651
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
652
|
Capdeville N, Schindele P, Puchta H. Application of CRISPR/Cas-mediated base editing for directed protein evolution in plants. SCIENCE CHINA-LIFE SCIENCES 2020; 63:613-616. [DOI: 10.1007/s11427-020-1655-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
|
653
|
Hua K, Tao X, Liang W, Zhang Z, Gou R, Zhu J. Simplified adenine base editors improve adenine base editing efficiency in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:770-778. [PMID: 31469505 PMCID: PMC7004905 DOI: 10.1111/pbi.13244] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 05/19/2023]
Abstract
Adenine base editors (ABEs) have been exploited to introduce targeted adenine (A) to guanine (G) base conversions in various plant genomes, including rice, wheat and Arabidopsis. However, the ABEs reported thus far are all quite inefficient at many target sites in rice, which hampers their applications in plant genome engineering and crop breeding. Here, we show that unlike in the mammalian system, a simplified base editor ABE-P1S (Adenine Base Editor-Plant version 1 Simplified) containing the ecTadA*7.10-nSpCas9 (D10A) fusion has much higher editing efficiency in rice compared to the widely used ABE-P1 consisting of the ecTadA-ecTadA*7.10-nSpCas9 (D10A) fusion. We found that the protein expression level of ABE-P1S is higher than that of ABE-P1 in rice calli and protoplasts, which may explain the higher editing efficiency of ABE-P1S in different rice varieties. Moreover, we demonstrate that the ecTadA*7.10-nCas9 fusion can be used to improve the editing efficiency of other ABEs containing SaCas9 or the engineered SaKKH-Cas9 variant. These more efficient ABEs will help advance trait improvements in rice and other crops.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress BiologyCAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoping Tao
- Shanghai Center for Plant Stress BiologyCAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Weiyi Liang
- Shanghai Center for Plant Stress BiologyCAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaoxia Zhang
- Shanghai Center for Plant Stress BiologyCAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Runyu Gou
- College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress BiologyCAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
654
|
Gao Q, Li G, Sun H, Xu M, Wang H, Ji J, Wang D, Yuan C, Zhao X. Targeted Mutagenesis of the Rice FW 2.2-Like Gene Family Using the CRISPR/Cas9 System Reveals OsFWL4 as a Regulator of Tiller Number and Plant Yield in Rice. Int J Mol Sci 2020; 21:ijms21030809. [PMID: 31991936 PMCID: PMC7037146 DOI: 10.3390/ijms21030809] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
The FW2.2-like (FWL) genes encode cysteine-rich proteins with a placenta-specific 8 domain. They play roles in cell division and organ size control, response to rhizobium infection, and metal ion homeostasis in plants. Here, we target eight rice FWL genes using the CRISPR/Cas9 system delivered by Agrobacterium-mediated transformation. We successfully generate transgenic T0 lines for 15 of the 16 targets. The targeted mutations are detected in the T0 lines of all 15 targets and the average mutation rate is found to be 81.6%. Transfer DNA (T-DNA) truncation is a major reason for the failure of mutagenesis in T0 plants. T-DNA segregation analysis reveals that the T-DNA inserts in transgenic plants can be easily eliminated in the T1 generation. Of the 30 putative off-target sites examined, unintended mutations are detected in 13 sites. Phenotypic analysis reveals that tiller number and plant yield of OsFWL4 gene mutants are significantly greater than those of the wild type. Flag leaves of OsFWL4 gene mutants are wider than those of the wild type. The increase in leaf width of the mutants is caused by an increase in cell number. Additionally, grain length of OsFWL1 gene mutants is higher than that of the wild type. Our results suggest that transgene-free rice plants with targeted mutations can be produced in the T1 generation using the Agrobacterium-mediated CRISPR/Cas9 system and that the OsFWL4 gene is a negative regulator of tiller number and plant yield.
Collapse
Affiliation(s)
- Qingsong Gao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
| | - Gang Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an 223001, China
| | - Hui Sun
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
| | - Ming Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
| | - Huanhuan Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
| | - Di Wang
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an 223001, China
| | - Caiyong Yuan
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an 223001, China
- Correspondence: (C.Y.); (X.Z.); Tel.: +86-517-83659907 (C.Y.); +86-517-83525885 (X.Z.)
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China
- Correspondence: (C.Y.); (X.Z.); Tel.: +86-517-83659907 (C.Y.); +86-517-83525885 (X.Z.)
| |
Collapse
|
655
|
Xu Y, Meng X, Wang J, Qin B, Wang K, Li J, Wang C, Yu H. ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. SCIENCE CHINA-LIFE SCIENCES 2020; 63:450-452. [PMID: 31953707 DOI: 10.1007/s11427-019-1630-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Yibo Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.,Agricultural College, Guangxi University, Nanning, 530000, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjie Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Baoxiang Qin
- Agricultural College, Guangxi University, Nanning, 530000, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
656
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
657
|
Manipulating gene translation in plants by CRISPR-Cas9-mediated genome editing of upstream open reading frames. Nat Protoc 2020; 15:338-363. [PMID: 31915386 DOI: 10.1038/s41596-019-0238-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR-Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)-Cas9 vectors, identifying transgene-free uorf mutants, and finally comparing the mRNA, protein and phenotypic levels of target genes in uorf mutants and controls. Predicting uORFs and confirming their effects in protoplasts takes only 2-3 weeks, and transgene-free mutants with edited target uORFs controlling different levels of pORF translation can be obtained within 4 months. Unlike previous methods, our strategy achieves fine-tuning of gene translation in transgene-free derivatives, which accelerates the analysis of gene function and the improvement of crop traits.
Collapse
|
658
|
Ahmad S, Wei X, Sheng Z, Hu P, Tang S. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genomics 2020; 19:26-39. [DOI: 10.1093/bfgp/elz041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Several plant pathogens severely affect crop yield and quality, thereby threatening global food security. In order to cope with this challenge, genetic improvement of plant disease resistance is required for sustainable agricultural production, for which conventional breeding is unlikely to do enough. Luckily, genome editing systems that particularly clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) has revolutionized crop improvement by enabling robust and precise targeted genome modifications. It paves the way towards new methods for genetic improvement of plant disease resistance and accelerates resistance breeding. In this review, the challenges, limitations and prospects for conventional breeding and the applications of CRISPR/Cas9 system for the development of transgene-free disease-resistant crops are discussed.
Collapse
|
659
|
|
660
|
Ku HK, Ha SH. Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:577313. [PMID: 33193521 PMCID: PMC7644509 DOI: 10.3389/fpls.2020.577313] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/15/2020] [Indexed: 05/07/2023]
Abstract
Genome-editing tools including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR) system have been applied to improve the quality of staple, oilseed, and horticultural crops with great accuracy and efficiency compared to conventional breeding. In particular, the CRISPR method has proven to be a feasible, cost-effective and versatile tool allowing precise and efficient editing of plant genomes in recent years, showing great potential in crop improvement. Until now, various genome-edited crops with enhanced commercial value have been developed by not only global companies but also small laboratories in universities, suggesting low entry barriers with respect to manpower and capital. In this study, we review the current applications of genome editing technologies to improve the nutritional and functional quality and preferred traits of various crops. Combining this rapidly advancing genome-editing technology and conventional breeding will greatly extend the potential of genome-edited crops and their commercialization.
Collapse
Affiliation(s)
| | - Sun-Hwa Ha
- *Correspondence: Sun-Hwa Ha, ; orcid.org/0000-0002-0260-7645
| |
Collapse
|
661
|
Chib S, Thangaraj A, Kaul S, Dhar MK, Kaul T. Development of a system for efficient callus production, somatic embryogenesis and gene editing using CRISPR/Cas9 in Saffron ( Crocus sativus L.). PLANT METHODS 2020; 16:47. [PMID: 32280363 PMCID: PMC7137501 DOI: 10.1186/s13007-020-00589-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/24/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Crocus sativus is a recalcitrant plant for genetic transformation and genetic improvement, largely due to difficulties in Agrobacterium mediated transformation and vegetative reproduction. Effective genome editing requires proficient callus production and an efficient method to deliver Cas9 and sgRNAs into the plant. Here, we demonstrate Agrobacterium-mediated transformation of saffron. Further, we developed a CRISPR-Cas9 based system in this plant, for efficient gene knockout or edits in future. RESULTS Efficient callus production and regeneration confers important benefits in developing competent transformation system in plants. More than 70% multiplication rate of callus initiation was achieved from corm slices of saffron subjected to a two-step sterilization procedure and grown on complete MS medium supplemented with 2,4-D (0.5 mg/L), BAP (1 mg/L), IAA (1 mg/L), photoperiod of 16/8 h and 45% relative humidity at 20 ± 2 °C. In vitro cormlet generation was accomplished in 8 weeks by using mature somatic embryos on MS medium supplemented with TDZ (0.5 mg/L) + IAA (1 mg/L) + Activated charcoal (0.1 g/L) at 15 ± 2 °C. The attempt of using Agrobacterium-mediated transformation resulted in successful integration of the binary vector into the somatic embryos of saffron with a transformation efficiency of 4%. PCR and Southern blot analysis confirmed the integration of Cas9 into saffron. CONCLUSION The protocol for callus production, somatic embryogenesis and regeneration was standardised. Successful demonstration of integrated Cas9 in this study constitutes first step in developing strategies for genetic manipulation of saffron, which has so far been considered recalcitrant. Furthering the development of this technology holds significant potential for advancing genetic research in saffron by integrating multigene targeting and/or use of recyclable cassettes.
Collapse
Affiliation(s)
- Sudha Chib
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir India
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Department of Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Department of Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
662
|
Yang Q, Zhao D, Liu Q. Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example. FRONTIERS IN PLANT SCIENCE 2020; 11:928. [PMID: 32636870 PMCID: PMC7317030 DOI: 10.3389/fpls.2020.00928] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Extensive efforts have been made to fortify essential amino acids and boost nutrition in plants, but unintended effects on growth and physiology are also observed. Understanding how different amino acid metabolisms are connected with other biological pathways is therefore important. In addition to protein synthesis, amino acid metabolism is also tightly linked to energy and carbohydrate metabolism, the carbon-nitrogen budget, hormone and secondary metabolism, stress responses, and so on. Here, we update the currently available information on the connections between amino acid metabolisms, which tend to be overlooked in higher plants. Particular emphasis was placed on the connections between lysine metabolism and other pathways, such as tryptophan metabolism, the tricarboxylic acid cycle, abiotic and biotic stress responses, starch metabolism, and the unfolded protein response. Interestingly, regulation of lysine metabolism was found to differ between plant species, as is the case between dicots and monocots. Determining the metabolic connection between amino acid metabolisms will help improve our understanding of the metabolic flux, supporting studies on crop nutrition.
Collapse
Affiliation(s)
- Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Dongsheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Qiaoquan Liu,
| |
Collapse
|
663
|
Cao X, Dong Z, Tian D, Dong L, Qian W, Liu J, Liu X, Qin H, Zhai W, Gao C, Zhang K, Wang D. Development and characterization of marker-free and transgene insertion site-defined transgenic wheat with improved grain storability and fatty acid content. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:129-140. [PMID: 31141279 PMCID: PMC6920130 DOI: 10.1111/pbi.13178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 05/24/2023]
Abstract
Development of marker-free and transgene insertion site-defined (MFTID) transgenic plants is essential for safe application of transgenic crops. However, MFTID plants have not been reported for wheat (Triticum aestivum). Here, we prepared a RNAi cassette for suppressing lipoxygenase (LOX) gene expression in wheat grains using a double right border T-DNA vector. The resultant construct was introduced into wheat genome via Agrobacterium-mediated transformation, with four homozygous marker-free transgenic lines (namely GLRW-1, -3, -5 and -8) developed. Aided by the newly published wheat genome sequence, the T-DNA insertion sites in GLRW-3 and GLRW-8 were elucidated at base-pair resolution. While the T-DNA in GLRW-3 inserted in an intergenic region, that of GLRW-8 inactivated an endogenous gene, which was thus excluded from further analysis. Compared to wild -type (WT) control, GLRW-1, -3 and -5 showed decreased LOX gene expression, lower LOX activity and less lipid peroxidation in the grains; they also exhibited significantly higher germination rates and better seedling growth after artificial ageing treatment. Interestingly, the three GLRW lines also had substantially increased contents of several fatty acids (e.g., linoleic acid and linolenic acid) in their grain and flour samples than WT control. Collectively, our data suggest that suppression of grain LOX activity can be employed to improve the storability and fatty acid content of wheat seeds and that the MFTID line GLRW-3 is likely of commercial value. Our approach may also be useful for developing the MFTID transgenic lines of other crops with enhanced grain storability and fatty acid content.
Collapse
Affiliation(s)
- Xuemin Cao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhenying Dong
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Dong Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Weiqiang Qian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jinxing Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Huanju Qin
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Wenxue Zhai
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop ScienceHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop ScienceHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
664
|
He J, Xin P, Ma X, Chu J, Wang G. Gibberellin Metabolism in Flowering Plants: An Update and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:532. [PMID: 32508855 PMCID: PMC7248407 DOI: 10.3389/fpls.2020.00532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/08/2020] [Indexed: 05/09/2023]
Abstract
In plants, gibberellins (GAs) play important roles in regulating growth and development. Early studies revealed the large chemodiversity of gibberellins in plants, but only GA1, GA3, GA4, and GA7 show biological activity that controls plant development. However, the elucidation of the GA metabolic network at the molecular level has lagged far behind the chemical discovery of GAs. Recent advances in downstream GA biosynthesis (after GA12 formation) suggest that species-specific gibberellin modifications were acquired during flowering plant evolution. Here, we summarize the current knowledge of GA metabolism in flowering plants and the physiological functions of GA deactivation, with a focus on GA 13 hydroxylation. The potential applications of GA synthetic biology for plant development are also discussed.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xueting Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Guodong Wang,
| |
Collapse
|
665
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, Zhang ZZ, Wei CL, Wan XC. Tea plant genomics: achievements, challenges and perspectives. HORTICULTURE RESEARCH 2020; 7:7. [PMID: 31908810 PMCID: PMC6938499 DOI: 10.1038/s41438-019-0225-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Tea is among the world's most widely consumed non-alcoholic beverages and possesses enormous economic, health, and cultural values. It is produced from the cured leaves of tea plants, which are important evergreen crops globally cultivated in over 50 countries. Along with recent innovations and advances in biotechnologies, great progress in tea plant genomics and genetics has been achieved, which has facilitated our understanding of the molecular mechanisms of tea quality and the evolution of the tea plant genome. In this review, we briefly summarize the achievements of the past two decades, which primarily include diverse genome and transcriptome sequencing projects, gene discovery and regulation studies, investigation of the epigenetics and noncoding RNAs, origin and domestication, phylogenetics and germplasm utilization of tea plant as well as newly developed tools/platforms. We also present perspectives and possible challenges for future functional genomic studies that will contribute to the acceleration of breeding programs in tea plants.
Collapse
Affiliation(s)
- En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
666
|
The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants. ABIOTECH 2020; 1:32-40. [PMID: 36305006 PMCID: PMC9590457 DOI: 10.1007/s42994-019-00003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Targeted gene manipulation is highly desirable for fundamental plant research, plant synthetic biology, and molecular breeding. The clustered regularly interspaced short palindromic repeats-associated (Cas) nuclease is a revolutionary tool for genome editing, and has received snowballing popularity for gene knockout applications in diverse organisms including plants. Recently, the nuclease-dead Cas (dCas) proteins have been repurposed as programmable transcriptional regulators through translational fusion with portable transcriptional repression or activation domains, which has paved new ways for flexible and multiplex control over the activities of target genes of interest without the need to generate DNA lesions. Here, we review the most important breakthroughs of dCas transcriptional regulators in non-plant organisms and recent accomplishments of this growing field in plants. We also provide perspectives on future development directions of dCas transcriptional regulators in plant research in hope to stimulate their quick evolution and broad applications.
Collapse
|
667
|
Dong C, Zhang L, Chen Z, Xia C, Gu Y, Wang J, Li D, Xie Z, Zhang Q, Zhang X, Gui L, Liu X, Kong X. Combining a New Exome Capture Panel With an Effective varBScore Algorithm Accelerates BSA-Based Gene Cloning in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1249. [PMID: 32903549 PMCID: PMC7438552 DOI: 10.3389/fpls.2020.01249] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 05/07/2023]
Abstract
The discovery of functional genes underlying agronomic traits is of great importance for wheat improvement. Here we designed a new wheat exome capture probe panel based on IWGSC RefSeq v1.0 genome sequence information and developed an effective algorithm, varBScore, that can sufficiently reduce the background noise in gene mapping and identification. An effective method, termed bulked segregant exome capture sequencing (BSE-Seq) for identifying causal mutations or candidate genes was established by combining the use of a newly designed wheat exome capture panel, sequencing of bulked segregant pools from segregating populations, and the robust algorithm varBScore. We evaluated the effectiveness of varBScore on SNP calling using the published dataset for mapping and cloning the yellow rust resistance gene Yr7 in wheat. Furthermore, using BSE-Seq, we rapidly identified a wheat yellow leaf mutant gene, ygl1, in an ethyl methanesulfonate (EMS) mutant population and found that a single mutation of G to A at 921 position in the wild type YGL1 gene encoding magnesium-chelatase subunit chlI caused the leaf yellowing phenotype. We further showed that mutation of YGL1 through CRISPR/Cas9 gene editing led to a yellow phenotype on the leaves of transgenic wheat, indicating that ygl1 is the correct causal gene responsible for the mutant phenotype. In summary, our approach is highly efficient for discovering causal mutations and gene cloning in wheat.
Collapse
Affiliation(s)
- Chunhao Dong
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Zhang
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lichao Zhang, ; Xu Liu, ; Xiuying Kong,
| | - Zhongxu Chen
- Department of Life Science, Chengdu Tcuni Technology, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Chuan Xia
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Gu
- Western Regional Research, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danping Li
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhencheng Xie
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Zhang
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueying Zhang
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixuan Gui
- Department of Life Science, Chengdu Tcuni Technology, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xu Liu
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lichao Zhang, ; Xu Liu, ; Xiuying Kong,
| | - Xiuying Kong
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lichao Zhang, ; Xu Liu, ; Xiuying Kong,
| |
Collapse
|
668
|
Yuan L, Li R. Metabolic Engineering a Model Oilseed Camelina sativa for the Sustainable Production of High-Value Designed Oils. FRONTIERS IN PLANT SCIENCE 2020; 11:11. [PMID: 32117362 PMCID: PMC7028685 DOI: 10.3389/fpls.2020.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 05/06/2023]
Abstract
Camelina sativa (L.) Crantz is an important Brassicaceae oil crop with a number of excellent agronomic traits including low water and fertilizer input, strong adaptation and resistance. Furthermore, its short life cycle and easy genetic transformation, combined with available data of genome and other "-omics" have enabled camelina as a model oil plant to study lipid metabolism regulation and genetic improvement. Particularly, camelina is capable of rapid metabolic engineering to synthesize and accumulate high levels of unusual fatty acids and modified oils in seeds, which are more stable and environmentally friendly. Such engineered camelina oils have been increasingly used as the super resource for edible oil, health-promoting food and medicine, biofuel oil and high-valued chemical production. In this review, we mainly highlight the latest advance in metabolic engineering towards the predictive manipulation of metabolism for commercial production of desirable bio-based products using camelina as an ideal platform. Moreover, we deeply analysis camelina seed metabolic engineering strategy and its promising achievements by describing the metabolic assembly of biosynthesis pathways for acetyl glycerides, hydroxylated fatty acids, medium-chain fatty acids, ω-3 long-chain polyunsaturated fatty acids, palmitoleic acid (ω-7) and other high-value oils. Future prospects are discussed, with a focus on the cutting-edge techniques in camelina such as genome editing application, fine directed manipulation of metabolism and future outlook for camelina industry development.
Collapse
Affiliation(s)
- Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
- *Correspondence: Runzhi Li,
| |
Collapse
|
669
|
Banakar R, Eggenberger AL, Lee K, Wright DA, Murugan K, Zarecor S, Lawrence-Dill CJ, Sashital DG, Wang K. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci Rep 2019; 9:19902. [PMID: 31882637 PMCID: PMC6934568 DOI: 10.1038/s41598-019-55681-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
An important advantage of delivering CRISPR reagents into cells as a ribonucleoprotein (RNP) complex is the ability to edit genes without reagents being integrated into the genome. Transient presence of RNP molecules in cells can reduce undesirable off-target effects. One method for RNP delivery into plant cells is the use of a biolistic gun. To facilitate selection of transformed cells during RNP delivery, a plasmid carrying a selectable marker gene can be co-delivered with the RNP to enrich for transformed/edited cells. In this work, we compare targeted mutagenesis in rice using three different delivery platforms: biolistic RNP/DNA co-delivery; biolistic DNA delivery; and Agrobacterium-mediated delivery. All three platforms were successful in generating desired mutations at the target sites. However, we observed a high frequency (over 14%) of random plasmid or chromosomal DNA fragment insertion at the target sites in transgenic events generated from both biolistic delivery platforms. In contrast, integration of random DNA fragments was not observed in transgenic events generated from the Agrobacterium-mediated method. These data reveal important insights that must be considered when selecting the method for genome-editing reagent delivery in plants, and emphasize the importance of employing appropriate molecular screening methods to detect unintended alterations following genome engineering.
Collapse
Affiliation(s)
- Raviraj Banakar
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | - Alan L Eggenberger
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
| | - Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
| | - David A Wright
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
- Plant Transformation Facility, Iowa State University, Ames, IA, USA
| | - Karthik Murugan
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Scott Zarecor
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Carolyn J Lawrence-Dill
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dipali G Sashital
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, USA.
- Crop Bioengineering Center, Iowa State University, Ames, IA, USA.
| |
Collapse
|
670
|
Bekkering CS, Tian L. Thinking Outside of the Cereal Box: Breeding Underutilized (Pseudo)Cereals for Improved Human Nutrition. Front Genet 2019; 10:1289. [PMID: 31921317 PMCID: PMC6933008 DOI: 10.3389/fgene.2019.01289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022] Open
Abstract
Cereal grains have historically played a critical role in sustaining the caloric needs of the human population. The major cereal crops, wheat, rice, and maize, are widely cultivated and have been subjected to biofortification to enhance the vitamin and mineral nutrient content of grains. In contrast, grains of several other cereals as well as non-grass pseudocereals are naturally rich in micronutrients, but have yet to be explored for broad-scale cultivation and consumption. This mini review focuses on the micronutrient and phytochemical profiles of a few emerging (pseudo)cereals and examines the current constraints of their integration into the global food system. Prospects of leveraging whole genome sequence information and modern breeding technologies to promote the breeding and accessibility of these crops are also discussed.
Collapse
Affiliation(s)
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
671
|
Wolter F, Puchta H. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1083-1094. [PMID: 31381206 DOI: 10.1111/tpj.14488] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 05/20/2023]
Abstract
The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We previously developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a double-strand break and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell-specific expression of the potent but less broadly applicable SaCas9 nuclease. In this study, we now tested whether we could improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20-80-fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for gene targeting (GT) and chromosomal repeat-induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower non-homologous end-joining (NHEJ) induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT-rich PAM broadens the range of ipGT drastically, particularly when targeting in CG-deserts like promoters and introns.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
672
|
Yang X, Liu D, Tschaplinski TJ, Tuskan GA. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6539-6547. [PMID: 31616946 PMCID: PMC6883262 DOI: 10.1093/jxb/erz408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis is an important biological innovation enabling plant adaptation to hot and dry environments. CAM plants feature high water-use efficiency, with potential for sustainable crop production under water-limited conditions. A deep understanding of CAM-related gene function and molecular evolution of CAM plants is critical for exploiting the potential of engineering CAM into C3 crops to enhance crop production on semi-arid or marginal agricultural lands. With the newly emerging genomics resources for multiple CAM species, progress has been made in comparative genomics studies on the molecular basis and subsequently on the evolution of CAM. Here, recent advances in CAM comparative genomics research in constitutive and facultative CAM plants are reviewed, with a focus on the analyses of DNA/protein sequences and gene expression to provide new insights into the path and driving force of CAM evolution and to identify candidate genes involved in CAM-related biological processes. Potential applications of new computational and experimental technologies (e.g. CRISPR/Cas-mediated genome-editing technology) to the comparative and evolutionary genomics research on CAM plants are offered.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| |
Collapse
|
673
|
Walawage SL, Zaini PA, Mubarik MS, Martinelli F, Balan B, Caruso T, Leslie CA, Dandekar AM. Deploying Genome Editing Tools for Dissecting the Biology of Nut Trees. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
674
|
Yarra R, Jin L, Zhao Z, Cao H. Progress in Tissue Culture and Genetic Transformation of Oil Palm: An Overview. Int J Mol Sci 2019; 20:E5353. [PMID: 31661801 PMCID: PMC6862151 DOI: 10.3390/ijms20215353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022] Open
Abstract
Oil palm (Elaeis guineensis, Jacq.) is a prominent vegetable-oil-yielding crop. Cultivating high-yielding oil palm with improved traits is a pre-requisite to meet the increasing demands of palm oil consumption. However, tissue culture and biotechnological approaches can resolve these concerns. Over the past three decades, significant research has been carried out to develop tissue culture and genetic transformation protocols for oil palm. Somatic embryogenesis is an efficient platform for the micropropagation of oil palm on a large scale. In addition, various genetic transformation techniques, including microprojectile bombardment, Agrobacterium tumefaciens mediated, Polyethylene glycol mediated mediated, and DNA microinjection, have been developed by optimizing various parameters for the efficient genetic transformation of oil palm. This review mainly emphasizes the methods established for in vitro propagation and genetic transformation of oil palm. Finally, we propose the application of the genome editing tool CRISPR/Cas9 to improve the various traits in this oil yielding crop.
Collapse
Affiliation(s)
- Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Longfei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Zhihao Zhao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| |
Collapse
|
675
|
Yang T, Deng L, Zhao W, Zhang R, Jiang H, Ye Z, Li CB, Li C. Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. J Genet Genomics 2019; 46:505-508. [PMID: 31734133 DOI: 10.1016/j.jgg.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Tianxia Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Zhao
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoxi Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
676
|
Han YJ, Kim JI. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. PLANT BIOTECHNOLOGY REPORTS 2019; 13:447-457. [PMID: 0 DOI: 10.1007/s11816-019-00575-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 05/27/2023]
|
677
|
Zhong S, Qu LJ. Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:7-14. [PMID: 30999163 DOI: 10.1016/j.pbi.2019.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 05/10/2023]
Abstract
In flowering plants, extensive male-female interactions during pollen germination on the stigma, pollen tube growth and guidance in the transmitting tract, and pollen tube reception by the female gametophyte are required for successful double fertilization in which various signaling cascades are involved. Peptide/receptor-like kinase-mediated signaling has been found playing important roles in these male-female interactions. Here, we mainly summarized the progress made on the regulatory roles of peptide/receptor-like kinase-mediated signaling pathways in four critical stages during reproduction in higher plants.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
678
|
Cheng Y, Zhang N, Hussain S, Ahmed S, Yang W, Wang S. Integration of a FT expression cassette into CRISPR/Cas9 construct enables fast generation and easy identification of transgene-free mutants in Arabidopsis. PLoS One 2019; 14:e0218583. [PMID: 31545795 PMCID: PMC6756540 DOI: 10.1371/journal.pone.0218583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR/Cas9 genome editing technique has been widely used to generate transgene-free mutants in different plant species. Several different methods including fluorescence marker-assisted visual screen of transgene-free mutants and programmed self-elimination of CRISPR/Cas9 construct have been used to increase the efficiency of genome edited transgene-free mutant isolation, but the overall time length required to obtain transgene-free mutants has remained unchanged in these methods. We report here a method for fast generation and easy identification of transgene-free mutants in Arabidopsis. By generating and using a single FT expression cassette-containing CRISPR/Cas9 construct, we targeted two sites of the AITR1 gene. We obtained many early bolting plants in T1 generation, and found that about two thirds of these plants have detectable mutations. We then analyzed T2 generations of two representative lines of genome edited early bolting T1 plants, and identified plants without early bolting phenotype, i.e., transgene-free plants, for both lines. Further more, aitr1 homozygous mutants were successful obtained for both lines from these transgene-free plants. Taken together, these results suggest that the method described here enables fast generation, and at the mean time, easy identification of transgene-free mutants in plants.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Wenting Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, Jilin, China
- College of Life Science, Linyi University, Linyi, Shandong, China
| |
Collapse
|
679
|
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019; 366:science.aax0025. [PMID: 31488704 DOI: 10.1126/science.aax0025] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.
Collapse
Affiliation(s)
- Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
680
|
Gao XQ, Wang N, Wang XL, Zhang XS. Architecture of Wheat Inflorescence: Insights from Rice. TRENDS IN PLANT SCIENCE 2019; 24:802-809. [PMID: 31257155 DOI: 10.1016/j.tplants.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 05/24/2023]
Abstract
The inflorescence architecture of grass crops affects the number of kernels and final grain yield. Great progress has been made in genetic analysis of rice inflorescence development in the past decades. However, the advances in wheat largely lag behind those in rice due to the repetitive and polyploid genomes of wheat. In view of the similar branching patterns and developmental characteristics between rice and wheat, the studies on inflorescence architecture in rice will facilitate related studies in wheat in the future. Here, we review the developmental regulation of inflorescences in rice and wheat and highlight several pathways that potentially regulate the inflorescence architecture of wheat.
Collapse
Affiliation(s)
- Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xian Sheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
681
|
Shelake RM, Pramanik D, Kim JY. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019; 7:E269. [PMID: 31426522 PMCID: PMC6723455 DOI: 10.3390/microorganisms7080269] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Plants and microbes are co-evolved and interact with each other in nature. Plant-associated microbes, often referred to as plant microbiota, are an integral part of plant life. Depending on the health effects on hosts, plant-microbe (PM) interactions are either beneficial or harmful. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known. Recently, our knowledge of community composition of plant microbiome and significant driving factors have significantly improved. So, the use of plant microbiome is a reliable approach for a next green revolution and to meet the global food demand in sustainable and eco-friendly agriculture. An application of the multifaceted PM interactions needs the use of novel tools to know critical genetic and molecular aspects. Recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) tools are of great interest to explore PM interactions. A systematic understanding of the PM interactions will enable the application of GE tools to enhance the capacity of microbes or plants for agronomic trait improvement. This review focuses on applying GE techniques in plants or associated microbiota for discovering the fundamentals of the PM interactions, disease resistance, PGP activity, and future implications in agriculture.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
- Division of Life Science (CK1 Program), Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
682
|
Hua K, Zhang J, Botella JR, Ma C, Kong F, Liu B, Zhu JK. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. MOLECULAR PLANT 2019; 12:1047-1059. [PMID: 31260812 DOI: 10.1016/j.molp.2019.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 05/20/2023]
Abstract
Most conventional and modern crop-improvement methods exploit natural or artificially induced genetic variations and require laborious characterization of the progenies of multiple generations derived from time-consuming genetic crosses. Genome-editing systems, in contrast, provide the means to rapidly modify genomes in a precise and predictable way, making it possible to introduce improvements directly into elite varieties. Here, we describe the range of applications available to agricultural researchers using existing genome-editing tools. In addition to providing examples of genome-editing applications in crop breeding, we discuss the technical and social challenges faced by breeders using genome-editing tools for crop improvement.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinshan Zhang
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Changle Ma
- Shandong Provincial Key Lab of Plant Stress, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
683
|
Zhang Y, Malzahn AA, Sretenovic S, Qi Y. The emerging and uncultivated potential of CRISPR technology in plant science. NATURE PLANTS 2019; 5:778-794. [PMID: 31308503 DOI: 10.1038/s41477-019-0461-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
The application of clustered regularly interspaced short palindromic repeats (CRISPR) for genetic manipulation has revolutionized life science over the past few years. CRISPR was first discovered as an adaptive immune system in bacteria and archaea, and then engineered to generate targeted DNA breaks in living cells and organisms. During the cellular DNA repair process, various DNA changes can be introduced. The diverse and expanding CRISPR toolbox allows programmable genome editing, epigenome editing and transcriptome regulation in plants. However, challenges in plant genome editing need to be fully appreciated and solutions explored. This Review intends to provide an informative summary of the latest developments and breakthroughs of CRISPR technology, with a focus on achievements and potential utility in plant biology. Ultimately, CRISPR will not only facilitate basic research, but also accelerate plant breeding and germplasm development. The application of CRISPR to improve germplasm is particularly important in the context of global climate change as well as in the face of current agricultural, environmental and ecological challenges.
Collapse
Affiliation(s)
- Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
684
|
Ahmad N, Rahman M, Mukhtar Z, Zafar Y, Zhang B. A critical look on CRISPR‐based genome editing in plants. J Cell Physiol 2019; 235:666-682. [DOI: 10.1002/jcp.29052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/12/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Mehboob‐ur Rahman
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division National Institute for Biotechnology & Genetic Engineering (NIBGE) Faisalabad Pakistan
| | - Yusuf Zafar
- Pakistan Agriculture Research Council Islamabad Pakistan
| | - Baohong Zhang
- Department of Biology East Carolina University Greenville North Caroline
| |
Collapse
|
685
|
Hamm MO, Moss BL, Leydon AR, Gala HP, Lanctot A, Ramos R, Klaeser H, Lemmex AC, Zahler ML, Nemhauser JL, Wright RC. Accelerating structure-function mapping using the ViVa webtool to mine natural variation. PLANT DIRECT 2019; 3:e00147. [PMID: 31372596 PMCID: PMC6658840 DOI: 10.1002/pld3.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 05/13/2023]
Abstract
Thousands of sequenced genomes are now publicly available capturing a significant amount of natural variation within plant species; yet, much of these data remain inaccessible to researchers without significant bioinformatics experience. Here, we present a webtool called ViVa (Visualizing Variation) which aims to empower any researcher to take advantage of the amazing genetic resource collected in the Arabidopsis thaliana 1001 Genomes Project (http://1001genomes.org). ViVa facilitates data mining on the gene, gene family, or gene network level. To test the utility and accessibility of ViVa, we assembled a team with a range of expertise within biology and bioinformatics to analyze the natural variation within the well-studied nuclear auxin signaling pathway. Our analysis has provided further confirmation of existing knowledge and has also helped generate new hypotheses regarding this well-studied pathway. These results highlight how natural variation could be used to generate and test hypotheses about less-studied gene families and networks, especially when paired with biochemical and genetic characterization. ViVa is also readily extensible to databases of interspecific genetic variation in plants as well as other organisms, such as the 3,000 Rice Genomes Project ( http://snp-seek.irri.org/) and human genetic variation ( https://www.ncbi.nlm.nih.gov/clinvar/).
Collapse
Affiliation(s)
- Morgan O. Hamm
- Department of BiologyUniversity of WashingtonSeattleWashington
| | | | | | - Hardik P. Gala
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Amy Lanctot
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Román Ramos
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Hannah Klaeser
- Department of BiologyWhitman CollegeWalla WallaWashington
| | | | | | | | - R. Clay Wright
- Biological Systems EngineeringVirginia TechBlacksburgVirginia
| |
Collapse
|
686
|
Pandey PK, Quilichini TD, Vaid N, Gao P, Xiang D, Datla R. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research. Semin Cell Dev Biol 2019; 96:107-114. [PMID: 31022459 DOI: 10.1016/j.semcdb.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
The ability to create desirable gene variants through targeted changes offers tremendous opportunities for the advancement of basic and applied plant research. Gene editing technologies have opened new avenues to perform such precise gene modifications in diverse biological systems. These technologies use sequence-specific nucleases, such as homing endonucleases, zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR/Cas) complexes to enable targeted genetic manipulations. Among these, the CRISPR/Cas system has emerged as a broadly applicable and valued gene editing system for its ease of use and versatility. The adaptability of the CRISPR/Cas system has facilitated rapid and continuous innovative developments to the precision and applications of this technology, since its introduction less than a decade ago. Although developed in animal systems, the simple and elegant CRISPR/Cas gene editing technology has quickly been embraced by plant researchers. From early demonstration in model plants, the CRISPR/Cas system has been successfully adapted for various crop species and enabled targeting of agronomically important traits. Although the approach faces several efficiency and delivery related challenges, especially in recalcitrant crop species, continuous advances in the CRISPR/Cas system to address these limitations are being made. In this review, we discuss the CRISPR/Cas technology, its myriad applications and their prospects for crop improvement.
Collapse
Affiliation(s)
- Prashant K Pandey
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Neha Vaid
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark, Potsdam-Golm, Am Muhlenberg 1, 14476 Potsdam, Germany
| | - Peng Gao
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| |
Collapse
|
687
|
Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. MOLECULAR PLANT 2019; 12:597-602. [PMID: 30902686 DOI: 10.1016/j.molp.2019.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 05/21/2023]
Abstract
Crop breeding aims to generate pure inbred lines with multiple desired traits. Doubled haploid (DH) and genome editing using CRISPR/Cas9 are two powerful game-changing technologies in crop breeding. However, both of them still fall short for rapid generation of pure elite lines with integrated favorable traits. Here, we report the development of a Haploid-Inducer Mediated Genome Editing (IMGE) approach, which utilizes a maize haploid inducer line carrying a CRISPR/Cas9 cassette targeting for a desired agronomic trait to pollinate an elite maize inbred line and to generate genome-edited haploids in the elite maize background. Homozygous pure DH lines with the desired trait improvement could be generated within two generations, thus bypassing the lengthy procedure of repeated crossing and backcrossing used in conventional breeding for integrating a desirable trait into elite commercial backgrounds.
Collapse
Affiliation(s)
- Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zheng
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Li
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Juan Sun
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
688
|
Affiliation(s)
- Jintao Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
689
|
Chang L, Wu S, Tian L. Effective genome editing and identification of a regiospecific gallic acid 4- O-glycosyltransferase in pomegranate ( Punica granatum L.). HORTICULTURE RESEARCH 2019; 6:123. [PMID: 31728198 PMCID: PMC6838055 DOI: 10.1038/s41438-019-0206-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
Pomegranate (Punica granatum L.) trees are woody perennials that bear colorful and nutritious fruits rich in phenolic metabolites, e.g., hydrolyzable tannins (HTs) and flavonoids. We here report genome editing and gene discovery in pomegranate hairy roots using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9), coupled with transcriptome and biochemical analyses. Single guide RNAs (sgRNAs) were designed to target two UDP-dependent glycosyltransferases (UGTs), PgUGT84A23 and PgUGT84A24, which possess overlapping activities in β-glucogallin (a galloylglucose ester; biosynthetic precursor of HTs) biosynthesis. A unique accumulation of gallic acid 3-O- and 4-O-glucosides (galloylglucose ethers) was observed in the PgUGT84A23 and PgUGT84A24 dual CRISPR/Cas9-edited lines (i.e., ugt84a23 ugt84a24) but not the control (empty vector) or PgUGT84A23/PgUGT84A24 single edited lines (ugt84a23 or ugt84a24). Transcriptome and real-time qPCR analyses identified 11 UGTs with increased expression in the ugt84a23 ugt84a24 hairy roots compared to the controls. Of the 11 candidate UGTs, only PgUGT72BD1 used gallic acid as substrate and produced a regiospecific product gallic acid 4-O-glucoside. This work demonstrates that the CRISPR/Cas9 method can facilitate functional genomics studies in pomegranate and shows promise for capitalizing on the metabolic potential of pomegranate for germplasm improvement.
Collapse
Affiliation(s)
- Lijing Chang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602 Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Sheng Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602 Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Li Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602 Shanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, 201602 Shanghai, China
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| |
Collapse
|