701
|
|
702
|
Nelson MP, Christmann BS, Werner JL, Metz AE, Trevor JL, Lowell CA, Steele C. IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina. THE JOURNAL OF IMMUNOLOGY 2011; 186:2372-81. [PMID: 21220696 DOI: 10.4049/jimmunol.1002558] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have recently reported that mice deficient in the myeloid Src-family tyrosine kinases Hck, Fgr, and Lyn (Src triple knockout [TKO]) had augmented innate lung clearance of Pneumocystis murina that correlated with a higher ability of alveolar macrophages (AMs) from these mice to kill P. murina. In this article, we show that despite possessing enhanced killing, AMs from naive Src TKO mice did not demonstrate enhanced inflammatory responses to P. murina. We subsequently discovered that both AMs and lungs from P. murina-infected Src TKO mice expressed significantly greater levels of the M2a markers RELM-α and Arg1, and the M2a-associated chemokines CCL17 and CCL22 than did wild-type mice. IL-4 and IL-13, the primary cytokines that promote M2a polarization, were not differentially produced in the lungs between wild-type and Src TKO mice. P. murina infection in Src TKO mice resulted in enhanced lung production of the novel IL-1 family cytokine IL-33. Immunohistochemical analysis of IL-33 in lung tissue revealed localization predominantly in the nucleus of alveolar epithelial cells. We further demonstrate that experimental polarization of naive AMs to M2a resulted in more efficient killing of P. murina compared with untreated AMs, which was further enhanced by the addition of IL-33. Administration of IL-33 to C57BL/6 mice increased lung RELM-α and CCL17 levels, and enhanced clearance of P. murina, despite having no effect on the cellular composition of the lungs. Collectively, these results indicate that M2a AMs are potent effector cells against P. murina. Furthermore, enhancing M2a polarization may be an adjunctive therapy for the treatment of Pneumocystis.
Collapse
Affiliation(s)
- Michael P Nelson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
703
|
Ober C, Vercelli D. Gene-environment interactions in human disease: nuisance or opportunity? Trends Genet 2011; 27:107-15. [PMID: 21216485 DOI: 10.1016/j.tig.2010.12.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 02/08/2023]
Abstract
Many environmental risk factors for common, complex human diseases have been revealed by epidemiologic studies, but how genotypes at specific loci modulate individual responses to environmental risk factors is largely unknown. Gene-environment interactions will be missed in genome-wide association studies and could account for some of the 'missing heritability' for these diseases. In this review, we focus on asthma as a model disease for studying gene-environment interactions because of relatively large numbers of candidate gene-environment interactions with asthma risk in the literature. Identifying these interactions using genome-wide approaches poses formidable methodological problems, and elucidating molecular mechanisms for these interactions has been challenging. We suggest that studying gene-environment interactions in animal models, although more tractable, might not be sufficient to shed light on the genetic architecture of human diseases. Lastly, we propose avenues for future studies to find gene-environment interactions.
Collapse
Affiliation(s)
- Carole Ober
- Department of Human Genetics, 920 E. 58th Street, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
704
|
Abstract
CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset.
Collapse
|
705
|
Williams P, Galipeau J. GMCSF-interleukin fusion cytokines induce novel immune effectors that can serve as biopharmaceuticals for treatment of autoimmunity and cancer. J Intern Med 2011; 269:74-84. [PMID: 21158980 DOI: 10.1111/j.1365-2796.2010.02314.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We created the GIFTs, fusions of granulocyte-colony macrophage-stimulating-factor with IL-2, or IL-15 or IL-21, in order to stimulate distinct, but complimentary elements of the immune response. We found that the physical coupling of two functionally distinct cytokines as a bifunctional hybrid allowed for synergistic bioactivity not seen by the simple combined use of parent components. Indeed, despite how these interleukins are pro-inflammatory cytokines that serve essential roles in the maturation of CD8(+) T cells and NK cells, the GIFTs were remarkably different from one another, with GIFT-2 and GIFT-21 promoting and GIFT-15 downregulating inflammation. The common denominator to the biochemistry of these fusokines was their ability to hijack the signalling machinery associated with common to their respective γ-chain interleukin receptors, radically altering the activation status of responding lymphomyeloid cells. By studying the GIFTs, we found that both secreted and cell surface factors presented by GIFT-activated lymphomyeloid cells were required to modulate the immune responses in murine models of multiple sclerosis and cancer. The ability of GIFTs to co-opt the normal signalling machinery of interleukin receptors leads to the acquisition of functional responder cell phenotypes unparalleled in nature. These novel properties provide opportunities to alter maladapted immune responses in health and disease.
Collapse
Affiliation(s)
- P Williams
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
706
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease that primarily targets salivary and lacrimal glands. SjS affects 2-4 million people in the US alone and greatly affects the life quality of the afflicted individuals. Autoreactive effector T cells are central executors and orchestrators in the pathogenic processes of SjS by mediating target organ inflammation and destruction and by facilitating B cell responses and autoantibody production. A variety of cytokines that are produced by effector T cells or capable of directly affecting effector T cells are elevated in the target organs and circulations of SjS patients. The recent advancement in the understanding about the functions of these cytokines, achieved by using both human samples and mouse disease models, has generated great insights into the cytokine control of autoimmune responses in the SjS disease setting. In this review, we summarized the recent findings on the expression and functions of cytokines in this disease, with specific focus on those derived from T cells and/or directly affecting T cell responses.
Collapse
Affiliation(s)
- Jun-O Jin
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA
| | | |
Collapse
|
707
|
Liu X, Lu R, Xia Y, Sun J. Global analysis of the eukaryotic pathways and networks regulated by Salmonella typhimurium in mouse intestinal infection in vivo. BMC Genomics 2010; 11:722. [PMID: 21172007 PMCID: PMC3022924 DOI: 10.1186/1471-2164-11-722] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/20/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acute enteritis caused by Salmonella is a public health concern. Salmonella infection is also known to increase the risk of inflammatory bowel diseases and cancer. Therefore, it is important to understand how Salmonella works in targeting eukaryotic pathways in intestinal infection. However, the global physiological function of Salmonella typhimurium in intestinal mucosa in vivo is unclear. In this study, a whole genome approach combined with bioinformatics assays was used to investigate the in vivo genetic responses of the mouse colon to Salmonella. We focused on the intestinal responses in the early stage (8 hours) and late stage (4 days) after Salmonella infection. RESULTS Of the 28,000 genes represented on the array, our analysis of mRNA expression in mouse colon mucosa showed that a total of 856 genes were expressed differentially at 8 hours post-infection. At 4 days post-infection, a total of 7558 genes were expressed differentially. 23 differentially expressed genes from the microarray data was further examined by real-time PCR. Ingenuity Pathways Analysis identified that the most significant pathway associated with the differentially expressed genes in 8 hours post-infection is oxidative phosphorylation, which targets the mitochondria. At the late stage of infection, a series of pathways associated with immune and inflammatory response, proliferation, and apoptosis were identified, whereas the oxidative phosphorylation was shut off. Histology analysis confirmed the biological role of Salmonella, which induced a physiological state of inflammation and proliferation in the colon mucosa through the regulation of multiple signaling pathways. Most of the metabolism-related pathways were targeted by down-regulated genes, and a general repression process of metabolic pathways was observed. Network analysis supported IFN-γ and TNF-α function as mediators of the immune/inflammatory response for host defense against pathogen. CONCLUSION Our study provides novel genome-wide transcriptional profiling data on the mouse colon mucosa's response to the Salmonella typhimurium infection. Building the pathways and networks of interactions between these genes help us to understand the complex interplay in the mice colon during Salmonella infection, and further provide new insights into the molecular cascade, which is mobilized to combat Salmonella-associated colon infection in vivo.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Medicine, Gastroenterology & Hepatology Division, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
708
|
Wang HW, Joyce JA. Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle 2010; 9:4824-35. [PMID: 21150330 PMCID: PMC3047808 DOI: 10.4161/cc.9.24.14322] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 11/30/2010] [Indexed: 01/21/2023] Open
Abstract
Although macrophages were originally recognized as major immune effector cells, it is now appreciated that they also play many important roles in the maintenance of tissue homeostasis, and are involved in a variety of pathological conditions including cancer. Several studies have demonstrated the contributions of tumor-associated macrophages (TAMs) to tumor initiation, progression, and metastasis. However, the detailed mechanisms underlying how TAMs differ molecularly from their normal counterparts and how the conversion to TAMs occurs have only just begun to be understood. TAMs have been proposed to exhibit phenotypes of 'alternatively activated' macrophages, though there has been limited evidence directly linking the phenotypes of TAMs to the alternative activation of macrophages. This review will focus on IL-4, the prototypic cytokine that induces the alternative activation of macrophages, and review current knowledge regarding the contributions of IL-4 to the phenotypes of TAMs and its effects on tumorigenesis.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, Cornell University, New York, NY, USA
| | | |
Collapse
|
709
|
Abstract
Asthma has been considered a T helper 2 (T(H)2) cell-associated inflammatory disease, and T(H)2-type cytokines, such as interleukin-4 (IL-4), IL-5 and IL-13, are thought to drive the disease pathology in patients. Although atopic asthma has a substantial T(H)2 cell component, the disease is notoriously heterogeneous, and recent evidence has suggested that other T cells also contribute to the development of asthma. Here, we discuss the roles of different T cell subsets in the allergic lung, consider how each subset can contribute to the development of allergic pathology and evaluate how we might manipulate these cells for new asthma therapies.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
710
|
Food allergy – science and policy needs – The UK Food Standards Agency Research Programme. Toxicology 2010; 278:319-25. [DOI: 10.1016/j.tox.2010.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/13/2010] [Accepted: 08/14/2010] [Indexed: 11/23/2022]
|
711
|
Recent thymic emigrants are biased against the T-helper type 1 and toward the T-helper type 2 effector lineage. Blood 2010; 117:1239-49. [PMID: 21048154 DOI: 10.1182/blood-2010-07-299263] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
After intrathymic development, T cells exit the thymus and join the peripheral T-cell pool. Such recent thymic emigrants (RTEs) undergo both phenotypic and functional maturation during the first 3 weeks they reside in the periphery. Using a well-controlled in vitro polarization scheme, we now show that CD4(+) RTEs are defective in T-helper (Th) type 0 (Th0), Th1, Th17, and regulatory T-cell lineage commitment, with dampened cytokine production and transcription factor expression. In contrast, CD4(+) RTES are biased toward the Th2 lineage both in vitro and in vivo, with more robust interleukin-4, interleukin-5, and interleukin-13 production than their mature naive counterparts. Coculture experiments demonstrate that mature naive T cells influence neighboring RTEs in their Th responses. In adoptive hosts, CD4(+) RTEs drive production of the Th2-associated antibody isotype immunoglobulin G1 and mediate airway inflammatory disease. This bias in RTEs likely results from dampened negative regulation of the Th2 lineage by diminished levels of T-bet, a key Th1 transcription factor. CD4(+) RTEs thus represent a transitional population with a distinct interpretation of, and response to, immunologic cues. These characteristics may be beneficial during the postthymic maturation period by leading to the avoidance of inappropriate immune responses, particularly in lymphopenic neonates and adults.
Collapse
|
712
|
Farag MMS, Hoyler B, Encke J, Stremmel W, Weigand K. Dendritic cells can effectively be pulsed by HBVsvp and induce specific immune reactions in mice. Vaccine 2010; 29:200-6. [PMID: 21050902 DOI: 10.1016/j.vaccine.2010.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/16/2010] [Accepted: 10/21/2010] [Indexed: 02/06/2023]
Abstract
Eradication of chronic Hepatitis B virus (HBV) infection, marked by HBs seroconversion, is very rarely achieved by treatment with nucleoside and nucleotide analogs. Therapeutic cell based approaches, like interferon therapy, have a higher chance of seroconversion. Dendritic cells (DC) are key players in the cellular immune response and have been shown to play an important role in controlling HBV infection. In this study, the potential of ex vivo activated DC to induce specific immune responses against HBV was examined. DC derived from bone-marrow of BALB/c or C56BL/6 mice were pulsed with HBV subviral particles (HBVsvp), derived from the HepG2.2.15 cell line. HepG2.2.15 produces subviral particles consisting of the HBc and HBs proteins. Thus, the entire "viral surface" is presented to DC to induce an immune reaction. In vitro pulsation with HBVsvp successfully activated bone-marrow derived DC, demonstrated by FACS analysis showing increased MHCII, CD 86 and CCR-7. Immunization of mice, via subcutaneous injection of the activated DC, induced HBV specific immune reactions which were measured by ELISA, ELISPOT and T-cell proliferation analysis. Vaccination with ex vivo activated DC may be a promising tool for therapeutic or prophylactic approaches against the Hepatitis B virus.
Collapse
Affiliation(s)
- Mohamed M S Farag
- Medizin IV, Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
713
|
Arora M, Poe SL, Oriss TB, Krishnamoorthy N, Yarlagadda M, Wenzel SE, Billiar TR, Ray A, Ray P. TLR4/MyD88-induced CD11b+Gr-1 int F4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunol 2010; 3:578-93. [PMID: 20664577 PMCID: PMC2958091 DOI: 10.1038/mi.2010.41] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In humans, environmental exposure to a high dose of lipopolysaccharide (LPS) protects from allergic asthma, the immunological underpinnings of which are not well understood. In mice, exposure to a high LPS dose blunted house dust mite-induced airway eosinophilia and T-helper 2 (Th2) cytokine production. Although adoptively transferred Th2 cells induced allergic airway inflammation in control mice, they were unable to do so in LPS-exposed mice. LPS promoted the development of a CD11b(+)Gr1(int)F4/80(+) lung-resident cell resembling myeloid-derived suppressor cells in a Toll-like receptor 4 and myeloid differentiation factor 88 (MyD88)-dependent manner that suppressed lung dendritic cell (DC)-mediated reactivation of primed Th2 cells. LPS effects switched from suppressive to stimulatory in MyD88(-/-) mice. Suppression of Th2 effector function was reversed by anti-interleukin-10 (IL-10) or inhibition of arginase 1. Lineage(neg) bone marrow progenitor cells could be induced by LPS to develop into CD11b(+)Gr1(int)F4/80(+)cells both in vivo and in vitro that when adoptively transferred suppressed allergen-induced airway inflammation in recipient mice. These data suggest that CD11b(+)Gr1(int)F4/80(+) cells contribute to the protective effects of LPS in allergic asthma by tempering Th2 effector function in the tissue.
Collapse
Affiliation(s)
- Meenakshi Arora
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Stephanie L. Poe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy B. Oriss
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nandini Krishnamoorthy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Manohar Yarlagadda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
714
|
dsRNA-induced expression of thymic stromal lymphopoietin (TSLP) in asthmatic epithelial cells is inhibited by a small airway relaxant. Pulm Pharmacol Ther 2010; 24:59-66. [PMID: 20951221 DOI: 10.1016/j.pupt.2010.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022]
Abstract
RATIONALE Thymic Stromal Lymphopoietin (TSLP) is considered a hub cytokine that activates dendritic cells and T-cells producing asthma-like Th₂-inflammation. Viral stimuli, a major cause of asthma exacerbations, have been shown to induce overexpression of TSLP in asthmatic epithelium. Capsazepine has multiple effects and is of interest because it relaxes human small airways. Here we have explored effects of capsazepine on viral surrogate (dsRNA)-induced TSLP and other cytokines (TNF-alpha, IL-8) in human bronchial epithelial cells (HBEC) from healthy and asthmatic donors. METHODS HBEC obtained from healthy and asthmatic subjects were grown and stimulated with dsRNA. Cells pre-treated with capsazepine (3-30 μM), dexamethasone (0.1-10 μM) or an IkappaB-kinase inhibitor (PS1145, 30 μM) were also exposed to dsRNA (10 μg/ml). Cells and supernatants were harvested for analyses of gene expression (RT-qPCR) and protein production (ELISA,Western blot). RESULTS dsRNA-induced TSLP, TNF-alpha, and IL-8 in asthmatic and non-asthmatic HBEC. Dexamethasone attenuated gene expression and protein release whereas capsazepine dose-dependently, and similar to a non-relaxant NFkB inhibitor (PS1145), completely inhibited dsRNA-induced TSLP and TNF-alpha in both healthy and asthmatic HBEC. Capsazepine reduced dsRNA-induced IL-8 and it prevented dsRNA-induced loss of the NF-κB repressor protein IkBα. CONCLUSION Additional to its human small airway relaxant effects we now demonstrate that capsazepine has potent anti-inflammatory effects on viral stimulus-induced cytokines in HBEC from healthy as well as asthmatic donors. Based on these data we suggest that exploration of structure-activity amongst the multifaceted capsazepinoids is warranted in search for compounds of therapeutic value in viral-induced, steroid-resistant asthma.
Collapse
|
715
|
Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol 2010; 31:407-13. [PMID: 20951092 DOI: 10.1016/j.it.2010.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/11/2022]
Abstract
The recent identification of previously unrecognized innate cell populations, termed natural helper cells (NHCs), multi-potent progenitor type 2 (MPP(type2)) cells, nuocytes, and innate type 2 helper (Ih2) cells has provided new insights into our understanding of the cellular mechanisms that lead to the development of CD4(+) Th2 cell-dependent immunity and/or inflammation at mucosal sites. In this review, we focus on the functional significance, similarities, and differences between NHCs, MPP(type2) cells, nuocytes and Ih2 cells. All four cell populations are activated by interleukin (IL)-25 and/or IL-33 and are capable of promoting Th2 cytokine responses. Collectively, the identification of these cell populations might illuminate ancient evolutionary conserved pathways that are involved in the development of Th2 cytokine responses, and could be of benefit in the development of therapeutic approaches that target helminth infections and allergic diseases.
Collapse
Affiliation(s)
- Steven A Saenz
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
716
|
Curotto de Lafaille MA, Lafaille JJ, Graça L. Mechanisms of tolerance and allergic sensitization in the airways and the lungs. Curr Opin Immunol 2010; 22:616-22. [PMID: 20884192 PMCID: PMC3900231 DOI: 10.1016/j.coi.2010.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 08/24/2010] [Indexed: 02/06/2023]
Abstract
The respiratory mucosa is constantly exposed to non-infectious substances that have the potential of triggering inflammation. While many particles are excluded, soluble molecules can reach the epithelium surface, where they can be uptaken by dendritic cells and stimulate an adaptive immune response. Most mucosal responses result in tolerance to subsequent antigen encounters, which is mediated by Foxp3(+) regulatory T cells. Genetic and environmental factors, added to the ability of certain allergens to induce innate responses, can predispose to allergic sensitization. In this review we discuss recent advances in the understanding of the mechanisms of tolerance and allergic sensitization to airborne allergens.
Collapse
Affiliation(s)
| | - Juan J. Lafaille
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Luis Graça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| |
Collapse
|
717
|
Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA, Barr TA, Hochweller K, Anderton SM, Hämmerling GJ, Maizels RM, MacDonald AS. CD11c depletion severely disrupts Th2 induction and development in vivo. ACTA ACUST UNITED AC 2010; 207:2089-96. [PMID: 20819926 PMCID: PMC2947067 DOI: 10.1084/jem.20100734] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although dendritic cells (DCs) are adept initiators of CD4+ T cell responses, their fundamental importance in this regard in Th2 settings remains to be demonstrated. We have used CD11c–diphtheria toxin (DTx) receptor mice to deplete CD11c+ cells during the priming stage of the CD4+ Th2 response against the parasitic helminth Schistosoma mansoni. DTx treatment significantly depleted CD11c+ DCs from all tissues tested, with 70–80% efficacy. Even this incomplete depletion resulted in dramatically impaired CD4+ T cell production of Th2 cytokines, altering the balance of the immune response and causing a shift toward IFN-γ production. In contrast, basophil depletion using Mar-1 antibody had no measurable effect on Th2 induction in this system. These data underline the vital role that CD11c+ antigen-presenting cells can play in orchestrating Th2 development against helminth infection in vivo, a response that is ordinarily balanced so as to prevent the potentially damaging production of inflammatory cytokines.
Collapse
Affiliation(s)
- Alexander T Phythian-Adams
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
718
|
Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MAM, Kool M, Muskens F, Lambrecht BN. Inflammatory dendritic cells--not basophils--are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. ACTA ACUST UNITED AC 2010; 207:2097-111. [PMID: 20819925 PMCID: PMC2947072 DOI: 10.1084/jem.20101563] [Citation(s) in RCA: 471] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response. Basophils did not take up inhaled antigen, present it to T cells, or express antigen presentation machinery, whereas a population of FceRI+ DCs readily did. Inflammatory DCs were necessary and sufficient for induction of Th2 immunity and features of asthma, whereas basophils were not required. We favor a model whereby DCs initiate and basophils amplify Th2 immunity to HDM allergen.
Collapse
Affiliation(s)
- Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Respiratory Diseases, University of Ghent, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
719
|
Abstract
Lung dendritic cells bridge innate and adaptive immunity, integrating a variety of stimuli from allergens, microbial colonisation, environmental pollution, and innate immune cells into a signal for T lymphocytes of the adaptive immune system. Dendritic cells have a pivotal role in the activation of T helper (Th) 2 cells and allergic inflammation. Lung dendritic cells can also prevent harmful immune responses to innocuous inhaled antigens via induction of regulatory T cells or Th1 cells. In our Review, we discuss how understanding the biology of dendritic cells is crucial for understanding the interaction between allergens, the environment, and genetics, and focus on how dendritic cells conspire with airway epithelial cells and innate pro-Th2 cells to cause allergic sensitisation and asthma.
Collapse
Affiliation(s)
- Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium.
| | | |
Collapse
|
720
|
Ather JL, Hodgkins SR, Janssen-Heininger YMW, Poynter ME. Airway epithelial NF-κB activation promotes allergic sensitization to an innocuous inhaled antigen. Am J Respir Cell Mol Biol 2010; 44:631-8. [PMID: 20581095 DOI: 10.1165/rcmb.2010-0106oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of NF-κB in airway epithelium is observed in allergic asthma and is induced by inhalation of numerous infectious and reactive substances. Many of the substances that activate NF-κB in the airway epithelium are also capable of acting as adjuvants to elicit antigen-specific sensitization to concomitantly inhaled protein, thereby circumventing the inherent bias of the lung to promote tolerance to innocuous antigens. We have used a transgenic mouse inducibly expressing a constitutively active mutant of the inhibitor of nuclear factor κB (IκB) kinase β ((CA)IKKβ) that activates NF-κB only in nonciliated airway epithelial cells to test whether activation of this intracellular signaling pathway in this specific cell type is sufficient to establish a pulmonary environment permissive to the development of allergic sensitization to inhaled protein. When airway epithelial (CA)IKKβ was transiently expressed in antigen-naive mice only during initial inhalation of ovalbumin, the mice became allergically sensitized to the antigen. As a consequence, subsequent inhalation of ovalbumin alone led to an allergic asthma-like response that included airway hyperresponsiveness to methacholine, eosinophilia, mucus expression, elevated serum levels of antigen-specific IgE and IgG1, and splenic CD4(+) T cells that secreted T helper type 2 and type 17 cytokines in response to in vitro antigen restimulation. Furthermore, CD11c(+) cells in the mediastinal lymph nodes (MLN) of (CA)IKKβ-expressing mice displayed significantly elevated levels of activation markers. These data implicate airway epithelial NF-κB activation as a critical modulator of the adaptive immune response to inhaled antigens via the secretion of soluble mediators that affect the capacity of CD11c(+) cells to undergo maturation and promote antigen-specific allergic responses.
Collapse
Affiliation(s)
- Jennifer L Ather
- Department of Medicine, Vermont Lung Center, University of Vermont, Burlington, 05405, USA
| | | | | | | |
Collapse
|
721
|
Affiliation(s)
- Robert L Coffman
- Dynavax Technologies Corporation, 2929 Seventh Street, Suite 100, Berkeley, CA 94710, USA.
| |
Collapse
|
722
|
|