651
|
Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2015; 50:11788-805. [PMID: 25019301 DOI: 10.1039/c4cc00968a] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in these fields. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of currently available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson's reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
652
|
Islam KN, Polhemus DJ, Donnarumma E, Brewster LP, Lefer DJ. Hydrogen Sulfide Levels and Nuclear Factor-Erythroid 2-Related Factor 2 (NRF2) Activity Are Attenuated in the Setting of Critical Limb Ischemia (CLI). J Am Heart Assoc 2015; 4:JAHA.115.001986. [PMID: 25977470 PMCID: PMC4599428 DOI: 10.1161/jaha.115.001986] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase are endogenous enzymatic sources of hydrogen sulfide (H2S). Functions of H2S are mediated by several targets including ion channels and signaling proteins. Nuclear factor-erythroid 2-related factor 2 is responsible for the expression of antioxidant response element–regulated genes and is known to be upregulated by H2S. We examined the levels of H2S, H2S-producing enzymes, and nuclear factor-erythroid 2-related factor 2 activation status in skeletal muscle obtained from critical limb ischemia (CLI) patients. Methods and Results Gastrocnemius tissues were attained postamputation from human CLI and healthy control patients. We found mRNA and protein levels of cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase were significantly decreased in skeletal muscle of CLI patients as compared to control. H2S and sulfane sulfur levels were significantly decreased in skeletal muscle of CLI patients. We also observed significant reductions in nuclear factor-erythroid 2-related factor 2 activation as well as antioxidant proteins, such as Cu, Zn-superoxide dismutase, catalase, and glutathione peroxidase in skeletal muscle of CLI patients. Biomarkers of oxidative stress, such as malondialdehyde and protein carbonyl formation, were significantly increased in skeletal muscle of CLI patients as compared to healthy controls. Conclusions The data demonstrate that H2S bioavailability and nuclear factor-erythroid 2-related factor 2 activation are both attenuated in CLI tissues concomitant with significantly increased oxidative stress. Reductions in the activity of H2S-producing enzymes may contribute to the pathogenesis of CLI.
Collapse
Affiliation(s)
- Kazi N Islam
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| | - David J Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| | - Erminia Donnarumma
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| | | | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA (K.N.I., D.J.P., E.D., D.J.L.)
| |
Collapse
|
653
|
Abstract
Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5'-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, and the Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway;
| | | | | | | | | |
Collapse
|
654
|
Interaction of H2S with Calcium Permeable Channels and Transporters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:323269. [PMID: 26078804 PMCID: PMC4442308 DOI: 10.1155/2015/323269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Abstract
A growing amount of evidence has suggested that hydrogen sulfide (H2S), as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC), T-type calcium channels (TTCC), sodium/calcium exchangers (NCX), transient receptor potential (TRP) channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR) in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.
Collapse
|
655
|
The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:925167. [PMID: 26078822 PMCID: PMC4442295 DOI: 10.1155/2015/925167] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as a third gaseous mediator along with nitric oxide (NO) and carbon monoxide (CO), though it was originally considered as a malodorous and toxic gas. H2S is produced endogenously from cysteine by three enzymes in mammalian tissues. An increasing body of evidence suggests the involvement of H2S in different physiological and pathological processes. Recent studies have shown that H2S has the potential to protect the heart against myocardial infarction, arrhythmia, hypertrophy, fibrosis, ischemia-reperfusion injury, and heart failure. Some mechanisms, such as antioxidative action, preservation of mitochondrial function, reduction of apoptosis, anti-inflammatory responses, angiogenic actions, regulation of ion channel, and interaction with NO, could be responsible for the cardioprotective effect of H2S. Although several mechanisms have been identified, there is a need for further research to identify the specific molecular mechanism of cardioprotection in different cardiac diseases. Therefore, insight into the molecular mechanisms underlying H2S action in the heart may promote the understanding of pathophysiology of cardiac diseases and lead to new therapeutic targets based on modulation of H2S production.
Collapse
|
656
|
Kwong RWM, Perry SF. Hydrogen sulfide promotes calcium uptake in larval zebrafish. Am J Physiol Cell Physiol 2015; 309:C60-9. [PMID: 25948733 DOI: 10.1152/ajpcell.00053.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) can act as a signaling molecule for various ion channels and/or transporters; however, little is known about its potential involvement in Ca(2+) balance. Using developing zebrafish (Danio rerio) as an in vivo model system, the present study demonstrated that acute exposure to H2S donors increased Ca(2+) influx at 4 days postfertilization, while chronic (3-day) exposure caused a rise in whole body Ca(2+) levels. The mRNA expression of Ca(2+)-transport-related genes was unaffected by H2S exposure, suggesting that posttranscriptional modifications were responsible for the altered rates of Ca(2+) uptake. Indeed, treatment of fish with the protein kinase A inhibitor H-89 abolished the H2S-mediated stimulation of Ca(2+) influx, suggesting that H2S increased Ca(2+) influx by activating cAMP-protein kinase A pathways. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are two key enzymes in the endogenous synthesis of H2S. Using an antisense morpholino knockdown approach, we demonstrated that Ca(2+) influx was reduced in CBS isoform b (CBSb)- but not in CSE-deficient fish. Interestingly, the reduction in Ca(2+) influx in CBSb-deficient fish was observed only in fish that were acclimated to low-Ca(2+) water (i.e., 25 μM Ca(2+); control: 250 μM Ca(2+)). Similarly, mRNA expression of cbsb but not cse was increased in fish acclimated to low-Ca(2+) water. Results from whole-mount immunohistochemistry further revealed that CBSb was expressed in Na(+)-K(+)-ATPase-rich cells, which are implicated in Ca(2+) uptake in zebrafish larvae. Collectively, the present study suggests a novel role for H2S in promoting Ca(2+) influx, particularly in a low-Ca(2+) environment.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
657
|
Potential role of hydrogen sulphide from 3-mercaptopyruvate sulphurtransferase (3-MST) in epithelium-dependent relaxation of the airways. Nitric Oxide 2015. [DOI: 10.1016/j.niox.2015.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
658
|
Zhang K, Dou W, Tang X, Yang L, Ju Z, Cui Y, Liu W. Selective and sensitive time-gated luminescence detection of hydrogen sulfide. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
659
|
D-penicillamine exerts inhibitory action on hydrogen sulfide biosynthesis. Nitric Oxide 2015. [DOI: 10.1016/j.niox.2015.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
660
|
Gasomediators (·NO, CO, and H2S) and their role in hemostasis and thrombosis. Clin Chim Acta 2015; 445:115-21. [DOI: 10.1016/j.cca.2015.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023]
|
661
|
Han B, Zhao ZG, Zhang LM, Li SG, Niu CY. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats. ACTA ACUST UNITED AC 2015; 48:622-8. [PMID: 25945746 PMCID: PMC4512101 DOI: 10.1590/1414-431x20154057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 01/13/2015] [Indexed: 11/23/2022]
Abstract
Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ
injury following hemorrhagic shock. We investigated the role of hydrogen sulfide
(H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by
administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12
specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock
model was established in 4 experimental groups: shock, shock+drainage,
shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28
µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of
hypotension, and PHMSL was drained in the last three groups for 3 h after
resuscitation. Renal function and histomorphology were assessed along with levels of
H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4),
interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue.
Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and
higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue.
PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α
but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and
TNF-α levels, but this effect was reversed by NaHS administration. In conclusion,
PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in
H2S and H2S-mediated inflammation.
Collapse
Affiliation(s)
- B Han
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, Brasil
| | - Z G Zhao
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, Brasil
| | - L M Zhang
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, Brasil
| | - S G Li
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, Brasil
| | - C Y Niu
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, Brasil
| |
Collapse
|
662
|
Chatterjee D, Jaiswal N, Sarkar P. Ru(EDTA) mediated partial reduction of O2 by H2S. Dalton Trans 2015; 44:7613-7. [PMID: 25811914 DOI: 10.1039/c5dt00472a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective procedure for selective reduction of O2 to H2O2 exploring the use of hydrogen sulfide, an obnoxious industrial pollutant as reductant is reported herein. The reduction of [Ru(III)(EDTA)pz](-) (EDTA(4-) = ethylenediaminetetraacetate; pz = pyrazine) by hydrogen sulfide resulting in the formation of a red [Ru(II)(EDTA)pz](2-) complex (λmax = 462 nm) has been studied spectrophotometrically and kinetically using both rapid scan and stopped-flow techniques. The time course of the reaction was followed as a function of [HS(-)]i, pH (5.5-8.5), and temperature. Alkali metal ions were found to have a positive influence (K(+) > Na(+) > Li(+)) on the reaction rate. Kinetic data and activation parameters are interpreted in terms of a mechanism (admittedly speculative) involving outer-sphere electron transfer between the reaction partners. Reaction of the red [Ru(II)(EDTA)pz](2-) complex with molecular oxygen regenerates the [Ru(III)(EDTA)pz](-) species in the reacting system along with the formation of H2O2, a partially reduced product of dioxygen (O2) reduction. A detailed reaction mechanism in agreement with the spectral and kinetic data is presented.
Collapse
Affiliation(s)
- Debabrata Chatterjee
- Chemistry and Biomimetics Group, CSIR-Central Mechanical Engineering Research Institute, MG Avenue, Durgapur-713209, India.
| | | | | |
Collapse
|
663
|
Sun M, Yu H, Li H, Xu H, Huang D, Wang S. Fluorescence Signaling of Hydrogen Sulfide in Broad pH Range Using a Copper Complex Based on BINOL–Benzimidazole Ligands. Inorg Chem 2015; 54:3766-72. [DOI: 10.1021/ic502888j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mingtai Sun
- Institute
of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, People’s Republic of China
| | - Huan Yu
- Institute
of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, People’s Republic of China
| | - Huihui Li
- Institute
of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, People’s Republic of China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Hongda Xu
- Institute
of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, People’s Republic of China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Dejian Huang
- Food
Science and Technology Programme, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Suhua Wang
- Institute
of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, People’s Republic of China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
664
|
An iminocoumarin benzothiazole-based fluorescent probe for imaging hydrogen sulfide in living cells. Talanta 2015; 135:149-54. [DOI: 10.1016/j.talanta.2014.12.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 11/19/2022]
|
665
|
Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide 2015; 46:14-24. [DOI: 10.1016/j.niox.2014.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
|
666
|
Tsai CY, Peh MT, Feng W, Dymock BW, Moore PK. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS One 2015; 10:e0119511. [PMID: 25822632 PMCID: PMC4378953 DOI: 10.1371/journal.pone.0119511] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/14/2015] [Indexed: 12/30/2022] Open
Abstract
The effect of hydrogen sulfide (H2S) on differentiation of 3T3L1-derived adipocytes was examined. Endogenous H2S was increased after 3T3L1 differentiation. The expression of the H2S-synthesising enzymes, cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), was increased in a time-dependent manner during 3T3L1 differentiation. Expression of genes associated with adipogenesis related genes including fatty acid binding protein 4 (FABP4/aP2), a key regulator of this process, was increased by GYY4137 (a slow-releasing H2S donor compound) and sodium hydrosulfide (NaHS, a classical H2S donor) but not by ZYJ1122 or time-expired NaHS. Furthermore expression of these genes were reduced by aminooxyacetic acid (AOAA, CBS inhibitor), DL-propargylglycine (PAG, CSE inhibitor) as well as by CSE small interference RNA (siCSE) and siCBS. The size and number of lipid droplets in mature adipocytes was significantly increased by both GYY4137 and NaHS, which also impaired the ability of CL316,243 (β3-agonist) to promote lipolysis in these cells. In contrast, AOAA and PAG had the opposite effect. Taken together, we show that the H2S-synthesising enzymes CBS, CSE and 3-MST are endogenously expressed during adipogenesis and that both endogenous and exogenous H2S modulate adipogenesis and adipocyte maturation.
Collapse
Affiliation(s)
- Chin-Yi Tsai
- Neurobiology Group, Life Science Institute, Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, Singapore
- * E-mail:
| | - Meng Teng Peh
- Neurobiology Group, Life Science Institute, Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Wei Feng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Philip Keith Moore
- Neurobiology Group, Life Science Institute, Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, Singapore
| |
Collapse
|
667
|
Terzuoli E, Monti M, Vellecco V, Bucci M, Cirino G, Ziche M, Morbidelli L. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2 S availability. Br J Pharmacol 2015; 172:2961-73. [PMID: 25631232 DOI: 10.1111/bph.13101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2 S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2 S availability. EXPERIMENTAL APPROACH HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. KEY RESULTS Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2 S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2 S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP ) channels, the molecular target that mediates part of the vascular functions of H2 S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2 S response to H2 S and KATP activation. CONCLUSIONS AND IMPLICATIONS Zofenoprilat induced a constant production of H2 S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2 S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced.
Collapse
Affiliation(s)
- E Terzuoli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - M Monti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - V Vellecco
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - M Bucci
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - G Cirino
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - M Ziche
- Department of Life Sciences, University of Siena, Siena, Italy
| | - L Morbidelli
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
668
|
Kutz JL, Greaney JL, Santhanam L, Alexander LM. Evidence for a functional vasodilatatory role for hydrogen sulphide in the human cutaneous microvasculature. J Physiol 2015; 593:2121-9. [PMID: 25639684 DOI: 10.1113/jp270054] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hydrogen sulphide (H2 S) is vasoprotective, attenuates inflammation and modulates blood pressure in animal models; however, its specific mechanistic role in the human vasculature remains unclear. In the present study, we report the novel finding that the enzymes responsible for endogenous H2 S production, cystathionine-γ-lyase and 3-mercaptopyruvate sulphurtransferase, are expressed in the human cutaneous circulation. Functionally, we show that H2 S-induced cutaneous vasodilatation is mediated, in part, by tetraethylammonium-sensitive calcium-dependent potassium channels and not by ATP-sensitive potassium channels. In addition, nitric oxide and cyclo-oxygenase-derived byproducts are required for full expression of exogenous H2 S-mediated cutaneous vasodilatation. Future investigations of the potential role for H2 S with respect to modulating vascular function in humans may have important clinical implications for understanding the mechanisms underlying vascular dysfunction characteristic of multiple cardiovascular pathologies. ABSTRACT The present study aimed to identify the presence of cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (3-MST), which endogenously produce hydrogen sulphide (H2 S), and to functionally examine the mechanisms of H2 S-induced vasodilatation in the human cutaneous microcirculation. CSE and 3-MST were quantified in forearm skin samples from 5 healthy adults (24 ± 3 years) using western blot analysis. For functional studies, microdialysis fibres were placed in the forearm skin of 12 healthy adults (25 ± 3 years) for graded infusions (0.01-100 mm) of sodium sulphide (Na2 S) and sodium hydrogen sulphide (NaHS). To define the mechanisms mediating H2 S-induced vasodilatation, microdialysis fibres were perfused with Ringer solution (control), a ATP-sensitive potassium channel (KATP ) inhibitor, an intermediate calcium-dependent potassium channel (KCa ) inhibitor, a non-specific KCa channel inhibitor or triple blockade. To determine the interaction of H2 S-mediated vasodilatation with nitric oxide (NO) and cyclo-oxygenase (COX) signalling pathways, microdialysis fibres were perfused with Ringer solution (control), a non-specific NO synthase inhibitor, a non-selective COX inhibitor or combined inhibition during perfusion of increasing doses of Na2 S. CSE and 3-MST were expressed in all skin samples. Na2 S and NaHS elicited dose-dependent vasodilatation. Non-specific KCa channel inhibition and triple blockade blunted Na2 S-induced vasodilatation (P < 0.05), whereas KATP and intermediate KCa channel inhibition had no effect (P > 0.05). Separate and combined inhibition of NO and COX attenuated H2 S-induced vasodilatation (all P < 0.05). CSE and 3-MST are expressed in the human microvasculature. Exogenous H2 S elicits cutaneous vasodilatation mediated by KCa channels and has a functional interaction with both NO and COX vasodilatatory signalling pathways.
Collapse
Affiliation(s)
- Jessica L Kutz
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
669
|
Hancock JT, Whiteman M. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann N Y Acad Sci 2015; 1365:5-14. [DOI: 10.1111/nyas.12733] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John T. Hancock
- Faculty of Health and Applied Sciences; University of the West of England; Bristol England
| | - Matthew Whiteman
- University of Exeter Medical School; University of Exeter; Exeter England
| |
Collapse
|
670
|
Kang M, Hashimoto A, Gade A, Akbarali HI. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex. Am J Physiol Gastrointest Liver Physiol 2015; 308:G532-9. [PMID: 25552582 PMCID: PMC4360042 DOI: 10.1152/ajpgi.00281.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H₂S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H₂S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K(+) (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H₂S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H₂S in inflammation.
Collapse
Affiliation(s)
- Minho Kang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Atsushi Hashimoto
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aravind Gade
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
671
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
672
|
Yu Q, Zhang KY, Liang H, Zhao Q, Yang T, Liu S, Zhang C, Shi Z, Xu W, Huang W. Dual-emissive nanohybrid for ratiometric luminescence and lifetime imaging of intracellular hydrogen sulfide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5462-5470. [PMID: 25692496 DOI: 10.1021/am5091534] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We design a nanohybrid for the detection of hydrogen sulfide (H2S) based on mesoporous silica nanoparticles (MSNs). A phosphorescent iridium(III) complex and a specific H2S-sensitive merocyanine derivative are embedded into the nanohybrid. It exhibits a unique dual emission that is ascribed to the iridium(III) complex and the merocyanine derivative, respectively. Upon addition of sodium hydrogen sulfide (NaHS), the emission from the merocyanine derivative is quenched, while the emission from the iridium(III) complex is almost unchanged, which enables the ratiometric detection of H2S. Additionally, the nanohybrid has a long luminescence lifetime and displays a significant change in luminescence lifetime in response to H2S. Intracellular detection of H2S is performed via ratiometric imaging and photoluminescence lifetime imaging microscopy. Compared with the intensity-based method, the lifetime-based detection is independent of the probe concentration and can efficiently distinguish the signals of the probe from the autofluorescence in complex biological samples.
Collapse
Affiliation(s)
- Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
673
|
El Sayed S, Milani M, Licchelli M, Martínez-Máñez R, Sancenón F. Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuIIComplexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. Chemistry 2015; 21:7002-6. [DOI: 10.1002/chem.201500360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/12/2022]
|
674
|
Role of hydrogen sulfide in paramyxovirus infections. J Virol 2015; 89:5557-68. [PMID: 25740991 DOI: 10.1128/jvi.00264-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. IMPORTANCE RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of immunoprophylaxis, is available for this infection as well as for other important respiratory mucosal viruses. This study identifies hydrogen sulfide as a novel cellular mediator that can modulate viral replication and proinflammatory gene expression, both important determinants of lung injury in respiratory viral infections, with potential for rapid translation of such findings into novel therapeutic approaches for viral bronchiolitis and pneumonia.
Collapse
|
675
|
Schatzschneider U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br J Pharmacol 2015; 172:1638-50. [PMID: 24628281 PMCID: PMC4369270 DOI: 10.1111/bph.12688] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Carbon monoxide (CO) is an endogenous small signalling molecule in the human body, produced by the action of haem oxygenase on haem. Since it is very difficult to apply safely as a gas, solid storage and delivery forms for CO are now explored. Most of these CO-releasing molecules (CORMs) are based on the inactivation of the CO by coordinating it to a transition metal centre in a prodrug approach. After a brief look at the potential cellular target structures of CO, an overview of the design principles and activation mechanisms for CO release from a metal coordination sphere is given. Endogenous and exogenous triggers discussed include ligand exchange reactions with medium, enzymatically-induced CO release and photoactivated liberation of CO. Furthermore, the attachment of CORMs to hard and soft nanomaterials to confer additional target specificity to such systems is critically assessed. A survey of analytical methods for the study of the stoichiometry and kinetics of CO release, as well as the tracking of CO in living systems by using fluorescent probes, concludes this review. CORMs are very valuable tools for studying CO bioactivity and might lead to new drug candidates; however, in the design of future generations of CORMs, particular attention has to be paid to their drug-likeness and the tuning of the peripheral 'drug sphere' for specific biomedical applications. Further progress in this field will thus critically depend on a close interaction between synthetic chemists and researchers exploring the physiological effects and therapeutic applications of CO.
Collapse
Affiliation(s)
- U Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität WürzburgWürzburg, Germany
| |
Collapse
|
676
|
Li X, Cheng J, Gong Y, Yang B, Hu Y. Mapping hydrogen sulfide in rats with a novel azo-based fluorescent probe. Biosens Bioelectron 2015; 65:302-6. [DOI: 10.1016/j.bios.2014.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 01/25/2023]
|
677
|
Peng B, Zhang C, Marutani E, Pacheco A, Chen W, Ichinose F, Xian M. Trapping hydrogen sulfide (H₂S) with diselenides: the application in the design of fluorescent probes. Org Lett 2015; 17:1541-4. [PMID: 25723840 PMCID: PMC4372083 DOI: 10.1021/acs.orglett.5b00431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here
we report a unique reaction between phenyl diselenide-ester
substrates and H2S to form 1,2-benzothiaselenol-3-one.
This reaction proceeded rapidly under mild conditions. Thiols could
also react with the diselenide substrates. However, the resulted S–Se
intermediate retained high reactivity toward H2S and eventually
led to the same cyclized product 1,2-benzothiaselenol-3-one. Based
on this reaction two fluorescent probes were developed and showed
high selectivity and sensitivity for H2S. The presence
of thiols was found not to interfere with the detection process.
Collapse
Affiliation(s)
- Bo Peng
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Caihong Zhang
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.,‡School of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan, China
| | - Eizo Marutani
- §Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Armando Pacheco
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wei Chen
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Fumito Ichinose
- §Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ming Xian
- †Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
678
|
Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal 2015; 22:505-21. [PMID: 25333910 DOI: 10.1089/ars.2014.6007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress and damage are well-established components of neurodegenerative diseases, contributing to neuronal death during disease progression. Here, we consider key K(+) channels as target proteins that can undergo oxidative modulation, describe what is understood about how this influences disease progression, and consider regulation of these channels by gasotransmitters as a means of cellular protection. RECENT ADVANCES Oxidative regulation of the delayed rectifier Kv2.1 and the Ca(2+)- and voltage-sensitive BK channel are established, but recent studies contest how their redox sensitivity contributes to altered excitability, progression of neurodegenerative diseases, and healthy aging. CRITICAL ISSUES Both Kv2.1 and BK channels have recently been established as target proteins for regulation by the gasotransmitters carbon monoxide and hydrogen sulfide. Establishing the molecular basis of such regulation, and exactly how this influences excitability and vulnerability to apoptotic cell death will determine whether such regulation can be exploited for therapeutic benefit. FUTURE DIRECTIONS Developing a more comprehensive picture of the oxidative modulation of K(+) channels (and, indeed, other ion channels) within the central nervous system in health and disease will enable us to better understand processes associated with healthy aging as well as distinct processes underlying progression of neurodegenerative diseases. Advances in the growing understanding of how gasotransmitters can regulate ion channels, including redox-sensitive K(+) channels, are a research priority for this field, and will establish their usefulness in design of future approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Chris Peers
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
679
|
Yan Y, Yu H, Zhang Y, Zhang K, Zhu H, Yu T, Jiang H, Wang S. Molecularly engineered quantum dots for visualization of hydrogen sulfide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3547-3553. [PMID: 25615270 DOI: 10.1021/am507307g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Among various fluorescence nanomaterials, the II-VI semiconductor nanocrystals (usually called quantum dots, QDs) should be very promising in sensing application because of their high quantum yields, capability for surface property manipulation, and unlimited possible chemical reactions. Herein, we present a fluorescence probe for hydrogen sulfide, which was prepared by first encapsulating inorganic cadmium telluride (CdTe) QDs in silica nanospheres, and subsequently engineering the silica surface with functional molecules azidocoumarin-4-acetic acid reactive to hydrogen sulfide. The nanohybrid probe exhibited two fluorescence bands centered at 452 and 657 nm, respectively. The red fluorescence at 657 nm of the nanohybrid probe is stable against H2S, while the blue fluorescence is specifically sensitive to H2S. The probe showed a distinct fluorescence color evolution from light magenta to blue upon exposure to different amounts of H2S, and a detection limit of 7.0 nM was estimated in aqueous solution. We further applied the nanohybrid probe for visual detection of gaseous H2S with a low concentration of 0.5 ppm using glass indicating spots sensors, suggesting its potential application for gaseous H2S sensing. Such an efficient on-site visual determination of gaseous hydrogen sulfide (H2S) is highly demanded in on-site environmental monitoring and protection.
Collapse
Affiliation(s)
- Yehan Yan
- Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | | | | | | | | | | | | | | |
Collapse
|
680
|
Zeng L, Chen S, Xia T, Hu W, Li C, Liu Z. Two-photon fluorescent probe for detection of exogenous and endogenous hydrogen persulfide and polysulfide in living organisms. Anal Chem 2015; 87:3004-10. [PMID: 25655109 DOI: 10.1021/acs.analchem.5b00172] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen persulfide and polysulfide (H2S(n)) are newly discovered intracellular reactive species considered to have high protein S-sulfhydration efficiency. The detection of H2S(n) in living systems is essential for studying their functions but is quite challenging. In this work, we report a two-photon excited fluorescent probe, QS(n), capable of tracking H2S(n) in living organisms. QS(n) exhibited turn-on two-photon fluorescence response upon reaction with H2S(n). With a favorable photophysical property, high specificity, and low cytotoxicity, QS(n) was able to recognize exogenous H2S(n) in living cells. More importantly, it realized for the first time the visualization of endogenous H2S(n) generated in cells overexpressing cystathionine β-synthase and cystathionine γ-lyase, the enzymes responsible for producing endogenous H2S(n). Taking advantage of two-photon microscopy, the probe was also applied to achieve H2S(n) detection in zebrafish embryos and to observe H2S(n) distribution in living organisms.
Collapse
Affiliation(s)
- Lingyu Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and ‡College of Life Science, Wuhan University , Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
681
|
Wallace JL, Blackler RW, Chan MV, Da Silva GJ, Elsheikh W, Flannigan KL, Gamaniek I, Manko A, Wang L, Motta JP, Buret AG. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: translation to therapeutics. Antioxid Redox Signal 2015; 22:398-410. [PMID: 24635322 DOI: 10.1089/ars.2014.5901] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE There is a rapidly expanding body of evidence for important roles of hydrogen sulfide in protecting against tissue injury, reducing inflammation, and promoting repair. There is also growing evidence that H2S can be successfully exploited in drug development. RECENT ADVANCES H2S synthesis and degradation are regulated in circumstances of inflammation and injury so as to promote repair and re-establish homeostasis. Novel H2S-releasing drugs exhibit enhanced anti-inflammatory and pro-restorative effects, while having reduced adverse effects in many tissues. CRITICAL ISSUES H2S is a pleiotropic mediator, having effects on many elements in the inflammatory cascade and promoting the resolution of inflammation and injury. It also contributes significantly to mucosal defence in the gastrointestinal tract, and in host defence against infection. There is strong evidence that novel, H2S-based therapeutics are safe and effective in animal models, and several are progressing through human trials. FUTURE DIRECTIONS A better understanding of the physiological and pathophysiological roles of H2S continues to be restrained by the lack of simple, reliable methods for measurement of H2S synthesis, and the paucity of highly selective inhibitors of enzymes that participate in endogenous H2S synthesis. On the other hand, H2S donors show promise as therapeutics for several important indications.
Collapse
Affiliation(s)
- John L Wallace
- 1 Department of Physiology & Pharmacology, University of Calgary , Calgary, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
682
|
Zhou X, Lee S, Xu Z, Yoon J. Recent Progress on the Development of Chemosensors for Gases. Chem Rev 2015; 115:7944-8000. [PMID: 25651137 DOI: 10.1021/cr500567r] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xin Zhou
- †Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea.,‡Research Center for Chemical Biology, Department of Chemistry, Yanbian University, Yanjii 133002, People's Republic of China
| | - Songyi Lee
- †Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Zhaochao Xu
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Shahekou, Dalian, Liaoning, People's Republic of China
| | - Juyoung Yoon
- †Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
683
|
Tocmo R, Liang D, Lin Y, Huang D. Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Front Nutr 2015; 2:1. [PMID: 25988131 PMCID: PMC4428374 DOI: 10.3389/fnut.2015.00001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/05/2015] [Indexed: 12/01/2022] Open
Abstract
Foods that are rich in organosulfides are highly regarded for their broad range of functions in disease prevention and health promotion since ancient time yet modern scientific study, particularly clinical studies could not agree with traditional wisdom. One of the complexities is due to the labile nature of organosulfides, which are often transformed to different structures depending on the processing conditions. The recent evidence on polysulfides as H2S donors may open up a new avenue for establishing structure and health promotion activity relationship. To put this development into perspective, we carried out a review on the recent progress on the chemistry and biochemistry of organopolysulfides with emphasis on their cardioprotective property. First, we briefly surveyed the foods that are rich in polysulfides and their structural diversity. This is followed by in-depth discussion on the chemical transformations of polysulfides under various processing conditions. We further reviewed the potential action mechanisms of polysulfides in cardioprotection through: (a) hydrogen sulfide releasing activity; (b) radical scavenging activity; and (c) activity in enzyme inhibition and intervention of gene regulation pathways. Based on the literature trend, we can conclude that the emerging concept of organopolysulfides as naturally occurring H2S donors is intriguing and warrants further research to establish the structure and activity relationship of the organopolysulfides as H2S donors.
Collapse
Affiliation(s)
- Restituto Tocmo
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore , Singapore , Singapore
| | - Dong Liang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore , Singapore , Singapore
| | - Yi Lin
- National University of Singapore (Suzhou) Research Institute , Jiangsu , China
| | - Dejian Huang
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore , Singapore , Singapore ; National University of Singapore (Suzhou) Research Institute , Jiangsu , China
| |
Collapse
|
684
|
Chai Q, Lu T, Wang XL, Lee HC. Hydrogen sulfide impairs shear stress-induced vasodilation in mouse coronary arteries. Pflugers Arch 2015; 467:329-40. [PMID: 24793048 DOI: 10.1007/s00424-014-1526-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/01/2023]
Abstract
Hydrogen sulfide has emerged as an important endothelium-dependent vasodilator, but its role in shear stress-mediated dilation of coronary arteries is unclear. We examined the role of H2S on shear stress-mediated dilation of isolated mouse coronary arteries. In these vessels, Na2S produced concentration-dependent dilation, which was significantly inhibited by iberiotoxin and by 4-aminopyridine. In addition, BK and Kv currents in mouse coronary smooth muscle cells were directly activated by Na2S, suggesting that H2S produced vasodilation through BK and Kv channel activation. Using a pressure servo controller system, freshly isolated mouse coronary arteries were subjected to physiological levels of shear stress (1 to 25 dynes/cm(2)) and produced graded dilatory responses, but such effects were diminished in the presence of 100 μM Na2S. Pre-incubation with the cystathionine γ-lyase inhibitor, D,L-propargylglycine (PPG), resulted in a paradoxical augmentation of shear stress-mediated vasodilation. However, in the presence of L-NAME or in coronary arteries from eNOS knockout mice, PPG inhibited shear stress-mediated vasodilation, suggesting an interaction between NO and H2S signaling. Na2S inhibited eNOS activity in cultured mouse aortic endothelial cells and reduced the level of phospho-eNOS(serine 1177). These results suggest that both NO and H2S are important shear stress-mediated vasodilators in mouse coronary arteries but there is a complex interaction between these two signaling pathways that results in paradoxical vasoconstrictive effects of H2S through inhibition of NO generation.
Collapse
Affiliation(s)
- Qiang Chai
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA,
| | | | | | | |
Collapse
|
685
|
Chandler JD, Day BJ. Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic Res 2015; 49:695-710. [PMID: 25564094 DOI: 10.3109/10715762.2014.1003372] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thiocyanate (SCN(-)) is a ubiquitous molecule in mammalian biology, reaching up to mM concentrations in extracellular fluids. Two- electron oxidation of SCN(-) by H2O2 produces hypothiocyanous acid (HOSCN), a potent anti-microbial species. This reaction is catalyzed by chordate peroxidases (e.g., myeloperoxidase and lactoperoxidase), occurring in human secretory mucosa, including the oral cavity, airway, and alimentary tract, and regulates resident and transient flora as part of innate immunity. Increasing SCN(-) levels limits the concentrations of a family of 2-electron oxidants (H2O2, hypohalous acids, and haloamines) in favor of HOSCN formation, altering the oxidative impact on host tissue by substitution of repairable thiol and selenol oxidations instead of biomolecule degradation. This fine-tuning of inflammatory oxidation paradoxically associates with maintained host defense and decreased host injury during infections, due in part to phylogenetic differences in the thioredoxin reductase system between mammals and their pathogens. These differences could be exploited by pharmacologic use of SCN(-). Recent preclinical studies have identified anti-microbial and anti-inflammatory effects of SCN(-) in pulmonary and cardiovascular animal models, with implications for treatment of infectious lung disease and atherogenesis. Further research is merited to expand on these findings and identify other diseases where SCN(-) may be of use. High oral bioavailability and an increased knowledge of the biochemical effects of SCN(-) on a subset of pro-inflammatory reactions suggest clinical utility.
Collapse
|
686
|
Krejcova T, Smelcova M, Petr J, Bodart JF, Sedmikova M, Nevoral J, Dvorakova M, Vyskocilova A, Weingartova I, Kucerova-Chrpova V, Chmelikova E, Tumova L, Jilek F. Hydrogen sulfide donor protects porcine oocytes against aging and improves the developmental potential of aged porcine oocytes. PLoS One 2015; 10:e0116964. [PMID: 25615598 PMCID: PMC4304783 DOI: 10.1371/journal.pone.0116964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 01/10/2023] Open
Abstract
Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging.
Collapse
Affiliation(s)
- Tereza Krejcova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Miroslava Smelcova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | | | - Jean-Francois Bodart
- Université Lille1, Sciences et Technologies, Laboratoire de Régulation des Signaux de Division - EA 4479, Villeneuve d´Ascq, France
| | - Marketa Sedmikova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Jan Nevoral
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Marketa Dvorakova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Alena Vyskocilova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Ivona Weingartova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Veronika Kucerova-Chrpova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Eva Chmelikova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Lenka Tumova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Frantisek Jilek
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| |
Collapse
|
687
|
Rosario-Alomar MF, Quiñones-Ruiz T, Kurouski D, Sereda V, Ferreira EB, Jesús-Kim LD, Hernández-Rivera S, Zagorevski DV, López-Garriga J, Lednev IK. Hydrogen sulfide inhibits amyloid formation. J Phys Chem B 2015; 119:1265-74. [PMID: 25545790 PMCID: PMC4315425 DOI: 10.1021/jp508471v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Amyloid
fibrils are large aggregates of misfolded proteins, which
are often associated with various neurodegenerative diseases such
as Alzheimer’s, Parkinson’s, Huntington’s, and
vascular dementia. The amount of hydrogen sulfide (H2S)
is known to be significantly reduced in the brain tissue of people
diagnosed with Alzheimer’s disease relative to that of healthy
individuals. These findings prompted us to investigate the effects
of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL).
HEWL forms typical β-sheet rich fibrils during the course of
70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid
fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy
and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide
bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational
modes in the 550–500 cm–1 spectral range
decrease in intensity and are accompanied by the appearance of a new
490 cm–1 band assigned to the trisulfide group (RSSSR)
based on the comparison with model compounds. The formation of RSSSR
was proven further using a reaction with TCEP reduction agent and
LC-MS analysis of the products. Intrinsic tryptophan fluorescence
study shows a strong denaturation of HEWL containing trisulfide bonds.
The presented evidence indicates that H2S causes the formation
of trisulfide bridges, which destabilizes HEWL structure, preventing
protein fibrillation. As a result, small spherical aggregates of unordered
protein form, which exhibit no cytotoxicity by contrast with HEWL
fibrils.
Collapse
Affiliation(s)
- Manuel F Rosario-Alomar
- Department of Chemistry and ‡Department of Biology, University of Puerto Rico at Mayagüez , Mayagüez, Puerto Rico 00693
| | | | | | | | | | | | | | | | | | | |
Collapse
|
688
|
Thorson MK, Van Wagoner RM, Harper MK, Ireland CM, Majtan T, Kraus JP, Barrios AM. Marine natural products as inhibitors of cystathionine beta-synthase activity. Bioorg Med Chem Lett 2015; 25:1064-6. [PMID: 25666819 DOI: 10.1016/j.bmcl.2015.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
A library consisting of characterized marine natural products as well as synthetic derivatives was screened for compounds capable of inhibiting the production of hydrogen sulfide (H2S) by cystathionine beta-synthase (CBS). Eight hits were validated and shown to inhibit CBS activity with IC50 values ranging from 83 to 187μM. The majority of hits came from a series of synthetic polyandrocarpamine derivatives. In addition, a modified fluorogenic probe for H2S detection with improved solubility in aqueous solutions is reported.
Collapse
Affiliation(s)
- Megan K Thorson
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Ryan M Van Wagoner
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Chris M Ireland
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Jan P Kraus
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
689
|
Abstract
Hydrogen sulfide is a redox active sulfur species that is endogenously generated in mammalian systems as an antioxidant and signaling molecule to support cellular function. The fundamental and ubiquitous actions of hydrogen sulfide demand sensitive and specific methods to track this biomolecule as it is produced within living organisms with temporal and spatial regulation. In this context, the hydrogen sulfide-mediated reduction of an azide to an amine is a useful method for organic synthesis, and this reaction has successfully been exploited to yield biocompatible fluorescent probes for hydrogen sulfide detection in vitro and in cells. This chapter provides protocols and guidelines for applying azide-based fluorescence probes to detecting hydrogen sulfide in living systems, including a protocol that was used to detect endogenous hydrogen sulfide in living single cells using a confocal microscope.
Collapse
|
690
|
Abstract
Hydrogen sulfide (H2S) is now recognized as the so called "third gasotransmitter" taking its place alongside nitric oxide and carbon monoxide. In recent years, H2S has been reported to exhibit a diverse range of pharmacological effects in biological systems. Much of this evidence is derived from a combination of conventional pharmacological and genetic approaches coupled with the use of chemical compounds such as sodium hydrosulfide, a rapid H2S releasing donor. Developments in the design of new drug entities which attempt to take into account physicochemical properties, targeting to specific cellular organelles, triggering of H2S release upon specific chemical reactions in the cell, and controlling the release of H2S over extended periods of time have been described. For most of these molecules, little or no work has been conducted to determine their biological activity or possible therapeutic effects. It is therefore not clear whether such molecules have therapeutic potential which highlights the need for further in vivo studies. One exception to the general rule is GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate), a slow releasing H2S donor, which has been evaluated for activity in a range of pharmacological models both in vitro and in vivo. GYY4137 was first reported to release H2S and exhibit vasodilator activity over 5 years ago and, to date, GYY4137 is becoming increasingly employed as a pharmacological "tool" to explore the biological functions of H2S.
Collapse
Affiliation(s)
- Peter Rose
- University of Lincoln, Lincoln, Lincolnshire, United Kingdom
| | - Brian W Dymock
- Department of Pharmacy, National University of Singapore, Singapore
| | - Philip K Moore
- Neurobiology Program, Life Science Institute and Department of Pharmacology, National University of Singapore, Singapore.
| |
Collapse
|
691
|
Abstract
In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
692
|
Abstract
Protein S-sulfhydration (i.e., converting protein cysteines -SH to persulfides -SSH) is a redox-based posttranslational modification. This reaction plays an important role in signaling pathways mediated by hydrogen sulfide or other reactive sulfane sulfur species. Recently, our laboratories developed a "tag-switch" method which can be used to selectively label and detect protein S-sulfhydrated residues. In this chapter, we provide a comprehensive summary of this method, including the design of the method, preparation of the reagents, validation on small-molecule substrates, as well as applications in protein labeling. Experimental protocols for the use of the method are described in details.
Collapse
|
693
|
Abstract
Pharmacological concentrations of H2S donors inhibit some T cell functions by inhibiting mitochondrial function, but evidence is also emerging that H2S at physiological concentrations produced via chemical sources and endogenously is a positive physiological mediator of T cell function. Expression of the H2S biosynthetic enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) is induced in response to T cell receptor signaling. Inhibiting the induction of these enzymes limits T cell activation and proliferation, which can be overcome by exposure to exogenous H2S at submicromolar concentrations. Exogenous H2S at physiological concentrations increases the ability of T cells to form an immunological synapse by altering cytoskeletal actin dynamics and increasing the reorientation of the microtubule-organizing center. Downstream, H2S enhances T cell receptor-dependent induction of CD69, CD25, and Interleukin-2 (IL-2) gene expression. The T cell stimulatory activity of H2S is enhanced under hypoxic conditions that limit its oxidative metabolism by mitochondrial and nonenzymatic processes. Studies of the receptor CD47 have revealed the first endogenous inhibitory signaling pathway that regulates H2S signaling in T cells. Binding of the secreted protein thrombospondin-1 to CD47 elicits signals that block the stimulatory activity of exogenous H2S on T cell activation and limit the induction of CSE and CBS gene expression. CD47 signaling thereby inhibits T cell receptor-mediated T cell activation.
Collapse
|
694
|
Huang K, Yu L, Xu P, Zhang X, Zeng W. A novel FRET-based ratiometric fluorescent probe for highly sensitive detection of hydrogen sulfide. RSC Adv 2015. [DOI: 10.1039/c4ra16578k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel ratiometric and colorimetric probeH2S-CRfor the quantitative detection of H2S was designed and synthesized based on a H2S induced Michael addition–cyclization cascade reaction and the FRET modulated fluorescence off-on response.
Collapse
Affiliation(s)
- Kunzhu Huang
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Lun Yu
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Pengfei Xu
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Xintong Zhang
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Wenbin Zeng
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
695
|
Strianese M, Mirra S, Bertolasi V, Milione S, Pellecchia C. Organometallic sulfur complexes: reactivity of the hydrogen sulfide anion with cobaloximes. NEW J CHEM 2015. [DOI: 10.1039/c5nj00206k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen sulfide anion selectively and reversibly displaces pyridine in cobaloxime. A rare trisulfido-bridged dinuclear complex was isolated and characterized.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | - Silvia Mirra
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | - Valerio Bertolasi
- Università di Ferrara
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Centro di Strutturistica Diffrattometrica
- I-44100 Ferrara
- Italy
| | - Stefano Milione
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | | |
Collapse
|
696
|
Saha T, Kand D, Talukdar P. Performance comparison of two cascade reaction models in fluorescence off–on detection of hydrogen sulfide. RSC Adv 2015. [DOI: 10.1039/c4ra13086c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Comparative studies on the performances of two cascade reaction based fluorescent H2S probes are reported.
Collapse
Affiliation(s)
- Tanmoy Saha
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - Dnyaneshwar Kand
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| |
Collapse
|
697
|
Park CM, Xian M. Use of Phosphorodithioate-Based Compounds as Hydrogen Sulfide Donors. Methods Enzymol 2015; 554:127-42. [DOI: 10.1016/bs.mie.2014.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
698
|
Paul S, Goswami S, Das Mukhopadhyay C. A remarkable ratiometric fluorescent chemodosimeter for very rapid detection of hydrogen sulfide in the vapour phase and living cells. NEW J CHEM 2015. [DOI: 10.1039/c5nj01297j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe having a fast response and a large Stokes shift detects SH− both in solid and vapour phases and this probe is used for fluorescence imaging of SH− in living cells.
Collapse
Affiliation(s)
- Sima Paul
- Indian Institute of Engineering Science & Technology
- Shibpur
- India
| | | | | |
Collapse
|
699
|
Bari SE, Olabe JA, Slep LD. Three Redox States of Metallonitrosyls in Aqueous Solution. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
700
|
Peltier R, Chen G, Lei H, Zhang M, Gao L, Lee SS, Wang Z, Sun H. The rational design of a peptide-based hydrogel responsive to H2S. Chem Commun (Camb) 2015; 51:17273-6. [DOI: 10.1039/c5cc06889d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By introducing an azidobenzyl moiety into an ultrashort hydrogelating peptide, we reported on the design of a novel hydrogel that could be selectively degraded by H2S under physiological conditions.
Collapse
Affiliation(s)
- Raoul Peltier
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
- Key Laboratory of Biochip Technology
| | - Ganchao Chen
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
- Key Laboratory of Biochip Technology
| | - Haipeng Lei
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
- Key Laboratory of Biochip Technology
| | - Mei Zhang
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Liqian Gao
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
| | - Zuankai Wang
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
| | - Hongyan Sun
- Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- P. R. China
- Key Laboratory of Biochip Technology
| |
Collapse
|