701
|
Raposo AE, Piller SC. Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 2018; 13:3. [PMID: 29568320 PMCID: PMC5859524 DOI: 10.1186/s13008-018-0036-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification where a methyl group is added onto arginine residues of a protein to alter detection by its binding partners or regulate its activity. It is known to be involved in many biological processes, such as regulation of signal transduction, transcription, facilitation of protein–protein interactions, RNA splicing and transport. The enzymes responsible for arginine methylation, protein arginine methyltransferases (PRMTs), have been shown to methylate or associate with important regulatory proteins of the cell cycle and DNA damage repair pathways, such as cyclin D1, p53, p21 and the retinoblastoma protein. Overexpression of PRMTs resulting in aberrant methylation patterns in cancers often correlates with poor recovery prognosis. This indicates that protein arginine methylation is also an important regulator of the cell cycle, and consequently a target for cancer regulation. The effect of protein arginine methylation on the cell cycle and how this emerging key player of cell cycle regulation may be used in therapeutic strategies for cancer are the focus of this review.
Collapse
Affiliation(s)
- Anita E Raposo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| | - Sabine C Piller
- School of Science and Health, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
702
|
Zakrzewicz D, Didiasova M, Krüger M, Giaimo BD, Borggrefe T, Mieth M, Hocke AC, Zakrzewicz A, Schaefer L, Preissner KT, Wygrecka M. Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1816-1827. [PMID: 29501774 DOI: 10.1016/j.bbadis.2018.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Enolase-1-dependent cell surface proteolysis plays an important role in cell invasion. Although enolase-1 (Eno-1), a glycolytic enzyme, has been found on the surface of various cells, the mechanism responsible for its exteriorization remains elusive. Here, we investigated the involvement of post-translational modifications (PTMs) of Eno-1 in its lipopolysaccharide (LPS)-triggered trafficking to the cell surface. RESULTS We found that stimulation of human lung adenocarcinoma cells with LPS triggered the monomethylation of arginine 50 (R50me) within Eno-1. The Eno-1R50me was confirmed by its interaction with the tudor domain (TD) from TD-containing 3 (TDRD3) protein recognizing methylarginines. Substitution of R50 with lysine (R50K) reduced Eno-1 association with epithelial caveolar domains, thereby diminishing its exteriorization. Similar effects were observed when pharmacological inhibitors of arginine methyltransferases were applied. Protein arginine methyltransferase 5 (PRMT5) was identified to be responsible for Eno-1 methylation. Overexpression of PRMT5 and caveolin-1 enhanced levels of membrane-bound extracellular Eno-1 and, conversely, pharmacological inhibition of PRMT5 attenuated Eno-1 cell-surface localization. Importantly, Eno-1R50me was essential for cancer cell motility since the replacement of Eno-1 R50 by lysine or the suppression of PRMT 5 activity diminished Eno-1-triggered cell invasion. CONCLUSIONS LPS-triggered Eno-1R50me enhances Eno-1 cell surface levels and thus potentiates the invasive properties of cancer cells. Strategies to target Eno-1R50me may offer novel therapeutic approaches to attenuate tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Marcus Krüger
- Center for Molecular Medicine, University of Cologne, Germany
| | - Benedetto Daniele Giaimo
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Maren Mieth
- Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine, Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, Feulgenstrasse 10-12, 35385 Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
703
|
Vougiouklakis T, Nakamura Y, Saloura V. Critical roles of protein methyltransferases and demethylases in the regulation of embryonic stem cell fate. Epigenetics 2018; 12:1015-1027. [PMID: 29099285 DOI: 10.1080/15592294.2017.1391430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has recently shown that protein methyltransferases and demethylases are crucial regulators in either maintaining pluripotent states or inducing differentiation of embryonic stem cells. These enzymes control pluripotent signatures by mediating activation or repression of histone marks, or through direct methylation of non-histone proteins. Importantly, chromatin modifiers can influence the fate of many differentiation-related genes by loosening chromatin and allowing for transcriptional activation of lineage-specific genes. Genome-wide studies have unraveled diverse changes in methylation patterns following embryonic stem cell differentiation, with redistribution of heterochromatic and euchromatic marks, underlying the importance of chromatin modifiers in governing the fate of embryonic stemness. Furthermore, the development of small molecule inhibitors targeting these agents may shed light in potential clinical implementation to reprogram embryonic stem cells for biomedical therapeutics. Ever since the pioneering introduction of induced pluripotent stem cells, the challenge for application in regenerative medicine and broader medical therapeutics has commenced.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA
| | - Yusuke Nakamura
- a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA.,b Department of Surgery , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA
| | - Vassiliki Saloura
- a Section of Hematology/Oncology, Department of Medicine , The University of Chicago , 5841 S. Maryland Ave, MC2115 Chicago , IL 60637 , USA
| |
Collapse
|
704
|
Protein arginine methyltransferase expression and activity during myogenesis. Biosci Rep 2018; 38:BSR20171533. [PMID: 29208765 PMCID: PMC6435512 DOI: 10.1042/bsr20171533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/24/2023] Open
Abstract
Despite the emerging importance of protein arginine methyltransferases (PRMTs) in regulating skeletal muscle plasticity, PRMT biology during muscle development is complex and not completely understood. Therefore, our purpose was to investigate PRMT1, -4, and -5 expression and function in skeletal muscle cells during the phenotypic remodeling elicited by myogenesis. C2C12 muscle cell maturation, assessed during the myoblast (MB) stage, and during days 1, 3, 5, and 7 of differentiation, was employed as an in vitro model of myogenesis. We observed PRMT-specific patterns of expression and activity during myogenesis. PRMT4 and -5 gene expression was unchanged, while PRMT1 mRNA and protein content were significantly induced. Cellular monomethylarginines (MMAs) and symmetric dimethylarginines (SDMAs), indicative of global and type II PRMT activities, respectively, remained steady during development, while type I PRMT activity indicator asymmetric dimethylarginines (ADMAs) increased through myogenesis. Histone 4 arginine 3 (H4R3) and H3R17 contents were elevated coincident with the myonuclear accumulation of PRMT1 and -4. Collectively, this suggests that PRMTs are methyl donors throughout myogenesis and demonstrate specificity for their protein targets. Cells were then treated with TC-E 5003 (TC-E), a selective inhibitor of PRMT1 in order to specifically examine the enzymes role during myogenic differentiation. TC-E treated cells exhibited decrements in muscle differentiation, which were consistent with attenuated mitochondrial biogenesis and respiratory function. In summary, the present study increases our understanding of PRMT1, -4, and -5 biology during the plasticity of skeletal muscle development. Our results provide evidence for a role of PRMT1, via a mitochondrially mediated mechanism, in driving the muscle differentiation program.
Collapse
|
705
|
Brandariz-Núñez A, Zeng F, Lam QN, Jin H. Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. RNA (NEW YORK, N.Y.) 2018; 24:43-55. [PMID: 28986506 PMCID: PMC5733569 DOI: 10.1261/rna.062547.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
RNA-binding protein Sbp1 facilitates the decapping pathway in mRNA metabolism and inhibits global mRNA translation by an unclear mechanism. Here we report molecular interactions responsible for Sbp1-mediated translation inhibition of mRNA encoding the polyadenosine-binding protein (Pab1), an essential translation factor that stimulates mRNA translation and inhibits mRNA decapping in eukaryotic cells. We demonstrate that the two distal RRMs of Sbp1 bind to the poly(A) sequence in the 5'UTR of the Pab1 mRNA specifically and cooperatively while the central RGG domain of the protein interacts directly with Pab1. Furthermore, methylation of arginines in the RGG domain abolishes the protein-protein interaction and the inhibitory effect of Sbp1 on translation initiation of Pab1 mRNA. Based on these results, the underlying mechanism for Sbp1-specific translational regulation is proposed. The functional differences of Sbp1 and RGG repeats alone on transcript-specific translation were observed, and a comparison of the results suggests the importance of remodeling the 5'UTR by RNA-binding proteins in mRNA translation.
Collapse
Affiliation(s)
- Alberto Brandariz-Núñez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Quan Ngoc Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
706
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
707
|
Zhang M, Xu JY, Hu H, Ye BC, Tan M. Systematic Proteomic Analysis of Protein Methylation in Prokaryotes and Eukaryotes Revealed Distinct Substrate Specificity. Proteomics 2017; 18. [PMID: 29150981 DOI: 10.1002/pmic.201700300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Indexed: 11/07/2022]
Abstract
The studies of protein methylation mainly focus on lysine and arginine residues due to their diverse roles in essential cellular processes from gene expression to signal transduction. Nevertheless, atypical protein methylation occurring on amino acid residues, such as glutamine and glutamic acid, is largely neglected until recently. In addition, the systematic analysis for the distribution of methylation on different amino acids in various species is still lacking, which hinders our understanding of its functional roles. In this study, we deeply explored the methylated sites in three species Escherichia coli, Saccharomyces cerevisiae, and HeLa cells by employing MS-based proteomic approach coupled with heavy methyl SILAC method. We identify a total of 234 methylated sites on 187 proteins with high localization confidence, including 94 unreported methylated sites on nine different amino acid residues. KEGG and gene ontology analysis show the pathways enriched with methylated proteins are mainly involved in central metabolism for E. coli and S. cerevisiae, but related to spliceosome for HeLa cells. The analysis of methylation preference on different amino acids is conducted in three species. Protein N-terminal methylation is dominant in E. coli while methylated lysines and arginines are widely identified in S. cerevisiae and HeLa cells, respectively. To study whether some atypical protein methylation has biological relevance in the pathological process in mammalian cells, we focus on histone methylation in diet-induced obese (DIO) mouse. Two glutamate methylation sites showed statistical significance in DIO mice compared with chow-fed mice, suggesting their potential roles in diabetes and obesity. Together, these findings expanded the methylome database from microbes to mammals, which will benefit our further appreciation for the protein methylation as well as its possible functions on disease.
Collapse
Affiliation(s)
- Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yu Xu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Hu
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
708
|
More than a powerplant: the influence of mitochondrial transfer on the epigenome. CURRENT OPINION IN PHYSIOLOGY 2017; 3:16-24. [PMID: 29750205 DOI: 10.1016/j.cophys.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Each cell in the human body, with the exception of red blood cells, contains multiple copies of mitochondria that house their own genetic material, the maternally inherited mitochondrial DNA. Mitochondria are the cell's powerplant due to their massive ATP generation. However, the mitochondrion is also a hub for metabolite production from the TCA cycle, fatty acid beta-oxidation, and ketogenesis. In addition to producing macromolecules for biosynthetic reactions and cell replication, several mitochondrial intermediate metabolites serve as cofactors or substrates for epigenome modifying enzymes that regulate chromatin structure and impact gene expression. Here, we discuss connections between mitochondrial metabolites and enzymatic writers and erasers of chromatin modifications. We do this from the unique perspective of cell-to-cell mitochondrial transfer and its potential impact on mitochondrial replacement therapies.
Collapse
|
709
|
Brown JI, Koopmans T, van Strien J, Martin NI, Frankel A. Kinetic Analysis of PRMT1 Reveals Multifactorial Processivity and a Sequential Ordered Mechanism. Chembiochem 2017; 19:85-99. [PMID: 29112789 DOI: 10.1002/cbic.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 01/13/2023]
Abstract
Arginine methylation is a prevalent post-translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N-methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη-hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi-Bi kinetic mechanism for PRMT1, based on steady-state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timo Koopmans
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Jolinde van Strien
- Leiden Institute for Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
710
|
Di Lascio S, Benfante R, Di Zanni E, Cardani S, Adamo A, Fornasari D, Ceccherini I, Bachetti T. Structural and functional differences in PHOX2B frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Hum Mutat 2017; 39:219-236. [PMID: 29098737 PMCID: PMC5846889 DOI: 10.1002/humu.23365] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the PHOX2B gene are causative of congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by defective autonomic control of breathing due to the impaired differentiation of neural crest cells. Among PHOX2B mutations, polyalanine (polyAla) expansions are almost exclusively associated with isolated CCHS, whereas frameshift variants, although less frequent, are often more severe than polyAla expansions and identified in syndromic CCHS. This article provides a complete review of all the frameshift mutations identified in cases of isolated and syndromic CCHS reported in the literature as well as those identified by us and not yet published. These were considered in terms of both their structure, whether the underlying indels induced frameshifts of either 1 or 2 steps ("frame 2" and "frame 3" mutations respectively), and clinical associations. Furthermore, we evaluated the structural and functional effects of one "frame 3" mutation identified in a patient with isolated CCHS, and one "frame 2" mutation identified in a patient with syndromic CCHS, also affected with Hirschsprung's disease and neuroblastoma. The data thus obtained confirm that the type of translational frame affects the severity of the transcriptional dysfunction and the predisposition to isolated or syndromic CCHS.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | | |
Collapse
|
711
|
Ma M, Zhao X, Chen S, Zhao Y, yang L, Feng Y, Qin W, Li L, Jia C. Strategy Based on Deglycosylation, Multiprotease, and Hydrophilic Interaction Chromatography for Large-Scale Profiling of Protein Methylation. Anal Chem 2017; 89:12909-12917. [DOI: 10.1021/acs.analchem.7b03673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ma
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuo Chen
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingyi Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lu yang
- Department
of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Feng
- Beijing Hua LiShi Scientific Co. Ltd., Beijing 101300, China
| | - Weijie Qin
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- School
of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
712
|
Stouth DW, vanLieshout TL, Shen NY, Ljubicic V. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders. Front Physiol 2017; 8:870. [PMID: 29163212 PMCID: PMC5674940 DOI: 10.3389/fphys.2017.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nicole Y Shen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
713
|
Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol 2017; 72:77-86. [PMID: 29079444 DOI: 10.1016/j.semcdb.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
The commitment to and execution of differentiation programmes involves a significant change in gene expression in the precursor cell to facilitate development of the mature cell type. In addition to being regulated by lineage-determining and auxiliary transcription factors that drive these changes, the structural status of the chromatin has a considerable impact on the transcriptional competence of differentiation-specific genes, which is clearly demonstrated by the large number of cofactors and the extraordinary complex mechanisms by which these genes become activated. The terminal differentiation of myoblasts to myotubes and mature skeletal muscle is an excellent system to illustrate these points. The MyoD family of closely related, lineage-determining transcription factors directs, largely through targeting to chromatin, a cascade of cooperating transcription factors and enzymes that incorporate or remove variant histones, post-translationally modify histones, and alter nucleosome structure and positioning via energy released by ATP hydrolysis. The coordinated action of these transcription factors and enzymes prevents expression of differentiation-specific genes in myoblasts and facilitates the transition of these genes from transcriptionally repressed to activated during the differentiation process. Regulation is achieved in both a temporal as well as spatial manner, as at least some of these factors and enzymes affect local chromatin structure at myogenic gene regulatory sequences as well as higher-order genome organization. Here we discuss the transition of genes that promote myoblast differentiation from the silenced to the activated state with an emphasis on the changes that occur to individual histones and the chromatin structure present at these loci.
Collapse
|
714
|
Patounas O, Papacharalampous I, Eckerich C, Markopoulos GS, Kolettas E, Fackelmayer FO. A novel splicing isoform of protein arginine methyltransferase 1 (PRMT1) that lacks the dimerization arm and correlates with cellular malignancy. J Cell Biochem 2017; 119:2110-2123. [PMID: 28857308 DOI: 10.1002/jcb.26373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/24/2017] [Indexed: 02/02/2023]
Abstract
Methylation of arginine residues is an important modulator of protein function that is involved in epigenetic gene regulation, DNA damage response and RNA maturation, as well as in cellular signaling. The enzymes that catalyze this post-translational modification are called protein arginine methyltransferases (PRMTs), of which PRMT1 is the predominant enzyme. Human PRMT1 has previously been shown to occur in seven splicing isoforms, which are differentially abundant in different tissues, and have distinct substrate specificity and intracellular localization. Here we characterize a novel splicing isoform which does not affect the amino-terminus of the protein like the seven known isoforms, but rather lacks exons 8 and 9 which encode the dimerization arm of the enzyme that is essential for enzymatic activity. Consequently, the isoform does not form catalytically active oligomers with the other endogenous PRMT1 isoforms. Photobleaching experiments reveal an immobile fraction of the enzyme in the nucleus, in accordance with earlier results from our laboratory that had shown a tight association of inhibited or inactivated PRMT1 with chromatin and the nuclear scaffold. Thus, it apparently is able to bind to the same substrates as catalytically active PRMT1. This isoform is found in a variety of cell lines, but is increased in those of cancer origin or after expression of the EMT-inducing transcriptional repressor Snail1. We discuss that the novel isoform could act as a modulator of PRMT1 activity in cancer cells by acting as a competitive inhibitor that shields substrates from access to active PRMT1 oligomers.
Collapse
Affiliation(s)
- Odysseas Patounas
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Laboratory for Epigenetics and Chromosome Biology, Ioannina, Greece
| | - Ioanna Papacharalampous
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Carmen Eckerich
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Laboratory for Epigenetics and Chromosome Biology, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Ioannina, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Ioannina, Greece
| | - Frank O Fackelmayer
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Laboratory for Epigenetics and Chromosome Biology, Ioannina, Greece
| |
Collapse
|
715
|
Zhang B, Zhang S, Zhu L, Chen X, Zhao Y, Chao L, Zhou J, Wang X, Zhang X, Ma N. Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5. Toxicol Appl Pharmacol 2017; 336:1-7. [PMID: 28987382 DOI: 10.1016/j.taap.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Arginine methylation is carried out by protein arginine methyltransferase (PRMTs) family. Arginine methyltransferase inhibitor 1 (AMI-1) is mainly used to inhibit type I PRMT activity in vitro. However, the effects of AMI-1 on type II PRMT5 activity and gastric cancer (GC) remain unclear. In this study, we provided the first evidence that AMI-1 significantly inhibited GC cell proliferation and migration while induced GC cell apoptosis, and reduced the expression of PRMT5, eukaryotic translation initiation factor 4E (eIF4E), symmetric dimethylation of histone 3 (H3R8me2s) and histone 4 (H4R3me2s). In addition, AMI-1 inhibited tumor growth, downregulated eIF4E, H4R3me2s and H3R8me2s expression in mice xenografts model of GC. Collectively, our results suggest that AMI-1 inhibits GC by downregulating eIF4E and targeting type II PRMT5.
Collapse
Affiliation(s)
- Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China.
| | - Su Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Lijuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China; Department of Pharmacology, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xue Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Yunfeng Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Li Chao
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Juanping Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Xing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Xinyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Nengqian Ma
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| |
Collapse
|
716
|
Gong F, Miller KM. Histone methylation and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:37-47. [PMID: 31395347 DOI: 10.1016/j.mrrev.2017.09.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
Abstract
Preserving genome function and stability are paramount for ensuring cellular homeostasis, an imbalance in which can promote diseases including cancer. In the presence of DNA lesions, cells activate pathways referred to as the DNA damage response (DDR). As nuclear DNA is bound by histone proteins and organized into chromatin in eukaryotes, DDR pathways have evolved to sense, signal and repair DNA damage within the chromatin environment. Histone proteins, which constitute the building blocks of chromatin, are highly modified by post-translational modifications (PTMs) that regulate chromatin structure and function. An essential histone PTM involved in the DDR is histone methylation, which is regulated by histone methyltransferase (HMT) and histone demethylase (HDM) enzymes that add and remove methyl groups on lysine and arginine residues within proteins respectively. Methylated histones can alter how proteins interact with chromatin, including their ability to be bound by reader proteins that recognize these PTMs. Here, we review histone methylation in the context of the DDR, focusing on DNA double-strand breaks (DSBs), a particularly toxic lesion that can trigger genome instability and cell death. We provide a comprehensive overview of histone methylation changes that occur in response to DNA damage and how the enzymes and reader proteins of these marks orchestrate the DDR. Finally, as many epigenetic pathways including histone methylation are altered in cancer, we discuss the potential involvement of these pathways in the etiology and treatment of this disease.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, United States.
| |
Collapse
|
717
|
Wang YC, Wang CW, Lin WC, Tsai YJ, Chang CP, Lee YJ, Lin MJ, Li C. Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8. PLoS One 2017; 12:e0185042. [PMID: 28934323 PMCID: PMC5608299 DOI: 10.1371/journal.pone.0185042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/04/2017] [Indexed: 01/22/2023] Open
Abstract
Nine protein arginine methyltransferases (PRMTs) are conserved in mammals and fish. Among these, PRMT1 is the major type I PRMT for asymmetric dimethylarginine (ADMA) formation and is the most conserved and widely distributed one. Two chicken prmt1 splicing variants were assembled and confirmed by RT-PCR experiments. However, only two scaffolds containing single separate prmt1 exon with high GC contents are present in the current chicken genome assembly. Besides, prmt1 exons are scattered in separate small scaffolds in most avian species. Complete prmt1 gene has only been predicted from two falcon species with few neighboring genes. Crocodilians are considered close to the common ancestor shared by crocodilians and birds. The gene arrangements around prmt1 in American alligator are different from that in birds but are largely conserved in human. Orthologues of genes in a large segment of human chromosomal 19 around PRMT1 are missing or not assigned to the current chicken chromosomes. In comparison, prmt8, the prmt1 paralogue, is on chicken chromosome 1 with the gene arrangements downstream of prmt8 highly conserved in birds, crocodilians, and human. However, the ones upstream vary greatly in birds. Biochemically, we found that though prmt1 transcripts were detected, limited or none PRMT1 protein was present in chicken tissues. Moreover, a much higher level of PRMT8 protein was detected in chicken brain than in mouse brain. While PRMT8 is brain specific in other vertebrate species studied, low level of PRMT8 was present in chicken but not mouse liver and muscle. We also showed that the ADMA level in chicken was similar to that in mouse. This study provides the critical information of chicken PRMT1 and PRMT8 for future analyses of the function of protein arginine methyltransferases in birds.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Chien-Wen Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Yun-Jung Tsai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Jen Lee
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Jon Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
718
|
Jain K, Jin CY, Clarke SG. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc Natl Acad Sci U S A 2017; 114:10101-10106. [PMID: 28874563 PMCID: PMC5617285 DOI: 10.1073/pnas.1706978114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Cyrus Y Jin
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
719
|
|
720
|
Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes. Cell Rep 2017; 20:2756-2765. [DOI: 10.1016/j.celrep.2017.08.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 01/29/2023] Open
|
721
|
Wesche J, Kühn S, Kessler BM, Salton M, Wolf A. Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci 2017; 74:3305-3315. [PMID: 28364192 PMCID: PMC11107486 DOI: 10.1007/s00018-017-2515-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
Collapse
Affiliation(s)
- Juste Wesche
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sarah Kühn
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
722
|
Jiang J, Li S, Wang Y, Xiao X, Jin Y, Wang Y, Yang Z, Yan S, Li Y. Potential neurotoxicity of prenatal exposure to sevoflurane on offspring: Metabolomics investigation on neurodevelopment and underlying mechanism. Int J Dev Neurosci 2017; 62:46-53. [PMID: 28842206 DOI: 10.1016/j.ijdevneu.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Affiliation(s)
- Jialong Jiang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022AnhuiPR China
| | - Shasha Li
- Guangdong Provincial Association of Chinese Medicine, Guangdong Provincial Hospital of Chinese MedicineNo. 111 Dade RoadGuangzhouGuangdong510120PR China
| | - Yiqiao Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022AnhuiPR China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Yi Jin
- Department of AnesthesiologyInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of MedicineShanghai200030PR China
| | - Yilong Wang
- Department of AnesthesiologyInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of MedicineShanghai200030PR China
| | - Zeyong Yang
- Department of AnesthesiologyInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of MedicineShanghai200030PR China
| | - Shikai Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical UniversityGuangzhou510006PR China
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai200240PR China
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022AnhuiPR China
| |
Collapse
|
723
|
Krapivinsky G, Krapivinsky L, Renthal NE, Santa-Cruz A, Manasian Y, Clapham DE. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc Natl Acad Sci U S A 2017; 114:E7092-E7100. [PMID: 28784805 PMCID: PMC5576826 DOI: 10.1073/pnas.1708427114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TRPM6 and TRPM7 are members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels. Deletion of either gene in mice is embryonically lethal. TRPM6/7 are the only known examples of single polypeptides containing both an ion channel pore and a serine/threonine kinase (chanzyme). Here we show that the C-terminal kinase domain of TRPM6 is cleaved from the channel domain in a cell type-specific fashion and is active. Cleavage requires that the channel conductance is functional. The cleaved kinase translocates to the nucleus, where it is strictly localized and phosphorylates specific histone serine and threonine (S/T) residues. TRPM6-cleaved kinases (M6CKs) bind subunits of the protein arginine methyltransferase 5 (PRMT5) molecular complex that make important epigenetic modifications by methylating histone arginine residues. Histone phosphorylation by M6CK results in a dramatic decrease in methylation of arginines adjacent to M6CK-phosphorylated amino acids. Knockout of TRPM6 or inactivation of its kinase results in global changes in histone S/T phosphorylation and changes the transcription of hundreds of genes. We hypothesize that M6CK associates with the PRMT5 molecular complex in the nucleus, directing M6CK to a specific genomic location and providing site-specific histone phosphorylation. M6CK histone phosphorylation, in turn, regulates transcription by attenuating the effect of local arginine methylation.
Collapse
Affiliation(s)
- Grigory Krapivinsky
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - Luba Krapivinsky
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - Nora E Renthal
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Ana Santa-Cruz
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - Yunona Manasian
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
- Department of Cardiology, Harvard Medical School, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
724
|
Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin Cancer Biol 2017; 51:180-197. [PMID: 28778403 DOI: 10.1016/j.semcancer.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms of cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML - including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite 'writer' proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - David Vetrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
725
|
Hu J, Yang H, Mu J, Lu T, Peng J, Deng X, Kong Z, Bao S, Cao X, Zuo J. Nitric Oxide Regulates Protein Methylation during Stress Responses in Plants. Mol Cell 2017; 67:702-710.e4. [PMID: 28757206 DOI: 10.1016/j.molcel.2017.06.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/25/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.
Collapse
Affiliation(s)
- Jiliang Hu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanjie Yang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Jinye Mu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Tiancong Lu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juli Peng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China.
| |
Collapse
|
726
|
Fulton MD, Zhang J, He M, Ho MC, Zheng YG. Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4. Biochemistry 2017. [PMID: 28644004 DOI: 10.1021/acs.biochem.7b00450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical modifications of the DNA and nucleosomal histones tightly control the gene transcription program in eukaryotic cells. The "histone code" hypothesis proposes that the frequency, combination, and location of post-translational modifications (PTMs) of the core histones compose a complex network of epigenetic regulation. Currently, there are at least 23 different types and >450 histone PTMs that have been discovered, and the PTMs of lysine and arginine residues account for a crucial part of the histone code. Although significant progress has been achieved in recent years, the molecular basis for the histone code is far from being fully understood. In this study, we investigated how naturally occurring N-terminal acetylation and PTMs of histone H4 lysine-5 (H4K5) affect arginine-3 methylation catalyzed by both type I and type II PRMTs at the biochemical level. Our studies found that acylations of H4K5 resulted in decreased levels of arginine methylation by PRMT1, PRMT3, and PRMT8. In contrast, PRMT5 exhibits an increased rate of arginine methylation upon H4K5 acetylation, propionylation, and crotonylation, but not upon H4K5 methylation, butyrylation, or 2-hydroxyisobutyrylation. Methylation of H4K5 did not affect arginine methylation by PRMT1 or PRMT5. There was a small increase in the rate of arginine methylation by PRMT8. Strikingly, a marked increase in the rate of arginine methylation was observed for PRMT3. Finally, N-terminal acetylation reduced the rate of arginine methylation by PRMT3 but had little influence on PRMT1, -5, and -8 activity. These results together highlight the underlying mechanistic differences in substrate recognition among different PRMTs and pave the way for the elucidation of the complex interplay of histone modifications.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| | - Jing Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| | - Maomao He
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
727
|
Zheng Y, Huang L, Ge W, Yang M, Ma Y, Xie G, Wang W, Bian B, Li L, Nie H, Shen L. Protein Arginine Methyltransferase 5 Inhibition Upregulates Foxp3 + Regulatory T Cells Frequency and Function during the Ulcerative Colitis. Front Immunol 2017; 8:596. [PMID: 28588584 PMCID: PMC5440547 DOI: 10.3389/fimmu.2017.00596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) pathogenesis is related to imbalance of immune responses, and the equilibrium between inflammatory T cells and Foxp3+ regulatory T cells (Tregs) plays an important role in the intestinal homeostasis. Protein arginine methyltransferases (PRMTs) regulate chromatin remodeling and gene expression. Here, we investigated whether inhibition of PRMTs affects colitis pathogenesis in mice and inflammatory bowel disease patients and further explored the underlying mechanisms. In this study, we found that protein arginine N-methyltransferase inhibitor 1 (AMI-1) treatments increased Tregs frequency, function, and reduced colitis incidence. Adoptive transfer of AMI-1-treated Tregs could reduce the colitis incidence. Colitis was associated with increased local PRMT5 expression, which was inhibited by AMI-1 treatment. Additionally, PRMT5 knockdown T cells produced a better response to TGFβ and promoted Tregs differentiation through decreased DNA methyltransferase 1 (DNMT1) expression. PRMT5 also enhanced H3K27me3 and DNMT1 binding to Foxp3 promoter, which restricted Tregs differentiation. Furthermore, PRMT5 knockdown led to decreased Foxp3 promoter methylation during Tregs induction. PRMT5 expression had a negative relationship with Tregs in UC patients, knockdown of PRMT5 expression increased Tregs frequency and decreased TNFα, IL-6, and IL-13 levels. Our study outlines a novel regulation of PRMT5 on Tregs development and function. Strategies to decrease PRMT5 expression might have therapeutic potential to control UC.
Collapse
Affiliation(s)
- Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liya Huang
- Department of Gerontology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wensong Ge
- Department of Gastroenterology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yang
- Department of Anorectal Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Xie
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Wang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxian Bian
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
728
|
Emerging Role for Methylation in Multiple Sclerosis: Beyond DNA. Trends Mol Med 2017; 23:546-562. [PMID: 28478950 DOI: 10.1016/j.molmed.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. The inflammatory and neurodegenerative pathways driving MS are modulated by DNA, lysine, and arginine methylation, as evidenced by studies made possible by novel tools for methylation detection or loss of function. We present evidence that MS is associated with genetic variants and metabolic changes that impact on methylation. Further, we comprehensively review current understanding of how methylation can impact on central nervous system (CNS) resilience and neuroregenerative potential, as well as inflammatory versus regulatory T helper (Th) cell balance. These findings are discussed in the context of therapeutic relevance for MS, with broad implications in other neurologic and immune-mediated diseases.
Collapse
|
729
|
Sambataro F, Pennuto M. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases. Front Mol Neurosci 2017; 10:82. [PMID: 28408866 PMCID: PMC5374214 DOI: 10.3389/fnmol.2017.00082] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of UdineUdine, Italy
| | - Maria Pennuto
- Centre for Integrative Biology, Dulbecco Telethon Institute, University of TrentoTrento, Italy
| |
Collapse
|
730
|
Kwok J, O'Shea M, Hume DA, Lengeling A. Jmjd6, a JmjC Dioxygenase with Many Interaction Partners and Pleiotropic Functions. Front Genet 2017; 8:32. [PMID: 28360925 PMCID: PMC5352680 DOI: 10.3389/fgene.2017.00032] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Lysyl hydroxylation and arginyl demethylation are post-translational events that are important for many cellular processes. The jumonji domain containing protein 6 (JMJD6) has been reported to catalyze both lysyl hydroxylation and arginyl demethylation on diverse protein substrates. It also interacts directly with RNA. This review summarizes knowledge of JMJD6 functions that have emerged in the last 15 years and considers how a single Jumonji C (JmjC) domain-containing enzyme can target so many different substrates. New links and synergies between the three main proposed functions of Jmjd6 in histone demethylation, promoter proximal pause release of polymerase II and RNA splicing are discussed. The physiological context of the described molecular functions is considered and recently described novel roles for JMJD6 in cancer and immune biology are reviewed. The increased knowledge of JMJD6 functions has wider implications for our general understanding of the JmjC protein family of which JMJD6 is a member.
Collapse
Affiliation(s)
- Janice Kwok
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - Marie O'Shea
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - Andreas Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| |
Collapse
|
731
|
Akpınar M, Lesche M, Fanourgakis G, Fu J, Anasstasiadis K, Dahl A, Jessberger R. TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes. PLoS Genet 2017; 13:e1006660. [PMID: 28263986 PMCID: PMC5358835 DOI: 10.1371/journal.pgen.1006660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 02/26/2017] [Indexed: 12/24/2022] Open
Abstract
Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA and in an arginine methylation dependent manner. In Tdrd6-/- diplotene spermatocytes PRMT5 association with SmB and arginine dimethylation of SmB are much reduced. TDRD6 deficiency impairs the assembly of spliceosomes, which feature 3.5-fold increased levels of U5 snRNPs. In the nucleus, these deficiencies in spliceosome maturation correlate with decreased numbers of SMN-positive bodies and Cajal bodies involved in nuclear snRNP maturation. Transcriptome analysis of TDRD6-deficient diplotene spermatocytes revealed high numbers of splicing defects such as aberrant usage of intron and exons as well as aberrant representation of splice junctions. Together, this study demonstrates a novel function of TDRD6 in spliceosome maturation and mRNA splicing in prophase I spermatocytes.
Collapse
Affiliation(s)
- Müge Akpınar
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Grigorios Fanourgakis
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jun Fu
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
732
|
Abstract
Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging.
Collapse
Affiliation(s)
- Roméo S Blanc
- a Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital , Montréal , Québec , Canada.,b Departments of Oncology and Medicine , McGill University , Montréal , Québec , Canada
| | - Stéphane Richard
- a Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital , Montréal , Québec , Canada.,b Departments of Oncology and Medicine , McGill University , Montréal , Québec , Canada
| |
Collapse
|