651
|
Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 2010; 3:1451-61. [PMID: 20947488 DOI: 10.1158/1940-6207.capr-10-0157] [Citation(s) in RCA: 681] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin, an insulin-lowering agent, has been associated with decreased cancer risk in epidemiologic studies in diabetic patients. We performed a comprehensive literature search and meta-analysis of epidemiologic studies to assess the effect of metformin on cancer incidence and mortality in diabetic patients, using Pubmed, ISI Web of Science, Embase, and the Cochrane library until May 2009, with no language or time restrictions. Independent reports with sufficient information to allow risk estimation of cancer risk/mortality and a measure of uncertainty were reviewed and cross-checked independently by three investigators. Eleven studies were selected for relevance in terms of intervention, population studied, independence, and reporting of cancer incidence or mortality data, reporting 4,042 cancer events and 529 cancer deaths. A 31% reduction in overall summary relative risk (0.69; 95% confidence interval, 0.61-0.79) was found in subjects taking metformin compared with other antidiabetic drugs. The inverse association was significant for pancreatic and hepatocellular cancer, and nonsignificant for colon, breast, and prostate cancer. A trend to a dose-response relationship was noted. Metformin is associated with a decreased risk of cancer incidence compared with other treatments among diabetic patients. Given the retrospective nature of most studies and the possibility that the control treatments increase risk, phase II trials are needed before large cancer prevention trials are launched.
Collapse
Affiliation(s)
- Andrea Decensi
- Division of Medical Oncology Unit, EO Ospedali Galliera, Mura delle Cappuccine 14, 16128 Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
652
|
Johnson JA, Pollak M. Insulin, glucose and the increased risk of cancer in patients with type 2 diabetes. Diabetologia 2010; 53:2086-8. [PMID: 20645073 DOI: 10.1007/s00125-010-1855-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 01/23/2023]
Affiliation(s)
- J A Johnson
- School of Public Health, University of Alberta, 2-040 Li Ka Shing Center for Health Research Innovation, Edmonton, AB T6G 2E1, Canada,
| | | |
Collapse
|
653
|
Abstract
Retrospective studies that may be impractical to confirm prospectively suggest that diabetics treated with metformin have a substantially reduced cancer burden compared with other diabetics. It is unclear if this reflects a chemopreventive effect, an effect on transformed cells, or both. It also remains to be established if these data have relevance to people without diabetes. Laboratory models, however, provide independent impressive evidence for the activity of metformin and other biguanides in both cancer treatment and chemoprevention. Investigations of mechanisms of action of biguanides have revealed considerable complexity and have identified important gaps in knowledge that should be addressed to ensure the optimal design of clinical trials of these agents. Such trials may define important new indications for biguanides in the prevention and/or treatment of many common cancers.
Collapse
Affiliation(s)
- Michael Pollak
- 3755 Cote-Ste.-Catherine, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
654
|
Abstract
The report by Memmott et al. (beginning on page 1066 in this issue of the journal) assessing the efficacy of the antidiabetes drug metformin in a mouse model of lung carcinogenesis suggests protective effects via two possible avenues: Decreased circulating insulin and insulin-like growth factor levels and energy stress leading to inhibition of mammalian target of rapamycin signaling. These potential mechanisms are discussed in this perspective, as are their implications for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Room 7408, Charlestown, MA 02129, USA.
| | | |
Collapse
|
655
|
Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA. Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev Res (Phila) 2010; 3:1066-76. [PMID: 20810672 PMCID: PMC3192328 DOI: 10.1158/1940-6207.capr-10-0055] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activation of the mammalian target of rapamycin (mTOR) pathway is an important and early event in tobacco carcinogen-induced lung tumorigenesis, and therapies that target mTOR could be effective in the prevention or treatment of lung cancer. The biguanide metformin, which is widely prescribed for the treatment of type II diabetes, might be a good candidate for lung cancer chemoprevention because it activates AMP-activated protein kinase (AMPK), which can inhibit the mTOR pathway. To test this, A/J mice were treated with oral metformin after exposure to the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Metformin reduced lung tumor burden by up to 53% at steady-state plasma concentrations that are achievable in humans. mTOR was inhibited in lung tumors but only modestly. To test whether intraperitoneal administration of metformin might improve mTOR inhibition, we injected mice and assessed biomarkers in liver and lung tissues. Plasma levels of metformin were significantly higher after injection than oral administration. In liver tissue, metformin activated AMPK and inhibited mTOR. In lung tissue, metformin did not activate AMPK but inhibited phosphorylation of insulin-like growth factor-I receptor/insulin receptor (IGF-1R/IR), Akt, extracellular signal-regulated kinase (ERK), and mTOR. This suggested that metformin indirectly inhibited mTOR in lung tissue by decreasing activation of insulin-like growth factor-I receptor/insulin receptor and Akt upstream of mTOR. Based on these data, we repeated the NNK-induced lung tumorigenesis study using intraperitoneal administration of metformin. Metformin decreased tumor burden by 72%, which correlated with decreased cellular proliferation and marked inhibition of mTOR in tumors. These studies show that metformin prevents tobacco carcinogen-induced lung tumorigenesis and support clinical testing of metformin as a chemopreventive agent.
Collapse
Affiliation(s)
- Regan M. Memmott
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jose R. Mercado
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Colleen R. Maier
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Shigeru Kawabata
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Stephen D. Fox
- Laboratory of Proteomics and Analytical Technology, Science Applications International Corporation-Frederick, Inc., Frederick, MD
| | - Phillip A. Dennis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
656
|
Sánchez-Quiles V, Santamaría E, Segura V, Sesma L, Prieto J, Corrales FJ. Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications. Proteomics 2010; 10:1609-20. [PMID: 20186755 DOI: 10.1002/pmic.200900757] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prohibitin is a multifunctional protein participating in a plethora of essential cellular functions, such as cell signaling, apoptosis, survival and proliferation. In the liver, deficient prohibitin activity participates in the progression of non-alcoholic steatohepatitis and obesity, according to mechanisms that still must be elucidated. In this study, we have used a combination of transcriptomics and proteomics technologies to investigate the response of human hepatoma PLC/PRF/5 cells to prohibitin silencing to define in detail the biological function of hepatic Phb1 and to elucidate potential prohibitin-dependent mechanisms participating in the maintenance of the transformed phenotype. Abrogation of prohibitin reduced proliferation and induced apoptosis in human hepatoma cells in a mechanism dependent on NF kappaB signaling. Moreover, down-regulation of ERp29 together with down-regulation of Erlin 2 suggests ER stress. In agreement, increased C/EBP homologous protein levels, poly-ADP ribose polymerase cleavage and activation of caspase 12 and downstream caspase 7 evidenced ER stress-induced apoptosis. Down-regulation of proteasome activator complex subunit 2 and stathmin as well as accumulation of ubiquitinated proteins suggest interplay between ER stress and proteasome malfunction. Taken together, our results provide evidences for prohibitin having a central role in the maintenance of the transformed and invasive phenotype of human hepatoma cells and may further support previous studies suggesting prohibitin as a potential clinical target.
Collapse
Affiliation(s)
- Virginia Sánchez-Quiles
- Division of Hepatology and Gene Therapy, Proteomics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
657
|
Isolated and combined action of tamoxifen and metformin in wild-type, tamoxifen-resistant, and estrogen-deprived MCF-7 cells. Breast Cancer Res Treat 2010; 128:109-17. [PMID: 20683653 DOI: 10.1007/s10549-010-1072-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/17/2010] [Indexed: 12/12/2022]
Abstract
Resistance to tamoxifen (TAM) and aromatase inhibitors represents a major drawback to the treatment of hormone-dependent breast cancer, and strategies to overcome this problem are urgently needed. The anti-diabetic biguanide metformin (MF) exerts pleiotropic effects which could enhance the effectiveness of available hormonal therapies. This study modeled several aspects of hormonal therapy in women and examined the effectiveness of MF under those conditions. For cell growth evaluation, wild-type (wt), TAM-resistant (TAM-R), and long-term estradiol-deprived (LTED) MCF-7 cells, as a model of aromatase inhibitor resistance, were grown in the presence or absence of TAM or MF for 5 days. For immunoblot analysis and aromatase activity measurements, these cells were grown for 48 h. Wild-type and LTED cells were equally sensitive to the growth inhibitory effects of TAM and MF, while TAM-R cells were less sensitive to TAM than to MF. Partial additive effects on cell number of TAM combined with MF were greatest (if compared with isolated TAM action) in TAM-R and LTED cells. In contrast to the decrease in PCNA values in TAM-resistant cells treated with the TAM and MF combination, no other changes were found in the levels of this proliferation marker. These findings suggested a major component of apoptosis in the growth inhibitory effect. This was confirmed with Western blot analysis of PARP and caspase 7 as well as with apoptosis ELISA assay. MF also altered signaling pathways. AMP-kinase was stimulated by MF approximately equally in MCF-7, TAM-R, and LTED cells, while inhibition by biguanide of p-S6K as a downstream target of mTOR was strongest in TAM-R cells. Under the influence of MF, expression of ER-α was decreased in wt MCF-7 cells suggesting possible involvement of this compound in estrogen signaling. Metformin interacts additively with TAM to reduce neoplastic cells growth. The cellular context (including loss of sensitivity to TAM and estrogen deprivation) is of importance in influencing breast cancer responses to MF and to a combination of MF and TAM.
Collapse
|
658
|
The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 2010; 116:4262-73. [PMID: 20668229 DOI: 10.1182/blood-2010-02-269837] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Finding an effective treatment for acute myeloid leukemia (AML) remains a challenge, and all cellular processes that are deregulated in AML cells should be considered in the design of targeted therapies. We show in our current study that the LKB1/AMPK/TSC tumor suppressor axis is functional in AML and can be activated by the biguanide molecule metformin, resulting in a specific inhibition of mammalian target of rapamycin (mTOR) catalytic activity. This induces a multisite dephosphorylation of the key translation regulator, 4E-BP1, which markedly inhibits the initiation step of mRNA translation. Consequently, metformin reduces the recruitment of mRNA molecules encoding oncogenic proteins to the polysomes, resulting in a strong antileukemic activity against primary AML cells while sparing normal hematopoiesis ex vivo and significantly reducing the growth of AML cells in nude mice. The induction of the LKB1/AMPK tumor-suppressor pathway thus represents a promising new strategy for AML therapy.
Collapse
|
659
|
Xue ZX, Zhong J, Zhao DY, Xu C, Sun PH, Yao JJ. Metformin inhibits cell proliferation and migration in gastric cancer cell line AGS. Shijie Huaren Xiaohua Zazhi 2010; 18:1974-1978. [DOI: 10.11569/wcjd.v18.i19.1974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of metformin, a widely used antihyperglycemic agent, on cell proliferation, apoptosis and migration in human gastric cancer cell line AGS, and to examine whether there are synergistic effects between metformin and 5-fluorouracil (5-FU).
METHODS: AGS cells were treated with metformin alone or in combination with 5-FU. Methyl thiazolyl tetrazolium (MTT) assay was used to detect cell relative viability at 24, 48 and 72 h after treatment. Apoptosis and mitochondrial membrane potential were examined by flow cytometry (FCM) at 48 h. Cell migration at 72 h was determined by scratch assay. The expression of cyclin D1, Bcl-2, MMP-2, MMP-9 and Bax mRNAs in AGS cells at 24 h was detected by RT-PCR.
RESULTS: Metformin significantly inhibited cell proliferation in a dose- and time-dependent manner (24, 48 and 72 h: F = 99.32, 127.30 and 235.72, respectively; all P < 0.01). After metformin treatment, mitochondrial membrane potential decreased (t = 12.43, P < 0.01), apoptosis rate increased (t = 8.32, P < 0.01), and average migration velocity was reduced (12, 24 and 48 h: t = 9.13, 13.77 and 14.21, respectively; all P < 0.01) in AGS cells. The expression of cyclin D1, Bcl-2, MMP-2 and MMP-9 mRNAs was down-regulated, while that of Bax mRNA was up-regulated after metformin treatment. Metformin treatment enhanced 5-FU-mediated cell growth inhibition (24 h: t = 2.97, P < 0.05; 48 h, t = 4.61, P < 0.01; 72 h: t = 6.02, P < 0.01).
CONCLUSION: Metformin can inhibit cell proliferation and migration and promote apoptosis in human gastric cancer cell line AGS. Metformin and 5-FU have a synergistic anti-proliferation effect in AGS cells.
Collapse
|
660
|
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33:1674-85. [PMID: 20587728 PMCID: PMC2890380 DOI: 10.2337/dc10-0666] [Citation(s) in RCA: 1439] [Impact Index Per Article: 95.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epidemiologic evidence suggests that cancer incidence is associated with diabetes as well as certain diabetes risk factors and diabetes treatments. This consensus statement of experts assembled jointly by the American Diabetes Association and the American Cancer Society reviews the state of science concerning 1) the association between diabetes and cancer incidence or prognosis, 2) risk factors common to both diabetes and cancer, 3) possible biologic links between diabetes and cancer risk, and 4) whether diabetes treatments influence risk of cancer or cancer prognosis. In addition, key unanswered questions for future research are posed.
Collapse
Affiliation(s)
- Edward Giovannucci
- Department of Nutrition, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
661
|
Donadon V, Balbi M, Valent F, Avogaro A. Glycated hemoglobin and antidiabetic strategies as risk factors for hepatocellular carcinoma. World J Gastroenterol 2010; 16:3025-32. [PMID: 20572306 PMCID: PMC2890943 DOI: 10.3748/wjg.v16.i24.3025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the relationship between glycemic control [assessed by glycated hemoglobin (HbA1c)], antidiabetic therapies and the risk of hepatocellular carcinoma (HCC).
METHODS: We recruited 465 patients with HCC, 618 cases with liver cirrhosis and 490 controls with no liver disease. Among subjects with type 2 diabetes mellitus (DM2), the associations between the antidiabetic strategies and HbA1c level with HCC were determined through 2 series of multivariate logistic regression models using cirrhotic patients and controls as comparison groups.
RESULTS: DM2 prevalence was 31.2% in patients with HCC, 23.2% in cirrhotic patients and 12.6% in controls (P < 0.0001). In 86% of study subjects, DM2 had been diagnosed for more than 1 year before the HCC diagnosis. HCC patients with DM2 had a 1.5-2.5-fold increased risk of liver cancer. The HbA1c mean levels were significantly higher in DM2 patients with HCC than in cirrhotic and control DM2 patients. Antidiabetic treatment with metformin was more common among cirrhotic and control DM2 subjects than among cases with HCC. In both series of multivariate analyses, treatment with metformin significantly reduced the risk of HCC by more than 80% compared with sulphonylureas and insulin therapy. No significant differences were seen between sulphonylureas and insulin treatment. Elevated HbA1c levels were positively related to the risk for HCC in diabetic patients, with a 26%-50% increase in risk for each 1% increase in HbA1c values.
CONCLUSION: In patients with preexisting DM2, the risk of HCC is positively associated with poor chronic glycemic control and significantly decreased by metformin therapy.
Collapse
|
662
|
Papanas N, Maltezos E, Mikhailidis DP. Metformin and cancer: licence to heal? Expert Opin Investig Drugs 2010; 19:913-7. [DOI: 10.1517/13543784.2010.499122] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
663
|
Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010; 6:457-70. [PMID: 20222801 DOI: 10.2217/fon.09.174] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AMPK is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for metabolic syndrome and Type 2 diabetes. Recent studies indicate that AMPK plays a role in linking metabolic syndrome and cancer. AMPK is an essential mediator of the tumor suppressor LKB1 and could be suppressed in cancer cells containing loss-of-function mutations of LKB1 or containing active mutations of B-Raf, or in cancers associated with metabolic syndrome. The activation of AMPK reprograms cellular metabolism and enforces metabolic checkpoints by acting on mTORC1, p53, fatty acid synthase and other molecules for regulating cell growth and metabolism. In keeping with in vitro studies, recent epidemiological studies indicate that the incidence of cancer is reduced in Type 2 diabetes treated with metformin, an AMPK activator. Thus, AMPK is emerging as an interesting metabolic tumor suppressor and a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
664
|
Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 2010; 33:1304-8. [PMID: 20299480 PMCID: PMC2875444 DOI: 10.2337/dc09-1791] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate whether use of oral hypoglycemic agents is associated with an altered breast cancer risk in women. RESEARCH DESIGN AND METHODS Using the U.K.-based General Practice Research Database, we conducted a nested case-control analysis among 22,621 female users of oral antidiabetes drugs with type 2 diabetes. We evaluated whether they had an altered risk of breast cancer in relation to use of various types of oral hypoglycemic agents. Case and control patients with a recorded diagnosis of type 2 diabetes were matched on age, calendar time, and general practice, and the multivariate conditional logistic regression analyses were further adjusted for use of oral antidiabetes drugs, insulin, estrogens, smoking BMI, diabetes duration, and HbA1c (A1C). RESULTS We identified 305 case patients with a recorded incident diagnosis of breast cancer. The mean +/- SD age was 67.5 +/- 10.5 years at the time of the cancer diagnosis. Long-term use of >or=40 prescriptions (>5 years) of metformin, based on 17 exposed case patients and 120 exposed control patients, was associated with an adjusted odds ratio of 0.44 (95% CI 0.24-0.82) for developing breast cancer compared with no use of metformin. Neither short-term metformin use nor use of sulfonylureas or other antidiabetes drugs was associated with a materially altered risk for breast cancer. CONCLUSIONS A decreased risk of breast cancer was observed in female patients with type 2 diabetes using metformin on a long-term basis.
Collapse
Affiliation(s)
- Michael Bodmer
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
665
|
Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11:390-401. [PMID: 20444419 PMCID: PMC3081779 DOI: 10.1016/j.cmet.2010.03.014] [Citation(s) in RCA: 666] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 11/19/2009] [Accepted: 03/24/2010] [Indexed: 01/08/2023]
Abstract
Dysfunctional mTORC1 signaling is associated with a number of human pathologies owing to its central role in controlling cell growth, proliferation, and metabolism. Regulation of mTORC1 is achieved by the integration of multiple inputs, including those of mitogens, nutrients, and energy. It is thought that agents that increase the cellular AMP/ATP ratio, such as the antidiabetic biguanides metformin and phenformin, inhibit mTORC1 through AMPK activation of TSC1/2-dependent or -independent mechanisms. Unexpectedly, we found that biguanides inhibit mTORC1 signaling, not only in the absence of TSC1/2 but also in the absence of AMPK. Consistent with these observations, in two distinct preclinical models of cancer and diabetes, metformin acts to suppress mTORC1 signaling in an AMPK-independent manner. We found that the ability of biguanides to inhibit mTORC1 activation and signaling is, instead, dependent on the Rag GTPases.
Collapse
Affiliation(s)
- Adem Kalender
- Department of Cancer and Cell Biology, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
666
|
Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 2010; 9:1092-9. [PMID: 20442309 DOI: 10.1158/1535-7163.mct-09-1186] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metformin is the most widely used antidiabetic drug in the world, and there is increasing evidence of a potential efficacy of this agent as an anticancer drug. First, epidemiological studies show a decrease in cancer incidence in metformin-treated patients. Second, metformin decreases insulin resistance and indirectly reduces insulin level, a beneficial effect because insulin promotes cancer cell growth. Third, several reports outline a direct inhibitory effect of metformin on cancer cell growth and an antitumoral action. Finally, metformin activates the AMP activated protein kinase (AMPK) pathway, a major sensor of the energetic status of the cell, which has been proposed as a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Issam Ben Sahra
- INSERM U895, Team 7: Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | | | | | | |
Collapse
|
667
|
Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int 2010; 30:750-8. [PMID: 20331505 DOI: 10.1111/j.1478-3231.2010.02223.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies have reported the association between type 2 diabetes mellitus (DM2) and hepatocellular carcinoma (HCC). AIMS To explore the relationships among DM2, antidiabetic therapy and HCC risk. METHODS We recruited 610 HCC patients compared with 618 matched cirrhotic patients and 1696 Controls. The odds ratio (OR) for HCC in diabetic subjects treated with insulin, sulphonylureas and metformin was calculated. RESULTS DM2 prevalence was 31.2% in HCC, 23.3% in cirrhotic patients and 12.7% in Controls (P<0.0001). The OR for HCC in diabetic HCC patients vs Controls was 3.12 [confidence interval (CI) 2.40-3.90; P<0.001] in univariate analysis and 2.50 (CI 1.70-3.69; P<0.0001) in multivariate analysis. Comparing diabetic HCC patients vs liver cirrhosis (LC) cases, univariate analysis showed an OR for HCC of 2.09 (CI 1.50-2.90; P<0.001), whereas on multivariate analysis we found an OR of 1.46 (CI 1.07-1.98; P=0.02). In 84% of the cases, type 2 diabetes mellitus has been present before the HCC diagnosis. Multivariate analysis showed that metformin treatment was associated with a strong and statistically significant reduction of the risk of HCC, as compared with the use of sulphonylureas or insulin, in diabetic HCC patients vs Controls and vs LC cases (OR of 0.15; CI 0.04-0.50; P=0.005 and OR=0.16; CI 0.06-0.46; P=0.0006 respectively). CONCLUSIONS Our study shows that DM2 is an independent risk factor for HCC and pre-exists to HCC occurrence. In DM2 patients with HCC, metformin therapy is associated with a reduced HCC risk and seems to have a protective effect on HCC development.
Collapse
Affiliation(s)
- Valter Donadon
- Department of Medicine, Internal Medicine 3rd, Pordenone Hospital, Pordenone, Italy.
| | | | | | | | | |
Collapse
|
668
|
Rozengurt E, Sinnett-Smith J, Kisfalvi K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 2010; 16:2505-11. [PMID: 20388847 DOI: 10.1158/1078-0432.ccr-09-2229] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin/insulin-like growth factor 1(IGF-1) receptors and G protein-coupled receptors (GPCR) signaling systems are implicated in autocrine-paracrine stimulation of a variety of malignancies, including ductal adenocarcinoma of the pancreas, one of the most lethal human diseases. Novel targets for pancreatic cancer therapy are urgently needed. We identified a crosstalk between insulin/IGF-1 receptors and GPCR signaling systems in pancreatic cancer cells, leading to enhanced signaling, DNA synthesis, and proliferation. Crosstalk between these signaling systems depends on mammalian target of rapamycin (mTOR) complex 1 (mTORC1). Metformin, the most widely used drug in the treatment of type 2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTORC1. Recent results show that metformin-induced activation of AMPK disrupts crosstalk between insulin/IGF-1 receptor and GPCR signaling in pancreatic cancer cells and inhibits the growth of these cells in xenograft models. Given that insulin/IGF-1 and GPCRs are implicated in other malignancies, a similar crosstalk mechanism may be operative in other cancer cell types. Recent epidemiological studies linked administration of metformin with a reduced risk of pancreatic, breast, and prostate cancer in diabetic patients. We posit that crosstalk between insulin/IGF-1 receptor and GPCR signaling is a mechanism for promoting the development of certain types of cancer and a target for the prevention and therapy of these diseases via metformin administration.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| | | | | |
Collapse
|
669
|
Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R. Dietary interventions to extend life span and health span based on calorie restriction. J Gerontol A Biol Sci Med Sci 2010; 65:695-703. [PMID: 20371545 DOI: 10.1093/gerona/glq042] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The societal impact of obesity, diabetes, and other metabolic disorders continues to rise despite increasing evidence of their negative long-term consequences on health span, longevity, and aging. Unfortunately, dietary management and exercise frequently fail as remedies, underscoring the need for the development of alternative interventions to successfully treat metabolic disorders and enhance life span and health span. Using calorie restriction (CR)-which is well known to improve both health and longevity in controlled studies-as their benchmark, gerontologists are coming closer to identifying dietary and pharmacological therapies that may be applicable to aging humans. This review covers some of the more promising interventions targeted to affect pathways implicated in the aging process as well as variations on classical CR that may be better suited to human adaptation.
Collapse
Affiliation(s)
- Robin K Minor
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Room 9C-218, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
670
|
Abstract
Cancer therapy has long relied on the rapid proliferation of tumour cells for effective treatment. However, the lack of specificity in this approach often leads to undesirable side effects. Many reports have described various 'metabolic transformation' events that enable cancer cells to survive, suggesting that metabolic pathways might be good targets. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered metabolic pathways of tumours. This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.
Collapse
Affiliation(s)
- Daniel A Tennant
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|
671
|
Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti JF, Bost F. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 2010; 6:670-1. [PMID: 20215500 DOI: 10.1158/0008-5472.can-09-2782] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Targeting cancer cell metabolism is a new promising strategy to fight cancer. Metformin, a widely used antidiabetic agent, exerts antitumoral and antiproliferative action. In this study, the addition of metformin to 2-deoxyglucose (2DG) inhibited mitochondrial respiration and glycolysis in prostate cancer cells leading to a severe depletion in ATP. The combination of the two drugs was much more harmful for cancer cells than the treatment with metformin or 2DG alone, leading to 96% inhibition of cell viability in LNCaP prostate cancer cells. In contrast, a moderate effect on cell viability was observed in normal prostate epithelial cells. At the cellular level, the combination of metformin and 2DG induced p53-dependent apoptosis via the energy sensor pathway AMP kinase, and the reexpression of a functional p53 in p53-deficient prostate cancer cells restored caspase-3 activity. In addition to apoptosis, the combination of metformin and 2DG arrested prostate cancer cells in G(2)-M. This G(2)-M arrest was independent of p53 and correlated with a stronger decrease in cell viability than obtained with either drug. Finally, metformin inhibited 2DG-induced autophagy, decreased beclin 1 expression, and triggered a switch from a survival process to cell death. Our study reinforces the growing interest of metabolic perturbators in cancer therapy and highlights the potential use of the combination of metformin and 2DG as an anticancerous treatment.
Collapse
Affiliation(s)
- Issam Ben Sahra
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Institut Signalisation et Pathologies, Institut National de la Sante et de la Recherche Medicale, U895, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
672
|
Gonzalez-Angulo AM, Meric-Bernstam F. Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res 2010; 16:1695-700. [PMID: 20215559 DOI: 10.1158/1078-0432.ccr-09-1805] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two important, related pathways are involved in cancer growth: the insulin/insulin-like growth factor-1 (IGF1) signaling pathway, which is activated when nutrients are available, and the adenosine mono-phosphate-activated protein kinase (AMPK) pathway, activated when cells are starved for carbohydrates. Metformin inhibits transcription of key gluconeogenesis genes in the liver, increases glucose uptake in skeletal muscle, and decreases circulating insulin levels. Metformin reduces levels of circulating glucose, increases insulin sensitivity, and reduces insulin resistance-associated hyperinsulinemia. At the level of cell signaling, metformin activates AMPK. There are extensive preclinical data showing the anticancer effects of metformin in all breast cancer subtypes as well as in cytotoxic therapy-resistant models. These data, and the epidemiological and retrospective data supporting the antineoplastic effects of metformin, provide the rationale to study the role of metformin for breast cancer therapy in a variety of clinical settings.
Collapse
Affiliation(s)
- Ana M Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
673
|
Fierz Y, Novosyadlyy R, Vijayakumar A, Yakar S, LeRoith D. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes 2010; 59:686-93. [PMID: 19959755 PMCID: PMC2828655 DOI: 10.2337/db09-1291] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Type 2 diabetes increases breast cancer risk and mortality, and hyperinsulinemia has been identified as a major factor linking these two diseases. Thus, we hypothesized that pharmacological reduction of elevated insulin levels would attenuate type 2 diabetes-mediated mammary tumor progression. RESEARCH DESIGN AND METHODS We studied mammary tumor development in MKR(+/+) mice, a nonobese, hyperinsulinemic mouse model of type 2 diabetes. MKR(+/+) mice were either crossed with mice expressing the polyoma virus middle T oncogene specifically in the mammary gland or inoculated orthotopically with the mouse mammary tumor cell lines Met-1 and MCNeuA. MKR(+/+) or control mice harboring tumors were treated with CL-316243, a specific beta3-adrenergic receptor agonist, which sensitizes insulin action but has no direct effect on the mouse mammary epithelium or Met-1 and MCNeuA cells. RESULTS CL-316243 treatment significantly reduced the elevated insulin levels in MKR(+/+) mice and, as a consequence, attenuated mammary tumor progression in the three tumor models tested. This effect was accompanied by reductions in phosphorylation of insulin and IGF-I receptors in transformed mammary tissue. CONCLUSIONS Insulin-sensitizing treatment is sufficient to abrogate type 2 diabetes-mediated mammary tumor progression. Therefore, early administration of insulin-sensitizing therapy may reduce breast cancer risk and mortality in patients with type 2 diabetes.
Collapse
MESH Headings
- Animals
- Body Composition/drug effects
- Cell Line, Tumor
- Comorbidity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/epidemiology
- Dioxoles/pharmacology
- Disease Models, Animal
- Disease Progression
- Eating/drug effects
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Female
- Hyperinsulinism/blood
- Hyperinsulinism/drug therapy
- Hyperinsulinism/epidemiology
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Lipids/blood
- Male
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/epidemiology
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Polyomavirus/genetics
- Risk Factors
Collapse
Affiliation(s)
- Yvonne Fierz
- From the Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Ruslan Novosyadlyy
- From the Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Archana Vijayakumar
- From the Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Shoshana Yakar
- From the Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Derek LeRoith
- From the Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, New York
- Corresponding author: Derek LeRoith,
| |
Collapse
|
674
|
Neuhouser ML, Till C, Kristal A, Goodman P, Hoque A, Platz EA, Hsing AW, Albanes D, Parnes HL, Pollak M. Finasteride modifies the relation between serum C-peptide and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Cancer Prev Res (Phila) 2010; 3:279-89. [PMID: 20179296 PMCID: PMC3846551 DOI: 10.1158/1940-6207.capr-09-0188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyperinsulinemia and obesity-related metabolic disturbances are common and have been associated with increased cancer risk and poor prognosis. To investigate this issue in relation to prostate cancer, we conducted a nested case-control study within the Prostate Cancer Prevention Trial (PCPT), a randomized, placebo-controlled trial testing finasteride versus placebo for primary prevention of prostate cancer. Cases (n = 1,803) and controls (n = 1,797) were matched on age, PCPT treatment arm, and family history of prostate cancer; controls included all eligible non-whites. Baseline bloods were assayed for serum C-peptide (marker of insulin secretion) and leptin (an adipokine) using ELISA. All outcomes were biopsy determined. Logistic regression calculated odds ratios (OR) for total prostate cancer and polytomous logistic regression calculated ORs for low-grade (Gleason <7) and high-grade (Gleason >7) disease. Results were stratified by PCPT treatment arm for C-peptide. For men on placebo, higher versus lower serum C-peptide was associated with a nearly 2-fold increased risk of high-grade prostate cancer (Gleason >7; multivariate-adjusted OR, 1.88; 95% confidence interval, 1.19-2.97; P(trend) = 0.004). When C-peptide was modeled as a continuous variable, every unit increase in log(C-peptide) resulted in a 39% increased risk of high-grade disease (P = 0.01). In contrast, there was no significant relationship between C-peptide and high-grade prostate cancer among men receiving finasteride. Leptin was not independently associated with high-grade prostate cancer. In conclusion, these results support findings from other observational studies that high serum C-peptide and insulin resistance, but not leptin, are associated with increased risk of high-grade prostate cancer. Our novel finding is that the C-peptide-associated risk was attenuated by use of finasteride.
Collapse
Affiliation(s)
- Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
675
|
Lee YK, Park SY, Kim YM, Kim DC, Lee WS, Surh YJ, Park OJ. Suppression of mTOR via Akt-dependent and -independent mechanisms in selenium-treated colon cancer cells: involvement of AMPKalpha1. Carcinogenesis 2010; 31:1092-9. [PMID: 20164123 DOI: 10.1093/carcin/bgq040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the mammalian target of rapamycin (mTOR) pathway promotes tumorigenesis, and inhibiting the mammalian target of rapamycin complex 1 (mTORC1) has emerged as an attractive target for suppressing tumor growth. We found that selenium treatment of HT-29 colon cancer cells suppressed mTORC1 through Akt-independent and -dependent pathways. In Akt-independent mTORC1 inhibition in selenium-treated colon cancer cells, adenosine monophosphate-activated protein kinase (AMPK) alpha(1) was crucial for suppression of mTORC1 activity. In contrast, the Akt-dependent mTORC1 inhibition by selenium did not require AMPKalpha(1). The importance of the AMPKalpha(1)-mTORC1 pathway in mediating the antiproliferative action of selenium was examined in xenograft tumors, and the suppression of mTORC1 as well as Akt was concomitant with an increase in AMPKalpha(1) activity. These findings suggest that the antiproliferative effect of selenium is mediated by an Akt-independent AMPKalpha(1)/mTORC1 pathway or by the Akt/tuberous sclerosis complex 2 /mTORC1 pathway.
Collapse
Affiliation(s)
- Yun-Kyoung Lee
- Department of Food and Nutrition, Hannam University Daedeok Valley Campus, Daejeon 305-811, Korea
| | | | | | | | | | | | | |
Collapse
|
676
|
Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010; 123:271-9. [PMID: 20135346 DOI: 10.1007/s10549-010-0763-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/09/2010] [Indexed: 12/12/2022]
Abstract
Rapamycin and its analogues inhibit mTOR, which leads to decreased protein synthesis and decreased cancer cell proliferation in many experimental systems. Adenosine 5'- monophosphate-activated protein kinase (AMPK) activators such as metformin have similar actions, in keeping with the TSC2/1 pathway linking activation of AMPK to inhibition of mTOR. As mTOR inhibition by rapamycin is associated with attenuation of negative feedback to IRS-1, rapamycin is known to increase activation of AKT, which may reduce its anti-neoplastic activity. We observed that metformin exposure decreases AKT activation, an action opposite to that of rapamycin. We show that metformin (but not rapamycin) exposure leads to increased phosphorylation of IRS-1 at Ser(789), a site previously reported to inhibit downstream signaling and to be an AMPK substrate phosphorylated under conditions of cellular energy depletion. siRNA methods confirmed that reduction of AMPK levels attenuates both the IRS-1 Ser(789) phosphorylation and the inhibition of AKT activation associated with metformin exposure. Although both rapamycin and metformin inhibit mTOR (the former directly and the latter through AMPK signaling), our results demonstrate previously unrecognized differences between these agents. The data are consistent with the observation that maximal induction of apoptosis and inhibition of proliferation are greater for metformin than rapamycin.
Collapse
|
677
|
Abstract
In this review we summarize the evidence for a role for hypoxic response in the biology of metastasis, with a particular emphasis on the metastasis of breast cancer and the function of the hypoxia inducible factor (HIF).
Collapse
Affiliation(s)
- Helene Rundqvist
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | | |
Collapse
|
678
|
Garcia A, Tisman G. Metformin, B(12), and enhanced breast cancer response to chemotherapy. J Clin Oncol 2009; 28:e19; author reply e20. [PMID: 19949002 DOI: 10.1200/jco.2009.25.7857] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
679
|
Wong YY, Moon A, Duffin R, Barthet-Barateig A, Meijer HA, Clemens MJ, de Moor CH. Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 2009; 285:2610-21. [PMID: 19940154 PMCID: PMC2807318 DOI: 10.1074/jbc.m109.071159] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
3′-Deoxyadenosine, also known as cordycepin, is a known polyadenylation inhibitor with a large spectrum of biological activities, including anti-proliferative, pro-apoptotic and anti-inflammatory effects. In this study we confirm that cordycepin reduces the length of poly(A) tails, with some mRNAs being much more sensitive than others. The low doses of cordycepin that cause poly(A) changes also reduce the proliferation of NIH3T3 fibroblasts. At higher doses of the drug we observed inhibition of cell attachment and a reduction of focal adhesions. Furthermore, we observed a strong inhibition of total protein synthesis that correlates with an inhibition of mammalian target of rapamycin (mTOR) signaling, as observed by reductions in Akt kinase and 4E-binding protein (4EBP) phosphorylation. In 4EBP knock-out cells, the effect of cordycepin on translation is strongly reduced, confirming the role of this modification. In addition, the AMP-activated kinase (AMPK) was shown to be activated. Inhibition of AMPK prevented translation repression by cordycepin and abolished 4EBP1 dephosphorylation, indicating that the effect of cordycepin on mTOR signaling and protein synthesis is mediated by AMPK activation. We conclude that many of the reported biological effects of cordycepin are likely to be due to its effects on mTOR and AMPK signaling.
Collapse
Affiliation(s)
- Ying Ying Wong
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
680
|
Phoenix KN, Vumbaca F, Fox MM, Evans R, Claffey KP. Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy. Breast Cancer Res Treat 2009; 123:333-44. [PMID: 20204498 DOI: 10.1007/s10549-009-0647-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/11/2009] [Indexed: 12/29/2022]
Abstract
Dietary energy restriction has been shown to repress both mammary tumorigenesis and aggressive mammary tumor growth in animal studies. Metformin, a caloric restriction mimetic, has a long history of safe use as an insulin sensitizer in diabetics and has been shown to reduce cancer incidence and cancer-related mortality in humans. To determine the potential impact of dietary energy availability and metformin therapy on aggressive breast tumor growth and metastasis, an orthotopic syngeneic model using triple negative 66cl4 tumor cells in Balb/c mice was employed. The effect of dietary restriction, a standard maintenance diet or a diet with high levels of free sugar, were tested for their effects on tumor growth and secondary metastases to the lung. Metformin therapy with the various diets indicated that metformin can be highly effective at suppressing systemic metabolic biomarkers such as IGF-1, insulin and glucose, especially in the high energy diet treated animals. Long-term metformin treatment demonstrated moderate yet significant effects on primary tumor growth, most significantly in conjunction with the high energy diet. When compared to the control diet, the high energy diet promoted tumor growth, expression of the inflammatory adipokines leptin and resistin, induced lung priming by bone marrow-derived myeloid cells and promoted metastatic potential. Metformin had no effect on adipokine expression or the development of lung metastases with the standard or the high energy diet. These data indicate that metformin may have tumor suppressing activity where a metabolic phenotype of high fuel intake, metabolic syndrome, and diabetes exist, but may have little or no effect on events controlling the metastatic niche driven by proinflammatory events.
Collapse
Affiliation(s)
- Kathryn N Phoenix
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3501, USA
| | | | | | | | | |
Collapse
|
681
|
Kopacova M, Tacheci I, Rejchrt S, Bures J. Peutz-Jeghers syndrome: Diagnostic and therapeutic approach. World J Gastroenterol 2009; 15:5397-408. [PMID: 19916169 PMCID: PMC2778095 DOI: 10.3748/wjg.15.5397] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS) is an inherited, autosomal dominant disorder distinguished by hamartomatous polyps in the gastrointestinal tract and pigmented mucocutaneous lesions. Prevalence of PJS is estimated from 1 in 8300 to 1 in 280 000 individuals. PJS predisposes sufferers to various malignancies (gastrointestinal, pancreatic, lung, breast, uterine, ovarian and testicular tumors). Bleeding, obstruction and intussusception are common complications in patients with PJS. Double balloon enteroscopy (DBE) allows examination and treatment of the small bowel. Polypectomy using DBE may obviate the need for repeated urgent operations and small bowel resection that leads to short bowel syndrome. Prophylaxis and polypectomy of the entire small bowel is the gold standard in PJS patients. Intraoperative enteroscopy (IOE) was the only possibility for endoscopic treatment of patients with PJS before the DBE era. Both DBE and IOE facilitate exploration and treatment of the small intestine. DBE is less invasive and more convenient for the patient. Both procedures are generally safe and useful. An overall recommendation for PJS patients includes not only gastrointestinal multiple polyp resolution, but also regular lifelong cancer screening (colonoscopy, upper endoscopy, computed tomography, magnetic resonance imaging or ultrasound of the pancreas, chest X-ray, mammography and pelvic examination with ultrasound in women, and testicular examination in men). Although the incidence of PJS is low, it is important for clinicians to recognize these disorders to prevent morbidity and mortality in these patients, and to perform presymptomatic testing in the first-degree relatives of PJS patients.
Collapse
|
682
|
Tosca L, Ramé C, Chabrolle C, Tesseraud S, Dupont J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction 2009; 139:409-18. [PMID: 19906888 DOI: 10.1530/rep-09-0351] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although its mechanism of action is still unclear, metformin is an anti-diabetic drug effective to restore cyclicity and spontaneous ovulation in women with polycystic ovary syndrome. It may also reduce the risk of cancer. We have recently shown that metformin treatment decreases steroidogenesis through AMP-activated kinase (AMPK) in granulosa cells of various species. Here, we investigated the effects and the molecular mechanisms of metformin in IGF1-induced proliferation and protein synthesis in cultured bovine granulosa cells. Treatment with metformin (10 mM) for 24 h reduced cell proliferation and the levels of cyclin D2 and E, and increased the associations cyclin D2/p21 and cyclin D2/p27 without affecting cell viability in response to IGF1 (10(-8) M). It also decreased IGF1-induced protein synthesis and phosphorylation of P70S6 kinase and ribosomal S6 protein. Interestingly, metformin treatment for 1 h decreased MAPK3/1 (ERK1/2) and P90RSK phosphorylation without affecting AKT phosphorylation in response to IGF1. Adenovirus-mediated expression of dominant-negative AMPK totally abolished the effects of metformin on cell proliferation and phosphorylation of P70S6K in response to IGF1. It also eliminated the inhibitory effects of metformin on MAPK3/1 and P90RSK phosphorylation. Taken together, our results strongly suggest that metformin reduces cell growth, protein synthesis, MAPK3/1, and P90RSK phosphorylation in response to IGF1 through an AMPK-dependent mechanism in cultured bovine granulosa cells.
Collapse
Affiliation(s)
- Lucie Tosca
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), UMR85, F-37 380 Nouzilly, France Unité de Recherches Avicoles, INRA, URA83, F-37 380 Nouzilly, France
| | | | | | | | | |
Collapse
|
683
|
Martin-Castillo B, Dorca J, Vazquez-Martin A, Oliveras-Ferraros C, Lopez-Bonet E, Garcia M, Del Barco S, Menendez JA. Incorporating the antidiabetic drug metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy and trastuzumab: an ongoing clinical-translational research experience at the Catalan Institute of Oncology. Ann Oncol 2009; 21:187-9. [PMID: 19884247 DOI: 10.1093/annonc/mdp494] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
684
|
Lieberthal W, Levine JS. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 2009; 20:2493-502. [PMID: 19875810 DOI: 10.1681/asn.2008111186] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in mediating cell size and mass, proliferation, and survival. mTOR has also emerged as an important modulator of several forms of renal disease. mTOR is activated after acute kidney injury and contributes to renal regeneration and repair. Inhibition of mTOR with rapamycin delays recovery of renal function after acute kidney injury. Activation of mTOR within the kidney also occurs in animal models of diabetic nephropathy and other causes of progressive kidney disease. Rapamycin ameliorates several key mechanisms believed to mediate changes associated with the progressive loss of GFR in chronic kidney disease. These include glomerular hypertrophy, intrarenal inflammation, and interstitial fibrosis. mTOR also plays an important role in mediating cyst formation and enlargement in autosomal dominant polycystic kidney disease. Inhibition of mTOR by rapamycin or one of its analogues represents a potentially novel treatment for autosomal dominant polycystic kidney disease. Finally, inhibitors of mTOR improve survival in patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Stony Brook Medical Center, Health Sciences Center, 16-081B Nicholls Road, Stony Brook, NY 11794-8166, USA.
| | | |
Collapse
|
685
|
Memmott RM, Dennis PA. LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of metformin. J Clin Oncol 2009; 27:e226; author reply e227. [PMID: 19858366 DOI: 10.1200/jco.2009.25.3963] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
686
|
Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. If mammalian target of metformin indirectly is mammalian target of rapamycin, then the insulin-like growth factor-1 receptor axis will audit the efficacy of metformin in cancer clinical trials. J Clin Oncol 2009; 27:e207-9; author reply e210. [PMID: 19858375 DOI: 10.1200/jco.2009.24.5456] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
687
|
Cantrell LA, Zhou C, Mendivil A, Malloy KM, Gehrig PA, Bae-Jump VL. Metformin is a potent inhibitor of endometrial cancer cell proliferation--implications for a novel treatment strategy. Gynecol Oncol 2009; 116:92-8. [PMID: 19822355 DOI: 10.1016/j.ygyno.2009.09.024] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Obesity and diabetes are strong risk factors that drive the development of type I endometrial cancers. Recent epidemiological evidence suggests that metformin may lower cancer risk and reduce rates of cancer deaths among diabetic patients. In order to better understand metformin's anti-tumorigenic potential, our goal was to assess the effect of metformin on proliferation and expression of key targets of metformin cell signaling in endometrial cancer cell lines. METHODS The endometrial cancer cell lines, ECC-1 and Ishikawa, were used. Cell proliferation was assessed after exposure to metformin. Cell cycle progression was evaluated by flow cytometry. Apoptosis was assessed by ELISA for caspase-3 activity. hTERT expression was determined by real-time RT-PCR. Western immunoblotting was performed to determine the expression of the downstream targets of metformin. RESULTS Metformin potently inhibited growth in a dose-dependent manner in both cell lines (IC(50) of 1 mM). Treatment with metformin resulted in G1 arrest, induction of apoptosis and decreased hTERT expression. Western immunoblot analysis demonstrated that metformin induced phosphorylation of AMPK, its immediate downstream mediator, within 24 h of exposure. In parallel, treatment with metformin decreased phosphorylation of S6 protein, a key target of the mTOR pathway. CONCLUSIONS We find that metformin is a potent inhibitor of cell proliferation in endometrial cancer cell lines. This effect is partially mediated through AMPK activation and subsequent inhibition of the mTOR pathway. This work should provide the scientific foundation for future investigation of metformin as a strategy for endometrial cancer prevention and treatment.
Collapse
Affiliation(s)
- Leigh A Cantrell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, CB #7572, Chapel Hill, NC 27599-7572, USA
| | | | | | | | | | | |
Collapse
|
688
|
Matsumoto A, Ichikawa T, Nakao K, Miyaaki H, Hirano K, Fujimito M, Akiyama M, Miuma S, Ozawa E, Shibata H, Takeshita S, Yamasaki H, Ikeda M, Kato N, Eguchi K. Interferon-alpha-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase-Akt-independent pathway. J Gastroenterol 2009; 44:856-63. [PMID: 19436942 DOI: 10.1007/s00535-009-0075-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 04/14/2009] [Indexed: 02/04/2023]
Abstract
OBJECT The interferon-induced Jak-STAT signal alone is not sufficient to explain all the biological effects of IFN. The PI3-K pathways have emerged as a critical additional component of IFN-induced signaling. This study attempted to clarify that relationship between IFN-induced PI3-K-Akt-mTOR activity and anti-viral action. RESULT When the human normal hepatocyte derived cell line was treated with rapamycin (rapa) before accretion of IFN-alpha, tyrosine phosphorylation of STAT-1 was diminished. Pretreatment of rapa had an inhibitory effect on the IFN-alpha-induced expression of PKR and p48 in a dose dependent manner. Rapa inhibited the IFN-alpha inducible IFN-stimulated regulatory element luciferase activity in a dose-dependent manner. However, wortmannin, LY294002 and Akt inhibitor did not influence IFN-alpha inducible luciferase activity. To examine the effect of PI3-K-Akt-mTOR on the anti-HCV action of IFN-alpha, the full-length HCV replication system, OR6 cells were used. The pretreatment of rapa attenuated its anti-HCV replication effect in comparison to IFN-alpha alone, whereas the pretreatment with PI3-K inhibitors, wortmannin and LY294002 and Akt inhibitor did not influence IFN-induced anti-HCV replication. CONCLUSION IFN-induced mTOR activity, independent of PI3K and Akt, is the critical factor for its anti-HCV activity. Jak independent mTOR activity involved STAT-1 phosphorylation and nuclear location, and then PKR is expressed in hepatocytes.
Collapse
Affiliation(s)
- Azusa Matsumoto
- Department of Clinical Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
689
|
Granot Z, Swisa A, Magenheim J, Stolovich-Rain M, Fujimoto W, Manduchi E, Miki T, Lennerz JK, Stoeckert CJ, Meyuhas O, Seino S, Permutt MA, Piwnica-Worms H, Bardeesy N, Dor Y. LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab 2009; 10:296-308. [PMID: 19808022 PMCID: PMC2790403 DOI: 10.1016/j.cmet.2009.08.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 06/12/2009] [Accepted: 08/19/2009] [Indexed: 02/08/2023]
Abstract
Pancreatic beta cells, organized in the islets of Langerhans, sense glucose and secrete appropriate amounts of insulin. We have studied the roles of LKB1, a conserved kinase implicated in the control of cell polarity and energy metabolism, in adult beta cells. LKB1-deficient beta cells show a dramatic increase in insulin secretion in vivo. Histologically, LKB1-deficient beta cells have striking alterations in the localization of the nucleus and cilia relative to blood vessels, suggesting a shift from hepatocyte-like to columnar polarity. Additionally, LKB1 deficiency causes a 65% increase in beta cell volume. We show that distinct targets of LKB1 mediate these effects. LKB1 controls beta cell size, but not polarity, via the mTOR pathway. Conversely, the precise position of the beta cell nucleus, but not cell size, is controlled by the LKB1 target Par1b. Insulin secretion and content are restricted by LKB1, at least in part, via AMPK. These results expose a molecular mechanism, orchestrated by LKB1, for the coordinated maintenance of beta cell size, form, and function.
Collapse
Affiliation(s)
- Zvi Granot
- Department of Developmental Biology and Cancer Research and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
690
|
Yurekli BS, Karaca B, Cetinkalp S, Uslu R. Is it the time for metformin to take place in adjuvant treatment of Her-2 positive breast cancer? Teaching new tricks to old dogs. Med Hypotheses 2009; 73:606-607. [PMID: 19560877 DOI: 10.1016/j.mehy.2009.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/22/2009] [Accepted: 05/25/2009] [Indexed: 11/26/2022]
Abstract
Breast cancer is the most common malignancy diagnosed among women. According to the new molecular subclassification, basal like and Her-2 positive breast cancers have the worst outcome and these are the ones in which chemotherapy is a must as a part of adjuvant treatment. New treatment options that could be used as an adjuvant maintenance treatment are still being investigated. Insulin hormone is one of the reasons of breast cancer recurrence and death in breast cancer survivors. Targeting insulin as a therapeutic modality in breast cancer could be an option in the adjuvant treatment of breast cancer. It seems that insulin may signal to activate a cascade of proliferative and anti-apoptotic events in the cancer cell. Metformin, an oral anti-diabetic known for 50 years, may also have direct effects on cancer cells. Metformin causes Her-2 suppression via the inhibition of mTOR in breast cancer cells. Thus, we believe that the time has arrived both to target insulin reduction and to alter Her-2 oncogene based molecular pathogenetic steps in breast cancer by using metformin as an adjuvant therapy in breast cancer patients.
Collapse
Affiliation(s)
- Banu Sarer Yurekli
- Division of Endocrinology and Metabolism, Ege University School of Medicine, 35100 Izmir, Turkey.
| | | | | | | |
Collapse
|
691
|
Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 2009; 69:6539-45. [PMID: 19679549 DOI: 10.1158/0008-5472.can-09-0418] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, we identified a novel crosstalk between insulin and G protein-coupled receptor (GPCR) signaling pathways in human pancreatic cancer cells. Insulin enhanced GPCR signaling through a rapamycin-sensitive mTOR-dependent pathway. Metformin, the most widely used drug in the treatment of type 2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTOR. Here, we determined whether metformin disrupts the crosstalk between insulin receptor and GPCR signaling in pancreatic cancer cells. Treatment of human pancreatic cancer cells (PANC-1, MIAPaCa-2, and BxPC-3) with insulin (10 ng/mL) for 5 minutes markedly enhanced the increase in intracellular [Ca(2+)] induced by GPCR agonists (e.g., neurotensin, bradykinin, and angiotensin II). Metformin pretreatment completely abrogated insulin-induced potentiation of Ca(2+) signaling but did not interfere with the effect of GPCR agonists alone. Insulin also enhanced GPCR agonist-induced growth, measured by DNA synthesis, and the number of cells cultured in adherent or nonadherent conditions. Low doses of metformin (0.1-0.5 mmol/L) blocked the stimulation of DNA synthesis, and the anchorage-dependent and anchorage-independent growth induced by insulin and GPCR agonists. Treatment with metformin induced striking and sustained increase in the phosphorylation of AMPK at Thr(172) and a selective AMPK inhibitor (compound C, at 5 micromol/L) reversed the effects of metformin on [Ca(2+)](i) and DNA synthesis, indicating that metformin acts through AMPK activation. In view of these results, we tested whether metformin inhibits pancreatic cancer growth. Administration of metformin significantly decreased the growth of MIAPaCa-2 and PANC-1 cells xenografted on the flank of nude mice. These results raise the possibility that metformin could be a potential candidate in novel treatment strategies for human pancreatic cancer.
Collapse
Affiliation(s)
- Krisztina Kisfalvi
- Departments of Medicine, CURE, Digestive Diseases Research Center, Molecular Biology Institute, University of California at Los Angeles, 90095-1786, USA
| | | | | | | |
Collapse
|
692
|
Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, Kellock D, Jordan LB, Purdie CA, Hardie DG, Fleming S, Thompson AM. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 2009; 9:307. [PMID: 19723334 PMCID: PMC2744705 DOI: 10.1186/1471-2407-9-307] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 09/01/2009] [Indexed: 12/24/2022] Open
Abstract
Background AMP-activated protein kinase (AMPK) acts as a cellular fuel gauge that responds to energy stress by suppressing cell growth and biosynthetic processes, thus ensuring that energy-consuming processes proceed only if there are sufficient metabolic resources. Malfunction of the AMPK pathway may allow cancer cells to undergo uncontrolled proliferation irrespective of their molecular energy levels. The aim of this study was to examine the state of AMPK phosphorylation histologically in primary breast cancer in relation to clinical and pathological parameters. Methods Immunohistochemistry was performed using antibodies to phospho-AMPK (pAMPK), phospho-Acetyl Co-A Carboxylase (pACC) an established target for AMPK, HER2, ERα, and Ki67 on Tissue Micro-Array (TMA) slides of two cohorts of 117 and 237 primary breast cancers. The quick score method was used for scoring and patterns of protein expression were compared with clinical and pathological data, including a minimum 5 years follow up. Results Reduced signal, compared with the strong expression in normal breast epithelium, using a pAMPK antibody was demonstrated in 101/113 (89.4%) and 217/236 (91.9%) of two cohorts of patients. pACC was significantly associated with pAMPK expression (p = 0.007 & p = 0.014 respectively). For both cohorts, reduced pAMPK signal was significantly associated with higher histological grade (p = 0.010 & p = 0.021 respectively) and axillary node metastasis (p = 0.061 & p = 0.039 respectively). No significant association was found between pAMPK and any of HER2, ERα, or Ki67 expression, disease-free survival or overall survival. Conclusion This study extends in vitro evidence through immunohistochemistry to confirm that AMPK is dysfunctional in primary breast cancer. Reduced signalling via the AMPK pathway, and the inverse relationship with histological grade and axillary node metastasis, suggests that AMPK re-activation could have therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- Sirwan M Hadad
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Dundee, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Dowling RJO, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 2009; 23:77-91. [PMID: 19489650 DOI: 10.2165/00063030-200923020-00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival, and proliferation. Inappropriate activation of PI3K/Akt/mTOR signaling can promote a cellular environment that is favorable for transformation. In fact, dysregulation of this pathway, as a result of genetic mutations and amplifications, is implicated in a variety of human cancers. Therefore, mTOR has emerged as a key target for the treatment of cancer, particularly in the treatment of tumors that exhibit increased mTOR signaling as a result of genetic lesions. The immunosuppressant sirolimus (rapamycin) directly inhibits mTOR activity and suppresses the growth of cancer cells in vitro and in vivo. As a result, a number of sirolimus derivatives have been developed as anti-cancer therapies, and these compounds are currently under investigation in phase I-III clinical trials. In this review, we summarize the use of sirolimus derivatives in clinical trials and address some of the challenges associated with targeting mTOR for the treatment of human cancer.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
694
|
Wright JL, Stanford JL. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes Control 2009; 20:1617-22. [PMID: 19653109 PMCID: PMC2767519 DOI: 10.1007/s10552-009-9407-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
Abstract
Purpose Metformin is a commonly used medication for type II diabetes mellitus. Epidemiologic studies have suggested a decreased relative risk of cancer with metformin use, and preclinical studies of prostate cancer (PCa) have shown antitumor activity with metformin. In this study, we explore the relationship between metformin use and PCa risk in a population-based case–control study. Methods Cases were men aged 35–74 years diagnosed with PCa between 2002 and 2005 in King County, Washington. Controls were frequency matched by age and identified by random digit dialing. Use of metformin was determined from in-person questionnaires regarding medical and prescription history. The relationship of metformin use with PCa risk was evaluated using logistic regression. Results A total of 1,001 cases of PCa and 942 controls were available for analysis. In Caucasian men, metformin use was more common in controls than in cases (4.7 vs. 2.8%, p = 0.04), resulting in a 44% risk reduction for PCa (adjusted OR = 0.56; 95% CI 0.32–1.00). No association was seen in African-American men. Conclusion Metformin use was associated with a borderline significant decrease in the relative risk of PCa in Caucasians. Further study into this relationship is needed to confirm the association and determine the underlying pathways involved.
Collapse
Affiliation(s)
- Jonathan L Wright
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA.
| | | |
Collapse
|
695
|
Pollak M. Macronutrient intake and cancer: how does dietary restriction influence tumor growth and why should we care? Cancer Prev Res (Phila) 2009; 2:698-701. [PMID: 19654107 DOI: 10.1158/1940-6207.capr-09-0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective on the report by Rogozina and colleagues (beginning on page 712 in this issue of the journal) reviews mechanisms that may underlie inhibitory effects of dietary restriction on tumor growth in the mouse mammary tumor virus transforming growth factor alpha (MMTV-TGF-alpha) breast cancer model and comments on the potential clinical relevance of these mechanisms. The inhibitory effect of caloric restriction on carcinogenesis and tumor growth in rodent models is a classic finding that is receiving increasing attention. In some experimental models, the magnitude of the effect is significant, rivaling what can be achieved by pharmacologic approaches to cancer prevention or treatment. Major challenges include defining the underlying mechanisms and determining the clinical relevance of laboratory models of caloric restriction.
Collapse
Affiliation(s)
- Michael Pollak
- Division of Cancer Prevention, Department of Oncology,McGill University and Segal Cancer Centre, Montreal, Quebec, Canada.
| |
Collapse
|
696
|
Vázquez-Martín A, Oliveras-Ferraros C, del Barco S, Martín-Castillo B, Menéndez JA. mTOR inhibitors and the anti-diabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb®). Clin Transl Oncol 2009; 11:455-9. [DOI: 10.1007/s12094-009-0384-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
697
|
Abstract
EVALUATION OF: Goodwin PJ, Pritchard KI, Ennis M, Clemons M, Graham M, Fantus IG: Insulin-lowering effects of metformin in women with early breast cancer. Clin. Breast Cancer 8(6), 501-505 (2008). This paper demonstrates that in breast cancer patients without overt diabetes mellitus, the antidiabetic biguanide metformin at a dose of 1500 mg/day reduces initially increased fasting insulinemia by 22.4% on average, 6 months after the onset of treatment. Since the same authors reported earlier on the association between preoperational insulinemia and breast cancer progression rate, an important conclusion from the above publication was that a Phase III randomized trial of metformin is warranted in order to assess the possible antitumor effect of this preparation. The evaluation presented below briefly addresses the history of the issue and possible targets of metformin effects beside its insulin-related action. It is argued that in selecting breast cancer patients for metformin therapy, one should take into account, along with the standard criteria, the pharmacogenetic aspects, estrogen production and specific features of estrogenic signaling, and also the expression of important metformin targets, including AMP-activated protein kinase, in tumor tissue.
Collapse
Affiliation(s)
- Lev M Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, Leningradskaya 68, Pesochny, St. Petersburg 197758, Russia.
| |
Collapse
|
698
|
Erdemoglu E, Güney M, Giray SG, Take G, Mungan T. Effects of metformin on mammalian target of rapamycin in a mouse model of endometrial hyperplasia. Eur J Obstet Gynecol Reprod Biol 2009; 145:195-9. [PMID: 19501448 DOI: 10.1016/j.ejogrb.2009.04.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effects of metformin on S6K1, which is a crucial effector of mTOR signaling, and on endometrium were studied in a mouse model of endometrial hyperplasia induced by unopposed estradiol or tamoxifen. STUDY DESIGN Forty-eight oophorectomized Balb/c mice were randomly assigned to receive saline, tamoxifen citrate (4 mg/kg), 17-beta estradiol hemihydrate (4 mg/kg), metformin (50 mg/kg), tamoxifen citrate (4 mg/kg) with metformin (50 mg/kg), or estradiol (4 mg/kg) with metformin (50 mg/kg) for 3 days. Histological markers of uterotrophy, including luminal epithelial cell height and density of endometrial glands were quantified for each slide. Immunohistochemical expression of PCNA and S6K1 was evaluated. H-score was used for S6K1 expression. Statistical analysis was performed using Student's t-test for comparison of two continous variables and one-way ANOVA for comparison of multiple variables. RESULTS Mice treated either with tamoxifen or estradiol had significantly increased density of endometrial glands and epithelial heights compared to vehicle-only or metformin-only group (p<0.001). Addition of metformin to tamoxifen or estradiol treated mice significantly decreased the density of endometrial glands and epithelial cell heights (p<0.05). Addition of metformin to tamoxifen significantly decreased the H-score of S6K1 (p<0.05) and the immunohistochemical expression of PCNA (p<0.05) in uterine lining epithelium, glandular and stromal cells. Addition of metformin to estradiol significantly decreased the H-score of S6K1 (p<0.05) and the immunohistochemical expression of PCNA (p<0.05) in uterine lining epithelium, glandular and stromal cells. CONCLUSION Metformin seems to have possible antiproliferative effects on the endometrium of estradiol or tamoxifen treated mice via inhibiting the mTOR mediated S6K1 activation.
Collapse
Affiliation(s)
- Evrim Erdemoglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | | | | | | | | |
Collapse
|
699
|
Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27:3297-302. [PMID: 19487376 DOI: 10.1200/jco.2009.19.6410] [Citation(s) in RCA: 664] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Population studies have suggested that metformin use in diabetic patients decreases cancer incidence and mortality. Metformin inhibits the growth of cancer cells in vitro and tumors in vivo. However, there is little clinical data to support this. Our purpose was to determine whether metformin use was associated with a change in pathologic complete response (pCR) rates in diabetic patients with breast cancer receiving neoadjuvant chemotherapy. PATIENTS AND METHODS We identified 2,529 patients who received neoadjuvant chemotherapy for early-stage breast cancer between 1990 and 2007. Patients were compared by groups: 68 diabetic patients taking metformin, 87 diabetic patients not taking metformin, and 2,374 nondiabetic patients. pCR rates were compared between the three groups using chi(2) tests of independence and compared pair- wise using a binomial test of proportions. Factors predictive of pCR were assessed using a multivariate logistic regression model. RESULTS The rate of pCR was 24% in the metformin group, 8.0% in the nonmetformin group, and 16% in the nondiabetic group (P = .02). Pairwise comparisons between the metformin and nonmetformin groups (P = .007) and the nonmetformin and nondiabetic groups (P = .04) were significant. Comparison of the pCR rates between the metformin and nondiabetic groups trended toward but did not meet significance (P = .10). Metformin use was independently predictive of pCR (odds ratio, 2.95; P = .04) after adjustment for diabetes, body mass index, age, stage, grade, receptor status, and neoadjuvant taxane use. CONCLUSION Diabetic patients with breast cancer receiving metformin and neoadjuvant chemotherapy have a higher pCR rate than do diabetics not receiving metformin. Additional studies to evaluate the potential of metformin as an antitumor agent are warranted.
Collapse
Affiliation(s)
- Sao Jiralerspong
- Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030-4009, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
700
|
Williams BW, Chang JJ, Chi RM, Marker PH, Frethem CD, Le CT, Kratzke RA, Kirstein MN. Cap-dependent translation blockade and fixed dose-rate gemcitabine: interaction in an in vitro bioreactor system. Cancer Lett 2009; 284:37-46. [PMID: 19442436 DOI: 10.1016/j.canlet.2009.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 01/13/2023]
Abstract
Translation initiation commences with the binding of eIF-4F to the mRNA 5'-end cap. eIF-4F binds the cap structure via its eIF-4E subunit, which is the rate-limiting step for the initiation of translation. This pathway can be inhibited by 4E-binding proteins (4E-BPs). The present study investigated prolonged gemcitabine infusion in combination with reduced eIF-4E function on NSCLC cell viability in an in vitro bioreactor system. To assess attachment to the hollow fibers, cells with dominant active 4E-BP1 were first analyzed by scanning electron microscopy. Cells were treated with 0.5- or 2.5h (fixed dose rate) infusion (same total dose), simulating human plasma gemcitabine concentration-time profiles. An interaction was observed between fixed dose rate infusion gemcitabine and presence of dominant active 4E-BP1. We conclude that cap-dependent translation blockade and fixed dose rate infusion gemcitabine treatment results in a significant interaction affecting cell viability in vitro.
Collapse
Affiliation(s)
- Brent W Williams
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Comprehensive Cancer Center, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | | | |
Collapse
|