701
|
Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 2015; 46:113-27. [DOI: 10.1016/j.semcdb.2015.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
702
|
Batsios P, Meyer I, Gräf R. Proximity-Dependent Biotin Identification (BioID) in Dictyostelium Amoebae. Methods Enzymol 2015; 569:23-42. [PMID: 26778551 DOI: 10.1016/bs.mie.2015.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification of a bona fide lamin-like protein in Dictyostelium made this lower eukaryote an attractive model organism to study evolutionarily conserved nuclear envelope (NE) proteins important for nuclear organization and human laminopathies. Proximity-dependent biotin identification (BioID), reported by Roux and colleagues, is a powerful discovery tool for lamin-associated proteins. In this method, living cells express a bait protein (e.g., lamin) fused to an R118G-mutated version of BirA, an Escherichia coli biotinylase. In the presence of biotin, BirA-R118G biotinylates target proteins in close proximity in vivo, which are purified using streptavidin and identified by immunoblotting or mass spectrometry. We adapted the BioID method for use in Dictyostelium amoebae. The protocols described here successfully revealed Dictyostelium lamin-like protein NE81 proximity to Sun1, a conserved inner nuclear membrane protein.
Collapse
Affiliation(s)
- Petros Batsios
- Institute for Biochemistry and Biology, Department of Cell Biology, University of Potsdam, Potsdam, Germany
| | - Irene Meyer
- Institute for Biochemistry and Biology, Department of Cell Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Gräf
- Institute for Biochemistry and Biology, Department of Cell Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
703
|
Beligni MV, Bagnato C, Prados MB, Bondino H, Laxalt AM, Munnik T, Ten Have A. The diversity of algal phospholipase D homologs revealed by biocomputational analysis. JOURNAL OF PHYCOLOGY 2015; 51:943-962. [PMID: 26986890 DOI: 10.1111/jpy.12334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/09/2015] [Indexed: 06/05/2023]
Abstract
Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic-type PLDs but possess, instead, many bacteria-like PLDs. Among algae eukaryotic-type PLDs, we identified C2-PLDs and PXPH-like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria-like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito-PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP-PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non-PLD members within the bacteria-like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.
Collapse
Affiliation(s)
- María Verónica Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Carolina Bagnato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Río Negro, Mitre 630. S. C. de Bariloche 8400, Río Negro, Argentina
| | - María Belén Prados
- Instituto de Energía y Desarrollo Sustentable - Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, S. C. de Bariloche 8400, Río Negro, Argentina
| | - Hernán Bondino
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Ana María Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, NL-1098 XH, the Netherlands
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| |
Collapse
|
704
|
Bourland WA. Morphology, ontogenesis and molecular characterization of Atractos contortus Vörösváry, 1950 and Stichotricha aculeata Wrzesniowskiego, 1866 (Ciliophora, Stichotrichida) with consideration of their systematic positions. Eur J Protistol 2015; 51:351-73. [DOI: 10.1016/j.ejop.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 11/24/2022]
|
705
|
Ruano F, Batista FM, Arcangeli G. Perkinsosis in the clams Ruditapes decussatus and R. philippinarum in the Northeastern Atlantic and Mediterranean Sea: A review. J Invertebr Pathol 2015; 131:58-67. [DOI: 10.1016/j.jip.2015.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/16/2022]
|
706
|
Reczuga MK, Swindles GT, Grewling Ł, Lamentowicz M. Arcella peruviana sp. nov. (Amoebozoa: Arcellinida, Arcellidae), a new species from a tropical peatland in Amazonia. Eur J Protistol 2015; 51:437-49. [DOI: 10.1016/j.ejop.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 11/28/2022]
|
707
|
Fernández LD, Lara E, Mitchell EA. Checklist, diversity and distribution of testate amoebae in Chile. Eur J Protistol 2015; 51:409-24. [DOI: 10.1016/j.ejop.2015.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 11/27/2022]
|
708
|
He D, Fu CJ, Baldauf SL. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA. Mol Biol Evol 2015; 33:122-33. [PMID: 26412445 DOI: 10.1093/molbev/msv201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis.
Collapse
Affiliation(s)
- Ding He
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
709
|
Tyml T, Kostka M, Ditrich O, Dyková I. Vermistella arctica n. sp. Nominates the Genus Vermistella as a Candidate for Taxon with Bipolar Distribution. J Eukaryot Microbiol 2015; 63:210-9. [PMID: 26384711 DOI: 10.1111/jeu.12270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 11/26/2022]
Abstract
A new amoebozoan species, Vermistella arctica n. sp., is described from marine habitats in the central part of Svalbard archipelago. This is the first report on Arctic amoebae belonging to the genus Vermistella Moran and Anderson, 2007, the type species of which was described from the opposite pole of the planet. Psychrophily proved in the new strains qualifies the genus Vermistella as a bipolar taxon. Molecular phylogenetic analyses based on 18S rDNA and actin sequences did not show any affinity of the genus Vermistella to Stygamoeba regulata ATCC(®) 50892(™) strain. A close phylogenetic relationship was found between Vermistella spp. and a sequence originating from an environmental sample from Cariaco basin, the largest marine permanently anoxic system in the world. Possible mechanisms of bipolar distribution are discussed.
Collapse
Affiliation(s)
- Tomáš Tyml
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre ASCR, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kostka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre ASCR, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Oleg Ditrich
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Iva Dyková
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
710
|
Stanne T, Narayanan MS, Ridewood S, Ling A, Witmer K, Kushwaha M, Wiesler S, Wickstead B, Wood J, Rudenko G. Identification of the ISWI Chromatin Remodeling Complex of the Early Branching Eukaryote Trypanosoma brucei. J Biol Chem 2015; 290:26954-26967. [PMID: 26378228 PMCID: PMC4646403 DOI: 10.1074/jbc.m115.679019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.
Collapse
Affiliation(s)
- Tara Stanne
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Sophie Ridewood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Alexandra Ling
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Kathrin Witmer
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Manish Kushwaha
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Simone Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Bill Wickstead
- the School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jennifer Wood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and.
| |
Collapse
|
711
|
Vandersea MW, Birkenheuer AJ, Litaker RW, Vaden SL, Renschler JS, Gookin JL. Identification of Parabodo caudatus (class Kinetoplastea) in urine voided from a dog with hematuria. J Vet Diagn Invest 2015; 27:117-20. [PMID: 25525146 DOI: 10.1177/1040638714562827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A voided urine sample, obtained from a 13-year-old intact male dog residing in a laboratory animal research facility, was observed to contain biflagellate protozoa 5 days following an episode of gross hematuria. The protozoa were identified as belonging to the class Kinetoplastea on the basis of light microscopic observation of Wright-Giemsa-stained urine sediment in which the kinetoplast was observed basal to 2 anterior flagella. A polymerase chain reaction (PCR) assay using primers corresponding with conserved regions within the 18S ribosomal RNA gene of representative kinetoplastid species identified nucleotide sequences with 100% identity to Parabodo caudatus. Parabodo caudatus organisms were unable to be demonstrated cytologically or by means of PCR in samples collected from the dog's environment. The dog had a history of 50 complete urinalyses performed over the 12-year period preceding detection of P. caudatus, and none of these were noted to contain protozoa. Moreover, the gross hematuria that was documented 5 days prior to detection of P. caudatus had never before been observed in this dog. Over the ensuing 2.5 years of the dog's life, 16 additional complete urinalyses were performed, none of which revealed the presence of protozoa. Bodonids are commonly found in soil as well as in freshwater and marine environments. However, P. caudatus, in particular, has a 150-year-long, interesting, and largely unresolved history in people as either an inhabitant or contaminant of urine. This historical conundrum is revisited in the current description of P. caudatus as recovered from the urine of a dog.
Collapse
Affiliation(s)
- Mark W Vandersea
- Center for Coastal Fisheries and Habitat Research, National Oceanic and Atmospheric Administration, Beaufort, NC (Vandersea, Litaker)Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Birkenheuer, Vaden, Renschler, Gookin)
| | - Adam J Birkenheuer
- Center for Coastal Fisheries and Habitat Research, National Oceanic and Atmospheric Administration, Beaufort, NC (Vandersea, Litaker)Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Birkenheuer, Vaden, Renschler, Gookin)
| | - R Wayne Litaker
- Center for Coastal Fisheries and Habitat Research, National Oceanic and Atmospheric Administration, Beaufort, NC (Vandersea, Litaker)Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Birkenheuer, Vaden, Renschler, Gookin)
| | - Shelly L Vaden
- Center for Coastal Fisheries and Habitat Research, National Oceanic and Atmospheric Administration, Beaufort, NC (Vandersea, Litaker)Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Birkenheuer, Vaden, Renschler, Gookin)
| | - Janelle S Renschler
- Center for Coastal Fisheries and Habitat Research, National Oceanic and Atmospheric Administration, Beaufort, NC (Vandersea, Litaker)Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Birkenheuer, Vaden, Renschler, Gookin)
| | - Jody L Gookin
- Center for Coastal Fisheries and Habitat Research, National Oceanic and Atmospheric Administration, Beaufort, NC (Vandersea, Litaker)Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Birkenheuer, Vaden, Renschler, Gookin)
| |
Collapse
|
712
|
Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol 2015; 52:1-10. [PMID: 26555733 DOI: 10.1016/j.ejop.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/06/2015] [Accepted: 08/15/2015] [Indexed: 11/30/2022]
Abstract
The trypanosomatid Phytomonas nordicus parasitizing the predatory bug Troilus luridus was described at the twilight of the morphotype-based systematics. Despite its monoxenous life cycle, this species was attributed to the dixenous genus Phytomonas due to the presence of long twisted promastigotes and development of flagellates in salivary glands. However, these characteristics were considered insufficient for proving the phytomonad nature of the species and therefore its description remained virtually unnoticed. Here, we performed molecular phylogenetic analyses using 18S ribosomal RNA (rRNA) gene and region containing internal trascribed spacers (ITS) 1 and 2 and convincingly demonstrated the affinity of P. nordicus to the genus Phytomonas. In addition, we investigated its development in the salivary glands. We argue that in many aspects the life cycle of monoxenous P. nordicus resembles that of its dixenous relatives represented by tomato-parasitizing Phytomonas serpens.
Collapse
Affiliation(s)
- Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alexei Yu Kostygov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
713
|
Pollo SM, Zhaxybayeva O, Nesbø CL. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol 2015. [DOI: 10.1139/cjm-2015-0073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
Collapse
Affiliation(s)
- Stephen M.J. Pollo
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences and Department of Computer Science, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Camilla L. Nesbø
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
714
|
Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, Hashimoto T, Inagaki Y, Fujikura K, Takishita K. Metabolic Capacity of Mitochondrion-related Organelles in the Free-living Anaerobic Stramenopile Cantina marsupialis. Protist 2015; 166:534-50. [PMID: 26436880 DOI: 10.1016/j.protis.2015.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
Functionally and morphologically degenerate mitochondria, so-called mitochondrion-related organelles (MROs), are frequently found in eukaryotes inhabiting hypoxic or anoxic environments. In the last decade, MROs have been discovered from a phylogenetically broad range of eukaryotic lineages and these organelles have been revealed to possess diverse metabolic capacities. In this study, the biochemical characteristics of an MRO in the free-living anaerobic protist Cantina marsupialis, which represents an independent lineage in stramenopiles, were inferred based on RNA-seq data. We found transcripts for proteins known to function in one form of MROs, the hydrogenosome, such as pyruvate:ferredoxin oxidoreductase, iron-hydrogenase, acetate:succinate CoA-transferase, and succinyl-CoA synthase, along with transcripts for acetyl-CoA synthetase (ADP-forming). These proteins possess putative mitochondrial targeting signals at their N-termini, suggesting dual ATP generation systems through anaerobic pyruvate metabolism in Cantina MROs. In addition, MROs in Cantina were also shown to share several features with canonical mitochondria, including amino acid metabolism and an "incomplete" tricarboxylic acid cycle. Transcripts for all four subunits of complex II (CII) of the electron transport chain were detected, while there was no evidence for the presence of complexes I, III, IV, or F1Fo ATPase. Cantina MRO biochemistry challenges the categories of mitochondrial organelles recently proposed.
Collapse
Affiliation(s)
- Fumiya Noguchi
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Euki Yazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Tetsuo Hashimoto
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Katsunori Fujikura
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Kiyotaka Takishita
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| |
Collapse
|
715
|
Schulz F, Tyml T, Pizzetti I, Dyková I, Fazi S, Kostka M, Horn M. Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. Sci Rep 2015; 5:13381. [PMID: 26303516 PMCID: PMC4642509 DOI: 10.1038/srep13381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Amoebae play an important ecological role as predators in microbial communities. They also serve as niche for bacterial replication, harbor endosymbiotic bacteria and have contributed to the evolution of major human pathogens. Despite their high diversity, marine amoebae and their association with bacteria are poorly understood. Here we describe the isolation and characterization of two novel marine amoebae together with their bacterial endosymbionts, tentatively named 'Candidatus Occultobacter vannellae' and 'Candidatus Nucleophilum amoebae'. While one amoeba strain is related to Vannella, a genus common in marine habitats, the other represents a novel lineage in the Amoebozoa. The endosymbionts showed only low similarity to known bacteria (85-88% 16S rRNA sequence similarity) but together with other uncultured marine bacteria form a sister clade to the Coxiellaceae. Using fluorescence in situ hybridization and transmission electron microscopy, identity and intracellular location of both symbionts were confirmed; one was replicating in host-derived vacuoles, whereas the other was located in the perinuclear space of its amoeba host. This study sheds for the first time light on a so far neglected group of protists and their bacterial symbionts. The newly isolated strains represent easily maintainable model systems and pave the way for further studies on marine associations between amoebae and bacterial symbionts.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Microbiology and Ecosystem Sience, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Tomáš Tyml
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Ilaria Pizzetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015 Monterotondo - Roma, Italy
| | - Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015 Monterotondo - Roma, Italy
| | - Martin Kostka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Matthias Horn
- Department of Microbiology and Ecosystem Sience, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
716
|
Abstract
The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.
Collapse
Affiliation(s)
- Jeremy G. Wideman
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
717
|
Abstract
The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in
Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
718
|
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 2015; 524:427-32. [PMID: 26287458 DOI: 10.1038/nature14963] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/20/2015] [Indexed: 01/11/2023]
Abstract
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mayo Roettger
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Peter J Lockhart
- Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - David Bryant
- Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana 43107, Israel
| | - James O McInerney
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.,Michael Smith Building, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Giddy Landan
- Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
719
|
Chiba Y, Kamikawa R, Nakada-Tsukui K, Saito-Nakano Y, Nozaki T. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria. J Biol Chem 2015; 290:23960-70. [PMID: 26269598 DOI: 10.1074/jbc.m115.672907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/15/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.
Collapse
Affiliation(s)
- Yoko Chiba
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Ryoma Kamikawa
- the Graduate School of Environmental Studies, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu cho, Kyoto, Kyoto 606-8501, Japan
| | - Kumiko Nakada-Tsukui
- the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Yumiko Saito-Nakano
- the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| | - Tomoyoshi Nozaki
- From the Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, the Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan, and
| |
Collapse
|
720
|
Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0230-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
721
|
Ankenbrand MJ, Keller A, Wolf M, Schultz J, Förster F. ITS2 Database V: Twice as Much: Table 1. Mol Biol Evol 2015; 32:3030-2. [DOI: 10.1093/molbev/msv174] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/25/2015] [Indexed: 11/13/2022] Open
|
722
|
Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O, Kooistra WHCF, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 2015; 17:4035-49. [PMID: 26119494 DOI: 10.1111/1462-2920.12955] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.
Collapse
Affiliation(s)
- Ramon Massana
- Institut de Ciències del Mar (CSIC), ES-08003, Barcelona, Catalonia, Spain
| | - Angélique Gobet
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - Stéphane Audic
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - David Bass
- The Natural History Museum, London, SW7 5BD, UK.,Cefas, Weymouth, Dorset, DT4 8UB, UK
| | - Lucie Bittner
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France.,University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Christophe Boutte
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | | | - Richard Christen
- CNRS, UMR 7138, Université Nice Sophia Antipolis, FR-06108, Nice, France
| | | | - Johan Decelle
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - John R Dolan
- CNRS, UMR 7093, UPMC Université Paris 06, Laboratoire d'Océanographie de Villefranche, FR-06230, Villefranche-sur-Mer, France
| | - Micah Dunthorn
- University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bente Edvardsen
- Department Biosciences, University of Oslo, N-0316, Oslo, Norway
| | - Irene Forn
- Institut de Ciències del Mar (CSIC), ES-08003, Barcelona, Catalonia, Spain
| | - Dominik Forster
- University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Laure Guillou
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - Olivier Jaillon
- CEA, Genoscope, 2 rue Gaston Crémieux, FR-91000, Evry, France
| | | | - Ramiro Logares
- Institut de Ciències del Mar (CSIC), ES-08003, Barcelona, Catalonia, Spain
| | - Frédéric Mahé
- University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Fabrice Not
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | - Massimo C Pernice
- Institut de Ciències del Mar (CSIC), ES-08003, Barcelona, Catalonia, Spain
| | - Ian Probert
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - Sarah Romac
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | | | - Sébastien Santini
- CNRS, UMR 7256, Aix-Marseille Université, FR-13288, Marseille, France
| | | | | | - Nathalie Simon
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - Thorsten Stoeck
- University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Daniel Vaulot
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121, Naples, Italy
| | - Colomban de Vargas
- Ecologie Systematique Evolution, CNRS, FR-29682, Roscoff, France.,UMR7144 - Equipe EPPO: Evolution du Plancton et PaléoOcéans, UPMC Université Paris 06, Roscoff, France
| |
Collapse
|
723
|
Geisen S, Bonkowski M, Zhang J, De Jonckheere JF. Heterogeneity in the genus Allovahlkampfia and the description of the new genus Parafumarolamoeba (Vahlkampfiidae; Heterolobosea). Eur J Protistol 2015; 51:335-49. [DOI: 10.1016/j.ejop.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
724
|
First report of Enterocytozoon bieneusi in pigs in Brazil. Parasitol Int 2015; 64:18-23. [DOI: 10.1016/j.parint.2015.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022]
|
725
|
Presnell JS, Schnitzler CE, Browne WE. KLF/SP Transcription Factor Family Evolution: Expansion, Diversification, and Innovation in Eukaryotes. Genome Biol Evol 2015; 7:2289-309. [PMID: 26232396 PMCID: PMC4558859 DOI: 10.1093/gbe/evv141] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The Krüppel-like factor and specificity protein (KLF/SP) genes play key roles in critical biological processes including stem cell maintenance, cell proliferation, embryonic development, tissue differentiation, and metabolism and their dysregulation has been implicated in a number of human diseases and cancers. Although many KLF/SP genes have been characterized in a handful of bilaterian lineages, little is known about the KLF/SP gene family in nonbilaterians and virtually nothing is known outside the metazoans. Here, we analyze and discuss the origins and evolutionary history of the KLF/SP transcription factor family and associated transactivation/repression domains. We have identified and characterized the complete KLF/SP gene complement from the genomes of 48 species spanning the Eukarya. We have also examined the phylogenetic distribution of transactivation/repression domains associated with this gene family. We report that the origin of the KLF/SP gene family predates the divergence of the Metazoa. Furthermore, the expansion of the KLF/SP gene family is paralleled by diversification of transactivation domains via both acquisitions of pre-existing ancient domains as well as by the appearance of novel domains exclusive to this gene family and is strongly associated with the expansion of cell type complexity.
Collapse
Affiliation(s)
| | - Christine E Schnitzler
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health
| | | |
Collapse
|
726
|
Burns JA, Paasch A, Narechania A, Kim E. Comparative Genomics of a Bacterivorous Green Alga Reveals Evolutionary Causalities and Consequences of Phago-Mixotrophic Mode of Nutrition. Genome Biol Evol 2015. [PMID: 26224703 PMCID: PMC5741210 DOI: 10.1093/gbe/evv144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cymbomonas tetramitiformis—a marine prasinophyte—is one of only a few green algae that still retain an ancestral particulate-feeding mechanism while harvesting energy through photosynthesis. The genome of the alga is estimated to be 850 Mb–1.2 Gb in size—the bulk of which is filled with repetitive sequences—and is annotated with 37,366 protein-coding gene models. A number of unusual metabolic pathways (for the Chloroplastida) are predicted for C. tetramitiformis, including pathways for Lipid-A and peptidoglycan metabolism. Comparative analyses of the predicted peptides of C. tetramitiformis to sets of other eukaryotes revealed that nonphagocytes are depleted in a number of genes, a proportion of which have known function in feeding. In addition, our analysis suggests that obligatory phagotrophy is associated with the loss of genes that function in biosynthesis of small molecules (e.g., amino acids). Further, C. tetramitiformis and at least one other phago-mixotrophic alga are thus unique, compared with obligatory heterotrophs and nonphagocytes, in that both feeding and small molecule synthesis-related genes are retained in their genomes. These results suggest that early, ancestral host eukaryotes that gave rise to phototrophs had the capacity to assimilate building block molecules from inorganic substances (i.e., prototrophy). The loss of biosynthesis genes, thus, may at least partially explain the apparent lack of instances of permanent incorporation of photosynthetic endosymbionts in later-divergent, auxotrophic eukaryotic lineages, such as metazoans and ciliates.
Collapse
Affiliation(s)
- John A Burns
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Amber Paasch
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
727
|
Geisen S, Rosengarten J, Koller R, Mulder C, Urich T, Bonkowski M. Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 2015; 17:4538-46. [DOI: 10.1111/1462-2920.12949] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology; Institute of Zoology; University of Cologne; Cologne Germany
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Jamila Rosengarten
- Department of Terrestrial Ecology; Institute of Zoology; University of Cologne; Cologne Germany
| | - Robert Koller
- Department of Terrestrial Ecology; Institute of Zoology; University of Cologne; Cologne Germany
- Forschungszentrum Jülich; IBG-2: Plant Sciences; Jülich Germany
| | - Christian Mulder
- National Institute for Public Health and the Environment (RIVM); Bilthoven The Netherlands
| | - Tim Urich
- Department of Ecogenomics and Systems Biology; University of Vienna; Vienna Austria
- Bacterial Physiology; Institute for Microbiology; Ernst Moritz Arndt University; Greifswald Germany
| | - Michael Bonkowski
- Department of Terrestrial Ecology; Institute of Zoology; University of Cologne; Cologne Germany
| |
Collapse
|
728
|
Liu W, Yi Z, Lin X, Li J, Al-Farraj SA, Al-Rasheid KAS, Song W. Morphology and molecular phylogeny of three new oligotrich ciliates (Protozoa, Ciliophora) from the South China Sea. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiwei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology; South China Sea Institute of Oceanology; Chinese Academy of Science; Guangzhou 510301 China
- Laboratory of Protozoology; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education; South China Normal University; Guangzhou 510631 China
- Laboratory of Protozoology; Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao 266003 China
| | - Zhenzhen Yi
- Laboratory of Protozoology; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education; South China Normal University; Guangzhou 510631 China
| | - Xiaofeng Lin
- Laboratory of Protozoology; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education; South China Normal University; Guangzhou 510631 China
| | - Jiqiu Li
- Laboratory of Protozoology; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education; South China Normal University; Guangzhou 510631 China
| | - Saleh A. Al-Farraj
- Zoology Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | | | - Weibo Song
- Laboratory of Protozoology; Institute of Evolution & Marine Biodiversity; Ocean University of China; Qingdao 266003 China
| |
Collapse
|
729
|
Speijer D, Lukeš J, Eliáš M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci U S A 2015; 112:8827-34. [PMID: 26195746 PMCID: PMC4517231 DOI: 10.1073/pnas.1501725112] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to protists. We present results of phylogenetically extended searches for homologs of two proteins functioning in cell and nuclear fusion, respectively (HAP2 and GEX1), providing indirect evidence for these processes in several eukaryotic lineages where sex has not been observed yet. We argue that (i) the debate on the relative significance of sex and clonality in eukaryotes is confounded by not appropriately distinguishing multicellular and unicellular organisms; (ii) eukaryotic sex is extremely widespread and already present in the last eukaryotic common ancestor; and (iii) the general mode of existence of eukaryotes is best described by clonally propagating cell lines with episodic sex triggered by external or internal clues. However, important questions concern the relative longevity of true clonal species (i.e., species not able to return to sexual procreation anymore). Long-lived clonal species seem strikingly rare. We analyze their properties in the light of meiotic sex development from existing prokaryotic repair mechanisms. Based on these considerations, we speculate that eukaryotic sex likely developed as a cellular survival strategy, possibly in the context of internal reactive oxygen species stress generated by a (proto) mitochondrion. Thus, in the context of the symbiogenic model of eukaryotic origin, sex might directly result from the very evolutionary mode by which eukaryotic cells arose.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands;
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
730
|
Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140219. [PMID: 26056363 PMCID: PMC4581024 DOI: 10.1098/rstb.2014.0219] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Multicellularity is characterized by cooperation among cells for the development, maintenance and reproduction of the multicellular organism. Cancer can be viewed as cheating within this cooperative multicellular system. Complex multicellularity, and the cooperation underlying it, has evolved independently multiple times. We review the existing literature on cancer and cancer-like phenomena across life, not only focusing on complex multicellularity but also reviewing cancer-like phenomena across the tree of life more broadly. We find that cancer is characterized by a breakdown of the central features of cooperation that characterize multicellularity, including cheating in proliferation inhibition, cell death, division of labour, resource allocation and extracellular environment maintenance (which we term the five foundations of multicellularity). Cheating on division of labour, exhibited by a lack of differentiation and disorganized cell masses, has been observed in all forms of multicellularity. This suggests that deregulation of differentiation is a fundamental and universal aspect of carcinogenesis that may be underappreciated in cancer biology. Understanding cancer as a breakdown of multicellular cooperation provides novel insights into cancer hallmarks and suggests a set of assays and biomarkers that can be applied across species and characterize the fundamental requirements for generating a cancer.
Collapse
Affiliation(s)
- C Athena Aktipis
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, USA Centre for Evolution and Cancer, Institute for Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Amy M Boddy
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Gunther Jansen
- Department of Evolutionary Ecology and Genetics, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, CNRS UMR5554, Université Montpellier, 34095 Montpellier, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Carlo C Maley
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA Centre for Evolution and Cancer, Institute for Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK Biodesign Institute, School of Life Sciences, Arizona State University, PO Box 8724501, Tempe, AZ 85287-4501, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
731
|
Khadka M, Salem M, Leblond JD. Sterol Composition and Biosynthetic Genes of Vitrella brassicaformis
, a Recently Discovered Chromerid: Comparison to Chromera velia
and Phylogenetic Relationship with Apicomplexan Parasites. J Eukaryot Microbiol 2015; 62:786-98. [DOI: 10.1111/jeu.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Manoj Khadka
- Department of Biology; Middle Tennessee State University; PO Box 60 Murfreesboro Tennessee 37132
| | - Mohamed Salem
- Department of Biology; Middle Tennessee State University; PO Box 60 Murfreesboro Tennessee 37132
| | - Jeffrey D. Leblond
- Department of Biology; Middle Tennessee State University; PO Box 60 Murfreesboro Tennessee 37132
- Ecology and Evolution Group; Middle Tennessee State University; PO Box 60 Murfreesboro Tennessee 37132
| |
Collapse
|
732
|
Nakamura Y, Imai I, Yamaguchi A, Tuji A, Not F, Suzuki N. Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa). Protist 2015; 166:363-73. [DOI: 10.1016/j.protis.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
733
|
Liaisons dangereuses: sexual recombination among pathogenic trypanosomes. Res Microbiol 2015; 166:459-66. [DOI: 10.1016/j.resmic.2015.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022]
|
734
|
Abstract
The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission.
Collapse
|
735
|
Okamura T, Kondo R. Suigetsumonas clinomigrationis gen. et sp. nov., a Novel Facultative Anaerobic Nanoflagellate Isolated from the Meromictic Lake Suigetsu, Japan. Protist 2015. [PMID: 26202992 DOI: 10.1016/j.protis.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel facultative anaerobic bacterivorous nanoflagellate was isolated from the water just below the permanent oxic-anoxic interface of the meromictic Lake Suigetsu, Japan. We characterized the isolate using light and transmission electron microscopy and molecular phylogenetic analyses inferred from 18S rDNA sequences. The phylogenetic analyses showed that the isolate belonged to class Placididea (stramenopiles). The isolate showed key ultrastructural features of the Placididea, such as flagellar hairs with two unequal terminal filaments, microtubular root 2 changing in shape from an arced to an acute-angled shape, and a lack of an x-fiber in root 2. However, the isolate had a single helix in the flagellar transition region, which is a double helix in the two known placidid nanoflagellates Placidia cafeteriopsis and Wobblia lunata. Moreover, the isolate had different intracellular features compared with these two genera, such as the arrangement of basal bodies, the components of the flagellar apparatus, the number of mitochondria, and the absence (or presence) of paranuclear bodies. The 18S rDNA sequence was also phylogenetically distant from the clades of the known Placididae W. lunata and P. cafeteriopsis. Consequently, the newly isolated nanoflagellate was described as Suigetsumonas clinomigrationis gen. et sp. nov.
Collapse
Affiliation(s)
- Takahiko Okamura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Ryuji Kondo
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan.
| |
Collapse
|
736
|
Oborník M, Lukeš J. The Organellar Genomes of Chromera and Vitrella, the Phototrophic Relatives of Apicomplexan Parasites. Annu Rev Microbiol 2015; 69:129-44. [PMID: 26092225 DOI: 10.1146/annurev-micro-091014-104449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are known to contain greatly reduced organellar genomes. Their mitochondrial genome carries only three protein-coding genes, and their plastid genome is reduced to a 35-kb-long circle. The discovery of coral-endosymbiotic algae Chromera velia and Vitrella brassicaformis, which share a common ancestry with Apicomplexa, provided an opportunity to study possibly ancestral forms of organellar genomes, a unique glimpse into the evolutionary history of apicomplexan parasites. The structurally similar mitochondrial genomes of Chromera and Vitrella differ in gene content, which is reflected in the composition of their respiratory chains. Thus, Chromera lacks respiratory complexes I and III, whereas Vitrella and apicomplexan parasites are missing only complex I. Plastid genomes differ substantially between these algae, particularly in structure: The Chromera plastid genome is a linear, 120-kb molecule with large and divergent genes, whereas the plastid genome of Vitrella is a highly compact circle that is only 85 kb long but nonetheless contains more genes than that of Chromera. It appears that organellar genomes have already been reduced in free-living phototrophic ancestors of apicomplexan parasites, and such reduction is not associated with parasitism.
Collapse
|
737
|
Geisen S, Laros I, Vizcaíno A, Bonkowski M, de Groot GA. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol Ecol 2015; 24:4556-69. [DOI: 10.1111/mec.13238] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/02/2023]
Affiliation(s)
- S. Geisen
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); PO Box 50 6700 AB Wageningen, the Netherlands
- Department of Terrestrial Ecology; Institute of Zoology; University of Cologne; Zülpicher Str 47b, 50674 Cologne Germany
| | - I. Laros
- ALTERRA - Wageningen UR; P.O. Box 47 6700 AA Wageningen The Netherlands
| | - A. Vizcaíno
- AllGenetics, Ed. de Servicios Centrales de Investigación; Campus de Elviña s/n E-15071 A Coruña Spain
| | - M. Bonkowski
- Department of Terrestrial Ecology; Institute of Zoology; University of Cologne; Zülpicher Str 47b, 50674 Cologne Germany
| | - G. A. de Groot
- ALTERRA - Wageningen UR; P.O. Box 47 6700 AA Wageningen The Netherlands
| |
Collapse
|
738
|
Root of Dictyostelia based on 213 universal proteins. Mol Phylogenet Evol 2015; 92:53-62. [PMID: 26048704 DOI: 10.1016/j.ympev.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruiting bodies, a characteristic that has also led to their long history of study and widespread use as model systems. Ribosomal RNA phylogeny of Dictyostelia identified four major divisions (Groups 1-4), none of which correspond to traditional genera. Group 1 was also tentatively identified as sister lineage to the other three Groups, although not consistently or with strong support. We tested the dictyostelid root using universal protein-coding genes identified by exhaustive comparison of six completely sequenced dictyostelid genomes, which include representatives of all four major molecular Groups. A set of 213 genes are low-copy number in all genomes, present in at least one amoebozoan outgroup taxon (Acanthamoeba castellanii or Physarum polycephalum), and phylogenetically congruent. Phylogenetic analysis of a concatenation of the deduced protein sequences produces a single topology dividing Dictyostelia into two major divisions: Groups 1+2 and Groups 3+4. All clades in the tree are fully supported by maximum likelihood and Bayesian inference, and all alternative roots are unambiguously rejected by the approximately unbiased (AU) test. The 1+2, 3+4 root is also fully supported even after deleting clusters with strong individual support for this root, or concatenating all clusters with low support for alternative roots. The 213 putatively ancestral amoebozoan proteins encode a wide variety of functions including 21 KOG categories out of a total of 25. These comprehensive analyses and consistent results indicate that it is time for full taxonomic revision of Dictyostelia, which will also enable more effective exploitation of its unique potential as an evolutionary model system.
Collapse
|
739
|
Gräf R, Batsios P, Meyer I. Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. Eur J Cell Biol 2015; 94:249-56. [DOI: 10.1016/j.ejcb.2015.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/08/2023] Open
|
740
|
Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins. Sci Rep 2015; 5:10652. [PMID: 26024016 PMCID: PMC4448529 DOI: 10.1038/srep10652] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.
Collapse
|
741
|
Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M, Slocinska M, Makałowski W, Kmita H. The TOM Complex of Amoebozoans: the Cases of the Amoeba Acanthamoeba castellanii and the Slime Mold Dictyostelium discoideum. Protist 2015; 166:349-62. [PMID: 26074248 DOI: 10.1016/j.protis.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/29/2022]
Abstract
Protein import into mitochondria requires a wide variety of proteins, forming complexes in both mitochondrial membranes. The TOM complex (translocase of the outer membrane) is responsible for decoding of targeting signals, translocation of imported proteins across or into the outer membrane, and their subsequent sorting. Thus the TOM complex is regarded as the main gate into mitochondria for imported proteins. Available data indicate that mitochondria of representative organisms from across the major phylogenetic lineages of eukaryotes differ in subunit organization of the TOM complex. The subunit organization of the TOM complex in the Amoebozoa is still elusive, so we decided to investigate its organization in the soil amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. They represent two major subclades of the Amoebozoa: the Lobosa and Conosa, respectively. Our results confirm the presence of Tom70, Tom40 and Tom7 in the A. castellanii and D. discoideum TOM complex, while the presence of Tom22 and Tom20 is less supported. Interestingly, the Tom proteins display the highest similarity to Opisthokonta cognate proteins, with the exception of Tom40. Thus representatives of two major subclades of the Amoebozoa appear to be similar in organization of the TOM complex, despite differences in their lifestyle.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland.
| | - Dorota Buczek
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland; University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Olgierd Stobienia
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Andonis Karachitos
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Monika Antoniewicz
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| | - Małgorzata Slocinska
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Animal Physiology and Development, Poznań, Poland
| | - Wojciech Makałowski
- University of Muenster, Faculty of Medicine Institute of Bioinformatics, Muenster, Germany
| | - Hanna Kmita
- Adam Mickiewicz University, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Department of Bioenergetics, Poznań, Poland
| |
Collapse
|
742
|
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 2015; 25:1489-95. [PMID: 26004762 DOI: 10.1016/j.cub.2015.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Mitochondria are eukaryotic organelles that originated from an endosymbiotic α-proteobacterium. As an adaptation to maximize ATP production through oxidative phosphorylation, mitochondria contain inner membrane invaginations called cristae. Recent work has characterized a multi-protein complex in yeast and animal mitochondria called MICOS (mitochondrial contact site and cristae organizing system), responsible for the determination and maintenance of cristae [1-4]. However, the origin and evolution of these characteristic mitochondrial features remain obscure. We therefore conducted a comprehensive search for MICOS components across the major groups that encompass eukaryotic diversity to determine the extent of conservation of this complex. We detected homologs for the majority of MICOS components among opisthokonts (the group containing animals and fungi), but only Mic60 and Mic10 were consistently identified outside this group. The conservation of Mic60 and Mic10 in eukaryotes is consistent with their central role in MICOS function [5-7], indicating that the basic mechanism for cristae determination arose early in evolution and has remained relatively unchanged. We found that eukaryotes with ultrastructurally simplified anaerobic mitochondria that lack cristae have also lost MICOS. We then searched for a prokaryotic MICOS and identified a homolog of Mic60 present only in α-proteobacteria, providing evidence for the endosymbiotic origin of mitochondrial cristae. Our study clarifies the origins of mitochondrial cristae and their subsequent evolutionary history, provides evidence for a general mechanism of cristae formation and maintenance in eukaryotes, and points to a new potential factor involved in membrane differentiation in prokaryotes.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Claudio H Slamovits
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Halifax, NS B3H 4R2, Canada
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kaitlyn A Baier
- Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Katelyn D Spencer
- Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Jeremy G Wideman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Science, Augustana Faculty, University of Alberta, Camrose, AB T4V 2R3, Canada.
| |
Collapse
|
743
|
Abstract
One of the most fundamental questions in evolutionary biology is the origin of the lineage leading to eukaryotes. Recent phylogenomic analyses have indicated an emergence of eukaryotes from within the radiation of modern Archaea and specifically from a group comprising Thaumarchaeota/"Aigarchaeota" (candidate phylum)/Crenarchaeota/Korarchaeota (TACK). Despite their major implications, these studies were all based on the reconstruction of universal trees and left the exact placement of eukaryotes with respect to the TACK lineage unclear. Here we have applied an original two-step approach that involves the separate analysis of markers shared between Archaea and eukaryotes and between Archaea and Bacteria. This strategy allowed us to use a larger number of markers and greater taxonomic coverage, obtain high-quality alignments, and alleviate tree reconstruction artifacts potentially introduced when analyzing the three domains simultaneously. Our results robustly indicate a sister relationship of eukaryotes with the TACK superphylum that is strongly associated with a distinct root of the Archaea that lies within the Euryarchaeota, challenging the traditional topology of the archaeal tree. Therefore, if we are to embrace an archaeal origin for eukaryotes, our view of the evolution of the third domain of life will have to be profoundly reconsidered, as will many areas of investigation aimed at inferring ancestral characteristics of early life and Earth.
Collapse
|
744
|
Abstract
All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.
Collapse
Affiliation(s)
- Philippe Fort
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| | - Andrey V Kajava
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France Institut de Biologie Computationnelle, Montpellier, France
| | - Fredéric Delsuc
- Université de Montpellier, France CNRS, IRD, Institut des Sciences de l'Evolution, UMR 5554, Montpellier, France
| | - Olivier Coux
- CNRS, CRBM, UMR5237, Montpellier, France Université de Montpellier, France
| |
Collapse
|
745
|
Carrara F, Giometto A, Seymour M, Rinaldo A, Altermatt F. Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. Ecology 2015; 96:1340-50. [DOI: 10.1890/14-1324.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
746
|
Chen X, Zhao X, Liu X, Warren A, Zhao F, Miao M. Phylogenomics of non-model ciliates based on transcriptomic analyses. Protein Cell 2015; 6:373-385. [PMID: 25833385 PMCID: PMC4417680 DOI: 10.1007/s13238-015-0147-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/21/2015] [Indexed: 01/19/2023] Open
Abstract
Ciliates are one of the oldest living eukaryotic unicellular organisms, widely distributed in the waters around the world. As a typical marine oligotrich ciliate, Strombidium sulcatum plays an important role in marine food webs and energy flow. Here we report the first deep sequencing and analyses of RNA-Seq data from Strombidium sulcatum. We generated 42,640 unigenes with an N50 of 1,451 bp after de novo assembly and removing rRNA, mitochondrial and bacteria contaminants. We employed SPOCS to detect orthologs from S. sulcatum and 17 other ciliates, and then carried out the phylogenomic reconstruction using 127 single copy orthologs. In phylogenomic analyses, concatenated trees have similar topological structures with concordance tree on the class level. Together with phylogenetic networks analysis, it aroused more doubts about the placement of Protocruzia, Mesodinium and Myrionecta. While epiplasmic proteins are known to be related to morphological characteristics, we found the potential relationship between gene expression of epiplasmic proteins and morphological characteristics. This work supports the use of high throughput approaches for phylogenomic analysis as well as correlation analysis between expression level of target genes and morphological characteristics.
Collapse
Affiliation(s)
- Xiao Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiaolu Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiaohui Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Miao Miao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
747
|
Tarnawski SE, Lara E. From Environmental Sequences to Morphology: Observation and Characterisation of a Paulinellid Testate Amoeba (Micropyxidiella edaphonis gen. nov. sp. nov. Euglyphida, Paulinellidae) from Soil using Fluorescent in situ Hybridization. Protist 2015; 166:264-70. [DOI: 10.1016/j.protis.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
748
|
The prospects and perspectives of the phylogenetic system of myxomycetes (Myxogastrea). UKRAINIAN BOTANICAL JOURNAL 2015. [DOI: 10.15407/ukrbotj72.02.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
749
|
Heiss AA, Lee WJ, Ishida KI, Simpson AGB. Cultivation and Characterisation of New Species of Apusomonads (the Sister Group to Opisthokonts), Including Close Relatives of Thecamonas (Chelonemonas n. gen.). J Eukaryot Microbiol 2015; 62:637-49. [PMID: 25912654 DOI: 10.1111/jeu.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/15/2014] [Accepted: 12/28/2014] [Indexed: 11/29/2022]
Abstract
Apusomonads comprise an understudied and undersampled group of heterotrophic flagellates that is closely related to opisthokonts, the supergroup containing animals and fungi. We cultured representatives of a new clade of apusomonads, Chelonemonas n. gen., which is sister to marine forms of Thecamonas in SSU rRNA gene phylogenies. Scanning electron microscopy shows that members of Chelonemonas have a hexagonal patterning to their submembranous pellicle, which is not known to exist in other apusomonads. We propose that the subfamily Thecamonadinae refer to the marine Thecamonas/Chelonomonas clade. We also report two new strains of Multimonas, one of which is genetically divergent from previously described strains, and here described as a new species, Multimonas koreensis. Both strains of Multimonas have appendages on their dorsal surface that could be extrusomes, and a frilled appearance to the border of their pellicle. Explorations of taxon sampling in SSU rRNA gene phylogenies confirm the new strains' evolutionary affinities, but do not resolve relationships among the five main apusomonad clades. These phylogenies also separate the freshwater species "Thecamonas" oxoniensis from the marine members of the genus Thecamonas. The new strains described here may provide valuable genetic and morphological data for evaluating the relationships and evolution of apusomonads.
Collapse
Affiliation(s)
- Aaron A Heiss
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Won J Lee
- Department of Urban Environmental Engineering, Kyungnam University, Changwon, 631-701, Korea
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Canadian Institute for Advanced Research, Program in Integrated Microbial Diversity
| |
Collapse
|
750
|
Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. A higher level classification of all living organisms. PLoS One 2015; 10:e0119248. [PMID: 25923521 PMCID: PMC4418965 DOI: 10.1371/journal.pone.0119248] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/25/2015] [Indexed: 12/28/2022] Open
Abstract
We present a consensus classification of life to embrace the more than 1.6 million species already provided by more than 3,000 taxonomists' expert opinions in a unified and coherent, hierarchically ranked system known as the Catalogue of Life (CoL). The intent of this collaborative effort is to provide a hierarchical classification serving not only the needs of the CoL's database providers but also the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships. This classification is neither phylogenetic nor evolutionary but instead represents a consensus view that accommodates taxonomic choices and practical compromises among diverse expert opinions, public usages, and conflicting evidence about the boundaries between taxa and the ranks of major taxa, including kingdoms. Certain key issues, some not fully resolved, are addressed in particular. Beyond its immediate use as a management tool for the CoL and ITIS (Integrated Taxonomic Information System), it is immediately valuable as a reference for taxonomic and biodiversity research, as a tool for societal communication, and as a classificatory "backbone" for biodiversity databases, museum collections, libraries, and textbooks. Such a modern comprehensive hierarchy has not previously existed at this level of specificity.
Collapse
Affiliation(s)
- Michael A. Ruggiero
- Integrated Taxonomic Information System, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
| | - Dennis P. Gordon
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Thomas M. Orrell
- Integrated Taxonomic Information System, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
| | | | - Thierry Bourgoin
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN-CNRS-UPMC-EPHE, Sorbonne Universités, Museum National d'Histoire Naturelle, 57, rue Cuvier, CP 50, F-75005, Paris, France
| | - Richard C. Brusca
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | | | - Michael D. Guiry
- The AlgaeBase Foundation & Irish Seaweed Research Group, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Paul M. Kirk
- Mycology Section, Royal Botanic Gardens, Kew, London, United Kingdom
| |
Collapse
|