651
|
Jing P, Xie N, Zhu X, Dang H, Gu Z. The methylation induced by protein arginine methyltransferase 5 promotes tumorigenesis and progression of lung cancer. J Thorac Dis 2019; 10:7014-7019. [PMID: 30746248 DOI: 10.21037/jtd.2018.10.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arginine methylation as a common pattern of post-translational modification is involved in many cellular biological processes. Protein arginine methyltransferase 5 (PRMT5) is a primary enzyme in charge of symmetric dimethylation (me2s) of arginine residues. Increasing literatures lead to the belief that PRMT5, as a potential oncogene, plays crucial roles in the tumorigenesis and progression of cancers. First of all, PRMT5 is overexpressed in several cancer cells, with various sub-cellular localization in different type of cells and different phases. Besides, PRMT5 participates in controlling cellular proliferation, differentiation, invasion, migration as well apoptosis through histone and other protein methylation. Moreover, PRMT5 is essential for growth and metastasis of lung cancer cells, and its overexpression indicates a poor clinical outcome of lung cancer. Therefore, in this review, we reviewed the substantial new literatures on PRMT5 and its functions, in order to highlight the significance of understanding this essential enzyme in lung cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital of AFMU, Air Force Medical University, Xi'an 710038, China
| | - Nianlin Xie
- Department of Thoracic Surgery, The Second Affiliated Hospital of AFMU, Air Force Medical University, Xi'an 710038, China
| | - Ximing Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of AFMU, Air Force Medical University, Xi'an 710038, China
| | - Haizhou Dang
- Department of Thoracic Surgery, The Second Affiliated Hospital of AFMU, Air Force Medical University, Xi'an 710038, China
| | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital of AFMU, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
652
|
Downregulation of PRMT1 promotes the senescence and migration of a non-MYCN amplified neuroblastoma SK-N-SH cells. Sci Rep 2019; 9:1771. [PMID: 30741995 PMCID: PMC6370813 DOI: 10.1038/s41598-018-38394-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 12/20/2018] [Indexed: 11/09/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzing the formation of asymmetric dimethylarginines has been implicated in cancer development, metastasis, and prognosis. In this study, we investigated the effects of low PRMT1 levels on a non-MYCN amplified neuroblastoma SK-N-SH cell line. Stable PRMT1-knockdown (PRMT1-KD) cells showed reduced growth rates and cell cycle arrest at G2/M. They also exhibited senescent phenotypes and increased p53 expression. p21 and PAI-1, which are two p53 downstream targets critical for senescence, were significantly induced in SK-N-SH cells subjected to either PRMT1-KD or inhibitor treatment. The induction was suppressed by a p53 inhibitor and marginal in a p53-null SK-N-AS cell line, suggesting dependence on p53. In general, the DNA damage and ROS levels of the PRMT1-KD SK-N-SH cells were slightly increased. Their migration activity also increased with the induction of PAI-1. Thus, PRMT1 downregulation released the repression of cellular senescence and migration activity in SK-N-SH cells. These results might partially explain the poor prognostic outcome of low PRMT1 in a non-MYCN-amplified cohort and indicate the multifaceted complexity of PRMT1 as a biological regulator of neuroblastoma.
Collapse
|
653
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
654
|
Li X, Wang C, Jiang H, Luo C. A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat 2019; 29:97-114. [PMID: 30640571 DOI: 10.1080/13543776.2019.1567711] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Protein arginine methyltransferases (PRMTs) are fundamental enzymes that specifically modify the arginine residues of versatile substrates in cells. The aberrant expression and abnormal enzymatic activity of PRMTs are associated with many human diseases, especially cancer. PRMTs are emerging as promising drug targets in both academia and industry. AREAS COVERED This review summarizes the updated patented inhibitors targeting PRMTs from 2010 to 2018. The authors illustrate the chemical structures, molecular mechanism of action, pharmacological activities as well as the potential clinical application including combination therapy and biomarker-guided therapy. PRMT inhibitors in clinical trials are also highlighted. The authors provide a future perspective for further development of potent and selective PRMT inhibitors. EXPERT OPINION Although a number of small molecule inhibitors of PRMTs with sufficient potency have been developed, the selectivity of most PRMT inhibitors remains to be improved. Hence, novel approaches such as allosteric regulation need to be further studied to identify PRMT inhibitors. So far, three PRMT inhibitors have entered clinical trials, including PRMT5 inhibitor GSK3326595 and JNJ-64619178 as well as PRMT1 inhibitor GSK3368715. PRMT inhibitors with novel mechanism of action and good drug-like properties may shed new light on drug research and development progress.
Collapse
Affiliation(s)
- Xiao Li
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Chen Wang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Hao Jiang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Cheng Luo
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
655
|
Haghandish N, Baldwin RM, Morettin A, Dawit HT, Adhikary H, Masson JY, Mazroui R, Trinkle-Mulcahy L, Côté J. PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Mol Biol Cell 2019; 30:778-793. [PMID: 30699057 PMCID: PMC6589776 DOI: 10.1091/mbc.e18-05-0330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that modify proteins by methylating the guanidino nitrogen atoms of arginine residues to regulate cellular processes such as chromatin remodeling, pre-mRNA splicing, and signal transduction. PRMT7 is the single type III PRMT solely capable of arginine monomethylation. To date, other than histone proteins, there are very few identified substrates of PRMT7. We therefore performed quantitative mass spectrometry experiments to identify PRMT7’s interactome and potential substrates to better characterize the enzyme’s biological function(s) in cells. These experiments revealed that PRMT7 interacts with and can methylate eukaryotic translation initiation factor 2 alpha (eIF2α), in vitro and in breast cancer cells. Furthermore, we uncovered a potential regulatory interplay between eIF2α arginine methylation by PRMT7 and stress-induced phosphorylation status of eIF2α at serine 51. Finally, we demonstrated that PRMT7 is required for eIF2α-dependent stress granule formation in the face of various cellular stresses. Altogether, our findings implicate PRMT7 as a novel mediator of eIF2α-dependent cellular stress response pathways.
Collapse
Affiliation(s)
- Nasim Haghandish
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alan Morettin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Haben Tesfu Dawit
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Oncology Division, CHU de Québec-Université Laval, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Jean-Yves Masson
- Oncology Division, CHU de Québec-Université Laval, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Rachid Mazroui
- Oncology Division, CHU de Québec-Université Laval, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
656
|
Ran T, Li W, Peng B, Xie B, Lu T, Lu S, Liu W. Virtual Screening with a Structure-Based Pharmacophore Model to Identify Small-Molecule Inhibitors of CARM1. J Chem Inf Model 2019; 59:522-534. [PMID: 30607947 DOI: 10.1021/acs.jcim.8b00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CARM1 (coactivator-associated arginine methyltransferase 1), also known as PRMT4 (protein arginine N-methyltransferase 4), belongs to the protein arginine methyltransferase (PRMT) family, which has emerged as a potential anticancer drug target. To discover new CARM1 inhibitors, we performed virtual screening against the substrate-binding site in CARM1. Structure-based pharmacophore models, which were generated according to three druggable subpockets embedding critical residues for ligand binding, were applied for virtual screening. The importance of the solvent-exposed substrate-binding cavity was highlighted due to significant hydrophobicity. Aided by molecular docking, 15 compounds structurally distinct from known CARM1 inhibitors were selected to evaluate their inhibitory effects on CARM1 methyltransferase activity, which resulted in seven compounds exhibiting micromolar inhibition, with selectivity over other members in the PRMT protein family. Moreover, three of them exhibited potent antiproliferation activities in breast cancer cells. Particularly, compound NO.2 exhibited potent activity both in vitro and in cultured cells, which will serve as a leading hit for developing CARM1 inhibitors with improved efficacy. The virtual screening strategy in this study will be applicable for the discovery of substrate-competitive inhibitors targeting other members in the PRMT protein family.
Collapse
Affiliation(s)
- Ting Ran
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China.,Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361105 , China
| | - Wenjuan Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Bingling Peng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Binglan Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Tao Lu
- Department of Organic Chemistry, School of Sciences , China Pharmaceutical University , Nanjing , Jiangsu 210009 , China
| | - Shuai Lu
- Department of Organic Chemistry, School of Sciences , China Pharmaceutical University , Nanjing , Jiangsu 210009 , China
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China.,State Key Laboratory of Cellular Stress Biology , Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|
657
|
Mei M, Zhang R, Zhou ZW, Ying Z, Wang J, Zhang H, Zheng H, Bao S. PRMT5-mediated H4R3sme2 Confers Cell Differentiation in Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. Clin Cancer Res 2019; 25:2633-2643. [PMID: 30635341 DOI: 10.1158/1078-0432.ccr-18-2342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Little is known about the function of histone arginine methylation in acute lymphoblastic leukemia (ALL). The objective was to evaluate whether protein arginine methyltransferase 5 (PRMT5) plays a role in pediatric ALL and to determine the possible mechanism of epigenetic regulation. EXPERIMENTAL DESIGN We used bone marrow samples from patients with pediatric ALL, the Nalm6 cell line, mature B-cell lines, and mouse xenograft models to evaluate the function of PRMT5 in ALL tumorigenesis. RESULTS This study showed that PRMT5 and the symmetric dimethylation of H4R3 (H4R3sme2) were upregulated in most initially diagnosed (n = 15; 100%) and relapsed (n = 4; 75%) bone marrow leukemia cells from patients with pediatric B-cell precursor ALL (BCP-ALL) and were decreased when the disease was in remission (n = 15; 6.7%). Downregulation of H4R3sme2 by PRMT5 silencing induced BCP-ALL cell differentiation from the pre-B to immature B stage, whereas overexpressed PRMT5 with enhanced H4R3sme2 promoted human mature B cells to dedifferentiate back to the pre-B II/immature B stages in vitro. High PRMT5 expression enhanced the proportion of CD43+/B220+/sIgM- B leukocytes in recipient mice. CLC and CTSB were identified as potential target genes of PRMT5 in BCP-ALL cells and were inhibited by H4R3sme2 in gene promoters. CONCLUSIONS We demonstrate that enhanced PRMT5 promotes BCP-ALL leukemogenesis partially by the dysregulation of B-cell lineage differentiation. H4R3sme2 and PRMT5 may serve as potential sensitive biomarkers of pediatric BCP-ALL. Suppression of the activation of PRMT5 may offer a promising therapeutic strategy against pediatric BCP-ALL.
Collapse
Affiliation(s)
- Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ruidong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhengzhou Ying
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Han Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
658
|
PRMT5 is essential for B cell development and germinal center dynamics. Nat Commun 2019; 10:22. [PMID: 30604754 PMCID: PMC6318318 DOI: 10.1038/s41467-018-07884-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
Mechanisms regulating B cell development, activation, education in the germinal center (GC) and differentiation, underpin the humoral immune response. Protein arginine methyltransferase 5 (Prmt5), which catalyzes most symmetric dimethyl arginine protein modifications, is overexpressed in B cell lymphomas but its function in normal B cells is poorly defined. Here we show that Prmt5 is necessary for antibody responses and has essential but distinct functions in all proliferative B cell stages in mice. Prmt5 is necessary for B cell development by preventing p53-dependent and p53-independent blocks in Pro-B and Pre-B cells, respectively. By contrast, Prmt5 protects, via p53-independent pathways, mature B cells from apoptosis during activation, promotes GC expansion, and counters plasma cell differentiation. Phenotypic and RNA-seq data indicate that Prmt5 regulates GC light zone B cell fate by regulating transcriptional programs, achieved in part by ensuring RNA splicing fidelity. Our results establish Prmt5 as an essential regulator of B cell biology. Protective antibody responses depend critically on proper B cell development and differentiation at multiple stages. Here the authors show that a protein arginine methyltransferase, Prmt5 uses multiples pathways to prevent death of immature B cells, yet modulates, in p53-independent manners, the survival and differentiation of mature B cells.
Collapse
|
659
|
Vanlieshout TL, Stouth DW, Tajik T, Ljubicic V. Exercise-induced Protein Arginine Methyltransferase Expression in Skeletal Muscle. Med Sci Sports Exerc 2018; 50:447-457. [PMID: 29112628 DOI: 10.1249/mss.0000000000001476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1 [CARM1]), and -5 expression and function during acute, exercise-induced skeletal muscle remodeling in vivo. METHODS C57BL/6 mice were assigned to one of three experimental groups: sedentary, acute bout of exercise, or acute exercise followed by 3 h of recovery. Mice in the exercise groups performed a single bout of treadmill running at 15 m·min for 90 min. Hindlimb muscles were collected, and quantitative real-time polymerase chain reaction and Western blotting were used to examine exercise-induced gene expression. RESULTS The PRMT gene expression and global enzyme activity were muscle-specific, generally being higher (P < 0.05) in slow, oxidative muscle, as compared with faster, more glycolytic tissue. Despite the significant activation of canonical exercise-induced signaling involving AMP-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), PRMT expression and activity at the whole muscle level were unchanged. However, subcellular analyses revealed a significant exercise-evoked myonuclear translocation of PRMT1 before the nuclear accumulation of PGC-1α. Acute physical activity also augmented (P < 0.05) the targeted methyltransferase activities of the PRMT in the myonuclear compartment, suggesting that PRMT-mediated histone arginine methylation is part of the early signals that drive muscle plasticity. Finally, basal PGC-1α asymmetric dimethylarginine status, as well as constitutive interactions between PGC-1α and PRMT1 or CARM1 may contribute to the exercise-induced muscle remodeling process. CONCLUSIONS The present study provides the first evidence that PRMT activity is selectively augmented during the initial activation of exercise-induced skeletal muscle remodeling in vivo. These data support the emergence of PRMTs as important players in the regulation of skeletal muscle plasticity.
Collapse
|
660
|
Shao J, Zhu K, Du D, Zhang Y, Tao H, Chen Z, Jiang H, Chen K, Luo C, Duan W. Discovery of 2-substituted-N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide as potent and selective protein arginine methyltransferases 5 inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 164:317-333. [PMID: 30605830 DOI: 10.1016/j.ejmech.2018.12.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/04/2023]
Abstract
Protein arginine methyltransferases 5 (PRMT5) represents an attractive drug target in epigenetic field for the treatment of leukemia and lymphoma. Here, a series of N-(3-(3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)amide derivatives targeting PRMT5 were designed with structure-based approach and synthesized. Among them, compound 46 showed potent and selective PRMT5 inhibition activity with an IC50 of 8.5 nM, which was approximately equivalent with the phase I clinical trial PRMT5 inhibitor GSK-3326595 (IC50 = 5.5 nM). Compound 46 also displayed pronounced anti-proliferative activity in MV4-11 cells (GI50 = 18 nM) and antitumor activity in MV4-11 mouse xenografts model. This molecule can serve as an excellent tool compound for probing the biological function of PRMT5.
Collapse
Affiliation(s)
- Jingwei Shao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Daohai Du
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hongrui Tao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China; Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhifeng Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Open Studio for Drugability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shangdong, 266237, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Open Studio for Drugability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shangdong, 266237, China.
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
| |
Collapse
|
661
|
Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response. mBio 2018; 9:mBio.02430-18. [PMID: 30563898 PMCID: PMC6299225 DOI: 10.1128/mbio.02430-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Trypanosoma brucei and related kinetoplastid parasites, transcription of protein coding genes is largely unregulated. Rather, mRNA binding proteins, which impact processes such as transcript stability and translation efficiency, are the predominant regulators of gene expression. Arginine methylation is a posttranslational modification that preferentially targets RNA binding proteins and is, therefore, likely to have a substantial impact on T. brucei biology. The data presented here demonstrate that cells depleted of T. brucei PRMT1 (TbPRMT1), a major type I protein arginine methyltransferase, exhibit decreased virulence in an animal model. To understand the basis of this phenotype, quantitative global proteomics was employed to measure protein steady-state levels in cells lacking TbPRMT1. The approach revealed striking changes in proteins involved in energy metabolism. Most prominent were a decrease in glycolytic enzyme abundance and an increase in proline degradation pathway components, changes that resemble the metabolic remodeling that occurs during T. brucei life cycle progression. The work describes several RNA binding proteins whose association with mRNA was altered in TbPRMT1-depleted cells, and a large number of TbPRMT1-interacting proteins, thereby highlighting potential TbPRMT1 substrates. Many proteins involved in the T. brucei starvation stress response were found to interact with TbPRMT1, prompting analysis of the response of TbPRMT1-depleted cells to nutrient deprivation. Indeed, depletion of TbPRMT1 strongly hinders the ability of T. brucei to form cytoplasmic mRNA granules under starvation conditions. Finally, this work shows that TbPRMT1 itself binds nucleic acids in vitro and in vivo, a feature completely novel to protein arginine methyltransferases.IMPORTANCE Trypanosoma brucei infection causes human African trypanosomiasis, also known as sleeping sickness, a disease with a nearly 100% fatality rate when untreated. Current drugs are expensive, toxic, and highly impractical to administer, prompting the community to explore various unique aspects of T. brucei biology in search of better treatments. In this study, we identified the protein arginine methyltransferase (PRMT), TbPRMT1, as a factor that modulates numerous aspects of T. brucei biology. These include glycolysis and life cycle progression signaling, both of which are being intensely researched toward identification of potential drug targets. Our data will aid research in those fields. Furthermore, we demonstrate for the first time a direct association of a PRMT with nucleic acids, a finding we believe could translate to other organisms, including humans, thereby impacting research in fields as distant as human cancer biology and immune response modulation.
Collapse
|
662
|
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Front Oncol 2018; 8:566. [PMID: 30619733 PMCID: PMC6297718 DOI: 10.3389/fonc.2018.00566] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents. This underscores the unmet need for these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation are a well-known hallmark of cancer cells, contributing to both cancer onset and progression. In MM, sequencing and gene expression profiling studies have also identified numerous epigenetic defects, including locus-specific DNA hypermethylation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and genetic defects, copy number variations and/or abnormal expression patterns of various chromatin modifying enzymes. Importantly, these so-called epimutations contribute to genomic instability, disease progression, and a worse outcome. Moreover, the frequency of mutations observed in genes encoding for histone methyltransferases and DNA methylation modifiers increases following treatment, indicating a role in the emergence of drug resistance. In support of this, accumulating evidence also suggest a role for the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant cells to a less mature and drug resistant state. This review discusses the current state of knowledge on the role of epigenetics in MM, with a focus on deregulated histone methylation modifiers and the impact on MM cell plasticity and drug resistance. We also provide insight into the potential of epigenetic modulating agents to enhance clinical drug responses and avoid disease relapse.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Lui
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
663
|
Mann SA, Salsburg A, Causey CP, Knuckley B. The development and characterization of a chemical probe targeting PRMT1 over PRMT5. Bioorg Med Chem 2018; 27:224-229. [PMID: 30529151 DOI: 10.1016/j.bmc.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 01/27/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of mammalian enzymes catalyzing the symmetric dimethylation (Type I), asymmetric dimethylation (Type II), or monomethylation (Type III) of arginine residues within proteins. This family is composed of 11 isozymes, however the vast majority of asymmetric and symmetric dimethylation in mammals is completed by either PRMT1 or PRMT5, respectively. In recent years, a number of chemical probes targeting this family of enzymes have been developed, but the majority of these probes lack isozyme specificity. Herein, we report the development of a chemical probe, based on a non-natural peptide sequence, which specifically labels PRMT1 over PRMT5 with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Sarah A Mann
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States
| | - Andrew Salsburg
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States
| | - Corey P Causey
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States
| | - Bryan Knuckley
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224-7699, United States.
| |
Collapse
|
664
|
Fulton MD, Brown T, Zheng YG. Mechanisms and Inhibitors of Histone Arginine Methylation. CHEM REC 2018; 18:1792-1807. [PMID: 30230223 PMCID: PMC6348102 DOI: 10.1002/tcr.201800082] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
Histone methylation plays an important regulatory role in chromatin restructuring and RNA transcription. Arginine methylation that is enzymatically catalyzed by the family of protein arginine methyltransferases (PRMTs) can either activate or repress gene expression depending on cellular contexts. Given the strong correlation of PRMTs with pathophysiology, great interest is seen in understanding molecular mechanisms of PRMTs in diseases and in developing potent PRMT inhibitors. Herein, we reviewed key research advances in the study of biochemical mechanisms of PRMT catalysis and their relevance to cell biology. We highlighted how a random binary, ordered ternary kinetic model for PRMT1 catalysis reconciles the literature reports and endorses a distributive mechanism that the enzyme active site utilizes for multiple turnovers of arginine methylation. We discussed the impacts of histone arginine methylation and its biochemical interplays with other key epigenetic marks. Challenges in developing small-molecule PRMT inhibitors were also discussed.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| |
Collapse
|
665
|
Kota SK, Roening C, Patel N, Kota SB, Baron R. PRMT5 inhibition promotes osteogenic differentiation of mesenchymal stromal cells and represses basal interferon stimulated gene expression. Bone 2018; 117:37-46. [PMID: 30189247 PMCID: PMC6317875 DOI: 10.1016/j.bone.2018.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze symmetric and asymmetric methylation on arginine residues of multiple protein targets including histones and have essential roles in organismal development and disease. PRMT5 mediates symmetric di-methylation (sDMA) of arginine 2 (H3R2me2s) and arginine 8 on histone 3 (H3R8me2s), arginine 3 on histones 2A and 4 (H2A/H4R3me2s) as well as several non-histone substrates like Sm proteins. Here, we found that selective inhibition of PRMT5 in mesenchymal stromal cells (MSCs) led to a reduction in colony forming units (CFUs) and increased osteoblast differentiation. PRMT5 inhibition blocked global symmetric dimethylation of H3R8 and H4R3 but not on H3R2. Genome-wide expression analysis by total RNA sequencing of mesenchymal stromal cells undergoing osteogenic differentiation revealed significant reduction in the intrinsic expression of several interferon-stimulated genes (ISGs) upon PRMT5 inhibition. Effects of PRMT5 inhibition on basal ISG expression and osteogenic differentiation was effectively blocked by exogenous activation of type I IFN signaling. Together, these results indicate important functions for PRMT5 in the regulation of basal interferon gene expression in MSCs and in the control of differentiation potential of MSCs during osteogenic differentiation.
Collapse
Affiliation(s)
- Satya K Kota
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA.
| | - Coco Roening
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| | - Nehal Patel
- Renal Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Savithri B Kota
- Renal Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| |
Collapse
|
666
|
Gulla A, Hideshima T, Anderson KC. PRMT5 inhibitors on the (myeloma) road. Oncotarget 2018; 9:36646-36647. [PMID: 30613345 PMCID: PMC6291180 DOI: 10.18632/oncotarget.26392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Annamaria Gulla
- Jerome Lipper Multiple Myeloma Center, Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
667
|
Hu G, Wang X, Han Y, Wang P. Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis. EXCLI JOURNAL 2018; 17:1157-1166. [PMID: 30713476 PMCID: PMC6341427 DOI: 10.17179/excli2018-1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) has emerged as a key regulator of tumorigenesis. However, how PRMT5 functions in bladder cancer, the most common malignancy of the urological system, is unknown. We described here that PRMT5 is highly expressed in bladder cancer cell lines and primary human bladder cancer tissues. PRMT5 enhances the proliferation and colony formation of bladder cancer cells. PRMT5 knockdown induces bladder cancer cell apoptosis. Mechanistically, PRMT5 enhances NF-kB activation by targeting crucial anti-apoptotic genes such as BCLXL and c-IAP1, thereby inhibiting tumor cell apoptosis and sustaining proliferation. Importantly, PRMT5 inhibitor opposed tumor growth and BCLXL and c-IAP1 transcription in the bladder cancer xenograft model. Collectively, the current suggests the crucial role of PRMT5 as a promising therapeutic target in bladder cancers.
Collapse
Affiliation(s)
- Guodong Hu
- Department of Urology, the Affiliated Fourth Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Urology, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Xiu Wang
- Department of Anesthesia, the Affiliated Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Han
- Department of Urology, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Ping Wang
- Department of Urology, the Affiliated Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
668
|
Lu K, Tao H, Si X, Chen Q. The Histone H3 Lysine 4 Presenter WDR5 as an Oncogenic Protein and Novel Epigenetic Target in Cancer. Front Oncol 2018; 8:502. [PMID: 30488017 PMCID: PMC6246693 DOI: 10.3389/fonc.2018.00502] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
The histone H3 lysine 4 (H3K4) presenter WDR5 forms protein complexes with H3K4 methyltransferases MLL1-MLL4 and binding partner proteins including RBBP5, ASH2L, and DPY30, and plays a key role in histone H3K4 trimethylation, chromatin remodeling, transcriptional activation of target genes, normal biology, and diseases such as MLL-rearranged leukemia. By forming protein complexes with other proteins such as Myc, WDR5 induces transcriptional activation of key oncogenes, tumor cell cycle progression, DNA replication, cell proliferation, survival, tumor initiation, progression, invasion, and metastasis of cancer of a variety of organ origins. Several small molecule MLL/WDR5 protein-protein interaction inhibitors, such as MM-401, MM-589, WDR5-0103, Piribedil, and OICR-9429, have been confirmed to reduce H3K4 trimethylation, oncogenic gene expression, cell cycle progression, cancer cell proliferation, survival and resistance to chemotherapy without general toxicity to normal cells. Derivatives of the MLL/WDR5 interaction inhibitors with improved pharmacokinetic properties and in vivo bioavailability are expected to have the potential to be trialed in cancer patients.
Collapse
Affiliation(s)
- Kebin Lu
- Department of Paediatrics, Shan Xian Central Hospital, Heze, China
| | - He Tao
- Department of Medical Oncology, Shan Xian Haijiya Hospital, Heze, China
| | - Xiaomin Si
- Department of Medical Oncology, Xian Yang Central Hospital, Xianyang, China
| | - Qingjuan Chen
- Department of Medical Oncology, Xian Yang Central Hospital, Xianyang, China
| |
Collapse
|
669
|
Abstract
Arginine methylation is a post-translational modification that controls the abundance of γc cytokine receptors on mature T cells by a post-transcriptional mechanism.
Collapse
Affiliation(s)
- Joo-Young Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, South Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
670
|
PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nat Commun 2018; 9:4552. [PMID: 30382083 PMCID: PMC6208368 DOI: 10.1038/s41467-018-06968-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
Transcriptional deregulation has a vital role in glioblastoma multiforme (GBM). Thus, identification of epigenetic modifiers essential for oncogenic transcriptional programs is a key to designing effective therapeutics for this deadly disease. Here we report that Protein Arginine Methyltransferase 2 (PRMT2) is highly expressed in GBM and correlated with poor prognosis. The silencing or inactivation of PRMT2 inhibits GBM cell growth and glioblastoma stem cell self-renewal in vitro, and suppresses orthotopic tumor growth, accompanied with significant deregulation of genes mainly associated with cell cycle progression and pathways in cancer. Mechanistically PRMT2 is responsible for H3R8 asymmetric methylation (H3R8me2a), whose enrichment at promoters and enhancers is closely correlated with known active histone marks and is required for the maintenance of target gene expression. Together, this study demonstrates that PRMT2 acts as a transcriptional co-activator for oncogenic gene expression programs in GBM pathogenesis and provides a rationale for PRMT2 targeting in aggressive gliomas. The role of protein arginine methyltransferases (PRMTs) in epigenetic regulation in cancer is still poorly understood. Here, the authors show that PRMT2 is highly expressed in Glioblastoma multiforme (GBM) and provide evidence that PRMT2 acts as a transcriptional co-activator for oncogenic gene expression programs, at least partly dependent on its H3R8me2a activity, in GBM pathogenesis.
Collapse
|
671
|
Inhibiting Arginine Methylation as a Tool to Investigate Cross-Talk with Methylation and Acetylation Post-Translational Modifications in a Glioblastoma Cell Line. Proteomes 2018; 6:proteomes6040044. [PMID: 30347783 PMCID: PMC6313862 DOI: 10.3390/proteomes6040044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastomas (GBM) are the most common grade 4 brain tumours; patients have very poor prognosis with an average survival of 15 months after diagnosis. Novel research lines have begun to explore aberrant protein arginine methylation (ArgMe) as a possible therapeutic target in GBM and ArgMe inhibitors are currently in clinical trials. Enzymes known as protein arginine methyltransferases (PRMT1-9) can lead to mono- or di-ArgMe, and in the latter case symmetric or asymmetric dimethylation (SDMA and ADMA, respectively). Using the most common GBM cell line, we have profiled the expression of PRMTs, used ArgMe inhibitors as tools to investigate post-translational modifications cross-talk and measured the effect of ArgMe inhibitors on cell viability. We have identified novel SDMA events upon inhibition of ADMA in GBM cells and spheroids. We have observed cross-talk between ADMA and lysine acetylation in GBM cells and platelets. Treatment of GBM cells with furamidine, a PRMT1 inhibitor, reduces cell viability in 2D and 3D models. These data provide new molecular understanding of a disease with unmet clinical needs.
Collapse
|
672
|
Frankel A, Brown JI. Evaluation of kinetic data: What the numbers tell us about PRMTs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:306-316. [PMID: 30342239 DOI: 10.1016/j.bbapap.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
Abstract
Protein arginine N-methyltransferase (PRMT) kinetic parameters have been catalogued over the past fifteen years for eight of the nine mammalian enzyme family members. Like the majority of methyltransferases, these enzymes employ the highly ubiquitous cofactor S-adenosyl-l-methionine as a co-substrate to methylate arginine residues in peptidic substrates with an approximately 4-μM median KM. The median values for PRMT turnover number (kcat) and catalytic efficiency (kcat/KM) are 0.0051 s-1 and 708 M-1 s-1, respectively. When comparing PRMT metrics to entries found in the BRENDA database, we find that while PRMTs exhibit high substrate affinity relative to other enzyme-substrate pairs, PRMTs display largely lower kcat and kcat/KM values. We observe that kinetic parameters for PRMTs and arginine demethylase activity from dual-functioning lysine demethylases are statistically similar, paralleling what the broader enzyme families in which they belong reveal, and adding to the evidence in support of arginine methylation reversibility.
Collapse
Affiliation(s)
- Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
673
|
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, South Korea
| | - Minjung Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
674
|
Nie M, Wang Y, Guo C, Li X, Wang Y, Deng Y, Yao B, Gui T, Ma C, Liu M, Wang P, Wang R, Tan R, Fang M, Chen B, He Y, Huang DCS, Ju J, Zhao Q. CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells. J Biol Chem 2018; 293:17454-17463. [PMID: 30257864 DOI: 10.1074/jbc.ra118.004028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a member of the arginine methyltransferase protein family that critically mediates the symmetric dimethylation of Arg-3 at histone H4 (H4R3me2s) and is involved in many key cellular processes, including hematopoiesis. However, the post-translational modifications (PTMs) of PRMT5 that may affect its biological functions remain less well-understood. In this study, using MS analyses, we found that PRMT5 itself is methylated in human erythroleukemia Lys-562 cells. Biochemical assays revealed that coactivator-associated arginine methyltransferase 1 (CARM1) interacts directly with and methylates PRMT5 at Arg-505 both in vivo and in vitro. Substitutions at Arg-505 significantly reduced PRMT5's methyltransferase activity, decreased H4R3me2s enrichment at the γ-globin gene promoter, and increased the expression of the γ-globin gene in Lys-562 cells. Moreover, CARM1 knockdown consistently reduced PRMT5 activity and activated γ-globin gene expression. Importantly, we show that CARM1-mediated methylation of PRMT5 is essential for the intracellular homodimerization of PRMT5 to its active form. These results thus reveal a critical PTM of PRMT5 that represses human γ-globin gene expression. We conclude that CARM1-mediated asymmetric methylation of PRMT5 is critical for its dimerization and methyltransferase activity leading to the repression of γ-globin expression. Given PRMT5's crucial role in diverse cellular processes, these findings may inform strategies for manipulating its methyltransferase activity for managing hemoglobinopathy or cancer.
Collapse
Affiliation(s)
- Min Nie
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yadong Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chan Guo
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yexuan Deng
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bing Yao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Gui
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chi Ma
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ming Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Panxue Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruoyun Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renxiang Tan
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Ming Fang
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Bing Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yinghong He
- School of Basic Medicine, Dali University, Yunnan 671003 China, and
| | - David C S Huang
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, 3010 Australia
| | - Junyi Ju
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China,
| | - Quan Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Center for Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210023, China,
| |
Collapse
|
675
|
Woodsmith J, Casado-Medrano V, Benlasfer N, Eccles RL, Hutten S, Heine CL, Thormann V, Abou-Ajram C, Rocks O, Dormann D, Stelzl U. Interaction modulation through arrays of clustered methyl-arginine protein modifications. Life Sci Alliance 2018; 1:e201800178. [PMID: 30456387 PMCID: PMC6238616 DOI: 10.26508/lsa.201800178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Systematic analysis of human arginine methylation identifies two distinct signaling modes; either isolated modifications akin to canonical post-translational modification regulation, or clustered arrays within disordered protein sequence. Hundreds of proteins contain these methyl-arginine arrays and are more prone to accumulate mutations and more tightly expression-regulated than dispersed methylation targets. Arginines within an array in the highly methylated RNA-binding protein synaptotagmin binding cytoplasmic RNA interacting protein (SYNCRIP) were experimentally shown to function in concert, providing a tunable protein interaction interface. Quantitative immunoprecipitation assays defined two distinct cumulative binding mechanisms operating across 18 proximal arginine-glycine (RG) motifs in SYNCRIP. Functional binding to the methyltransferase PRMT1 was promoted by continual arginine stretches, whereas interaction with the methyl-binding protein SMN1 was arginine content-dependent irrespective of linear position within the unstructured region. This study highlights how highly repetitive modifiable amino acid arrays in low structural complexity regions can provide regulatory platforms, with SYNCRIP as an extreme example how arginine methylation leverages these disordered sequences to mediate cellular interactions.
Collapse
Affiliation(s)
- Jonathan Woodsmith
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Victoria Casado-Medrano
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Rebecca L Eccles
- Department of Experimental Medicine I, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Saskia Hutten
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christian L Heine
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
| | - Verena Thormann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Claudia Abou-Ajram
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Oliver Rocks
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dorothee Dormann
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
676
|
Zagrovic B, Bartonek L, Polyansky AA. RNA-protein interactions in an unstructured context. FEBS Lett 2018; 592:2901-2916. [PMID: 29851074 PMCID: PMC6175095 DOI: 10.1002/1873-3468.13116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 02/02/2023]
Abstract
Despite their importance, our understanding of noncovalent RNA-protein interactions is incomplete. This especially concerns the binding between RNA and unstructured protein regions, a widespread class of such interactions. Here, we review the recent experimental and computational work on RNA-protein interactions in an unstructured context with a particular focus on how such interactions may be shaped by the intrinsic interaction affinities between individual nucleobases and protein side chains. Specifically, we articulate the claim that the universal genetic code reflects the binding specificity between nucleobases and protein side chains and that, in turn, the code may be seen as the Rosetta stone for understanding RNA-protein interactions in general.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational BiologyMax F. Perutz LaboratoriesUniversity of ViennaAustria
| | - Lukas Bartonek
- Department of Structural and Computational BiologyMax F. Perutz LaboratoriesUniversity of ViennaAustria
| | - Anton A. Polyansky
- Department of Structural and Computational BiologyMax F. Perutz LaboratoriesUniversity of ViennaAustria,MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| |
Collapse
|
677
|
Simandi Z, Pajer K, Karolyi K, Sieler T, Jiang LL, Kolostyak Z, Sari Z, Fekecs Z, Pap A, Patsalos A, Contreras GA, Reho B, Papp Z, Guo X, Horvath A, Kiss G, Keresztessy Z, Vámosi G, Hickman J, Xu H, Dormann D, Hortobagyi T, Antal M, Nógrádi A, Nagy L. Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. J Neurosci 2018; 38:7683-7700. [PMID: 30054395 PMCID: PMC6113905 DOI: 10.1523/jneurosci.3389-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Krisztian Pajer
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Katalin Karolyi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Tatiana Sieler
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsanett Sari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Fekecs
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Andreas Patsalos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Balint Reho
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Greta Kiss
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsolt Keresztessy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Dorothee Dormann
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany 80539
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 80539
| | - Tibor Hortobagyi
- HAS-UD Cerebrovascular and Neurodegenerative Research Group, Department of Neurology and Neuropathology, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Miklos Antal
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Neuroscience Research Group, University of Debrecen, Debrecen, Hungary, HU 4032, and
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827,
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Momentum Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary, HU 4032
| |
Collapse
|
678
|
Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S. Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination. Dev Cell 2018; 46:426-440.e5. [DOI: 10.1016/j.devcel.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
|
679
|
Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, Yattah C, Zhang J, Teo SX, Zhou T, Chen S, Bernstein E, Canoll P, Guccione E, Casaccia P. PRMT5-mediated regulation of developmental myelination. Nat Commun 2018; 9:2840. [PMID: 30026560 PMCID: PMC6053423 DOI: 10.1038/s41467-018-04863-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system. They are derived from differentiation of oligodendrocyte progenitors through a process requiring cell cycle exit and histone modifications. Here we identify the histone arginine methyl-transferase PRMT5, a molecule catalyzing symmetric methylation of histone H4R3, as critical for developmental myelination. PRMT5 pharmacological inhibition, CRISPR/cas9 targeting, or genetic ablation decrease p53-dependent survival and impair differentiation without affecting proliferation. Conditional ablation of Prmt5 in progenitors results in hypomyelination, reduced survival and differentiation. Decreased histone H4R3 symmetric methylation is followed by increased nuclear acetylation of H4K5, and is rescued by pharmacological inhibition of histone acetyltransferases. Data obtained using purified histones further validate the results obtained in mice and in cultured oligodendrocyte progenitors. Together, these results identify PRMT5 as critical for oligodendrocyte differentiation and developmental myelination by modulating the cross-talk between histone arginine methylation and lysine acetylation. Myelin-forming cells derive from oligodendrocyte progenitors. Here the authors identify histone arginine methyl-transferase PRMT5 as critical for developmental myelination by modulating the cross-talk between histone arginine methylation and lysine acetylation, to favor differentiation.
Collapse
Affiliation(s)
- Antonella Scaglione
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Julia Patzig
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Rebecca Frawley
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jabez Bok
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos Building #3-06, Singapore, 138673, Singapore
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Jingxian Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos Building #3-06, Singapore, 138673, Singapore
| | - Shun Xie Teo
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos Building #3-06, Singapore, 138673, Singapore
| | - Ting Zhou
- Room A-829, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Shuibing Chen
- Room A-829, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Emily Bernstein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Ernesto Guccione
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.,Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos Building #3-06, Singapore, 138673, Singapore.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA. .,Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
| |
Collapse
|
680
|
Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K, Bocchinfuso WP, Li F, Kennedy S, Li B, Mader MM, Arrowsmith CH, Brown PJ, Eram MS, Szewczyk MM, Barsyte-Lovejoy D, Vedadi M, Guccione E, Campbell RM. LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity. ACS Med Chem Lett 2018; 9:612-617. [PMID: 30034588 DOI: 10.1021/acsmedchemlett.8b00014] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the formation of symmetric dimethylarginine in a number of nuclear and cytoplasmic proteins. Although the cellular functions of PRMT5 have not been fully unraveled, it has been implicated in a number of cellular processes like RNA processing, signal transduction, and transcriptional regulation. PRMT5 is ubiquitously expressed in most tissues and its expression has been shown to be elevated in several cancers including breast cancer, gastric cancer, glioblastoma, and lymphoma. Here, we describe the identification and characterization of a novel and selective PRMT5 inhibitor with potent in vitro and in vivo activity. Compound 1 (also called LLY-283) inhibited PRMT5 enzymatic activity in vitro and in cells with IC50 of 22 ± 3 and 25 ± 1 nM, respectively, while its diastereomer, compound 2 (also called LLY-284), was much less active. Compound 1 also showed antitumor activity in mouse xenografts when dosed orally and can serve as an excellent probe molecule for understanding the biological function of PRMT5 in normal and cancer cells.
Collapse
Affiliation(s)
- Zahid Q. Bonday
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Guillermo S. Cortez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Michael J. Grogan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Stephen Antonysamy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Ken Weichert
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Wayne P. Bocchinfuso
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Binghui Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Mary M. Mader
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, 101 College Street, MaRS South Tower, Suite 707, Toronto, ON M5G 1L7, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S. Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Robert M. Campbell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
681
|
Effects of single and combined metformin and L-citrulline supplementation on L-arginine-related pathways in Becker muscular dystrophy patients: possible biochemical and clinical implications. Amino Acids 2018; 50:1391-1406. [PMID: 30003335 DOI: 10.1007/s00726-018-2614-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The L-arginine/nitric oxide synthase (NOS) pathway is considered to be altered in muscular dystrophy such as Becker muscular dystrophy (BMD). We investigated two pharmacological options aimed to increase nitric oxide (NO) synthesis in 20 male BMD patients (age range 21-44 years): (1) supplementation with L-citrulline (3 × 5 g/d), the precursor of L-arginine which is the substrate of neuronal NO synthase (nNOS); and (2) treatment with the antidiabetic drug metformin (3 × 500 mg/d) which activates nNOS in human skeletal muscle. We also investigated the combined use of L-citrulline (3 × 5 g/d) and metformin (3 × 500 mg/d). Before and after treatment, we measured in serum and urine samples the concentration of amino acids and metabolites of L-arginine-related pathways and the oxidative stress biomarker malondialdehyde (MDA). Compared to healthy subjects, BMD patients have altered NOS, arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) pathways. Metformin treatment resulted in concentration decrease of arginine and MDA in serum, and of homoarginine (hArg) and guanidinoacetate (GAA) in serum and urine. L-Citrulline supplementation resulted in considerable increase of the concentrations of amino acids and creatinine in the serum, and in their urinary excretion rates. Combined use of metformin and L-citrulline attenuated the effects obtained from their single administrations. Metformin, L-citrulline or their combination did not alter serum nitrite and nitrate concentrations and their urinary excretion rates. In conclusion, metformin or L-citrulline supplementation to BMD patients results in remarkable antidromic changes of the AGAT and GAMT pathways. In combination, metformin and L-citrulline at the doses used in the present study seem to abolish the biochemical effects of the single drugs in slight favor of L-citrulline.
Collapse
|
682
|
The methyltransferase PRMT6 attenuates antiviral innate immunity by blocking TBK1-IRF3 signaling. Cell Mol Immunol 2018; 16:800-809. [PMID: 29973649 DOI: 10.1038/s41423-018-0057-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/24/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) play diverse biological roles and are specifically involved in immune cell development and inflammation. However, their role in antiviral innate immunity has not been elucidated. Viral infection triggers the TBK1-IRF3 signaling pathway to stimulate the production of type-I interferon, which mediates antiviral immunity. We performed a functional screen of the nine mammalian PRMTs for regulators of IFN-β expression and found that PRMT6 inhibits the antiviral innate immune response. Viral infection also upregulated PRMT6 protein levels. We generated PRMT6-deficient mice and found that they exhibited enhanced antiviral innate immunity. PRMT6 deficiency promoted the TBK1-IRF3 interaction and subsequently enhanced IRF3 activation and type-I interferon production. Mechanistically, viral infection enhanced the binding of PRMT6 to IRF3 and inhibited the interaction between IRF3 and TBK1; this mechanism was independent of PRMT6 methyltransferase activity. Thus, PRMT6 inhibits antiviral innate immunity by sequestering IRF3, thereby blocking TBK1-IRF3 signaling. Our work demonstrates a methyltransferase-independent role for PRMTs. It also identifies a negative regulator of the antiviral immune response, which may protect the host from the damaging effects of an overactive immune system and/or be exploited by viruses to escape immune detection.
Collapse
|
683
|
Abstract
Protein lysine methylation is a distinct posttranslational modification that causes minimal changes in the size and electrostatic status of lysine residues. Lysine methylation plays essential roles in regulating fates and functions of target proteins in an epigenetic manner. As a result, substrates and degrees (free versus mono/di/tri) of protein lysine methylation are orchestrated within cells by balanced activities of protein lysine methyltransferases (PKMTs) and demethylases (KDMs). Their dysregulation is often associated with neurological disorders, developmental abnormalities, or cancer. Methyllysine-containing proteins can be recognized by downstream effector proteins, which contain methyllysine reader domains, to relay their biological functions. While numerous efforts have been made to annotate biological roles of protein lysine methylation, limited work has been done to uncover mechanisms associated with this modification at a molecular or atomic level. Given distinct biophysical and biochemical properties of methyllysine, this review will focus on chemical and biochemical aspects in addition, recognition, and removal of this posttranslational mark. Chemical and biophysical methods to profile PKMT substrates will be discussed along with classification of PKMT inhibitors for accurate perturbation of methyltransferase activities. Semisynthesis of methyllysine-containing proteins will also be covered given the critical need for these reagents to unambiguously define functional roles of protein lysine methylation.
Collapse
Affiliation(s)
- Minkui Luo
- Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
684
|
Wang Y, Hu W, Yuan Y. Protein Arginine Methyltransferase 5 (PRMT5) as an Anticancer Target and Its Inhibitor Discovery. J Med Chem 2018; 61:9429-9441. [PMID: 29870258 DOI: 10.1021/acs.jmedchem.8b00598] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PRMT5 is a major enzyme responsible for symmetric dimethylation of arginine residues on both histone and non-histone proteins, regulating many biological pathways in mammalian cells. PRMT5 has been suggested as a therapeutic target in a variety of diseases including infectious disease, heart disease, and cancer. Many PRMT5 inhibitors have been discovered in the past 5 years, and one entered clinical trial in 2015 for the treatment of solid tumor and mantle cell lymphoma (MCL). The aim of this review is to summarize the current understanding of the roles of PRMT5 in cancer and the discovery of PRMT5 enzymatic inhibitors. By reviewing the structure-activity relationship (SAR) of known inhibitors of PRMT5, we hope to provide guidance for future drug designs and inhibitor optimization. Opportunities and limitations of PRMT5 inhibitors for the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Yuanxiang Wang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Wenhao Hu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| |
Collapse
|
685
|
Katsuno Y, Qin J, Oses-Prieto J, Wang H, Jackson-Weaver O, Zhang T, Lamouille S, Wu J, Burlingame A, Xu J, Derynck R. Arginine methylation of SMAD7 by PRMT1 in TGF-β-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 2018; 293:13059-13072. [PMID: 29907569 DOI: 10.1074/jbc.ra118.002027] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
The epithelial-to-mesenchymal transdifferentiation (EMT) is crucial for tissue differentiation in development and drives essential steps in cancer and fibrosis. EMT is accompanied by reprogramming of gene expression and has been associated with the epithelial stem-cell state in normal and carcinoma cells. The cytokine transforming growth factor β (TGF-β) drives this program in cooperation with other signaling pathways and through TGF-β-activated SMAD3 as the major effector. TGF-β-induced SMAD3 activation is inhibited by SMAD7 and to a lesser extent by SMAD6, and SMAD6 and SMAD7 both inhibit SMAD1 and SMAD5 activation in response to the TGF-β-related bone morphogenetic proteins (BMPs). We previously reported that, in response to BMP, protein arginine methyltransferase 1 (PRMT1) methylates SMAD6 at the BMP receptor complex, thereby promoting its dissociation from the receptors and enabling BMP-induced SMAD1 and SMAD5 activation. We now provide evidence that PRMT1 also facilitates TGF-β signaling by methylating SMAD7, which complements SMAD6 methylation. We found that PRMT1 is required for TGF-β-induced SMAD3 activation, through a mechanism similar to that of BMP-induced SMAD6 methylation, and thus promotes the TGF-β-induced EMT and epithelial stem-cell generation. This critical mechanism positions PRMT1 as an essential mediator of TGF-β signaling that controls the EMT and epithelial cell stemness through SMAD7 methylation.
Collapse
Affiliation(s)
- Yoko Katsuno
- From the Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research.,Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Jian Qin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry and.,Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, China
| | | | - Hongjun Wang
- From the Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry and
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry and
| | - Samy Lamouille
- From the Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research
| | - Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry and
| | | | - Jian Xu
- From the Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, .,Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry and.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Rik Derynck
- From the Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, .,Anatomy, and.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
686
|
Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif Regions in RNA Binding and Phase Separation. J Mol Biol 2018; 430:4650-4665. [PMID: 29913160 DOI: 10.1016/j.jmb.2018.06.014] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022]
Abstract
RGG/RG motifs are RNA binding segments found in many proteins that can partition into membraneless organelles. They occur in the context of low-complexity disordered regions and often in multiple copies. Although short RGG/RG-containing regions can sometimes form high-affinity interactions with RNA structures, multiple RGG/RG repeats are generally required for high-affinity binding, suggestive of the dynamic, multivalent interactions that are thought to underlie phase separation in formation of cellular membraneless organelles. Arginine can interact with nucleotide bases via hydrogen bonding and π-stacking; thus, nucleotide conformers that provide access to the bases provide enhanced opportunities for RGG interactions. Methylation of RGG/RG regions, which is accomplished by protein arginine methyltransferase enzymes, occurs to different degrees in different cell types and may regulate the behavior of proteins containing these regions.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert M Vernon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
687
|
McKenna J, Kapfhamer D, Kinchen JM, Wasek B, Dunworth M, Murray-Stewart T, Bottiglieri T, Casero RA, Gambello MJ. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex. Hum Mol Genet 2018; 27:2113-2124. [PMID: 29635516 PMCID: PMC5985733 DOI: 10.1093/hmg/ddy118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.
Collapse
Affiliation(s)
- James McKenna
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Kapfhamer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandi Wasek
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Tracy Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
688
|
Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin Ther Targets 2018; 22:527-545. [PMID: 29781349 PMCID: PMC6311705 DOI: 10.1080/14728222.2018.1474203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it's becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer.
Collapse
Affiliation(s)
- Emily Smith
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Polina Shindiapina
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Said Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Chenglong Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Robert A. Baiocchi
- The Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
689
|
Multiple Arginine Residues Are Methylated in Drosophila Mre11 and Required for Survival Following Ionizing Radiation. G3-GENES GENOMES GENETICS 2018; 8:2099-2106. [PMID: 29695495 PMCID: PMC5982836 DOI: 10.1534/g3.118.200298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mre11 is a key player for DNA double strand break repair. Previous studies have shown that mammalian Mre11 is methylated at multiple arginines in its C-terminal Glycine-Arginine-Rich motif (GAR) by protein arginine methyltransferase PRMT1. Here, we found that the Drosophila Mre11 is methylated at arginines 559, 563, 565, and 569 in the GAR motif by DART1, the Drosophila homolog of PRMT1. Mre11 interacts with DART1 in S2 cells, and this interaction does not require the GAR motif. Arginines methylated Mre11 localizes exclusively in the nucleus as soluble nuclear protein or chromatin-binding protein. To study the in vivo functions of methylation, we generated the single Arg-Ala and all Arginines mutated flies. We found these mutants were sensitive to ionizing radiation. Furthermore, Arg-Ala mutated flies had no irradiation induced G2/M checkpoint defect in wing disc and eye disc. Thus, we provided evidence that arginines in Drosophila Mre11 are methylated by DART1 methytransferase and flies loss of arginine methylation are sensitive to irradiation.
Collapse
|
690
|
Abstract
Dysregulation of metabolism allows tumor cells to generate needed building blocks as well as to modulate epigenetic marks to support cancer initiation and progression. Cancer-induced metabolic changes alter the epigenetic landscape, especially modifications on histones and DNA, thereby promoting malignant transformation, adaptation to inadequate nutrition, and metastasis. Recent advances in cancer metabolism shed light on how aberrations in metabolites and metabolic enzymes modify epigenetic programs. The metabolism-induced recoding of epigenetics in cancer depends strongly on nutrient availability for tumor cells. In this review, we focus on metabolic remodeling of epigenetics in cancer and examine potential mechanisms by which cancer cells integrate nutritional inputs into epigenetic modification.
Collapse
|
691
|
Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. Proc Natl Acad Sci U S A 2018; 115:E5317-E5325. [PMID: 29773710 PMCID: PMC6003351 DOI: 10.1073/pnas.1804091115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Arginine methylation has emerged as a widespread and reversible protein modification with the potential to regulate a multitude of cellular processes, but its function is poorly understood. Endolysosomes play an important role in Wnt signaling, in which glycogen synthase kinase 3 (GSK3) becomes sequestered inside multivesicular bodies (MVBs) by the process known as microautophagy, causing the stabilization of many proteins. Up to 20% of cellular proteins contain three or more consecutive putative GSK3 sites, and of these 33% also contain methylarginine (meArg) modifications. Intriguingly, a cytoskeletal protein was previously known to have meArg modifications that enhanced subsequent phosphorylations by GSK3. Here, we report the unexpected finding that protein arginine methyltransferase 1 (PRMT1) is required for canonical Wnt signaling. Treatment of cultured cells for 5-30 min with Wnt3a induced a large increase in total endocytic vesicles which were also positive for asymmetric dimethylarginine modifications. Protease protection studies, both biochemical and in situ in cultured cells, showed that many meArg-modified cytosolic proteins became rapidly translocated into MVBs together with GSK3 and Lys48-polyubiquitinated proteins by ESCRT-driven microautophagy. In the case of the transcription factor Smad4, we showed that a unique arginine methylation site was required for GSK3 phosphorylation and Wnt regulation. The enzyme PRMT1 was found to be essential for Wnt-stimulated arginine methylation, GSK3 sequestration, and canonical Wnt signaling. The results reveal a cell biological role for PRMT1 arginine methylation at the crossroads of growth factor signaling, protein phosphorylation, membrane trafficking, cytosolic proteolysis, and Wnt-regulated microautophagy.
Collapse
|
692
|
Huang L, Liu J, Zhang XO, Sibley K, Najjar SM, Lee MM, Wu Q. Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis. J Biol Chem 2018; 293:10884-10894. [PMID: 29773653 DOI: 10.1074/jbc.ra118.002377] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) regulates gene expression either transcriptionally by symmetric dimethylation of arginine residues on histones H4R3, H3R8, and H2AR3 or at the posttranslational level by methylation of nonhistone target proteins. Although emerging evidence suggests that PRMT5 functions as an oncogene, its role in metabolic diseases is not well-defined. We investigated the role of PRMT5 in promoting high-fat-induced hepatic steatosis. A high-fat diet up-regulated PRMT5 levels in the liver but not in other metabolically relevant tissues such as skeletal muscle or white and brown adipose tissue. This was associated with repression of master transcription regulators involved in mitochondrial biogenesis. In contrast, lentiviral short hairpin RNA-mediated reduction of PRMT5 significantly decreased phosphatidylinositol 3-kinase/AKT signaling in mouse AML12 liver cells. PRMT5 knockdown or knockout decreased basal AKT phosphorylation but boosted the expression of peroxisome proliferator-activated receptor α (PPARα) and PGC-1α with a concomitant increase in mitochondrial biogenesis. Moreover, by overexpressing an exogenous WT or enzyme-dead mutant PRMT5 or by inhibiting PRMT5 enzymatic activity with a small-molecule inhibitor, we demonstrated that the enzymatic activity of PRMT5 is required for regulation of PPARα and PGC-1α expression and mitochondrial biogenesis. Our results suggest that targeting PRMT5 may have therapeutic potential for the treatment of fatty liver.
Collapse
Affiliation(s)
- Lei Huang
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jehnan Liu
- the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606
| | - Xiao-Ou Zhang
- the Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Katelyn Sibley
- the Department of Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, and
| | - Sonia M Najjar
- the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606.,the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| | - Mary M Lee
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655,
| | - Qiong Wu
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655,
| |
Collapse
|
693
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
694
|
Araoi S, Daitoku H, Yokoyama A, Kako K, Hirota K, Fukamizu A. The GATA transcription factor ELT-2 modulates both the expression and methyltransferase activity of PRMT-1 in Caenorhabditis elegans. J Biochem 2018; 163:433-440. [PMID: 29361115 DOI: 10.1093/jb/mvy012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzes asymmetric arginine dimethylation of cellular proteins and thus modulates various biological processes, including gene regulation, RNA metabolism, cell signaling and DNA repair. Since prmt-1 null mutant completely abolishes asymmetric dimethylarginine in C. elegans, PRMT-1 is thought to play a crucial role in determining levels of asymmetric arginine dimethylation. However, the mechanism underlying the regulation of PRMT-1 activity remains largely unknown. Here, we explored for transcription factors that induce the expression of PRMT-1 by an RNAi screen using transgenic C. elegans harbouring prmt-1 promoter upstream of gfp. Of 529 clones, we identify a GATA transcription factor elt-2 as a positive regulator of Pprmt-1:: gfp expression and show that elt-2 RNAi decreases endogenous PRMT-1 expression at mRNA and protein levels. Nevertheless, surprisingly arginine methylation levels are increased when elt-2 is silenced, implying that erythroid-like transcription factor (ELT)-2 may also have ability to inhibit methyltransferase activity of PRMT-1. Supporting this idea, GST pull-down and co-immunoprecipitation assays demonstrate the interaction between ELT-2 and PRMT-1. Furthermore, we find that ELT-2 interferes with PRMT-1-induced arginine methylation in a dose-dependent manner. Collectively, our results illustrate the two modes of PRMT-1 regulation, which could determine the levels of asymmetric arginine dimethylation in C. elegans.
Collapse
Affiliation(s)
- Sho Araoi
- Graduate School of Life and Environmental Sciences
| | | | | | | | - Keiko Hirota
- Faculty of Life and Environmental Sciences.,Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | |
Collapse
|
695
|
Jiang H, Zhou Z, Jin S, Xu K, Zhang H, Xu J, Sun Q, Wang J, Xu J. PRMT9 promotes hepatocellular carcinoma invasion and metastasis via activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Sci 2018; 109:1414-1427. [PMID: 29603830 PMCID: PMC5980302 DOI: 10.1111/cas.13598] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMT) catalyze protein arginine methylation and play an important role in many biological processes. Aberrant PRMT expression in tumor cells has been documented in several common cancer types; however, its precise contribution to hepatocellular carcinoma (HCC) cell invasion and metastasis is not fully understood. In this study, we identified a new oncogene, PRMT9, whose overexpression strongly promotes HCC invasion and metastasis. PRMT9 expression was detected more frequently in HCC tissues than in adjacent noncancerous tissues. PRMT9 overexpression was significantly correlated with hepatitis B virus antigen (HBsAg) status, vascular invasion, poor tumor differentiation and advanced TNM stage. Patients with higher PRMT9 expression had a shorter survival time and higher recurrence rate. PRMT9 expression was an independent and significant risk factor for survival after curative resection. Functional studies demonstrated that PRMT9 increased HCC cell invasion and lung metastasis. Knocking down PRMT9 with short hairpin RNA (shRNA) inhibited HCC cell invasion. Further investigations found that PRMT9 increased cell migration and invasion through epithelial-mesenchymal transition (EMT) by regulating Snail expression via activation of the PI3K/Akt/GSK-3β/Snail signaling pathway. In clinical HCC samples, PRMT9 expression was positively associated with Snail expression and was negatively associated with E-cadherin expression. In conclusion, our study demonstrated that PRMT9 is an oncogene that plays an important role in HCC invasion and metastasis through EMT by regulating Snail expression via activation of the PI3K/Akt/GSK-3β/Snail signaling pathway. Thus, PRMT9 may serve as a candidate prognostic biomarker and a potential therapeutic target.
Collapse
Affiliation(s)
- Hai Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shaowen Jin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Kang Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Heyun Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Junyang Xu
- Department of NeurologyForth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Qing Sun
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of PathologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Junyao Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationResearch Center of MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatobiliary SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
696
|
Liu J, Zhang S, Liu M, Liu Y, Nshogoza G, Gao J, Ma R, Yang Y, Wu J, Zhang J, Li F, Ruan K. Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit. FEBS J 2018; 285:2091-2103. [DOI: 10.1111/febs.14469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Jiuyang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Shuya Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Mingqing Liu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Yaqian Liu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Jia Gao
- Center of Medical Physics and Technology Hefei Institute of Physical Science Chinese Academy of Science Hefei China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Yang Yang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| | - Ke Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale School of Life Sciences University of Science and Technology of China Hefei China
| |
Collapse
|
697
|
Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA, Lin JQ, Phillips EC, Miyashita A, Williams D, Ströhl F, Meadows W, Ferry R, Dardov VJ, Tartaglia GG, Farrer LA, Kaminski Schierle GS, Kaminski CF, Holt CE, Fraser PE, Schmitt-Ulms G, Klenerman D, Knowles T, Vendruscolo M, St George-Hyslop P. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions. Cell 2018; 173:720-734.e15. [PMID: 29677515 PMCID: PMC5927716 DOI: 10.1016/j.cell.2018.03.056] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
Abstract
Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.
Collapse
Affiliation(s)
- Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - GuoZhen Wang
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Suzanne J Randle
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Juan A Varela
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Emma C Phillips
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Akinori Miyashita
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - William Meadows
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Rodylyn Ferry
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Victoria J Dardov
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gian G Tartaglia
- Centre for Genomic Regulation, the Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Lindsay A Farrer
- Departments of Medicine, Neurology, and Ophthalmology and Departments of Epidemiology and Biostatistics, Boston University, Boston, MA 02118, USA
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Christine E Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK; Tanz Centre for Research in Neurodegenerative Diseases and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3H2, Canada.
| |
Collapse
|
698
|
Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Lett 2018; 427:38-48. [PMID: 29679612 DOI: 10.1016/j.canlet.2018.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro. PRMT5 was frequently overexpressed in lung tumors, and its expression was positively related to tumor stages, lymphatic metastasis and poor outcome. In this model, PRMT5 repressed the transcription of the miR-99 family by symmetrical dimethylation of histone H4R3, which increased FGFR3 expression and in turn activated Erk1/2 and Akt, leading to cell growth and metastasis in lung cancer. Furthermore, loss of PRMT5 exerted anti-metastasis effects on lung cancer progression by blocking histone-modification of miR-99 family. Overall, this study provides new insights into the PRMT5/miR-99 family/FGFR3 axis in regulating lung cancer progression and identifies PRMT5 as a promising prognostic biomarker and therapeutic target.
Collapse
|
699
|
Sato A, Kim JD, Mizukami H, Nakashima M, Kako K, Ishida J, Itakura A, Takeda S, Fukamizu A. Gestational changes in PRMT1 expression of murine placentas. Placenta 2018; 65:47-54. [PMID: 29908641 DOI: 10.1016/j.placenta.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION In mammals, the placenta is an organ that is required to maintain the development of fetus during pregnancy. Although the proper formation of placenta is in part regulated by the post-translational modifications of proteins, little is known regarding protein arginine methylation during placental development. Here, we characterized developmental expression of protein arginine methyltransferase 1 (PRMT1) in mouse placentas. METHODS Expression levels of PRMT1 mRNA and protein in placentas were investigated using the real-time quantitative PCR and Western blot, respectively. Next, the localization of PRMT1 was determined by immunohistochemistry and immunofluorescence analyses. In addition, the levels of methylarginines of placental proteins were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS PRMT1 mRNA and its protein were expressed at highest levels in mid-gestation stages, and their expression showed stepwise decrease in the late gestation. At embryonic (E) day 9, PRMT1 was observed in several different trophoblast cell (TC) subtypes. Furthermore, PRMT1 was mainly expressed in the labyrinth zone of TCs at E13. Finally, total methylarginines of proteins were significantly reduced in late gestation of placentas compared with mid-gestation stages. DISCUSSION In this study, we found developmental changes in the placental expression of PRMT1 and in protein arginine methylation status during pregnancy. These findings provide fundamental information regarding placental PRMT1-mediated arginine methylation during the development.
Collapse
Affiliation(s)
- Anna Sato
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hayase Mizukami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Misaki Nakashima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo 113-8421, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
700
|
Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol 2018; 233:6495-6507. [PMID: 29574768 DOI: 10.1002/jcp.26497] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Macrophages respond to noxious stimuli and contribute to inflammatory responses by eliminating pathogens or damaged tissue and maintaining homeostasis. Response to activation signals and maintenance of homeostasis require tight regulation of genes involved in macrophage activation and inactivation processes, as well as genes involved in determining their polarization state. Recent evidence has revealed that such regulation occurs through histone modifications that render inflammatory or polarizing gene promoters accessible to transcriptional complexes. Thus, inflammatory and anti-inflammatory genes are regulated by histone acetylation and methylation, determining their activation state. Herein, we review the current knowledge on the role of histone modifying enzymes (acetyltransferases, deacetylases, methyltransferases, and demethylases) in determining the responsiveness and M1 or M2 polarization of macrophages. The contribution of these enzymes in the development of inflammatory diseases is also presented.
Collapse
Affiliation(s)
- Maria G Daskalaki
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece.,Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios C Kampranis
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|