701
|
Saito S, Furuno A, Sakurai J, Sakamoto A, Park HR, Shin-Ya K, Tsuruo T, Tomida A. Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Res 2009; 69:4225-34. [PMID: 19435925 DOI: 10.1158/0008-5472.can-08-2689] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glucose deprivation, a cell condition that occurs in solid tumors, activates the unfolded protein response (UPR). A key feature of the UPR is the transcription program activation, which allows the cell to survive under stress conditions. Here, we show that the UPR transcription program is disrupted by the antidiabetic biguanides metformin, buformin, and phenformin depending on cellular glucose availability. These drugs inhibit production of the UPR transcription activators XBP1 and ATF4 and induce massive cell death during glucose deprivation as did the antitumor macrocyclic compound versipelostatin. Gene expression profiling shows remarkable similarity in the modes of action of biguanides and versipelostatin determined by the broad range of glucose deprivation-inducible genes. Importantly, during glucose deprivation, most of the biguanide suppression genes overlap with the genes induced by tunicamycin, a chemical UPR inducer. Gene expression profiling also identifies drug-driven signatures as a tool for discovering pharmacologic UPR modulators. Our findings show that disrupting the UPR during glucose deprivation could be an attractive approach for selective cancer cell killing and could provide a chemical genomic basis for developing UPR-targeting drugs against solid tumors.
Collapse
Affiliation(s)
- Sakae Saito
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
702
|
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Elevated AMP/ATP ratio activates AMPK, which inhibits energy-consuming processes and activates energy-producing processes to restore the energy homeostasis inside the cell. AMPK activators, metformin and thiazolidinediones, are used for the treatment of type II diabetes. Recently, reports have indicated that AMPK may also be a beneficial target for cancer treatment. Cancer cells have characteristic metabolic changes different from normal cells and, being a key metabolic regulator, AMPK may regulate the switch. AMPK may act to inhibit tumorigenesis through regulation of cell growth, cell proliferation, autophagy, stress responses and cell polarity.
Collapse
Affiliation(s)
- W Wang
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
703
|
Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 2009; 27:2278-87. [PMID: 19332717 PMCID: PMC2738634 DOI: 10.1200/jco.2008.20.0766] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/21/2009] [Indexed: 12/21/2022] Open
Abstract
The serine-threonine kinase mammalian target of rapamycin (mTOR) plays a major role in the regulation of protein translation, cell growth, and metabolism. Alterations of the mTOR signaling pathway are common in cancer, and thus mTOR is being actively pursued as a therapeutic target. Rapamycin and its analogs (rapalogs) have proven effective as anticancer agents in a broad range of preclinical models. Clinical trials using rapalogs have demonstrated important clinical benefits in several cancer types; however, objective response rates achieved with single-agent therapy have been modest. Rapalogs may be more effective in combination with other anticancer agents, including chemotherapy and targeted therapies. It is increasingly apparent that the mTOR signaling network is quite complex, and rapamycin treatment leads to different signaling responses in different cell types. A better understanding of mTOR signaling, the mechanism of action of rapamycin, and the identification of biomarkers of response will lead to more optimal targeting of this pathway for cancer therapy.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Surgical Oncology, Unit 444, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
704
|
Zhou J, Huang W, Tao R, Ibaragi S, Lan F, Ido Y, Wu X, Alekseyev YO, Lenburg ME, Hu GF, Luo Z. Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells. Oncogene 2009; 28:1993-2002. [PMID: 19347029 PMCID: PMC2679420 DOI: 10.1038/onc.2009.63] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AMP-activated protein kinase (AMPK) serves as a fuel-sensing enzyme that is activated by binding of AMP and subsequent phophorylation by upstream kinases such as the tumor suppressor LKB1, when cells sense an increase in the ratio of AMP to ATP. Acute activation of AMPK stimulates fatty acid oxidation to generate more ATP and simultaneously inhibits ATP-consuming processes including fatty acid and protein syntheses, thereby preserving energy for acute cell surviving program, while the chronic activation leads to inhibition of cell growth. The goal of the present study is to explore the mechanisms by which AMPK regulates cell growth. Toward this end, we established stable cell lines by introducing a dominant negative mutant of AMPK α1 subunit or its shRNA into the prostate cancer C4-2 cells and other cells, or wild type LKB1 into the lung adenocarcinoma A549 and breast MB-MDA-231 cancer cells, both of which lack functional LKB1. Our results showed that the inhibition of AMPK accelerated cell proliferation and promoted malignant behavior such as increased cell migration and anchorage-independent growth. This was associated with decreased G1 population, downregulation of p53 and p21, and upregulation of S6K, IGF-1 and IGF1R. Conversely, treatment of the C4-2 cells with 5-aminoimidazole-4-carboxamide 1-Dribonucleoside (AICAR), a prototypical AMPK activator, caused opposite changes. In addition, our study using microarray and RT-PCR revealed that AMPK regulated gene expression involved in tumor cell growth and survival. Thus, our study provides novel insights into the mechanisms of AMPK action in cancer cells and presents AMPK as an ideal drug target for cancer therapy.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
705
|
Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr Opin Cell Biol 2009; 21:209-18. [DOI: 10.1016/j.ceb.2009.01.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 01/15/2009] [Indexed: 11/26/2022]
|
706
|
Zakikhani M, Dowling RJO, Sonenberg N, Pollak MN. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila) 2009; 1:369-75. [PMID: 19138981 DOI: 10.1158/1940-6207.capr-08-0081] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Population studies provide evidence that obesity and insulin resistance are associated not only with elevated serum insulin levels and reduced serum adiponectin levels but also with increased risk of aggressive prostate and colon cancer. We show here that adiponectin activates AMP-activated protein kinase (AMPK) in colon (HT-29) and prostate (PC-3) cancer cells. These results are consistent with prior observations in myocytes, but we show that in epithelial cancer cells AMPK activation is associated with reduction in mammalian target of rapamycin activation as estimated by Ser(2448) phosphorylation, with reduction in p70S6 kinase activation as estimated by Thr(389) phosphorylation, with ribosomal protein S6 activation as estimated by Ser(235/236) phosphorylation, with reduction in protein translation as estimated by [(35)S]methionine incorporation, and with growth inhibition. Adiponectin-induced growth inhibition is significantly attenuated when AMPK level is reduced using small interfering RNA, indicating that AMPK is involved in mediating the antiproliferative action of this adipokine. Thus, adiponectin has the characteristics of a AMPK-dependent growth inhibitor that is deficient in obesity, and this may contribute to the adverse effects of obesity on neoplastic disease. Furthermore, metformin was observed to activate AMPK and to have growth inhibitory actions on prostate and colon cancer cells, suggesting that this compound may be of particular value in attenuating the adverse effects of obesity on neoplasia.
Collapse
|
707
|
Goodwin PJ, Pritchard KI, Ennis M, Clemons M, Graham M, Fantus IG. Insulin-lowering effects of metformin in women with early breast cancer. Clin Breast Cancer 2009; 8:501-5. [PMID: 19073504 DOI: 10.3816/cbc.2008.n.060] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity has been associated with poor breast cancer outcomes. Insulin may mediate this effect, interacting with insulin receptors on breast cancer cells. Metformin, a biguanide derivative used in the treatment of diabetes, reduces insulin levels in subjects with type 2 diabetes and other insulin-resistant states. If metformin lowers insulin levels in women with breast cancer, it may also improve breast cancer outcomes. PATIENTS AND METHODS We administered metformin (1500 mg per day) to 32 women with early breast cancer whose baseline insulin levels were at least 45 pmol/L to determine its effect on insulin levels. RESULTS Twenty-two (69%) women completed the 6-month intervention. Four women (12.5%) dropped out because of gastrointestinal side effects; the others withdrew for reasons not related to toxicity. Completers were similar to noncompleters for all baseline characteristics apart from global health, overall physical condition, overall quality of life, physical function, and social function (HRQOL), which was decreased in noncompleters. Metformin significantly lowered fasting insulin levels by 15.8 pmol/L (22.4%; P=.024) and improved insulin sensitivity by 25.6% (P=.018), total cholesterol by 5.3%, and low-density lipoprotein (LDL) cholesterol by 9.1%. Metformin reduced weight by 1.9 kg (2.5%; P=.01), and it had no significant effects on HRQOL or specific gastrointestinal symptoms (appetite, nausea/vomiting, diarrhea, constipation). CONCLUSION Metformin significantly lowers insulin levels, and it improves insulin resistance in nondiabetic women with breast cancer. A phase III randomized trial to evaluate its effects on breast cancer outcomes is recommended.
Collapse
Affiliation(s)
- Pamela J Goodwin
- Department of Medicine, University of Toronto, Division of Clinical Epidemiology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
708
|
Tseng CH, Chong CK, Tai TY. Secular trend for mortality from breast cancer and the association between diabetes and breast cancer in Taiwan between 1995 and 2006. Diabetologia 2009; 52:240-6. [PMID: 19018510 DOI: 10.1007/s00125-008-1204-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/16/2008] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Studies have identified an association between diabetes and breast cancer in postmenopausal women in Western countries. Such an association needs to be confirmed in an Asian population. The aim of this study was to evaluate the secular trend for breast cancer mortality in Taiwanese women in the general population and the mortality rate ratios between diabetic patients and the general population. METHODS Age-specific mortality rates for the general population, categorised into groups aged 25-54, 55-64, 65-74 and > or =75 years, were calculated for the years between 1995 and 2006 (inclusive) from vital statistics published by the Taiwanese government. Linear regression was used to test the trends. A total of 131,573 diabetic women aged > or =25 years from a national cohort recruited between 1995 and 1998 (inclusive) were followed prospectively for vital status, determined from the National Register of Deaths. Mortality rates and mortality rate ratios (mortality rate in diabetic women vs the average and highest mortality rates for the general population) were calculated. RESULTS A total of 14,230 women aged > or =25 years in the general population died of breast cancer between 1995 and 2006. A trend for an increase in the annual rate was observed for all age groups. A total of 482 diabetic women died of breast cancer, with a crude mortality rate of 45.7 per 100,000 person-years. Compared with the general population the relative risk of mortality for those with diabetes ranged from 1.37 (for the group aged 55-64 years) to 2.43 (for the group aged 25-54 years). CONCLUSIONS/INTERPRETATION We identified a secular trend of an increase in the rate of breast cancer mortality in the Taiwanese general population. Our data suggest a higher risk of breast cancer mortality in diabetic patients in all age groups.
Collapse
Affiliation(s)
- C-H Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | |
Collapse
|
709
|
Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai) 2009; 41:97-107. [PMID: 19204826 DOI: 10.1093/abbs/gmn011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) characterized by intestinal hamartomas and increased incidence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evidences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor suppressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent findings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to individuals suffering from PJS and other common disorders related to LKB1 signaling.
Collapse
Affiliation(s)
- Dahua Fan
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, China
| | | | | |
Collapse
|
710
|
Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM. Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer. Clin Chem 2009; 55:425-38. [PMID: 19181734 DOI: 10.1373/clinchem.2008.115352] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND An emerging paradigm supports the notion that deregulation of fatty acid synthase (FASN)-catalyzed de novo FA biogenesis could play a central role in the pathogenesis of metabolic diseases sharing the hallmark of insulin-resistance. CONTENT We reviewed pharmacological and genetic alterations of FASN activity that have been shown to significantly influence energy expenditure rates, fat mass, insulin sensitivity, and cancer risk. This new paradigm proposes that insulin-resistant conditions such as obesity, type 2 diabetes, and cancer arise from a common FASN-driven "lipogenic state". An important question then is whether the development or the progression of insulin-related metabolic disorders can be prevented or reversed by the modulation of FASN status. If we accept the paradigm of FASN dysfunction as a previously unrecognized link between insulin resistance, type 2 diabetes, and cancer, the use of insulin sensitizers in parallel with forthcoming FASN inhibitors should be a valuable therapeutic approach that, in association with lifestyle interventions, would concurrently improve energy-flux status, ameliorate insulin sensitivity, and alleviate the risk of lipogenic carcinomas. CONCLUSIONS Although the picture is currently incomplete and researchers in the field have plenty of work ahead, the latest clinical and experimental evidence that we discuss illuminates a functional and drug-modifiable link that connects FASN-driven endogenous FA biosynthesis, insulin action, and glucose homeostasis in the natural history of insulin-resistant pathologies.
Collapse
Affiliation(s)
- Javier A Menendez
- Catalan Institute of Oncology, Girona Biomedical Research Institute, Hospital Universitari de Girona Josep Trueta, Girona, Catalonia, Spain.
| | | | | | | |
Collapse
|
711
|
Vazquez-Martin A, Oliveras-Ferraros C, del Barco S, Martin-Castillo B, Menendez JA. The antidiabetic drug metformin: a pharmaceutical AMPK activator to overcome breast cancer resistance to HER2 inhibitors while decreasing risk of cardiomyopathy. Ann Oncol 2009; 20:592-5. [PMID: 19153119 DOI: 10.1093/annonc/mdn758] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
712
|
Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 2009; 21:656-64. [PMID: 19166931 DOI: 10.1016/j.cellsig.2009.01.004] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/02/2009] [Indexed: 12/25/2022]
Abstract
The protein kinase mTOR (mammalian target of rapamycin) is a critical regulator of cellular metabolism, growth, and proliferation. These processes contribute to tumor formation, and many cancers are characterized by aberrant activation of mTOR. Although activating mutations in mTOR itself have not been identified, deregulation of upstream components that regulate mTOR are prevalent in cancer. The prototypic mechanism of mTOR regulation in cells is through activation of the PI3K/Akt pathway, but mTOR receives input from multiple signaling pathways. This review will discuss Akt-dependent and -independent mechanisms of mTOR regulation in response to mitogenic signals, as well as its regulation in response to energy and nutrient-sensing pathways. Preclinical and clinical studies have demonstrated that tumors bearing genetic alterations that activate mTOR are sensitive to pharmacologic inhibition of mTOR. Elucidation of novel pathways that regulate mTOR may help identify predictive factors for sensitivity to mTOR inhibitors, and could provide new therapeutic targets for inhibiting the mTOR pathway in cancer. This review will also highlight pharmacologic approaches that inhibit mTOR via activation of the AMP-activated protein kinase (AMPK), an important inhibitor of the mTOR pathway and an emerging target in cancer.
Collapse
|
713
|
Pinto-Leite R, Botelho P, Ribeiro E, Oliveira PA, Santos L. Effect of sirolimus on urinary bladder cancer T24 cell line. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:3. [PMID: 19128503 PMCID: PMC2628648 DOI: 10.1186/1756-9966-28-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/07/2009] [Indexed: 12/18/2022]
Abstract
Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus inhibits the growth of bladder carcinoma cells and decreases their viability. Significant correlations were found between cell proliferation and sirolimus concentration (r = 0.830; p < 0.01) as well as between cell viability and sirolimus concentration (r = -0.896; p < 0.01). Conclusion Sirolimus has an anti-proliferation effect on the T24 bladder carcinoma cell line. The information from our results is useful for a better understanding sirolimus's anti-proliferative activity in the T24 bladder cancer cell line.
Collapse
Affiliation(s)
- Rosario Pinto-Leite
- Genetic Service, Cytogenetic laboratory, Hospital center of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | | | | | | | | |
Collapse
|
714
|
Yokoyama Y, Kubota M, Iguchi K, Usui S, Kiho T, Hirano K. Regulation of Glyceraldehyde 3-Phosphate Dehydrogenase Expression by Metformin in HepG2 Cells. Biol Pharm Bull 2009; 32:1160-5. [DOI: 10.1248/bpb.32.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuichi Yokoyama
- Laboratory of Pharmaceutics, Department of Medical Pharmaceutics, Gifu Pharmaceutical University
| | - Masafumi Kubota
- Laboratory of Pharmaceutics, Department of Medical Pharmaceutics, Gifu Pharmaceutical University
| | - Kazuhiro Iguchi
- Laboratory of Pharmaceutics, Department of Medical Pharmaceutics, Gifu Pharmaceutical University
| | - Shigeyuki Usui
- Laboratory of Pharmaceutics, Department of Medical Pharmaceutics, Gifu Pharmaceutical University
| | - Tadashi Kiho
- Laboratory of Pharmaceutics, Department of Medical Pharmaceutics, Gifu Pharmaceutical University
| | - Kazuyuki Hirano
- Laboratory of Pharmaceutics, Department of Medical Pharmaceutics, Gifu Pharmaceutical University
| |
Collapse
|
715
|
Abstract
Research concerning "cancer energetics" has become a popular area of investigation. This topic comprises two distinct fields: energetics at (1) the cellular level and (2) the whole organism level. Both of these have relevance to Cancer Risk and Cancer Prevention.
Collapse
Affiliation(s)
- Michael Pollak
- General Jewish Hospital, Medicine and Oncology, Montreal, QC, Canada.
| |
Collapse
|
716
|
Zhuang Y, Miskimins WK. Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 2008; 3:18. [PMID: 19046439 PMCID: PMC2613390 DOI: 10.1186/1750-2187-3-18] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/01/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The antihyperglycemic drug metformin may have beneficial effects on the prevention and treatment of cancer. Metformin is known to activate AMP-activated protein kinase (AMPK). It has also been shown to inhibit cyclin D1 expression and proliferation of some cultured cancer cells. However, the mechanisms of action by which metformin mediates cell cycle arrest are not completely understood. RESULTS In this study, metformin was found to inhibit proliferation of most cultured breast cancer cell lines. This was independent of estrogen receptor, HER2, or p53 status. Inhibition of cell proliferation was associated with arrest within G0/G1 phase of the cell cycle. As in previous studies, metformin treatment led to activation of (AMPK) and downregulation of cyclin D1. However, these events were not sufficient for cell cycle arrest because they were also observed in the MDA-MB-231 cell line, which is not sensitive to growth arrest by metformin. In sensitive breast cancer lines, the reduction in cyclin D1 led to release of sequestered CDK inhibitors, p27Kip1 and p21Cip1, and association of these inhibitors with cyclin E/CDK2 complexes. The metformin-resistant cell line MDA-MB-231 expresses significantly lower levels of p27Kip1 and p21Cip1 than the metformin-sensitive cell line, MCF7. When p27Kip1 or p21Cip1 were overexpressed in MDA-MB-231, the cells became sensitive to cell cycle arrest in response to metformin. CONCLUSION Cell cycle arrest in response to metformin requires CDK inhibitors in addition to AMPK activation and cyclin D1 downregulation. This is of interest because many cancers are associated with loss or downregulation of CDK inhibitors and the results may be relevant to the development of anti-tumor reagents that target the AMPK pathway.
Collapse
Affiliation(s)
- Yongxian Zhuang
- Cancer Biology Research Center, Sanford Research/USD, 1400 West 22nd Street, Sioux Falls, South Dakota, 57105, USA.
| | | |
Collapse
|
717
|
Abstract
Insulin and insulin-like growth factors (IGFs) are well known as key regulators of energy metabolism and growth. There is now considerable evidence that these hormones and the signal transduction networks they regulate have important roles in neoplasia. Epidermiological, clinical and laboratory research methods are being used to investigate novel cancer prevention and treatment strategies related to insulin and IGF signalling. Pharmacological strategies under study include the use of novel receptor-specific antibodies, receptor kinase inhibitors and AMP-activated protein kinase activators such as metformin. There is evidence that insulin and IGF signalling may also be relevant to dietary and lifestyle factors that influence cancer risk and cancer prognosis. Recent results are encouraging and have justified the expansion of many translational research programmes.
Collapse
Affiliation(s)
- Michael Pollak
- Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
718
|
Reddy PS, Legault HM, Sypek JP, Collins MJ, Goad E, Goldman SJ, Liu W, Murray S, Dorner AJ, O'Toole M. Mapping similarities in mTOR pathway perturbations in mouse lupus nephritis models and human lupus nephritis. Arthritis Res Ther 2008; 10:R127. [PMID: 18980674 PMCID: PMC2656226 DOI: 10.1186/ar2541] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/22/2008] [Accepted: 11/03/2008] [Indexed: 12/13/2022] Open
Abstract
Introduction Treatment with sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, has been shown to be efficacious in the MRL/lpr and NZB × NZW F1 mouse models of lupus nephritis, indicating a critical role for the mTOR pathway in both models. This type of demonstration of efficacy in animal models is usually a pre-requisite for advancement into clinical development. However, efficacy in an animal model often has not translated to the desired activity in the clinic. Therefore, a more profound understanding of the mechanistic similarities and differences between various animal models and human diseases is highly desirable. Methods Transcriptional profiling was performed on kidneys from mice with lupus nephritis; from mice who had efficacious drug treatment; and from mice before they developed nephritis. Analysis of variance with false discovery rate adjusted to p < 0.05 and an average fold change of two or more was used to identify transcripts significantly associated with disease and response to therapy. Pathway analyses (using various bioinformatics tools) were carried out to understand the basis for drug efficacy in the mouse model. The relevance in human lupus of the pathways identified in the mouse model was explored using information from several databases derived from the published literature. Results We identified a set of nephritis-associated genes in mouse kidney. Expression of the majority of these returned to asymptomatic levels on sirolimus treatment, confirming the correlation between expression levels and symptoms of nephritis. Network analysis showed that many of these nephritis genes are known to interact with the mTOR pathway. This led us to ask what human diseases are linked to the mTOR pathway. We constructed the mTOR pathway interactome consisting of proteins that interact with members of the mTOR pathway and identified a strong association between mTOR pathway genes and genes reported in the literature as being involved in human lupus. Conclusions Our findings implicate the mTOR pathway as a critical contributor to human lupus. This broad pathway-based approach to understanding the similarities in, and differences between, animal models and human diseases may have broader utility.
Collapse
Affiliation(s)
- Padmalatha S Reddy
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
719
|
Polak P, Cybulski N, Feige JN, Auwerx J, Rüegg MA, Hall MN. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008; 8:399-410. [PMID: 19046571 DOI: 10.1016/j.cmet.2008.09.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/04/2008] [Accepted: 09/09/2008] [Indexed: 12/14/2022]
Abstract
raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-/-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptor(ad-/-) mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls whole-body energy homeostasis.
Collapse
Affiliation(s)
- Pazit Polak
- Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
720
|
Dueñas-González A, García-López P, Herrera LA, Medina-Franco JL, González-Fierro A, Candelaria M. The prince and the pauper. A tale of anticancer targeted agents. Mol Cancer 2008; 7:82. [PMID: 18947424 PMCID: PMC2615789 DOI: 10.1186/1476-4598-7-82] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/23/2008] [Indexed: 02/07/2023] Open
Abstract
Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited public-sector resources. If these drug types eventually result in being effective, it follows that they could be much more affordable for patients with cancer; therefore, their contribution in terms of reducing cancer mortality at the global level would be greater.
Collapse
Affiliation(s)
- Alfonso Dueñas-González
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
- Dirección de Investigación, Unidad de Investigacion Biomédica en Cáncer, Av. San Fernando 22, Tlalpan, 14080 México, D.F., México
| | - Patricia García-López
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Luis Alonso Herrera
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jose Luis Medina-Franco
- Torrey Pines Institute for Molecular Studies. 5775 Old Dixie Highway, Fort Pierce, Florida 34946, USA
| | - Aurora González-Fierro
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Myrna Candelaria
- Unidad de Investigacion Biomédica en Cáncer, Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
721
|
Li Y, Hao P, Zheng S, Tu K, Fan H, Zhu R, Ding G, Dong C, Wang C, Li X, Thiesen HJ, Chen YE, Jiang H, Liu L, Li Y. Gene expression module-based chemical function similarity search. Nucleic Acids Res 2008; 36:e137. [PMID: 18842630 PMCID: PMC2582597 DOI: 10.1093/nar/gkn610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Investigation of biological processes using selective chemical interventions is generally applied in biomedical research and drug discovery. Many studies of this kind make use of gene expression experiments to explore cellular responses to chemical interventions. Recently, some research groups constructed libraries of chemical related expression profiles, and introduced similarity comparison into chemical induced transcriptome analysis. Resembling sequence similarity alignment, expression pattern comparison among chemical intervention related expression profiles provides a new way for chemical function prediction and chemical–gene relation investigation. However, existing methods place more emphasis on comparing profile patterns globally, which ignore noises and marginal effects. At the same time, though the whole information of expression profiles has been used, it is difficult to uncover the underlying mechanisms that lead to the functional similarity between two molecules. Here a new approach is presented to perform biological effects similarity comparison within small biologically meaningful gene categories. Regarding gene categories as units, a reduced similarity matrix is generated for measuring the biological distances between query and profiles in library and pointing out in which modules do chemical pairs resemble. Through the modularization of expression patterns, this method reduces experimental noises and marginal effects and directly correlates chemical molecules with gene function modules.
Collapse
Affiliation(s)
- Yun Li
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
722
|
Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 2008; 124:31-42. [PMID: 18575892 DOI: 10.1007/s00439-008-0529-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/13/2008] [Indexed: 12/24/2022]
Abstract
Six genes confer a high risk for developing breast cancer (BRCA1/2, TP53, PTEN, STK11, CDH1). Both BRCA1 and BRCA2 have DNA repair functions, and BRCA1/2 deficient tumors are now being targeted by poly(ADP-ribose) polymerase inhibitors. Other genes conferring an increased risk for breast cancer include ATM, CHEK2, PALB2, BRIP1 and genome-wide association studies have identified lower penetrance alleles including FGFR2, a minor allele of which is associated with breast cancer. We review recent findings related to the function of some of these genes, and discuss how they can be targeted by various drugs. Gaining deeper insights in breast cancer susceptibility will improve our ability to identify those families at increased risk and permit the development of new and more specific therapeutic approaches.
Collapse
Affiliation(s)
- Philippe M Campeau
- Department of Medical Genetics, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
723
|
Abstract
Over the past decade, dozens of epidemiological studies and laboratory experiments have provided evidence for relationships between insulin-like growth factor (IGF) physiology and neoplasia. Population studies provide evidence for a modestly increased risk of a subsequent cancer diagnosis in subjects with IGF-I levels at the high end of the broad normal range, as compared to those at the low end of the normal range. At the cellular level, IGF-I receptor signalling has been shown to play an important role in facilitating the transforming action of a variety of oncogenes. Reducing receptor function with anti-receptor antibodies or specific tyrosine kinase inhibitors reduces the proliferation of many cancers in vitro and in vivo. At present, clinical relevance of the relationship between circulating IGF-I level and cancer risk is limited, but in terms of experimental therapeutics, many clinical trials have been initiated to investigate the possibility that the paradigm of hormonal treatment of cancer may be extended from targeting gonadal steroids to targeting the growth hormone-IGF-I axis.
Collapse
Affiliation(s)
- Michael Pollak
- Department of Oncology, McGill University, 3755 Chemin Cote Sainte Catherine, Montreal, Quebec, Canada.
| |
Collapse
|
724
|
Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412:211-21. [PMID: 18387000 DOI: 10.1042/bj20080557] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.
Collapse
|
725
|
Williams T, Brenman JE. LKB1 and AMPK in cell polarity and division. Trends Cell Biol 2008; 18:193-8. [PMID: 18314332 DOI: 10.1016/j.tcb.2008.01.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022]
Abstract
LKB1 and AMP-activated protein kinase (AMPK) are serine-threonine kinases implicated in key cellular pathways, including polarity establishment and energy sensing, respectively. Recent in vivo analyses in Drosophila have demonstrated vital roles for both AMPK and LKB1--in part through the myosin regulatory light chain--in cell polarity and cell division. Evidence from mammalian experiments also supports non-metabolic functions for LKB1 and AMPK. This review examines unanticipated AMPK functions for initiating and maintaining cell polarity and completing normal cell division. The ability of AMPK to sense energy status might be coupled with fundamental cell biological functions.
Collapse
Affiliation(s)
- Tyisha Williams
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7250, USA
| | | |
Collapse
|
726
|
Berstein LM. Role of Endocrine-Genotoxic Switchings in Cancer and Other Human Diseases:. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 630:35-51. [DOI: 10.1007/978-0-387-78818-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|