of other lncRNAs can correlate with different pathophysiological features of tumor growth and with patient survival, thus making them convenient biomarkers for prognosis. In this review we outline the current state of knowledge about the fast growing field of application of lncRNAs as tumor biomarkers.
Collapse
Affiliation(s)
- Aliaksandr A Yarmishyn
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore Singapore
| | - Igor V Kurochkin
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore Singapore
| |
Collapse
|
656
|
Tiedje C, Holtmann H, Gaestel M. The role of mammalian MAPK signaling in regulation of cytokine mRNA stability and translation. J Interferon Cytokine Res 2015; 34:220-32. [PMID: 24697200 DOI: 10.1089/jir.2013.0146] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular-regulated kinases and p38 mitogen-activated protein kinases are activated in innate (and adaptive) immunity and signal via different routes to alter the stability and translation of various cytokine mRNAs, enabling immune cells to respond promptly. This regulation involves mRNA elements, such as AU-rich motifs, and mRNA-binding proteins, such as tristetraprolin (TTP), HuR, and hnRNPK-homology (KH) type splicing regulatory protein (KSRP). Signal-dependent phosphorylation of mRNA-binding proteins often alters their subcellular localization or RNA-binding affinity. Furthermore, it could lead to an altered interaction with other mRNA-binding proteins and altered scaffolding properties for mRNA-modifying enzymes, such as deadenylases, polyadenylases, decapping enzymes, poly(A) binding proteins, exo- or endonucleases, and proteins of the exosome machinery. In many cases, this results in unstable mRNAs being stabilized, with their translational arrest being released and cytokine production being stimulated. Hence, components of these mechanisms are potential targets for the modulation of the inflammatory response.
Collapse
Affiliation(s)
- Christopher Tiedje
- Institute of Physiological Chemistry, Hannover Medical School , Hannover, Germany
| | | | | |
Collapse
|
657
|
Younger ST, Kenzelmann-Broz D, Jung H, Attardi LD, Rinn JL. Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic Acids Res 2015; 43:4447-62. [PMID: 25883152 PMCID: PMC4482066 DOI: 10.1093/nar/gkv284] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/23/2015] [Indexed: 02/04/2023] Open
Abstract
The tumor suppressor p53 has been studied extensively as a direct transcriptional activator of protein-coding genes. Recent studies, however, have shed light on novel regulatory functions of p53 within noncoding regions of the genome. Here, we use a systematic approach that integrates transcriptome-wide expression analysis, genome-wide p53 binding profiles and chromatin state maps to characterize the global regulatory roles of p53 in response to DNA damage. Notably, our approach identified conserved features of the p53 network in both human and mouse primary fibroblast models. In addition to known p53 targets, we identify many previously unappreciated mRNAs and long noncoding RNAs that are regulated by p53. Moreover, we find that p53 binding occurs predominantly within enhancers in both human and mouse model systems. The ability to modulate enhancer activity offers an additional layer of complexity to the p53 network and greatly expands the diversity of genomic elements directly regulated by p53.
Collapse
Affiliation(s)
- Scott T Younger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniela Kenzelmann-Broz
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Heiyoun Jung
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
658
|
Abstract
The development of next-generation sequences has brought not only high-throughput sequencing but also new possibilities for various kinds of analysis methods of genetic information. Dr. Hayashizaki et al. developed new technologies to construct the full-length cDNA library and applied them to high-throughput sequencing technologies for large-scale transcriptome analysis. These analysis results overturned the conventional assumption the 2% of the genome is transcribed by showing that 70% or more of the genome is transcribed as RNA through FANTOM activities which was founded in 2000 on their initiative. Further, the existence of 23,000 non-protein coding RNAs was confirmed. These new findings redefine the central dogma into a new picture containing new interaction cascade and the unexpected complexity of combined omics. The neo central dogma shows that there are three types of final products derived from genes; long ncRNA, small ncRNA, and protein. They play essential roles by forming complexes with each other to maintain life. Long ncRNA and small ncRNA play a role as a ligand with sequence information. Long ncRNA and protein play a role as a functional molecule. Here, I would like to introduce the neo central dogma concept and some of the mechanisms of ncRNAs.
Collapse
Affiliation(s)
- Hiromi Okada
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Research Cluster for Innovation
| | | |
Collapse
|
659
|
Kong R, Zhang EB, Yin DD, You LH, Xu TP, Chen WM, Xia R, Wan L, Sun M, Wang ZX, De W, Zhang ZH. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer 2015; 14:82. [PMID: 25890171 PMCID: PMC4399399 DOI: 10.1186/s12943-015-0355-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/31/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mounting evidence indicates that long noncoding RNAs (lncRNAs) could play a pivotal role in cancer biology. However, the overall biological role and clinical significance of PVT1 in gastric carcinogenesis remains largely unknown. METHODS Expression of PVT1 was analyzed in 80 GC tissues and cell lines by qRT-PCR. The effect of PVT1 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Flow-cytometric analysis. GC cells transfected with shPVT1 were injected into nude mice to study the effect of PVT1 on tumorigenesis in vivo. RIP was performed to confirm the interaction between PVT1 and EZH2. ChIP was used to study the promoter region of related genes. RESULTS The higher expression of PVT1 was significantly correlated with deeper invasion depth and advanced TNM stage. Multivariate analyses revealed that PVT1 expression served as an independent predictor for overall survival (p = 0.031). Further experiments demonstrated that PVT1 knockdown significantly inhibited the proliferation both in vitro and in vivo. Importantly, we also showed that PVT1 played a key role in G1 arrest. Moreover, we further confirmed that PVT1 was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of p15 and p16. To our knowledge, this is the first report showed that the role and the mechanism of PVT1 in the progression of gastric cancer. CONCLUSIONS Together, these results suggest that lncRNA PVT1 may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.
Collapse
Affiliation(s)
- Rong Kong
- Clinical Medical Examination Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, PR China. .,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Er-bao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Dan-dan Yin
- Cancer Research and Therapy Center, The Second Affiliated Hospital of Southeast University, Nanjing, 210029, Jiangsu, PR China.
| | - Liang-hui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing, 210029, China.
| | - Tong-peng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Wen-ming Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Rui Xia
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Li Wan
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road, Nanjing, 210011, Jiangsu, PR China.
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Zhao-xia Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road, Nanjing, 210011, Jiangsu, PR China.
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Zhi-hong Zhang
- Departments of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
660
|
Abstract
In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.
Collapse
|
661
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
662
|
Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 2015; 16:18. [PMID: 25884509 PMCID: PMC4399149 DOI: 10.1186/s12868-015-0157-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
Background Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. Results Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction. Conclusions Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yufeng Liu
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Yanjiong Chen
- Departments of Immunology and Pathogenic Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yanlin Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Liren Huang
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Sisi Chen
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yonghui Dang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| |
Collapse
|
663
|
Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 2015; 6:e1700. [PMID: 25789975 PMCID: PMC4385943 DOI: 10.1038/cddis.2015.67] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
LincRNA-p21 is a long noncoding RNA and a transcriptional target of p53 and HIF-1α. LincRNA-p21 regulates gene expression in cis and trans, mRNA translation, protein stability, the Warburg effect, and p53-dependent apoptosis and cell cycle arrest in doxorubicin-treated mouse embryo fibroblasts. p53 plays a key role in the response of skin keratinocytes to UVB-induced DNA damage by inducing cell cycle arrest and apoptosis. In skin cancer development, UVB-induced mutation of p53 allows keratinocytes upon successive UVB exposures to evade apoptosis and cell cycle arrest. We hypothesized that lincRNA-p21 has a key functional role in UVB-induced apoptosis and/or cell cycle arrest in keratinocytes and loss of lincRNA-p21 function results in the evasion of apoptosis and/or cell cycle arrest. We observed that lincRNA-p21 transcripts are highly inducible by UVB in mouse and human keratinocytes in culture and in mouse skin in vivo. LincRNA-p21 is regulated at the transcriptional level in response to UVB, and the UVB induction of lincRNA-p21 in keratinocytes and in vivo in mouse epidermis is primarily through a p53-dependent pathway. Knockdown of lincRNA-p21 blocked UVB-induced apoptosis in mouse and human keratinocytes, and lincRNA-p21 was responsible for the majority of UVB-induced and p53-mediated apoptosis in keratinocytes. Knockdown of lincRNA-p21 had no effect on cell proliferation in untreated or UVB-treated keratinocytes. An early event in skin cancer is the mutation of a single p53 allele. We observed that a mutant p53+/R172H allele expressed in mouse epidermis (K5Cre+/tg;LSLp53+/R172H) showed a significant dominant-negative inhibitory effect on UVB-induced lincRNA-p21 transcription and apoptosis in epidermis. We conclude lincRNA-p21 is highly inducible by UVB and has a key role in triggering UVB-induced apoptotic death. We propose that the mutation of a single p53 allele provides a pro-oncogenic function early in skin cancer development through a dominant inhibitory effect on UVB-induced lincRNA-p21 expression and the subsequent evasion of UVB-induced apoptosis.
Collapse
|
664
|
|
665
|
Abstract
Most RNAs transcribed in mammalian cells lack protein-coding sequences. Among them is a vast family of long (>200 nt) noncoding (lnc)RNAs. LncRNAs can modulate cellular protein expression patterns by influencing the transcription of many genes, the post-transcriptional fate of mRNAs and ncRNAs, and the turnover and localization of proteins. Given the broad impact of lncRNAs on gene regulation, there is escalating interest in elucidating the mechanisms that govern the steady-state levels of lncRNAs. In this review, we summarize our current knowledge of the factors and mechanisms that modulate mammalian lncRNA stability.
Collapse
|
666
|
Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M, Song E. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015; 27:370-81. [PMID: 25759022 DOI: 10.1016/j.ccell.2015.02.004] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 02/05/2023]
Abstract
NF-κB is a critical link between inflammation and cancer, but whether long non-coding RNAs (lncRNAs) regulate its activation remains unknown. Here, we identify an NF-KappaB Interacting LncRNA (NKILA), which is upregulated by NF-κB, binds to NF-κB/IκB, and directly masks phosphorylation motifs of IκB, thereby inhibiting IKK-induced IκB phosphorylation and NF-κB activation. Unlike DNA that is dissociated from NF-κB by IκB, NKILA interacts with NF-κB/IκB to form a stable complex. Importantly, NKILA is essential to prevent over-activation of NF-κB pathway in inflammation-stimulated breast epithelial cells. Furthermore, low NKILA expression is associated with breast cancer metastasis and poor patient prognosis. Therefore, lncRNAs can directly interact with functional domains of signaling proteins, serving as a class of NF-κB modulators to suppress cancer metastasis.
Collapse
Affiliation(s)
- Bodu Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lijuan Sun
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaobin Lv
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ling Lin
- Department of Internal Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Herui Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fengxi Su
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dangsheng Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Erwei Song
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
667
|
LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Dis 2015; 6:e1668. [PMID: 25741593 PMCID: PMC4385912 DOI: 10.1038/cddis.2015.15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/02/2015] [Accepted: 01/07/2015] [Indexed: 02/08/2023]
Abstract
ING1b is a tumor suppressor that affects transcription, cell cycle control and apoptosis. ING1b is deregulated in disease, and its activity is closely linked to that of p53. In addition to regulating protein-coding genes, we found that ING1b also influences the expression of large intergenic non-coding RNAs (lincRNAs). In particular, lincRNA-p21 was significantly induced after DNA-damage stress or by ING1b overexpression. Furthermore, lincRNA-p21 expression in response to DNA damage was significantly attenuated in cells lacking ING1b. LincRNA-p21 is also a target of p53 and can trigger apoptosis in mouse cell models. We found that this function of lincRNA-p21 is conserved in human cell models. Moreover, ING1b and p53 could function independently to influence lincRNA-p21 expression. However, their effects become more additive under conditions of stress. In particular, ING1b regulates lincRNA-p21 levels by binding to its promoter and is required for induction of lincRNA-p21 by p53. The ability of ING1b to cause apoptosis is also impaired in the absence of lincRNA-p21. Surprisingly, deletion of the ING1b plant homeodomain, which allows it to bind histones and regulate chromatin structure, did not alter regulation of lincRNA-p21. Our findings suggest that ING1b induces lincRNA-p21 expression independently of histone 3 lysine 4 trimethylation mark recognition and that lincRNA-p21 functions downstream of ING1b. Thus, regulation at the level of lincRNA-p21 may represent the point at which ING1b and p53 pathways converge to induce apoptosis under specific stress conditions.
Collapse
|
668
|
Marcel V, Catez F, Diaz JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015; 34:5513-23. [DOI: 10.1038/onc.2015.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
|
669
|
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.
Collapse
Affiliation(s)
- Marko Knoll
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, MA 02142, USA
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, MA 02142, USA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, 8 College Road, 169857, Singapore
| |
Collapse
|
670
|
Viero G, Lunelli L, Passerini A, Bianchini P, Gilbert RJ, Bernabò P, Tebaldi T, Diaspro A, Pederzolli C, Quattrone A. Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes. ACTA ACUST UNITED AC 2015; 208:581-96. [PMID: 25713412 PMCID: PMC4347638 DOI: 10.1083/jcb.201406040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translation is increasingly recognized as a central control layer of gene expression in eukaryotic cells. The overall organization of mRNA and ribosomes within polysomes, as well as the possible role of this organization in translation are poorly understood. Here we show that polysomes are primarily formed by three distinct classes of ribosome assemblies. We observe that these assemblies can be connected by naked RNA regions of the transcript. We show that the relative proportions of the three classes of ribosome assemblies reflect, and probably dictate, the level of translational activity. These results reveal the existence of recurrent supra-ribosomal building blocks forming polysomes and suggest the presence of unexplored translational controls embedded in the polysome structure.
Collapse
Affiliation(s)
- Gabriella Viero
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Mattarello, Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, 38123 Povo, Italy
| | - Andrea Passerini
- Department of Information Engineering and Computer Science, University of Trento, 38123 Povo, Italy
| | - Paolo Bianchini
- Nanophysics Department, Italian Institute of Technology, 16163 Genova, Italy
| | - Robert J Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Paola Bernabò
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Mattarello, Italy
| | - Alberto Diaspro
- Nanophysics Department, Italian Institute of Technology, 16163 Genova, Italy
| | - Cecilia Pederzolli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, 38123 Povo, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Mattarello, Italy
| |
Collapse
|
671
|
Abstract
RNAs not encoding proteins have gained prominence over the last couple of decades as fundamental regulators of cellular function. Not surprisingly, their dysregulation is increasingly being linked to pathology. Here, we review recent reports investigating the pathophysiological relevance of this species of RNA for the cardiovascular system, concentrating mainly on recent findings on long noncoding RNAs and microRNAs in cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Thomas Thum
- From the Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Integrated Research and Treatment Center Transplantation, and REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany (T.T.); National Heart and Lung Institute, Imperial College London, London, United Kingdom (T.T.); Humanitas Clinical and Research Center, Rozzano, Milan, Italy (G.C.); Institute of Genetics and Biomedical Research, National Research Country of Italy, Milan, Italy (G.C.); University of
| | - Gianluigi Condorelli
- From the Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Integrated Research and Treatment Center Transplantation, and REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany (T.T.); National Heart and Lung Institute, Imperial College London, London, United Kingdom (T.T.); Humanitas Clinical and Research Center, Rozzano, Milan, Italy (G.C.); Institute of Genetics and Biomedical Research, National Research Country of Italy, Milan, Italy (G.C.); University of
| |
Collapse
|
672
|
Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol 2015; 66:2947-57. [PMID: 25077978 DOI: 10.1002/art.38805] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine interrelationships between the expression of long intergenic (noncoding) RNA-p21 (lincRNA-p21), NF-κB activity, and responses to methotrexate (MTX) in rheumatoid arthritis (RA) by analyzing patient blood samples and cell culture models. METHODS Expression levels of long noncoding RNA and messenger RNA (mRNA) were determined by quantitative reverse transcription-polymerase chain reaction. Western blotting and flow cytometry were used to quantify levels of intracellular proteins. Intracellular NF-κB activity was determined using an NF-κB luciferase reporter plasmid. RESULTS Patients with RA expressed reduced basal levels of lincRNA-p21 and increased basal levels of phosphorylated p65 (RelA), a marker of NF-κB activation. Patients with RA who were not treated with MTX expressed lower levels of lincRNA-p21 and higher levels of phosphorylated p65 compared with RA patients treated with low-dose MTX. In cell culture using primary cells and transformed cell lines, MTX induced lincRNA-p21 through a DNA-dependent protein kinase catalytic subunit (DNA PKcs)-dependent mechanism. Deficiencies in the levels of PRKDC mRNA in patients with RA were also corrected by MTX in vivo. Furthermore, MTX reduced NF-κB activity in tumor necrosis factor α-treated cells through a DNA PKcs-dependent mechanism via induction of lincRNA-p21. Finally, we observed that depressed levels of TP53 and lincRNA-p21 increased NF-κB activity in cell lines. Decreased levels of lincRNA-p21 did not alter NFKB1 or RELA transcripts; rather, lincRNA-p21 physically bound to RELA mRNA. CONCLUSION Our findings support a model whereby depressed levels of lincRNA-p21 in RA contribute to increased NF-κB activity. MTX decreases basal levels of NF-κB activity by increasing lincRNA-p21 levels through a DNA PKcs-dependent mechanism.
Collapse
|
673
|
Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, Wu D, Liu L. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of β-catenin in HCC cells. Gastroenterology 2015; 148:415-26.e18. [PMID: 25449213 DOI: 10.1053/j.gastro.2014.10.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Altered activities of long noncoding RNAs (lncRNAs) have been associated with cancer development. We investigated the mechanisms by which the long intergenic noncoding RNA UFC1 (lincRNA-UFC1) promotes progression of hepatocellular carcinoma (HCC), using human tissues and cell lines. METHODS We used microarrays to compare expression profiles of lncRNAs in HCC samples and adjacent nontumor tissues (controls) from 7 patients. HCC and nontumor tissues were collected from 2006 through 2012 from patients in Guangzhou, China. We used quantitative real-time polymerase chain reaction to measure levels of lincRNA-UFC1 in tissues from 49 patients, and in situ hybridization to measure levels in samples from 131 patients; clinical data were collected from patients for up to 5 years. The lincRNA-UFC1 was expressed transgenically, or knocked down with short hairpin RNAs, in BEL-7402, SK-Hep1, Huh7, and MHCC-97H HCC cell lines; luciferase reporter and RNA immunoprecipitation and pull-down assays were performed. We also analyzed growth of xenograft tumors from these cells in BALB/c nude mice. RESULTS Levels of the lincRNA-UFC1 were increased in HCC tissues compared with controls, and associated with tumor size, Barcelona Clinic Liver Cancer stage, and patient outcomes. Transgenic expression of the lincRNA-UFC1 in HCC cells promoted their proliferation and cell-cycle progression and inhibited apoptosis, whereas short hairpin RNA knockdown of lincRNA-UFC1 had opposite effects. Xenograft tumors grown from cells overexpressing lincRNA-UFC1 had larger mean volumes and weights, and formed more rapidly, than tumors grown from control cells. Tumors grown from lincRNA-UFC1 knockdown were smaller than controls. The lincRNA-UFC1 interacted directly with the messenger RNA (mRNA) stabilizing protein HuR (encoded by ELAVL1) to increase levels of β-catenin mRNA (encoded by CTNNB1) and protein. Levels of lincRNA-UFC1 correlated with those of β-catenin in HCC tissues. In contrast, there was a negative correlation between levels of microRNA 34a and lincRNA-UFC1 in HCC tissues; microRNA 34a reduced the stability of lincRNA-UFC1. CONCLUSIONS The lincRNA-UFC1, a target of microRNA 34a, promotes proliferation and reduces apoptosis in HCC cells to promote growth of xenograft tumors in mice. It interacts directly with the mRNA stabilizing protein HuR to regulate levels of β-catenin in HCC cells.
Collapse
Affiliation(s)
- Chuanhui Cao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyuan Sun
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejun Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liwei Xie
- Center of Molecular Medicine, University of Georgia, Athens, Georgia; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Xin Li
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
674
|
Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36:25-64. [PMID: 25426780 PMCID: PMC4309736 DOI: 10.1210/er.2014-1034] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a relatively poorly understood class of RNAs with little or no coding capacity transcribed from a set of incompletely annotated genes. They have received considerable attention in the past few years and are emerging as potentially important players in biological regulation. Here we discuss the evolving understanding of this new class of molecular regulators that has emerged from ongoing research, which continues to expand our databases of annotated lncRNAs and provide new insights into their physical properties, molecular mechanisms of action, and biological functions. We outline the current strategies and approaches that have been employed to identify and characterize lncRNAs, which have been instrumental in revealing their multifaceted roles ranging from cis- to trans-regulation of gene expression and from epigenetic modulation in the nucleus to posttranscriptional control in the cytoplasm. In addition, we highlight the molecular and biological functions of some of the best characterized lncRNAs in physiology and disease, especially those relevant to endocrinology, reproduction, metabolism, immunology, neurobiology, muscle biology, and cancer. Finally, we discuss the tremendous diagnostic and therapeutic potential of lncRNAs in cancer and other diseases.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
675
|
Jiang Q, Ma R, Wang J, Wu X, Jin S, Peng J, Tan R, Zhang T, Li Y, Wang Y. LncRNA2Function: a comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data. BMC Genomics 2015; 16 Suppl 3:S2. [PMID: 25707511 PMCID: PMC4331805 DOI: 10.1186/1471-2164-16-s3-s2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background The GENCODE project has collected over 10,000 human long non-coding RNA (lncRNA) genes. However, the vast majority of them remain to be functionally characterized. Computational investigation of potential functions of human lncRNA genes is helpful to guide further experimental studies on lncRNAs. Results In this study, based on expression correlation between lncRNAs and protein-coding genes across 19 human normal tissues, we used the hypergeometric test to functionally annotate a single lncRNA or a set of lncRNAs with significantly enriched functional terms among the protein-coding genes that are significantly co-expressed with the lncRNA(s). The functional terms include all nodes in the Gene Ontology (GO) and 4,380 human biological pathways collected from 12 pathway databases. We successfully mapped 9,625 human lncRNA genes to GO terms and biological pathways, and then developed the first ontology-driven user-friendly web interface named lncRNA2Function, which enables researchers to browse the lncRNAs associated with a specific functional term, the functional terms associated with a specific lncRNA, or to assign functional terms to a set of human lncRNA genes, such as a cluster of co-expressed lncRNAs. The lncRNA2Function is freely available at http://mlg.hit.edu.cn/lncrna2function. Conclusions The LncRNA2Function is an important resource for further investigating the functions of a single human lncRNA, or functionally annotating a set of human lncRNAs of interest.
Collapse
|
676
|
Shi X, Sun M, Wu Y, Yao Y, Liu H, Wu G, Yuan D, Song Y. Post-transcriptional regulation of long noncoding RNAs in cancer. Tumour Biol 2015; 36:503-13. [PMID: 25618601 DOI: 10.1007/s13277-015-3106-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
It is a great surprise that the genomes of mammals and other eukaryotes harbor many thousands of long noncoding RNAs (lncRNAs). Although these long noncoding transcripts were once considered to be simply transcriptional noise or cloning artifacts, multiple studies have suggested that lncRNAs are emerging as new players in diverse human diseases, especially in cancer, and that the molecular mechanisms of lncRNAs need to be elucidated. More recently, evidence has begun to accumulate describing the complex post-transcriptional regulation in which lncRNAs are involved. It was reported that lncRNAs can be implicated in degradation, translation, pre-messenger RNA (mRNA) splicing, and protein activities and even as microRNAs (miRNAs) sponges in both a sequence-dependent and sequence-independent manner. In this review, we present an updated vision of lncRNAs and summarize the mechanism of post-transcriptional regulation by lncRNAs, providing new insight into the functional cellular roles that they may play in human diseases, with a particular focus on cancers.
Collapse
Affiliation(s)
- Xuefei Shi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China,
| | | | | | | | | | | | | | | |
Collapse
|
677
|
Ranzani V, Rossetti G, Panzeri I, Arrigoni A, Bonnal RJ, Curti S, Gruarin P, Provasi E, Sugliano E, Marconi M, De Francesco R, Geginat J, Bodega B, Abrignani S, Pagani M. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol 2015; 16:318-325. [PMID: 25621826 PMCID: PMC4333215 DOI: 10.1038/ni.3093] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Long non-coding-RNAs are emerging as important regulators of cellular functions but little is known on their role in human immune system. Here we investigated long intergenic non-coding-RNAs (lincRNAs) in thirteen T and B lymphocyte subsets by RNA-seq analysis and de novo transcriptome reconstruction. Over five hundred new lincRNAs were identified and lincRNAs signatures were described. Expression of linc-MAF-4, a chromatin-associated TH1-specific lincRNA, was inversely correlated with MAF, a TH2-associated transcription factor. Linc-MAF-4 down-regulation skewed T cell differentiation toward TH2. We identified a long-distance interaction between linc-MAF-4 and MAF genomic regions, where linc-MAF-4 associates with LSD1 and EZH2, suggesting linc-MAF-4 regulated MAF transcription by recruitment of chromatin modifiers. Our results demonstrate a key role of lincRNAs in T lymphocyte differentiation.
Collapse
Affiliation(s)
- Valeria Ranzani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Grazisa Rossetti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Ilaria Panzeri
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Alberto Arrigoni
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Raoul Jp Bonnal
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Serena Curti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Elena Provasi
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Elisa Sugliano
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Maurizio Marconi
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Jens Geginat
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Beatrice Bodega
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| | - Massimiliano Pagani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milano, Italy
| |
Collapse
|
678
|
Essers PB, Nonnekens J, Goos YJ, Betist MC, Viester MD, Mossink B, Lansu N, Korswagen HC, Jelier R, Brenkman AB, MacInnes AW. A Long Noncoding RNA on the Ribosome Is Required for Lifespan Extension. Cell Rep 2015; 10:339-345. [PMID: 25600869 DOI: 10.1016/j.celrep.2014.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/29/2014] [Accepted: 12/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biogenesis of ribosomes and their coordination of protein translation consume an enormous amount of cellular energy. As such, it has been established that the inhibition of either process can extend eukaryotic lifespan. Here, we used next-generation sequencing to compare ribosome-associated RNAs from normal strains of Caenorhabditis elegans to those carrying the life-extending daf-2 mutation. We found a long noncoding RNA (lncRNA), transcribed telomeric sequence 1 (tts-1), on ribosomes of the daf-2 mutant. Depleting tts-1 in daf-2 mutants increases ribosome levels and significantly shortens their extended lifespan. We find tts-1 is also required for the longer lifespan of the mitochondrial clk-1 mutants but not the feeding-defective eat-2 mutants. In line with this, the clk-1 mutants express more tts-1 and fewer ribosomes than the eat-2 mutants. Our results suggest that the expression of tts-1 functions in different longevity pathways to reduce ribosome levels in a way that promotes life extension.
Collapse
Affiliation(s)
- Paul B Essers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Julie Nonnekens
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Yvonne J Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Marco C Betist
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Marjon D Viester
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Britt Mossink
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Rob Jelier
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Arjan B Brenkman
- Section Metabolic Diseases, Department of Molecular Cancer Research, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Alyson W MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
679
|
Sohi G, Dilworth FJ. Noncoding RNAs as epigenetic mediators of skeletal muscle regeneration. FEBS J 2015; 282:1630-46. [PMID: 25483175 DOI: 10.1111/febs.13170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration is a well-characterized biological process in which resident adult stem cells must undertake a series of cell-fate decisions to ensure efficient repair of the damaged muscle fibers while also maintaining the stem cell niche. Satellite cells, the main stem cell contributing to the repaired muscle fiber, are maintained in a quiescent state in healthy muscle. Upon injury, the satellite cells become activated, and proliferate to expand the muscle progenitor cell population before returning to the quiescent state or differentiating to become myofibers. Importantly, the determination of cell fate is controlled at the epigenetic level in response to environmental cues. In this review, we discuss our current understanding of the role played by noncoding RNAs (both miRNAs and long-noncoding RNAs) in the epigenetic control of muscle regeneration.
Collapse
Affiliation(s)
- Gurjeev Sohi
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada
| | | |
Collapse
|
680
|
Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, Song H, Chen Y, Lai K, Yin M, Xu L, Zhou L, Chen J, Wang D, Qin B, Frampton J, Tse HF, Pei D, Wang H, Zhang B, Esteban MA. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res 2014; 25:80-92. [PMID: 25512341 DOI: 10.1038/cr.2014.165] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/20/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation.
Collapse
Affiliation(s)
- Xichen Bao
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Haitao Wu
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihua Zhu
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangpeng Guo
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhiwei Luo
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Hong Song
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yongqiang Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Keyu Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Menghui Yin
- Laboratory of RNA Chemical Biology, State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Lingxiao Xu
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Liang Zhou
- Department of Radiation Medicine, School of Public Health and Tropic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dongye Wang
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] Drug Discovery Pipeline Group, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Baoming Qin
- 1] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Jon Frampton
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hung-Fat Tse
- 1] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China [2] Cardiology Division, Department of medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China [3] Shenzhen Institutes of Research and Innovation, The University of Hong Kong, Hong Kong SAR, China
| | - Duanqing Pei
- 1] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Biliang Zhang
- Laboratory of RNA Chemical Biology, State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Miguel A Esteban
- 1] Laboratory of Chromatin and Human Disease, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [2] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China [3] Hong Kong - Guangdong Joint Laboratory of Stem Cells and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| |
Collapse
|
681
|
Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, Liu YW, Liu XH, Zhang EB, Lu KH, Shu YQ. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 2014; 14:268-77. [PMID: 25504755 DOI: 10.1158/1535-7163.mct-14-0492] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent evidence highlights long noncoding RNAs (lncRNA) as crucial regulators of cancer biology that contribute to essential cancer cell functions such as cell proliferation, apoptosis, and metastasis. In non-small cell lung cancer (NSCLC), several lncRNAs' expressions are misregulated and have been nominated as critical actors in NSCLC tumorigenesis. LncRNA ANRIL was first found to be required for the PRC2 recruitment to and silencing of p15(INK4B), the expression of which is induced by the ATM-E2F1 signaling pathway. Our previous study showed that ANRIL was significantly upregulated in gastric cancer, and it could promote cell proliferation and inhibit cell apoptosis by silencing of miR99a and miR449a transcription. However, its clinical significance and potential role in NSCLC is still not documented. In this study, we reported that ANRIL expression was increased in NSCLC tissues, and its expression level was significantly correlated with tumor-node-metastasis stages and tumor size. Moreover, patients with high levels of ANRIL expression had a relatively poor prognosis. In addition, taking advantage of loss-of-function experiments in NSCLC cells, we found that knockdown of ANRIL expression could impair cell proliferation and induce cell apoptosis both in vitro and vivo. Furthermore, we uncover that ANRIL could not repress p15 expression in PC9 cells, but through silencing of KLF2 and P21 transcription. Thus, we conclusively demonstrate that lncRNA ANRIL plays a key role in NSCLC development by associating its expression with survival in patients with NSCLC, providing novel insights on the function of lncRNA-driven tumorigenesis.
Collapse
Affiliation(s)
- Feng-qi Nie
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-song Yang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Min Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tong-peng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Xia
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan-wen Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiang-hua Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Er-bao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai-hua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yong-qian Shu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
682
|
Abstract
Post-transcriptional gene regulation (PTGR) concerns processes involved in the maturation, transport, stability and translation of coding and non-coding RNAs. RNA-binding proteins (RBPs) and ribonucleoproteins coordinate RNA processing and PTGR. The introduction of large-scale quantitative methods, such as next-generation sequencing and modern protein mass spectrometry, has renewed interest in the investigation of PTGR and the protein factors involved at a systems-biology level. Here, we present a census of 1,542 manually curated RBPs that we have analysed for their interactions with different classes of RNA, their evolutionary conservation, their abundance and their tissue-specific expression. Our analysis is a critical step towards the comprehensive characterization of proteins involved in human RNA metabolism.
Collapse
Affiliation(s)
- Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, New York 10065, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, New York 10065, USA
| |
Collapse
|
683
|
Yu C, Xue J, Zhu W, Jiao Y, Zhang S, Cao J. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol 2014; 36:81-94. [DOI: 10.1007/s13277-014-2875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022] Open
|
684
|
H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci U S A 2014; 111:E5023-8. [PMID: 25385579 DOI: 10.1073/pnas.1415098111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) interact with protein factors to regulate different layers of gene expression transcriptionally or posttranscriptionally. Here we report on the functional consequences of the unanticipated interaction of the RNA binding protein K homology-type splicing regulatory protein (KSRP) with the H19 lncRNA (H19). KSRP directly binds to H19 in the cytoplasm of undifferentiated multipotent mesenchymal C2C12 cells, and this interaction favors KSRP-mediated destabilization of labile transcripts such as myogenin. AKT activation induces KSRP dismissal from H19 and, as a consequence, myogenin mRNA is stabilized while KSRP is repurposed to promote maturation of myogenic microRNAs, thus favoring myogenic differentiation. Our data indicate that H19 operates as a molecular scaffold that facilitates effective association of KSRP with myogenin and other labile transcripts, and we propose that H19 works with KSRP to optimize an AKT-regulated posttranscriptional switch that controls myogenic differentiation.
Collapse
|
685
|
Liu Y, Luo F, Xu Y, Wang B, Zhao Y, Xu W, Shi L, Lu X, Liu Q. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicol Appl Pharmacol 2014; 282:9-19. [PMID: 25447409 DOI: 10.1016/j.taap.2014.10.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 12/24/2022]
Abstract
The incidence of lung diseases, including cancer, caused by cigarette smoke is increasing, but the molecular mechanisms of gene regulation induced by cigarette smoke remain unclear. This report describes a long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) and experiments utilizing lncRNAs to integrate inflammation with the epithelial-mesenchymal transition (EMT) in human bronchial epithelial (HBE) cells. The present study shows that, induced by CSE, IL-6, a pro-inflammatory cytokine, leads to activation of STAT3, a transcription activator. A ChIP assay determined that the interaction of STAT3 with the promoter regions of HOX transcript antisense RNA (HOTAIR) increased levels of HOTAIR. Blocking of IL-6 with anti-IL-6 antibody, decreasing STAT3, and inhibiting STAT3 activation reduced HOTAIR expression. Moreover, for HBE cells cultured in the presence of HOTAIR siRNA for 24h, the CSE-induced EMT, formation of cancer stem cells (CSCs), and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates HOTAIR in an autocrine manner, contributes to the EMT and to CSCs induced by CSE. These data define a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through lncRNAs, establishes a mechanism for CSE-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Fei Luo
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Yuan Xu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Bairu Wang
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Yue Zhao
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Wenchao Xu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Le Shi
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Xiaolin Lu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China
| | - Qizhan Liu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, P. R. China.
| |
Collapse
|
686
|
Gardini A, Shiekhattar R. The many faces of long noncoding RNAs. FEBS J 2014; 282:1647-57. [PMID: 25303371 DOI: 10.1111/febs.13101] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022]
Abstract
Over the past few years, the field of noncoding RNAs has grown from a niche for geneticists into a prominent domain of mainstream biology. Advances in genomic technologies have provided a more comprehensive view of the mammalian genome, improving our knowledge of regions of the genome devoid of protein-coding potential. A large body of evidence supports the proposal that noncoding RNAs account for a large proportion of the transcriptional output of any given cell and tissue type. This review will delve into the biogenesis and function of long noncoding RNAs. We will discuss our current understanding of these molecules as major chromatin players, and explore future directions in the field.
Collapse
Affiliation(s)
- Alessandro Gardini
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL, USA
| | | |
Collapse
|
687
|
PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 2014; 5:5248. [PMID: 25366541 DOI: 10.1038/ncomms6248] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/12/2014] [Indexed: 12/24/2022] Open
Abstract
Post-transcriptional gene regulation is robustly regulated by RNA-binding proteins (RBPs). Here we describe the collection of RNAs regulated by AUF1 (AU-binding factor 1), an RBP linked to cancer, inflammation and aging. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis reveals that AUF1 primarily recognizes U-/GU-rich sequences in mRNAs and noncoding RNAs and influences target transcript fate in three main directions. First, AUF1 lowers the steady-state levels of numerous target RNAs, including long noncoding RNA NEAT1, in turn affecting the organization of nuclear paraspeckles. Second, AUF1 does not change the abundance of many target RNAs, but ribosome profiling reveals that AUF1 promotes the translation of numerous mRNAs in this group. Third, AUF1 unexpectedly enhances the steady-state levels of several target mRNAs encoding DNA-maintenance proteins. Through its actions on target RNAs, AUF1 preserves genomic integrity, in agreement with the AUF1-elicited prevention of premature cellular senescence.
Collapse
|
688
|
Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Wang S, Zhou F, Shi S, Feng X, Sun N, Liu Z, Skogerboe G, Dong J, Yao R, Zhao Y, Sun J, Zhang B, Yu Y, Shi X, Luo M, Shao K, Li N, Qiu B, Tan F, Chen R, He J. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 2014; 63:1700-1710. [PMID: 24522499 PMCID: PMC4215280 DOI: 10.1136/gutjnl-2013-305806] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oesophageal cancer is one of the most deadly forms of cancer worldwide. Long non-coding RNAs (lncRNAs) are often found to have important regulatory roles. OBJECTIVE To assess the lncRNA expression profile of oesophageal squamous cell carcinoma (OSCC) and identify prognosis-related lncRNAs. METHOD LncRNA expression profiles were studied by microarray in paired tumour and normal tissues from 119 patients with OSCC and validated by qRT-PCR. The 119 patients were divided randomly into training (n=60) and test (n=59) groups. A prognostic signature was developed from the training group using a random Forest supervised classification algorithm and a nearest shrunken centroid algorithm, then validated in a test group and further, in an independent cohort (n=60). The independence of the signature in survival prediction was evaluated by multivariable Cox regression analysis. RESULTS LncRNAs showed significantly altered expression in OSCC tissues. From the training group, we identified a three-lncRNA signature (including the lncRNAs ENST00000435885.1, XLOC_013014 and ENST00000547963.1) which classified the patients into two groups with significantly different overall survival (median survival 19.2 months vs >60 months, p<0.0001). The signature was applied to the test group (median survival 21.5 months vs >60 months, p=0.0030) and independent cohort (median survival 25.8 months vs >48 months, p=0.0187) and showed similar prognostic values in both. Multivariable Cox regression analysis showed that the signature was an independent prognostic factor for patients with OSCC. Stratified analysis suggested that the signature was prognostic within clinical stages. CONCLUSIONS Our results suggest that the three-lncRNA signature is a new biomarker for the prognosis of patients with OSCC, enabling more accurate prediction of survival.
Collapse
Affiliation(s)
- Jiagen Li
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Zhaoli Chen
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Liqing Tian
- Bioinformatics Laboratory and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, The People's Republic of China
| | - Chengcheng Zhou
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Max Yifan He
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Yibo Gao
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Suya Wang
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Fang Zhou
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Susheng Shi
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Xiaoli Feng
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Nan Sun
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Ziyuan Liu
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Geir Skogerboe
- Bioinformatics Laboratory and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, The People's Republic of China
| | - Jingsi Dong
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Ran Yao
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Yuda Zhao
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Jian Sun
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Baihua Zhang
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Yue Yu
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Xuejiao Shi
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Mei Luo
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Kang Shao
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Ning Li
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Bin Qiu
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Fengwei Tan
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| | - Runsheng Chen
- Bioinformatics Laboratory and Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, The People's Republic of China
| | - Jie He
- !
Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, The People's Republic of China
| |
Collapse
|
689
|
Li Z, Rana TM. Decoding the noncoding: prospective of lncRNA-mediated innate immune regulation. RNA Biol 2014; 11:979-85. [PMID: 25482890 PMCID: PMC4615744 DOI: 10.4161/rna.29937] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The innate immune system is the first line of defense against microbial pathogens, but tight regulation of gene expression is necessary to prevent the detrimental effects of unrestrained activation. Although the functions of most long noncoding RNAs (lncRNAs; >200 nucleotides) are unknown, many have been shown to regulate diverse cellular activities. Recent reports by us and others have suggested that lncRNAs may also play critical roles in transcriptional regulation of gene expression during innate immune responses. Following engagement of Toll-like receptors, lncRNAs form functional RNA–protein complexes that recruit activators or remove repressors of transcription, leading to rapid expression of inflammatory mediators. These discoveries suggest that lncRNAs may contribute to the gene regulatory networks that govern host–pathogen interactions.
Collapse
Affiliation(s)
- Zhonghan Li
- a Program for RNA Biology; Sanford-Burnham Medical Research Institute ; La Jolla , CA USA
| | | |
Collapse
|
690
|
Abstract
Long non-coding RNAs (lncRNAs) are series of transcripts with important biological functions. Various diseases have been associated with aberrant expression of lncRNAs and the related dysregulation of mRNAs. In this review, we highlight the mechanisms of dynamic lncRNA expression. The chromatin state contributes to the low and specific expression of lncRNAs. The transcription of non-coding RNA genes is regulated by many core transcription factors applied to protein-coding genes. However, specific DNA sequences may allow their unsynchronized transcription with their location-associated mRNAs. Additionally, there are multiple mechanisms involved in the post-transcriptional regulation of lncRNAs. Among these, microRNAs might have indispensible regulatory effects on lncRNAs, based on recent discoveries.
Collapse
|
691
|
Long non-coding RNAs and hepatocellular carcinoma. Mol Clin Oncol 2014; 3:13-17. [PMID: 25469263 DOI: 10.3892/mco.2014.429] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/13/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in next-generation sequencing technology in transcriptome analysis have helped identify numerous non-coding RNAs. The long non-coding RNA (lncRNA) is commonly defined as an RNA molecule with a length of 200 bp-100 kbp that lacks protein-coding potential. LncRNAs play a critical role in the regulation of gene expression, including chromatin modification, transcription and post-transcriptional processing. It has been confirmed that dysregulation of lncRNAs is associated with a number of human diseases, particularly tumors. In this study, we focused on the most extensively investigated lncRNAs in hepatocellular carcinoma (HCC). The biological functions and molecular mechanisms of the majority of lncRNAs have yet to be investigated. The improved knowledge on lncRNAs in HCC may help identify lncRNAs that may be used as novel prognostic markers and therapeutic targets.
Collapse
|
692
|
Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 2014; 20:623-31. [PMID: 25262537 PMCID: PMC4252818 DOI: 10.1016/j.molmed.2014.09.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/03/2023]
Abstract
The expression of lncRNAs in the immune system is cell type- and context-dependent. Several lncRNAs identified to date regulate immune gene expression. LncRNAs play crucial role in host–pathogen interactions. The majority of disease-associated SNPs lie in regulatory regions of the genome.
All cells of the immune system rely on a highly integrated and dynamic gene expression program that is controlled by both transcriptional and post-transcriptional mechanisms. Recently, non-coding RNAs, including long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological contexts. lncRNAs control gene expression in the nucleus by modulating transcription or via post-transcriptional mechanisms targeting the splicing, stability, or translation of mRNAs. Our knowledge of lncRNA biogenesis, their cell type-specific expression, and their versatile molecular functions is rapidly progressing in all areas of biology. We discuss here these exciting new regulators and highlight an emerging paradigm of lncRNA-mediated control of gene expression in the immune system.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
693
|
Moniot B, Ujjan S, Champagne J, Hirai H, Aritake K, Nagata K, Dubois E, Nidelet S, Nakamura M, Urade Y, Poulat F, Boizet-Bonhoure B. Prostaglandin D2 acts through the Dp2 receptor to influence male germ cell differentiation in the foetal mouse testis. Development 2014; 141:3561-71. [DOI: 10.1242/dev.103408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Through intercellular signalling, the somatic compartment of the foetal testis is able to program primordial germ cells to undergo spermatogenesis. Fibroblast growth factor 9 and several members of the transforming growth factor β superfamily are involved in this process in the foetal testis, counteracting the induction of meiosis by retinoic acid and activating germinal mitotic arrest. Here, using in vitro and in vivo approaches, we show that prostaglandin D2 (PGD2), which is produced through both L-Pgds and H-Pgds enzymatic activities in the somatic and germ cell compartments of the foetal testis, plays a role in mitotic arrest in male germ cells by activating the expression and nuclear localization of the CDK inhibitor p21Cip1 and by repressing pluripotency markers. We show that PGD2 acts through its Dp2 receptor, at least in part through direct effects in germ cells, and contributes to the proper differentiation of male germ cells through the upregulation of the master gene Nanos2. Our data identify PGD2 signalling as an early pathway that acts in both paracrine and autocrine manners, and contributes to the differentiation of germ cells in the foetal testis.
Collapse
Affiliation(s)
- Brigitte Moniot
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Safdar Ujjan
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Julien Champagne
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Hiroyuki Hirai
- Department of Advanced Technology and Development, BML, Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Kinya Nagata
- Department of Advanced Technology and Development, BML, Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Emeric Dubois
- Plateforme MGX, Functional Genomic Institute, CNRS UMR 5203 – INSERM U 661, Montpellier 34094, Cedex 05, France
| | - Sabine Nidelet
- Plateforme MGX, Functional Genomic Institute, CNRS UMR 5203 – INSERM U 661, Montpellier 34094, Cedex 05, France
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Francis Poulat
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Brigitte Boizet-Bonhoure
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| |
Collapse
|
694
|
Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. THE JOURNAL OF IMMUNOLOGY 2014; 193:3959-65. [PMID: 25225667 DOI: 10.4049/jimmunol.1401099] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), critical regulators of protein-coding genes, are likely to be coexpressed with neighboring protein-coding genes in the genome. How the genome integrates signals to achieve coexpression of lncRNA genes and neighboring protein-coding genes is not well understood. The lncRNA Tmevpg1 (NeST, Ifng-AS1) is critical for Th1-lineage-specific expression of Ifng and is coexpressed with Ifng. In this study, we show that T-bet guides epigenetic remodeling of Tmevpg1 proximal and distal enhancers, leading to recruitment of stimulus-inducible transcription factors, NF-κB and Ets-1, to the locus. Activities of Tmevpg1-specific enhancers and Tmevpg1 transcription are dependent upon NF-κB. Thus, we propose that T-bet stimulates epigenetic remodeling of Tmevpg1-specific enhancers and Ifng-specific enhancers to achieve Th1-lineage-specific expression of Ifng.
Collapse
Affiliation(s)
- Sarah P Collier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Melodie A Henderson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M Aune
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
695
|
Hu G, Lou Z, Gupta M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One 2014; 9:e107016. [PMID: 25197831 PMCID: PMC4157848 DOI: 10.1371/journal.pone.0107016] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/11/2014] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of transcription; however, their involvement in protein translation is not well known. Here we explored whether the lncRNA GAS5 is associated with translation initiation machinery and regulates translation. GAS5 was enriched with eukaryotic translation initiation factor-4E (eIF4E) in an RNA-immunoprecipitation assay using lymphoma cell lines. We identified two RNA binding motifs within eIF4E protein and the deletion of each motif inhibited the binding of GAS5 with eIF4E. To confirm the role of GAS5 in translation regulation, GAS5 siRNA and in vitro transcribed GAS5 RNA were used to knock down or overexpress GAS5, respectively. GAS5 siRNA had no effect on global protein translation but did specifically increase c-Myc protein level without an effect on c-Myc mRNA. The mechanism of this increase in c-Myc protein was enhanced association of c-Myc mRNA with the polysome without any effect on protein stability. In contrast, overexpression of in vitro transcribed GAS5 RNA suppressed c-Myc protein without affecting c-Myc mRNA. Interestingly, GAS5 was found to be bound with c-Myc mRNA, suggesting that GAS5 regulates c-Myc translation through lncRNA-mRNA interaction. Our findings have uncovered a role of GAS5 lncRNA in translation regulation through its interactions with eIF4E and c-Myc mRNA.
Collapse
Affiliation(s)
- Guangzhen Hu
- Division of Hematology and Division of Oncology Research, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zhenkun Lou
- Division of Hematology and Division of Oncology Research, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mamta Gupta
- Division of Hematology and Division of Oncology Research, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
696
|
Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 2014; 130:1452-1465. [PMID: 25156994 DOI: 10.1161/circulationaha.114.011675] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. METHODS AND RESULTS We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE(-/-) mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. CONCLUSIONS Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.
Collapse
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jin Cai
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Han
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Cai
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hefei Huang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yujia Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yukai Liu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Duofen He
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqun Zhang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
697
|
Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1097-109. [PMID: 25159663 DOI: 10.1016/j.bbagrm.2014.08.012] [Citation(s) in RCA: 809] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Unraveling the gene expression networks governing cancer initiation and development is essential while remains largely uncompleted. With the innovations in RNA-seq technologies and computational biology, long noncoding RNAs (lncRNAs) are being identified and characterized at a rapid pace. Recent findings reveal that lncRNAs are implicated in serial steps of cancer development. These lncRNAs interact with DNA, RNA, protein molecules and/or their combinations, acting as an essential regulator in chromatin organization, and transcriptional and post-transcriptional regulation. Their misexpression confers the cancer cell capacities for tumor initiation, growth, and metastasis. The review here will emphasize their aberrant expression and function in cancer, and the roles in cancer diagnosis and therapy will be also discussed.
Collapse
Affiliation(s)
- Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - Xiaozhao Lu
- Department of Nephrology, 323 Hospital of PLA, Xi'an 710054, PR China
| | - Lijun Yuan
- Department of Ultrasound, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
| |
Collapse
|
698
|
Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci 2014; 51:344-57. [PMID: 25123609 DOI: 10.3109/10408363.2014.944299] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve as novel biomarkers for diagnostic, prognostic and monitoring purposes. (9) Tissue specificity of lncRNAs enables the development of selective therapeutic options. (10) Long non-coding RNAs are emerging as commercial biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale , Slovenia
| | | | | | | | | |
Collapse
|
699
|
Abdelmohsen K, Panda AC, Kang MJ, Guo R, Kim J, Grammatikakis I, Yoon JH, Dudekula DB, Noh JH, Yang X, Martindale JL, Gorospe M. 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res 2014; 42:10099-111. [PMID: 25123665 PMCID: PMC4150789 DOI: 10.1093/nar/gku686] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Noncoding RNAs (ncRNAs) and RNA-binding proteins are potent post-transcriptional regulators of gene expression. The ncRNA 7SL is upregulated in cancer cells, but its impact upon the phenotype of cancer cells is unknown. Here, we present evidence that 7SL forms a partial hybrid with the 3'-untranslated region (UTR) of TP53 mRNA, which encodes the tumor suppressor p53. The interaction of 7SL with TP53 mRNA reduced p53 translation, as determined by analyzing p53 expression levels, nascent p53 translation and TP53 mRNA association with polysomes. Silencing 7SL led to increased binding of HuR to TP53 mRNA, an interaction that led to the promotion of p53 translation and increased p53 abundance. We propose that the competition between 7SL and HuR for binding to TP53 3'UTR contributes to determining the magnitude of p53 translation, in turn affecting p53 levels and the growth-suppressive function of p53. Our findings suggest that targeting 7SL may be effective in the treatment of cancers with reduced p53 levels.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Min-Ju Kang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rong Guo
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
700
|
Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014:970607. [PMID: 25180174 PMCID: PMC4142390 DOI: 10.1155/2014/970607] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.
Collapse
|