651
|
Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci 2015; 107:5-11. [PMID: 26362755 PMCID: PMC4724810 DOI: 10.1111/cas.12817] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are undifferentiated cancer cells with a high tumorigenic activity, the ability to undergo self-renewal, and a multilineage differentiation potential. Cancer stem cells are responsible for the development of tumor cell heterogeneity, a key feature for resistance to anticancer treatments including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Furthermore, minimal residual disease, the major cause of cancer recurrence and metastasis, is enriched in CSCs. Cancer stem cells also possess the property of "robustness", which encompasses several characteristics including a slow cell cycle, the ability to detoxify or mediate the efflux of cytotoxic agents, resistance to oxidative stress, and a rapid response to DNA damage, all of which contribute to the development of therapeutic resistance. The identification of mechanisms underlying such characteristics and the development of novel approaches to target them will be required for the therapeutic elimination of CSCs and the complete eradication of tumors. In this review, we focus on two prospective therapeutic approaches that target CSCs with the aim of disrupting their quiescence or redox defense capability.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
652
|
Persano L, Zagoura D, Louisse J, Pistollato F. Role of Environmental Chemicals, Processed Food Derivatives, and Nutrients in the Induction of Carcinogenesis. Stem Cells Dev 2015; 24:2337-52. [DOI: 10.1089/scd.2015.0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Persano
- Istituto di Riceca Pediatrica Città della Speranza—IRP, Padova, Italy
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Dimitra Zagoura
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Francesca Pistollato
- Center for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain
| |
Collapse
|
653
|
Abstract
Colorectal cancer stem cells (CSCs) were initially considered to be a subset of undifferentiated tumor cells with well-defined phenotypic and molecular markers. However, emerging evidence indicates instead that colorectal CSCs are heterogeneous subsets of tumor cells that are continuously reshaped by the dynamic interactions between genetic, epigenetic, and immune factors in the tumor microenvironment. Thus, the colorectal CSC phenotypes and responsiveness to therapy may not only be a tumor cell-intrinsic feature, but also depend on tumor-extrinsic microenvironmental factors. Furthermore, emerging evidence also implicates colorectal CSCs in potential immune evasion. Therefore, understanding how colorectal CSC-intrinsic mechanisms cooperate with the extrinsic microenvironmental factors to dynamically shape colorectal CSC resistance to chemotherapy and immunotherapy holds great promise for development of targeted CSC therapies of advanced human CRC.
Collapse
|
654
|
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 2015; 36:1219-27. [PMID: 26388155 PMCID: PMC4648179 DOI: 10.1038/aps.2015.92] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies.
Collapse
|
655
|
Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, Azad NS, Ahuja N. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics 2015; 7:215-35. [PMID: 25942532 DOI: 10.2217/epi.14.73] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cancer epigenome is characterized by global DNA methylation and chromatin changes, such as the hypermethylation of specific CpG island promoters. Epigenetic agents like DNA methyltransferase or histone deacetylase inhibitors induce phenotype changes by reactivation of epigenetically silenced tumor suppressor genes. Despite initial promise in hematologic malignancies, epigenetic agents have not shown significant efficacy as monotherapy against solid tumors. Recent trials showed that epigenetic agents exert favorable modifier effects when combined with chemotherapy, hormonal therapy, or other epigenetic agents. Due to the novel nature of their mechanism, it is important to reconsider the optimal patient selection, drug regimen, study design, and outcome measures when pursuing future trials in order to discover the full potential of this new therapeutic modality.
Collapse
Affiliation(s)
- Yen-Yi Juo
- Department of Surgery, George Washington University Medical Center, 2150 Pennsylvania Ave. NW, Suite 6B, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
656
|
Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015; 7:247-65. [PMID: 25942534 DOI: 10.2217/epi.14.80] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methylation plays a critical role in the regulation of chromatin structure and gene expression and is involved in a variety of biological processes. The levels and patterns of DNA methylation are regulated by both DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and 'demethylating' proteins, including the ten-eleven translocation (TET) family of dioxygenases (TET1, TET2 and TET3). The effects of DNA methylation on chromatin and gene expression are largely mediated by methylated DNA 'reader' proteins, including MeCP2. Numerous mutations in DNMTs, TETs and MeCP2 have been identified in cancer and developmental disorders, highlighting the importance of the DNA methylation machinery in human development and physiology. In this review, we describe these mutations and discuss how they may lead to disease phenotypes.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, 1808 Park Road 1C, P. O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
657
|
|
658
|
Barr MP, O'Byrne KJ, Al-Sarraf N, Gray SG. VEGF-mediated cell survival in non-small-cell lung cancer: implications for epigenetic targeting of VEGF receptors as a therapeutic approach. Epigenomics 2015; 7:897-910. [DOI: 10.2217/epi.15.51] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate the potential therapeutic utility of histone deacetylase inhibitors (HDACi) in targeting VEGF receptors in non-small-cell lung cancer. Materials & methods: Non-small-cell lung cancer cells were screened for the VEGF receptors at the mRNA and protein levels, while cellular responses to various HDACi were examined. Results: Significant effects on the regulation of the VEGF receptors were observed in response to HDACi. These were associated with decreased secretion of VEGF, decreased cellular proliferation and increased apoptosis which could not be rescued by addition of exogenous recombinant VEGF. Direct remodeling of the VEGFR1 and VEGFR2 promoters was observed. In contrast, HDACi treatments resulted in significant downregulation of the Neuropilin receptors. Conclusion: Epigenetic targeting of the Neuropilin receptors may offer an effective treatment for lung cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Nael Al-Sarraf
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
659
|
Pisanic TR, Athamanolap P, Poh W, Chen C, Hulbert A, Brock MV, Herman JG, Wang TH. DREAMing: a simple and ultrasensitive method for assessing intratumor epigenetic heterogeneity directly from liquid biopsies. Nucleic Acids Res 2015; 43:e154. [PMID: 26304549 PMCID: PMC4678844 DOI: 10.1093/nar/gkv795] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/25/2015] [Indexed: 01/15/2023] Open
Abstract
Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14ARF and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively.
Collapse
Affiliation(s)
- Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD 21218, USA
| | - Pornpat Athamanolap
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Weijie Poh
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Chen Chen
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Alicia Hulbert
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Malcolm V Brock
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - James G Herman
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Tza-Huei Wang
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD 21218, USA Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
660
|
Reardon ES, Hong JA, Straughan DM, Azoury SC, Zhang M, Schrump DS. Pulmonary Metastases Exhibit Epigenetic Clonality: Implications for Precision Cancer Therapy. Ann Thorac Surg 2015; 100:1839-48; discussion 1848. [PMID: 26298164 DOI: 10.1016/j.athoracsur.2015.05.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Development of effective cancer therapies may be limited by intratumoral heterogeneity, which facilitates outgrowth and organ-specific dissemination of treatment resistant clones. At present, limited information is available regarding epigenetic landscapes of pulmonary metastases. This study was undertaken to characterize epigenetic signatures of pulmonary metastases and to identify potential therapeutic targets. METHODS RNA and DNA were extracted from 65 pulmonary metastases resected from 12 patients (5 with sarcoma, 7 with adrenocortical carcinoma). Quantitative reverse transcription polymerase chain reaction techniques were used to evaluate expression levels of cancer-testis (CT) genes (NY-ESO-1, MAGE-A3, MAGE-A9, MAGE-A12, GAGE1, CT-45, SSX-1, and SSX-2), tumor suppressor (TS) genes (p16 and RASSF1A), and genes encoding epigenetic modifiers (DNMT1, DNMT3A, DNMT3B, EZH2, EED, and SUZ12), aberrantly expressed in human malignant diseases. Pyrosequencing techniques were used to quantitate DNA methylation levels in LINE1, NBL2, and D4Z4 repetitive sequences and promoter methylation status of differentially regulated genes. Results of these analyses were compared with a standardized panel of normal lung tissues. RESULTS Pulmonary metastases exhibited histologically related and patient-specific global DNA demethylation. Significant interpatient heterogeneity of gene expression was observed even among patients with similar tumor histologic features. Epigenetic signatures appeared consistent among metastases from the same patient, irrespective of the time of resection (synchronous/metachronous) or the anatomic location. EZH2, EED, and SUZ12 (core components of Polycomb repressive complex-2 [PRC-2]) were upregulated in the majority of metastases. CONCLUSIONS Pulmonary metastases exhibit patient-specific epigenetic clonality, which may be exploited for precision therapies targeting aberrant CT or TS gene expression. PRC-2 may be a shared target for epigenetic therapy of pulmonary metastases.
Collapse
Affiliation(s)
- Emily S Reardon
- Thoracic Epigenetics Laboratory, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Laboratory, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David M Straughan
- Thoracic Epigenetics Laboratory, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Saïd C Azoury
- Thoracic Epigenetics Laboratory, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Laboratory, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David S Schrump
- Thoracic Epigenetics Laboratory, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
661
|
IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 2015; 126:1741-52. [PMID: 26268241 DOI: 10.1182/blood-2015-05-644591] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/18/2015] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a common subtype of peripheral T-cell lymphoma (PTCL) with a poor prognosis. We performed targeted resequencing on 92 cases of PTCL and identified frequent mutations affecting RHOA, TET2, DNMT3A, and isocitrate dehydrogenase 2 (IDH2). Although IDH2 mutations are largely confined to AITL, mutations of the other 3 can be found in other types of PTCL, although at lower frequencies. These findings indicate a key role of epigenetic regulation in the pathogenesis of AITL. However, the epigenetic alterations induced by these mutations and their role in AITL pathogenesis are still largely unknown. We correlated mutational status with gene expression and global DNA methylation changes in AITL. Strikingly, AITL cases with IDH2(R172) mutations demonstrated a distinct gene expression signature characterized by downregulation of genes associated with TH1 differentiation (eg, STAT1 and IFNG) and a striking enrichment of an interleukin 12-induced gene signature. Ectopic expression of IDH2(R172K) in the Jurkat cell line and CD4(+) T cells led to markedly increased levels of 2-hydroxyglutarate, histone-3 lysine methylation, and 5-methylcytosine and a decrease of 5-hydroxymethylcytosine. Correspondingly, clinical samples with IDH2 mutations displayed a prominent increase in H3K27me3 and DNA hypermethylation of gene promoters. Integrative analysis of gene expression and promoter methylation revealed recurrently hypermethylated genes involved in T-cell receptor signaling and T-cell differentiation that likely contribute to lymphomagenesis in AITL.
Collapse
|
662
|
Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2015; 2015:587983. [PMID: 26339624 PMCID: PMC4538403 DOI: 10.1155/2015/587983] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle.
Collapse
|
663
|
Piccirillo SGM, Spiteri I. Intratumor heterogeneity and transcriptional profiling in glioblastoma: translational opportunities. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of phenotypic and genetic intratumor heterogeneity in glioblastoma is attracting a lot of attention. Recent studies have demonstrated that transcriptional profiling analysis can help interpret the complexity of this disease. Previously proposed molecular classifiers have been recently challenged due to the unexpected degree of intratumor heterogeneity that has been described spatially and at single-cell level. Different computational methods have been employed to analyze this huge amount of data, but new experimental designs including multisampling from individual patients and single-cell experiments require new specific approaches. In light of these results, there is hope that integration of genetic, phenotypic and transcriptional data coupled with functional experiments might help define new therapeutic strategies and classify patients according to key pathways and molecular targets that can be further investigated to develop personalized and combinatorial treatment strategies.
Collapse
Affiliation(s)
- Sara GM Piccirillo
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Inmaculada Spiteri
- The Institute of Cancer Research, Centre for Evolution and Cancer, 15 Cotswold Road, Sutton SM2 5NG, UK
| |
Collapse
|
664
|
Valdespino V, Valdespino PM. Potential of epigenetic therapies in the management of solid tumors. Cancer Manag Res 2015; 7:241-51. [PMID: 26346546 PMCID: PMC4529253 DOI: 10.2147/cmar.s70358] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s) more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and undertaking new cancer epigenetic-therapy clinical trails.
Collapse
Affiliation(s)
- Victor Valdespino
- Health Attention Department, Universidad Autónoma Metropolitana, Mexico
| | - Patricia M Valdespino
- Bacterial Ecology and Epigenetics Laboratory, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
665
|
Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 2015; 15:692-705. [PMID: 25479747 DOI: 10.1016/j.stem.2014.11.012] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their first discovery, investigations of colorectal cancer stem cells (CSCs) have revealed some unexpected properties, including a high degree of heterogeneity and plasticity. By exploiting a combination of genetic, epigenetic, and microenvironmental factors, colorectal CSCs metastasize, resist chemotherapy, and continually adapt to a changing microenvironment, representing a formidable challenge to cancer eradication. Here, we review the current understanding of colorectal CSCs, including their origin, relationship to stem cells of the intestine, phenotypic characterization, and underlying regulatory mechanisms. We also discuss limitations to current preclinical models of colorectal cancer and how understanding CSC plasticity can improve the development of clinical strategies.
Collapse
Affiliation(s)
- Ann Zeuner
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, Via del Vespro 131, University of Palermo, 90127 Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, Via del Vespro 131, University of Palermo, 90127 Palermo, Italy
| | - Ruggero De Maria
- Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
666
|
Luo Q, Wang C, Jin G, Gu D, Wang N, Song J, Jin H, Hu F, Zhang Y, Ge T, Huo X, Chu W, Shu H, Fang J, Yao M, Gu J, Cong W, Qin W. LIFR functions as a metastasis suppressor in hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway. Carcinogenesis 2015; 36:1201-12. [PMID: 26249360 DOI: 10.1093/carcin/bgv108] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/13/2015] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes for cancer related mortality worldwide. Poor prognosis of HCC patients is mainly due to frequent metastasis and recurrence. Deregulation of metastasis suppressors in malignant cells plays critical roles during cancer metastasis. Thus, novel metastasis suppressors are urgently needed to be uncovered to shed new light on molecular mechanisms driving HCC metastasis. In the present study, decreased expression of leukemia inhibitory factor receptor (LIFR) was demonstrated in HCC, and its expression levels were even lower in HCC with metastasis. Downregulated LIFR expression predicted poor prognosis in HCC patients. LIFR was an independent and significant risk factor for their recurrence and survival. Silencing LIFR resulted in forced metastasis of HCC cells, whereas ectopic overexpression of LIFR attenuated migration and invasion of HCC cells in vitro and in vivo. Moreover, LIFR knockdown could activate phosphoinositide 3-kinase/V-akt Murine Thymoma Viral Oncogene Homolog (PI3K/AKT) signaling through enhancing phosphorylation of Janus kinase 1 (JAK1), which successively promoted matrix metalloproteinase 13 (MMP13) expression and HCC metastasis. Combination of LIFR and p-AKT or MMP13 was a more powerful predictor of poor prognosis for HCC patients. Together, these findings conclude that LIFR functions as a novel metastasis suppressor in HCC and may serve as a prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
| | | | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | | |
Collapse
|
667
|
Bernardo MM, Kaplun A, Dzinic SH, Li X, Irish J, Mujagic A, Jakupovic B, Back JB, Van Buren E, Han X, Dean I, Chen YQ, Heath E, Sakr W, Sheng S. Maspin Expression in Prostate Tumor Cells Averts Stemness and Stratifies Drug Sensitivity. Cancer Res 2015. [PMID: 26208903 DOI: 10.1158/0008-5472.can-15-0234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Future curative cancer chemotherapies have to overcome tumor cell heterogeneity and plasticity. To test the hypothesis that the tumor suppressor maspin may reduce microenvironment-dependent prostate tumor cell plasticity and thereby modulate drug sensitivity, we established a new schematic combination of two-dimensional (2D), three-dimensional (3D), and suspension cultures to enrich prostate cancer cell subpopulations with distinct differentiation potentials. We report here that depending on the level of maspin expression, tumor cells in suspension and 3D collagen I manifest the phenotypes of stem-like and dormant tumor cell populations, respectively. In suspension, the surviving maspin-expressing tumor cells lost the self-renewal capacity, underwent senescence, lost the ability to dedifferentiate in vitro, and failed to generate tumors in vivo. Maspin-nonexpressing tumor cells that survived the suspension culture in compact tumorspheres displayed a higher level of stem cell marker expression, maintained the self-renewal capacity, formed tumorspheres in 3D matrices in vitro, and were tumorigenic in vivo. The drug sensitivities of the distinct cell subpopulations depend on the drug target and the differentiation state of the cells. In 2D, docetaxel, MS275, and salinomycin were all cytotoxic. In suspension, while MS275 and salinomycin were toxic, docetaxel showed no effect. Interestingly, cells adapted to 3D collagen I were only responsive to salinomycin. Maspin expression correlated with higher sensitivity to MS275 in both 2D and suspension and to salinomycin in 2D and 3D collagen I. Our data suggest that maspin reduces prostate tumor cell plasticity and enhances tumor sensitivity to salinomycin, which may hold promise in overcoming tumor cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Alexander Kaplun
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jonathan Irish
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adelina Mujagic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Benjamin Jakupovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jessica B Back
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Department of Microscopy, Imaging and Cytometry Resources Core, Wayne State University School of Medicine, Detroit, Michigan
| | - Eric Van Buren
- Department of Microscopy, Imaging and Cytometry Resources Core, Wayne State University School of Medicine, Detroit, Michigan
| | - Xiang Han
- Peking University Health Science Center, Beijing, China
| | - Ivory Dean
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Yong Q Chen
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elisabeth Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
668
|
Miles G, Rae J, Ramalingam SS, Pfeifer J. Genetic Testing and Tissue Banking for Personalized Oncology: Analytical and Institutional Factors. Semin Oncol 2015; 42:713-23. [PMID: 26433552 DOI: 10.1053/j.seminoncol.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Personalized oncology, or more aptly precision oncogenomics, refers to the identification and implementation of clinically actionable targets tailored to an individual patient's cancer genomic information. Banking of human tissue and other biospecimens establishes a framework to extract and collect the data essential to our understanding of disease pathogenesis and treatment. Cancer cooperative groups in the United States have led the way in establishing robust biospecimen collection mechanisms to facilitate translational research, and combined with technological advances in molecular testing, tissue banking has expanded from its traditional base in academic research and is assuming an increasingly pivotal role in directing the clinical care of cancer patients. Comprehensive screening of tumors by DNA sequencing and the ability to mine and interpret these large data sets from well-organized tissue banks have defined molecular subtypes of cancer. Such stratification by genomic criteria has revolutionized our perspectives on cancer diagnosis and treatment, offering insight into prognosis, progression, and susceptibility or resistance to known therapeutic agents. In turn, this has enabled clinicians to offer treatments tailored to patients that can greatly improve their chances of survival. Unique challenges and opportunities accompany the rapidly evolving interplay between tissue banking and genomic sequencing, and are the driving forces underlying the revolution in precision medicine. Molecular testing and precision medicine clinical trials are now becoming the major thrust behind the cooperative groups' clinical research efforts.
Collapse
Affiliation(s)
- George Miles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
| | - James Rae
- Department of Internal Medicine & Pharmacology, University of Michigan, Ann Arbor, MI
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory School of Medicine, Winship Cancer Institute, Atlanta, GA
| | - John Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
669
|
Hughes D, Andersson DI. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet 2015; 16:459-71. [DOI: 10.1038/nrg3922] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
670
|
|
671
|
Singh AK, Chandra N, Bapat SA. Evaluation of Epigenetic Drug Targeting of Heterogenous Tumor Cell Fractions Using Potential Biomarkers of Response in Ovarian Cancer. Clin Cancer Res 2015; 21:5151-63. [PMID: 26130461 DOI: 10.1158/1078-0432.ccr-15-0505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Resolution of aberrant epigenetic changes leading to altered gene expression during transformation and tumor progression is pertinent for mechanistic understanding of disrupted pathways in cancer. Such changes provide for biomarkers that can be applied in drug screening and improved disease management. EXPERIMENTAL DESIGN Genome-wide profiling and analyses of promoter DNA methylation, histone modifications, and gene expression of an in vitro progression model of serous ovarian adenocarcinoma were carried out. Similar in silico analyses and comparison of methylation and gene expression of early- and late-grade ovarian cancer samples in The Cancer Genome Atlas assigned a clinical relevance to our study. Candidate biomarkers were evaluated for epigenetic drug treatments in experimental animal models on a background of differing tumor cell responses arising from intratumor heterogeneity. RESULTS Differentially regulated genes during tumor progression were identified through the previously mentioned analyses as candidate biomarkers. In examining the tumor suppressor PTGIS as a potential biomarker for treatment with either 5-Aza-dC or TSA, 5-Aza-dC effectively stabilized cell cycling, restricted genetic instability, and derepressed PTGIS expression, while TSA led to emergence of drug-resistant progenitors lacking PTGIS expression. Profiling MEST and RXRγ for curcumin and CBB1007, respectively, indicated an inability of curcumin and CBB1007 in restricting residual tumor regenerative capabilities. CONCLUSIONS Our study provides novel insights into epigenetic regulation in ovarian cancer progression and potential biomarkers for evaluating efficacy of epigenetic drugs in restricting residual tumor regeneration. Such approaches may assign a new functional interpretation of drug efficacy and cell tumor responses in ovarian cancer.
Collapse
Affiliation(s)
- Anand Kamal Singh
- National Centre for Cell Science, NCCS Complex, Pune, Maharashtra, India
| | - Nishi Chandra
- National Centre for Cell Science, NCCS Complex, Pune, Maharashtra, India
| | - Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Pune, Maharashtra, India.
| |
Collapse
|
672
|
Chen X, Yamamoto M, Fujii K, Nagahama Y, Ooshio T, Xin B, Okada Y, Furukawa H, Nishikawa Y. Differential reactivation of fetal/neonatal genes in mouse liver tumors induced in cirrhotic and non-cirrhotic conditions. Cancer Sci 2015; 106:972-81. [PMID: 26011625 PMCID: PMC4556385 DOI: 10.1111/cas.12700] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/06/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma develops in either chronically injured or seemingly intact livers. To explore the tumorigenic mechanisms underlying these different conditions, we compared the mRNA expression profiles of mouse hepatocellular tumors induced by the repeated injection of CCl4 or a single diethylnitrosamine (DEN) injection using a cDNA microarray. We identified tumor-associated genes that were expressed differentially in the cirrhotic CCl4 model (H19, Igf2, Cbr3, and Krt20) and the non-cirrhotic DEN model (Tff3, Akr1c18, Gpc3, Afp, and Abcd2) as well as genes that were expressed comparably in both models (Ly6d, Slpi, Spink3, Scd2, and Cpe). The levels and patterns of mRNA expression of these genes were validated by quantitative RT-PCR analyses. Most of these genes were highly expressed in mouse livers during the fetal/neonatal periods. We also examined the mRNA expression of these genes in mouse tumors induced by thioacetamide, another cirrhotic inducer, and those that developed spontaneously in non-cirrhotic livers and found that they shared a similar expression profile as that observed in CCl4-induced and DEN-induced tumors, respectively. There was a close relationship between the expression levels of Igf2 and H19 mRNA, which were activated in the cirrhotic models. Our results show that mouse liver tumors reactivate fetal/neonatal genes, some of which are specific to cirrhotic or non-cirrhotic modes of pathogenesis.
Collapse
Affiliation(s)
- Xi Chen
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Yamamoto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kiyonaga Fujii
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuharu Nagahama
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takako Ooshio
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Bing Xin
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoko Okada
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Furukawa
- Division of Gastroenterological and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
673
|
De Luca A, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, Sanchez-Alvarez R, Martinez-Outschoorn UE, Cappello AR, Pezzi V, Lisanti MP, Sotgia F. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 2015; 6:14777-95. [PMID: 26087310 PMCID: PMC4558115 DOI: 10.18632/oncotarget.4401] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023] Open
Abstract
Here, we show that new mitochondrial biogenesis is required for the anchorage independent survival and propagation of cancer stem-like cells (CSCs). More specifically, we used the drug XCT790 as an investigational tool, as it functions as a specific inhibitor of the ERRα-PGC1 signaling pathway, which governs mitochondrial biogenesis. Interestingly, our results directly demonstrate that XCT790 efficiently blocks both the survival and propagation of tumor initiating stem-like cells (TICs), using the MCF7 cell line as a model system. Mechanistically, we show that XCT790 suppresses the activity of several independent signaling pathways that are normally required for the survival of CSCs, such as Sonic hedgehog, TGFβ-SMAD, STAT3, and Wnt signaling. We also show that XCT790 markedly reduces oxidative mitochondrial metabolism (OXPHOS) and that XCT790-mediated inhibition of CSC propagation can be prevented or reversed by Acetyl-L-Carnitine (ALCAR), a mitochondrial fuel. Consistent with our findings, over-expression of ERRα significantly enhances the efficiency of mammosphere formation, which can be blocked by treatment with mitochondrial inhibitors. Similarly, mammosphere formation augmented by FOXM1, a downstream target of Wnt/β-catenin signaling, can also be blocked by treatment with three different classes of mitochondrial inhibitors (XCT790, oligomycin A, or doxycycline). In this context, our unbiased proteomics analysis reveals that FOXM1 drives the expression of >90 protein targets associated with mitochondrial biogenesis, glycolysis, the EMT and protein synthesis in MCF7 cells, processes which are characteristic of an anabolic CSC phenotype. Finally, doxycycline is an FDA-approved antibiotic, which is very well-tolerated in patients. As such, doxycycline could be re-purposed clinically as a 'safe' mitochondrial inhibitor, to target FOXM1 and mitochondrial biogenesis in CSCs, to prevent tumor recurrence and distant metastasis, thereby avoiding patient relapse.
Collapse
Affiliation(s)
- Arianna De Luca
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Marco Fiorillo
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Peiris-Pagès
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Bela Ozsvari
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Duncan L. Smith
- The Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Rosa Sanchez-Alvarez
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | | | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Michael P. Lisanti
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Federica Sotgia
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| |
Collapse
|
674
|
Yan F, Shen N, Pang J, Molina JR, Yang P, Liu S. The DNA Methyltransferase DNMT1 and Tyrosine-Protein Kinase KIT Cooperatively Promote Resistance to 5-Aza-2'-deoxycytidine (Decitabine) and Midostaurin (PKC412) in Lung Cancer Cells. J Biol Chem 2015; 290:18480-94. [PMID: 26085088 DOI: 10.1074/jbc.m114.633693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Lung cancer cells are sensitive to 5-aza-2'-deoxycytidine (decitabine) or midostaurin (PKC412), because decitabine restores the expression of methylation-silenced tumor suppressor genes, whereas PKC412 inhibits hyperactive kinase signaling, which is essential for cancer cell growth. Here, we demonstrated that resistance to decitabine (decitabine(R)) or PKC412 (PKC412(R)) eventually results from simultaneously remethylated DNA and reactivated kinase cascades. Indeed, both decitabine(R) and PKC412(R) displayed the up-regulation of DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT, the enhanced phosphorylation of KIT and its downstream effectors, and the increased global and gene-specific DNA methylation with the down-regulation of tumor suppressor gene epithelial cadherin CDH1. Interestingly, decitabine(R) and PKC412(R) had higher capability of colony formation and wound healing than parental cells in vitro, which were attributed to the hyperactive DNMT1 or KIT, because inactivation of KIT or DNMT1 reciprocally blocked decitabine(R) or PKC412(R) cell proliferation. Further, DNMT1 knockdown sensitized PKC412(R) cells to PKC412; conversely, KIT depletion synergized with decitabine in eliminating decitabine(R). Importantly, when engrafted into nude mice, decitabine(R) and PKC412(R) had faster proliferation with stronger tumorigenicity that was caused by the reactivated KIT kinase signaling and further CDH1 silencing. These findings identify functional cross-talk between KIT and DNMT1 in the development of drug resistance, implying the reciprocal targeting of protein kinases and DNA methyltransferases as an essential strategy for durable responses in lung cancer.
Collapse
Affiliation(s)
- Fei Yan
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912 and
| | - Na Shen
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912 and
| | - Jiuxia Pang
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912 and
| | | | - Ping Yang
- the Division of Epidemiology, Mayo Clinic, Rochester, Minnesota 55905
| | - Shujun Liu
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912 and
| |
Collapse
|
675
|
Cross-species oncogenomics using zebrafish models of cancer. Curr Opin Genet Dev 2015; 30:73-9. [PMID: 26070506 DOI: 10.1016/j.gde.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The zebrafish is a relatively recent addition to cancer modeling. These models have now been extensively used in cross-species oncogenomic analyses at both the DNA and RNA levels. The goal of such studies is to identify conserved events that occur in both human and fish tumors which may act as central drivers of tumor phenotypes. Numerous comparisons of somatic DNA changes, using array CGH and exome sequencing, have demonstrated a relatively small set of conserved changes across species. In contrast, striking conservation of RNA expression patterns have been observed between the two species in models such as melanoma, leukemia, and rhabdomyosarcoma. In the future, the zebrafish will increasingly be used to model epigenetic and noncoding aspects of cancer biology.
Collapse
|
676
|
Jia D, Wang L. The other face of TLR3: A driving force of breast cancer stem cells. Mol Cell Oncol 2015; 2:e981443. [PMID: 27308515 PMCID: PMC4905417 DOI: 10.4161/23723556.2014.981443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Activation of TLR3 has long been studied in the field of anticancer immunotherapy. Our recent work revealed that TLR3 also promotes the induction of breast cancer stem cells (CSCs) through co-activation of β-catenin and NF-κB signaling. Targeting these 2 pathways simultaneously instead of individually allows for effective inhibition of CSCs that are enhanced by TLR3 activation.
Collapse
Affiliation(s)
- Deyong Jia
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa ; Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON, Canada; Regenerative Medicine Program; Ottawa Hospital Research Institute; ON, Canada; Ottawa Institute of Systems Biology; University of Ottawa; Ottawa, ON, Canada
| |
Collapse
|
677
|
Park SJ, Shim JW, Park HS, Eum DY, Park MT, Mi Yi J, Choi SH, Kim SD, Son TG, Lu W, Kim ND, Yang K, Heo K. MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B. Oncogene 2015; 35:1292-301. [PMID: 26028027 PMCID: PMC4791524 DOI: 10.1038/onc.2015.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 04/01/2015] [Accepted: 04/24/2015] [Indexed: 12/18/2022]
Abstract
The histone variant, macroH2A1, has an important role in embryonic stem cell differentiation and tumor progression in various types of tumors. However, the regulatory roles of macroH2A1 on bladder cancer progression have not been fully elucidated. Here, we show that macroH2A1 knockdown promotes stem-like properties of bladder cancer cells. The knockdown of macroH2A1 in bladder cancer cells increased tumorigenicity, radioresistance, degeneration of reactive oxygen species, increased sphere formation capability and an increase in the proportion of side populations. We found that macroH2A1 is required for the suppression of Lin28B identified as a novel downstream target of macroH2A1 in bladder cancer. Loss of macroH2A1 expression significantly correlated with the elevated levels of Lin28B expression and subsequently inhibited the mature let-7 microRNA expression. Furthermore, the stable overexpression of Lin28B enhances the several phenotypes, including tumorigenicity and sphere-forming ability, which are induced by macroH2A1 depletion. Importantly, Lin28B expression was regulated by macroH2A1-mediated reciprocal binding of p300 and EZH2/SUV39H1. Our results suggest that Lin28B/let-7 pathway is tightly regulated by macroH2A1 and its cofactors, and have a pivotal role in the bladder tumor progression and the regulation of stem-like characteristics of bladder cancer cells.
Collapse
Affiliation(s)
- S-J Park
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea.,Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - J W Shim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - H S Park
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - D-Y Eum
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - M-T Park
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - J Mi Yi
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - S H Choi
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - S D Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - T G Son
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| | - W Lu
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - N D Kim
- Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - K Yang
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea.,Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea.,Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - K Heo
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan, Republic of Korea
| |
Collapse
|
678
|
Compensatory angiogenesis and tumor refractoriness. Oncogenesis 2015; 4:e153. [PMID: 26029827 PMCID: PMC4753522 DOI: 10.1038/oncsis.2015.14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/04/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Since the establishment of tumor angiogenesis as a therapeutic target, an excitement in developing the anti-angiogenic agents was resulted in tailoring a humanized monoclonal antibody (Bevacizumab) against vascular endothelial growth factor (VEGF): a key factor in recruiting angiogenesis. The past three decades' research in the area of angiogenesis also invented a series of novel and effective anti-angiogenic agents targeting the VEGF signaling axis. Despite the demonstrable clinical benefits of anti-angiogenic therapy, the preclinical and clinical data of the current therapeutic settings clearly indicate the transient efficacy, restoration of tumor progression and aggressive recurrence of tumor invasion after the withdrawal of anti-angiogenic therapy. Therefore, the impact of this therapeutic regime on improving overall survival of patients has been disappointing in clinic. The recent advances in pathophysiology of tumor angiogenesis and related molecular and cellular underpinnings attributed the conspiracy of compensatory angiogenic pathways in conferring evasive and intrinsic tumor resistance to anti-angiogenic agents. The understandings of how these pathways functionally cross-talk for sustaining tumor angiogenesis during VEGF blockade is essential and perhaps may act as a basic prerequisite for designing novel therapeutic strategies to combat the growing arrogance of tumors toward anti-angiogenic agents. The present review offers a discourse on major compensatory angiogenic pathways operating at cellular and molecular levels and their attributes with resistance to anti-angiogenic agents along with strategic opinions on future setting in targeting tumor angiogenesis.
Collapse
|
679
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2015; 2:152-163. [PMID: 26137500 PMCID: PMC4484766 DOI: 10.1016/j.gendis.2015.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) or cancer initiating cells (CICs) maintain self-renewal and multilineage differentiation properties of various tumors, as well as the cellular heterogeneity consisting of several subpopulations within tumors. CSCs display the malignant phenotype, self-renewal ability, altered genomic stability, specific epigenetic signature, and most of the time can be phenotyped by cell surface markers (e.g., CD133, CD24, and CD44). Numerous studies support the concept that non-stem cancer cells (non-CSCs) are sensitive to cancer therapy while CSCs are relatively resistant to treatment. In glioblastoma stem cells (GSCs), there is clonal heterogeneity at the genetic level with distinct tumorigenic potential, and defined GSC marker expression resulting from clonal evolution which is likely to influence disease progression and response to treatment. Another level of complexity in glioblastoma multiforme (GBM) tumors is the dynamic equilibrium between GSCs and differentiated non-GSCs, and the potential for non-GSCs to revert (dedifferentiate) to GSCs due to epigenetic alteration which confers phenotypic plasticity to the tumor cell population. Moreover, exposure of the differentiated GBM cells to therapeutic doses of temozolomide (TMZ) or ionizing radiation (IR) increases the GSC pool both in vitro and in vivo. This review describes various subtypes of GBM, discusses the evolution of CSC models and epigenetic plasticity, as well as interconversion between GSCs and differentiated non-GSCs, and offers strategies to potentially eliminate GSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron A. Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
680
|
Chen J, Liu Q, Xiao J, Du J. EpCAM-Antibody-Labeled Noncytotoxic Polymer Vesicles for Cancer Stem Cells-Targeted Delivery of Anticancer Drug and siRNA. Biomacromolecules 2015; 16:1695-705. [PMID: 25988863 DOI: 10.1021/acs.biomac.5b00551] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) have the capability to initiate tumor, to sustain tumor growth, to maintain the heterogeneity of tumor, and are closely linked to the failure of chemotherapy due to their self-renewal and multilineage differentiation capability with an innate resistance to cytotoxic agents. Herein, we designed and synthesized a novel anti-EpCAM (epithelial cell adhesion molecule)-monoclonal-antibody-labeled CSCs-targeting, noncytotoxic and pH-sensitive block copolymer vesicle as a nanocarrier of anticancer drug and siRNA (to overcome CSCs drug resistance by silencing the expression of oncogenes). This vesicle shows high delivery efficacy of both anticancer drug doxorubicin hydrochloride (DOX·HCl) and siRNA to the CSCs because it is labeled by the monoclonal antibodies to the CSCs-surface-specific marker. Compared to non-CSCs-targeting vesicles, the DOX·HCl or siRNA loaded CSCs-targeting vesicles exhibited much better CSCs killing and tumor growth inhibition capabilities with lower toxicity to normal cells (IC50,DOX decreased by 80%), demonstrating promising potential applications in nanomedicine.
Collapse
Affiliation(s)
- Jing Chen
- †Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.,‡Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qiuming Liu
- ‡Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiangang Xiao
- ‡Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- †Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.,‡Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
681
|
Zhu P, Wang Y, Du Y, He L, Huang G, Zhang G, Yan X, Fan Z. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat Commun 2015; 6:7122. [PMID: 25985737 PMCID: PMC4479000 DOI: 10.1038/ncomms8122] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/07/2015] [Indexed: 12/21/2022] Open
Abstract
Liver cancer stem cells (CSCs) harbour self-renewal and differentiation properties, accounting for chemotherapy resistance and recurrence. However, the molecular mechanisms to sustain liver CSCs remain largely unknown. In this study, based on analysis of several hepatocellular carcinoma (HCC) transcriptome datasets and our experimental data, we find that C8orf4 is weakly expressed in HCC tumours and liver CSCs. C8orf4 attenuates the self-renewal capacity of liver CSCs and tumour propagation. We show that NOTCH2 is activated in liver CSCs. C8orf4 is located in the cytoplasm of HCC tumour cells and associates with the NOTCH2 intracellular domain, which impedes the nuclear translocation of N2ICD. C8orf4 deletion causes the nuclear translocation of N2ICD that triggers the NOTCH2 signalling, which sustains the stemness of liver CSCs. Finally, NOTCH2 activation levels are consistent with clinical severity and prognosis of HCC patients. Altogether, C8orf4 negatively regulates the self-renewal of liver CSCs via suppression of NOTCH2 signalling.
Collapse
Affiliation(s)
- Pingping Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yanying Wang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geng Zhang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xinlong Yan
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
682
|
Thiagarajan PS, Hitomi M, Hale JS, Alvarado AG, Otvos B, Sinyuk M, Stoltz K, Wiechert A, Mulkearns-Hubert E, Jarrar A, Zheng Q, Thomas D, Egelhoff T, Rich JN, Liu H, Lathia JD, Reizes O. Development of a Fluorescent Reporter System to Delineate Cancer Stem Cells in Triple-Negative Breast Cancer. Stem Cells 2015; 33:2114-2125. [PMID: 25827713 DOI: 10.1002/stem.2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/17/2015] [Accepted: 02/28/2015] [Indexed: 02/06/2023]
Abstract
Advanced cancers display cellular heterogeneity driven by self-renewing, tumorigenic cancer stem cells (CSCs). The use of cell lines to model CSCs is challenging due to the difficulty of identifying and isolating cell populations that possess differences in self-renewal and tumor initiation. To overcome these barriers in triple-negative breast cancer (TNBC), we developed a CSC system using a green fluorescent protein (GFP) reporter for the promoter of the well-established pluripotency gene NANOG. NANOG-GFP+ cells gave rise to both GFP+ and GFP(-) cells, and GFP+ cells possessed increased levels of the embryonic stem cell transcription factors NANOG, SOX2, and OCT4 and elevated self-renewal and tumor initiation capacities. GFP+ cells also expressed mesenchymal markers and demonstrated increased invasion. Compared with the well-established CSC markers CD24(-) /CD44(+) , CD49f, and aldehyde dehydrogenase (ALDH) activity, our NANOG-GFP reporter system demonstrated increased enrichment for CSCs. To explore the utility of this system as a screening platform, we performed a flow cytometry screen that confirmed increased CSC marker expression in the GFP+ population and identified new cell surface markers elevated in TNBC CSCs, including junctional adhesion molecule-A (JAM-A). JAM-A was highly expressed in GFP+ cells and patient-derived xenograft ALDH+ CSCs compared with the GFP(-) and ALDH(-) cells, respectively. Depletion of JAM-A compromised self-renewal, whereas JAM-A overexpression induced self-renewal in GFP(-) cells. Our data indicate that we have defined and developed a robust system to monitor differences between CSCs and non-CSCs in TNBC that can be used to identify CSC-specific targets for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Praveena S Thiagarajan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Alvaro G Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Balint Otvos
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Maksim Sinyuk
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Kevin Stoltz
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Andrew Wiechert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Erin Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Awad Jarrar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Qiao Zheng
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA
| | - Dustin Thomas
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Thomas Egelhoff
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Huiping Liu
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.,Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44915, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
683
|
Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 2015; 15:302-10. [PMID: 25855404 PMCID: PMC4875778 DOI: 10.1038/nrc3918] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As tumours evolve, the daughter cells of the initiating cell often become molecularly heterogeneous and develop different functional properties and therapeutic vulnerabilities. In glioblastoma (GBM), a lethal form of brain cancer, the heterogeneous expression of the epidermal growth factor receptor (EGFR) poses a substantial challenge for the effective use of EGFR-targeted therapies. Understanding the mechanisms that cause EGFR heterogeneity in GBM should provide better insights into how they, and possibly other amplified receptor tyrosine kinases, affect cellular signalling, metabolism and drug resistance.
Collapse
Affiliation(s)
- Frank B Furnari
- Ludwig Institute for Cancer Research and the Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, California 90095, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research and the Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research and the Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
684
|
Pasdar EA, Smits M, Stapelberg M, Bajzikova M, Stantic M, Goodwin J, Yan B, Stursa J, Kovarova J, Sachaphibulkij K, Bezawork-Geleta A, Sobol M, Filimonenko A, Tomasetti M, Zobalova R, Hozak P, Dong LF, Neuzil J. Characterisation of mesothelioma-initiating cells and their susceptibility to anti-cancer agents. PLoS One 2015; 10:e0119549. [PMID: 25932953 PMCID: PMC4416766 DOI: 10.1371/journal.pone.0119549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/14/2015] [Indexed: 01/06/2023] Open
Abstract
Malignant mesothelioma (MM) is an aggressive type of tumour causing high mortality. One reason for this paradigm may be the existence of a subpopulation of tumour-initiating cells (TICs) that endow MM with drug resistance and recurrence. The objective of this study was to identify and characterise a TIC subpopulation in MM cells, using spheroid cultures, mesospheres, as a model of MM TICs. Mesospheres, typified by the stemness markers CD24, ABCG2 and OCT4, initiated tumours in immunodeficient mice more efficiently than adherent cells. CD24 knock-down cells lost the sphere-forming capacity and featured lower tumorigenicity. Upon serial transplantation, mesospheres were gradually more efficiently tumrigenic with increased level of stem cell markers. We also show that mesospheres feature mitochondrial and metabolic properties similar to those of normal and cancer stem cells. Finally, we show that mesothelioma-initiating cells are highly susceptible to mitochondrially targeted vitamin E succinate. This study documents that mesospheres can be used as a plausible model of mesothelioma-initiating cells and that they can be utilised in the search for efficient agents against MM.
Collapse
Affiliation(s)
| | - Michael Smits
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Michael Stapelberg
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Martina Bajzikova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marina Stantic
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jacob Goodwin
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Bing Yan
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jan Stursa
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaromira Kovarova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | - Margaryta Sobol
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anatoly Filimonenko
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marco Tomasetti
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Renata Zobalova
- School of Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Hozak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lan-Feng Dong
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
685
|
Boström PJ, Bjartell AS, Catto JWF, Eggener SE, Lilja H, Loeb S, Schalken J, Schlomm T, Cooperberg MR. Genomic Predictors of Outcome in Prostate Cancer. Eur Urol 2015; 68:1033-44. [PMID: 25913390 DOI: 10.1016/j.eururo.2015.04.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023]
Abstract
CONTEXT Given the highly variable behavior and clinical course of prostate cancer (PCa) and the multiple available treatment options, a personalized approach to oncologic risk stratification is important. Novel genetic approaches offer additional information to improve clinical decision making. OBJECTIVE To review the use of genomic biomarkers in the prognostication of PCa outcome and prediction of therapeutic response. EVIDENCE ACQUISITION Systematic literature review focused on human clinical studies reporting outcome measures with external validation. The literature search included all Medline, Embase, and Scopus articles from inception through July 2014. EVIDENCE SYNTHESIS An improved understanding of the genetic basis of prostate carcinogenesis has produced an increasing number of potential prognostic and predictive tools, such as transmembrane protease, serine2:v-ets avian erythroblastosis virus E26 oncogene homolog (TMPRSS2:ERG) gene fusion status, loss of the phosphatase and tensin homolog (PTEN) gene, and gene expression signatures utilizing messenger RNA from tumor tissue. Several commercially available gene panels with external validation are now available, although most have yet to be widely used. The most studied commercially available gene panels, Prolaris, Oncotype DX Genomic Prostate Score, and Decipher, may be used to estimate disease outcome in addition to clinical parameters or clinical nomograms. ConfirmMDx is an epigenetic test used to predict the results of repeat prostate biopsy after an initial negative biopsy. Additional future strategies include using genetic information from circulating tumor cells in the peripheral blood to guide treatment decisions at the initial diagnosis and at subsequent decision points. CONCLUSIONS Major advances have been made in our understanding of PCa biology in recent years. Our field is currently exploring the early stages of a personalized approach to augment traditional clinical decision making using commercially available genomic tools. A more comprehensive appreciation of value, limitations, and cost is important. PATIENT SUMMARY We summarized current advances in genomic testing in prostate cancer with a special focus on the estimation of disease outcome. Several commercial tests are currently available, but further understanding is needed to appreciate the potential benefits and limitations of these novel tests.
Collapse
Affiliation(s)
- Peter J Boström
- Department of Urology, Turku University Hospital, Turku, Finland.
| | - Anders S Bjartell
- Department of Urology, Skåne University Hospital Malmö, Lund University, Lund Sweden
| | - James W F Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | | | - Hans Lilja
- Departments of Laboratory Medicine, Surgery (Urology), and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | - Jack Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew R Cooperberg
- Departments of Urology and Epidemiology and Biostatistics, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| |
Collapse
|
686
|
Abstract
Chemotherapy and targeted therapy have opened new avenues in clinical oncology. However, there is a lack of response in a substantial percentage of cancer patients and diseases frequently relapse in those who even initially respond. Resistance is, at present, the major barrier to conquering cancer, the most lethal age-related pathology. Identification of mechanisms underlying resistance and development of effective strategies to circumvent treatment pitfalls thereby improving clinical outcomes remain overarching tasks for scientists and clinicians. Growing bodies of data indicate that stromal cells within the genetically stable but metabolically dynamic tumor microenvironment confer acquired resistance against anticancer therapies. Further, treatment itself activates the microenvironment by damaging a large population of benign cells, which can drastically exacerbate disease conditions in a cell nonautonomous manner, and such off-target effects should be well taken into account when establishing future therapeutic rationale. In this review, we highlight relevant biological mechanisms through which the tumor microenvironment drives development of resistance. We discuss some unsolved issues related to the preclinical and clinical trial paradigms that need to be carefully devised, and provide implications for personalized medicine. In the long run, an insightful and accurate understanding of the intricate signaling networks of the tumor microenvironment in pathological settings will guide the design of new clinical interventions particularly combinatorial therapies, and it might help overcome, or at least prevent, the onset of acquired resistance.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, 200031, China
- School of Medicine, Shanghai Jiaotong UniversityShanghai, 200025, China
- VA Seattle Medical CenterSeattle, WA, 98108
- Department of Medicine, University of WashingtonSeattle, WA, 98195
| |
Collapse
|
687
|
Ellinger J, Müller SC, Dietrich D. Epigenetic biomarkers in the blood of patients with urological malignancies. Expert Rev Mol Diagn 2015; 15:505-16. [DOI: 10.1586/14737159.2015.1019477] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
688
|
Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells. Cancer Lett 2015; 361:86-96. [PMID: 25725450 DOI: 10.1016/j.canlet.2015.02.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
V600E being the most common mutation in BRAF, leads to constitutive activation of the MAPK signaling pathway. The majority of V600E BRAF positive melanoma patients treated with the BRAF inhibitor vemurafenib showed initial good clinical responses but relapsed due to acquired resistance to the drug. The aim of the present study was to identify possible biomarkers associated with the emergence of drug resistant melanoma cells. To this end we analyzed the differential gene expression of vemurafenib-sensitive and vemurafenib resistant brain and lung metastasizing melanoma cells. The major finding of this study is that the in vitro induction of vemurafenib resistance in melanoma cells is associated with an increased malignancy phenotype of these cells. Resistant cells expressed higher levels of genes coding for cancer stem cell markers (JARID1B, CD271 and Fibronectin) as well as genes involved in drug resistance (ABCG2), cell invasion and promotion of metastasis (MMP-1 and MMP-2). We also showed that drug-resistant melanoma cells adhere better to and transmigrate more efficiently through lung endothelial cells than drug-sensitive cells. The former cells also alter their microenvironment in a different manner from that of drug-sensitive cells. Biomarkers and molecular mechanisms associated with drug resistance may serve as targets for therapy of drug-resistant cancer.
Collapse
|
689
|
Kim JS, Lee SC, Min HY, Park KH, Hyun SY, Kwon SJ, Choi SP, Kim WY, Lee HJ, Lee HY. Activation of insulin-like growth factor receptor signaling mediates resistance to histone deacetylase inhibitors. Cancer Lett 2015; 361:197-206. [PMID: 25721083 DOI: 10.1016/j.canlet.2015.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
Histone deacetylases (HDACs) are considered promising targets in the treatment of hematologic malignancies and several types of solid tumors, including non-small cell lung cancer (NSCLC). However, the efficacy of HDAC inhibitors in solid tumors is marginal, and the mechanisms underlying resistance to HDAC inhibitors are largely unknown. Here, we demonstrate the involvement of type 1 insulin-like growth factor receptor (IGF-1R) signaling in resistance to HDAC inhibitors in NSCLC. Using MTT and soft-agar colony formation assays, we selected NSCLC cell lines that exhibited intrinsic resistance to vorinostat. Treatment with vorinostat activated IGF-1R signaling in vorinostat-resistant but not vorinostat-sensitive NSCLC cells. Other HDAC inhibitors, including trichostatin A, sodium butyrate, and depsipeptide, also activated IGF-1R signaling in vorinostat-resistant NSCLC cells. Blockade of IGF-1R signaling via IGF-1R monoclonal antibodies (mAbs) or through knockdown of IGF-1R via RNA interference sensitized vorinostat-resistant cells to HDAC inhibition. Finally, IGF-1R mAbs sensitized xenograft tumors of vorinostat-resistant cells to vorinostat treatment in vivo. These findings suggest that IGF-1R activation is generally involved in resistance to HDAC inhibitors and that targeting IGF-1R is an effective strategy for overcoming resistance to HDAC inhibitors in NSCLC.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Su-Chan Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kwan Hee Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Yeob Hyun
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - So Jung Kwon
- College of Pharmacy, Inje University, Gimhae, Gyungnam 621-749, Republic of Korea
| | - Sun Phil Choi
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Woo-Young Kim
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyungnam 621-749, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
690
|
Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J, Öfverholm I, Barbany G, Nordgren A, Övernäs E, Abrahamsson J, Flaegstad T, Heyman MM, Jónsson ÓG, Kanerva J, Larsson R, Palle J, Schmiegelow K, Gustafsson MG, Lönnerholm G, Forestier E, Syvänen AC. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 2015; 7:11. [PMID: 25729447 PMCID: PMC4343276 DOI: 10.1186/s13148-014-0039-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. RESULTS We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. CONCLUSIONS Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Christofer L Bäcklin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Johan Dahlberg
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Elin Övernäs
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Rondvägen 10, SE-416 85 Gothenburg, Sweden
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Sykehusveien 38, N-9038 Tromsø, Norway
| | - Mats M Heyman
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Q6:05, SE-171 76, Stockholm, Sweden
| | - Ólafur G Jónsson
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Norðurmýri, 101, Reykjavik, Iceland
| | - Jukka Kanerva
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Box 281, FIN-00029 Helsinki, Finland
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Josefine Palle
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden.,Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Kjeld Schmiegelow
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Mats G Gustafsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Erik Forestier
- Department of Medical Biosciences, University of Umeå, SE-901 85 Umeå, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| |
Collapse
|
691
|
Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol 2015; 5:11. [PMID: 25692096 PMCID: PMC4315039 DOI: 10.3389/fonc.2015.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses activation of three separate pathways, which are collectively categorized the unfolded protein response (UPR). The UPR has been extensively studied in various cancers and appears to confer a selective advantage to tumor cells to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been shown that ER stress induces chromatin changes, which can also facilitate cell survival. Chromatin remodeling has been linked with many cancers through repression of tumor suppressor and apoptosis genes. Interplay between the classic UPR and genome damage repair mechanisms may have important implications in the transformation process of normal cells into cancer cells.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta , Edmonton, AB , Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University , Montréal, QC , Canada
| |
Collapse
|
692
|
Chandra V, Hong KM. Effects of deranged metabolism on epigenetic changes in cancer. Arch Pharm Res 2015; 38:321-37. [PMID: 25628247 DOI: 10.1007/s12272-015-0561-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022]
Abstract
The concept of epigenetics is now providing the mechanisms by which cells transfer their new environmental-change-induced phenotypes to their daughter cells. However, how extracellular or cytoplasmic environmental cues are connected to the nuclear epigenome remains incompletely understood. Recently emerging evidence suggests that epigenetic changes are correlated with metabolic changes via chromatin remodeling. As many human complex diseases including cancer harbor both epigenetic changes and metabolic dysregulation, understanding the molecular processes linking them has huge implications for disease pathogenesis and therapeutic intervention. In this review, the impacts of metabolic changes on cancer epigenetics are discussed, along with the current knowledge on cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Vishal Chandra
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 410-769, Korea
| | | |
Collapse
|
693
|
Li Y, Sarkar FH. Targeting Epigenetically Deregulated miRNA by Nutraceuticals: Focusing on Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40495-015-0016-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
694
|
Borley J, Brown R. Epigenetic mechanisms and therapeutic targets of chemotherapy resistance in epithelial ovarian cancer. Ann Med 2015; 47:359-69. [PMID: 26158617 DOI: 10.3109/07853890.2015.1043140] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the most lethal gynaecological cancer with the majority of patients succumbing to chemotherapy-resistant disease. Unravelling the mechanisms of drug resistance and how it can be prevented or reversed is a pivotal challenge in the treatment of cancer. Epigenetic mechanisms appear to play a crucial role in the development of inherent and acquired resistance in ovarian cancer. Aberrant epigenetic states can be reversed by drug therapy, and thus maintenance of epigenetic change is a potential target to halt or reverse chemotherapy resistance. This review explores the evidence that demonstrates that DNA methylation, histone modification, and microRNAs are associated with inherent and acquired chemotherapy resistance in ovarian cancer and the current challenges associated with this. We also explore current epigenetic therapies used in patients with drug-resistant ovarian cancer and future potential targets.
Collapse
Affiliation(s)
- Jane Borley
- a Department of Surgery and Cancer , Imperial College London, Hammersmith Hospital , London W12 0NN , UK
| | | |
Collapse
|
695
|
Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C, Duan W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Am J Cancer Res 2015; 5:23-42. [PMID: 25553096 PMCID: PMC4265746 DOI: 10.7150/thno.10202] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.
Collapse
|
696
|
Circulating Tumor Cells: Who is the Killer? CANCER MICROENVIRONMENT 2014; 7:161-76. [PMID: 25527469 PMCID: PMC4275541 DOI: 10.1007/s12307-014-0164-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 01/05/2023]
Abstract
This article is a critical note on the subject of Circulating Tumor Cells (CTC). It takes into account the tumor identity of Circulating Tumor Cells as cancer seeds in transit from primary to secondary soils, rather than as a “biomarker”, and considers the help this field could bring to cancer patients. It is not meant to duplicate information already available in a large number of reviews, but to stimulate considerations, further studies and development helping the clinical use of tumor cells isolated from blood as a modern personalized, non-invasive, predictive test to improve cancer patients’ life. The analysis of CTC challenges, methodological bias and critical issues points out to the need of referring to tumor cells extracted from blood without any bias and identified by cytopathological diagnosis as Circulating Cancer Cells (CCC). Finally, this article highlights recent developments and identifies burning questions which should be addressed to improve our understanding of the domain of CCC and their potential to change the clinical practice.
Collapse
|
697
|
Emerging role of PR domain containing 5 (PRDM5) as a broad tumor suppressor in human cancers. Tumour Biol 2014; 36:1-3. [PMID: 25501702 DOI: 10.1007/s13277-014-2916-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022] Open
|
698
|
Sturm E, Stefanova N. Multiple system atrophy: genetic or epigenetic? Exp Neurobiol 2014; 23:277-91. [PMID: 25548529 PMCID: PMC4276800 DOI: 10.5607/en.2014.23.4.277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare, late-onset and fatal neurodegenerative disease including multisystem neurodegeneration and the formation of α-synuclein containing oligodendroglial cytoplasmic inclusions (GCIs), which present the hallmark of the disease. MSA is considered to be a sporadic disease; however certain genetic aspects have been studied during the last years in order to shed light on the largely unknown etiology and pathogenesis of the disease. Epidemiological studies focused on the possible impact of environmental factors on MSA disease development. This article gives an overview on the findings from genetic and epigenetic studies on MSA and discusses the role of genetic or epigenetic factors in disease pathogenesis.
Collapse
Affiliation(s)
- Edith Sturm
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria
| |
Collapse
|
699
|
Lin YL, Wang YL, Fu XL, Ma JG. Aberrant methylation of PCDH8 is a potential prognostic biomarker for patients with clear cell renal cell carcinoma. Med Sci Monit 2014; 20:2380-5. [PMID: 25416427 PMCID: PMC4251547 DOI: 10.12659/msm.892433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/02/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PCDH8 is a tumor suppressor that regulates cell adhesin, proliferation, and migration. It is often inactivated by aberrant promoter methylation in several human cancers, including clear cell renal cell carcinoma (CCRCC). The clinical significance of PCDH8 methylation in CCRCC remains unclear. The aim of this study was to investigate the relationship between PCDH8 methylation and clinicopathological characteristics as well as outcome of patients with CCRCC. MATERIAL/METHODS The methylation status of PCDH8 in 153 CCRCC tissues and 97 paired adjacent normal renal tissues were examined using methylation-specific PCR (MSP). Then the relationships between PCDH8 methylation and clinicopathological features as well as progression-free survival of CCRCC patients were evaluated. RESULTS PCDH8 methylation was significantly more frequent in CCRCC tissues compared with normal renal tissues. Moreover, PCDH8 methylation was significantly correlated with advanced clinical stage (P=0.0141), higher grade (P=0.0190), and lymph node metastasis (P=0.0098). In addition, multivariate analysis showed that PCDH8 methylation was independently associated with poor progression-free survival (P=0.0316). CONCLUSIONS PCDH8 methylation is a frequent event in CCRCC and is correlated with unfavorable clinicopathological features. Moreover, PCDH8 methylation may be a useful biomarker to predict the progression of CCRCC.
Collapse
Affiliation(s)
- Ying-Li Lin
- Department of Urology, Affiliated Xuzhou Hospital of Jiangsu University (Xuzhou Cancer Hospital), Xuzhou, Jiangsu, China
| | - Yan-Ling Wang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing-Li Fu
- Health Sciences Center, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian-Guo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
700
|
Abstract
The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.
Collapse
Affiliation(s)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|