701
|
Padgett LR, Arrizabalaga G, Sullivan WJ. Targeting of tail-anchored membrane proteins to subcellular organelles in Toxoplasma gondii. Traffic 2017; 18:149-158. [PMID: 27991712 DOI: 10.1111/tra.12464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Proper protein localization is essential for critical cellular processes, including vesicle-mediated transport and protein translocation. Tail-anchored (TA) proteins are integrated into organellar membranes via the C-terminus, orienting the N-terminus towards the cytosol. Localization of TA proteins occurs posttranslationally and is governed by the C-terminus, which contains the integral transmembrane domain (TMD) and targeting sequence. Targeting of TA proteins is dependent on the hydrophobicity of the TMD as well as the length and composition of flanking amino acid sequences. We previously identified an unusual homologue of elongator protein, Elp3, in the apicomplexan parasite Toxoplasma gondii as a TA protein targeting the outer mitochondrial membrane. We sought to gain further insight into TA proteins and their targeting mechanisms using this early-branching eukaryote as a model. Our bioinformatics analysis uncovered 59 predicted TA proteins in Toxoplasma, 9 of which were selected for follow-up analyses based on representative features. We identified novel TA proteins that traffic to specific organelles in Toxoplasma, including the parasite endoplasmic reticulum, mitochondrion, and Golgi apparatus. Domain swap experiments elucidated that targeting of TA proteins to these specific organelles was strongly influenced by the TMD sequence, including charge of the flanking C-terminal sequence.
Collapse
Affiliation(s)
- Leah R Padgett
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
702
|
Sugimoto C, Takeda K, Kariya Y, Matsumura H, Yohda M, Ohno H, Nakamura N. A method of expression for an oxygen-tolerant group III alcohol dehydrogenase from Pyrococcus horikoshii OT3. J Biol Inorg Chem 2017; 22:527-534. [PMID: 28084552 DOI: 10.1007/s00775-017-1439-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/28/2016] [Indexed: 09/16/2024]
Abstract
NAD(P)-dependent group III alcohol dehydrogenases (ADHs), well known as iron-activated enzymes, generally lose their activities under aerobic conditions due to their oxygen-sensitivities. In this paper, we expressed an extremely thermostable group III ADH from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (PhADH) heterologously in Escherichia coli. When purified from a culture medium containing nickel, the recombinant PhADH (Ni-PhADH) contained 0.85 ± 0.01 g-atoms of nickel per subunit. Ni-PhADH retained high activity under aerobic conditions (9.80 U mg-1), while the enzyme expressed without adding nickel contained 0.46 ± 0.01 g-atoms of iron per subunit and showed little activity (0.27 U mg-1). In the presence of oxygen, the activity of the Fe2+-reconstituted PhADH prepared from the Ni-PhADH was gradually decreased, whereas the Ni2+-reconstituted PhADH maintained enzymatic activity. These results indicated that PhADH with bound nickel ion was stable in oxygen. The activity of the Ni2+-reconstituted PhADH prepared from the expression without adding nickel was significantly lower than that from the Ni-PhADH, suggesting that binding a nickel ion to PhADH in this expression system contributed to protecting against inactivation during the expression and purification processes. Unlike other thermophilic group III ADHs, Ni-PhADH showed high affinity for NAD(H) rather than NADP(H). Furthermore, it showed an unusually high k cat value toward aldehyde reduction. The activity of Ni-PhADH for butanal reduction was increased to 60.7 U mg-1 with increasing the temperature to 95 °C. These findings provide a new strategy to obtain oxygen-sensitive group III ADHs.
Collapse
Affiliation(s)
- Chikanobu Sugimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kouta Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yumi Kariya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Hirotoshi Matsumura
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, Akita, 010-8502, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
703
|
Cimini D, Corte KD, Finamore R, Andreozzi L, Stellavato A, Pirozzi AVA, Ferrara F, Formisano R, De Rosa M, Chino M, Lista L, Lombardi A, Pavone V, Schiraldi C. Production of human pro-relaxin H2 in the yeast Pichia pastoris. BMC Biotechnol 2017; 17:4. [PMID: 28088197 PMCID: PMC5237503 DOI: 10.1186/s12896-016-0319-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Initially known as the reproductive hormone, relaxin was shown to possess other therapeutically useful properties that include extracellular matrix remodeling, anti-inflammatory, anti-ischemic and angiogenic effects. All these findings make relaxin a potential drug for diverse medical applications. Its precursor, pro-relaxin, is an 18 kDa protein, that shows activity in in vitro assays. Since extraction of relaxin from animal tissues raises several issues, prokaryotes and eukaryotes were both used as expression systems for recombinant relaxin production. Most productive results were obtained when using Escherichia coli as a host for human relaxin expression. However, in such host, relaxin precipitated in the form of inclusion bodies and, therefore, required several expensive recovery steps as cell lysis, refolding and reduction. Results To overcome the issues related to prokaryotic expression here we report the production and purification of secreted human pro-relaxin H2 by using the methylotrophic yeast Pichia pastoris as expression host. The methanol inducible promoter AOX1 was used to drive expression of the native and histidine tagged forms of pro-relaxin H2 in dual phase fed-batch experiments on the 22 L scale. Both protein forms presented the correct structure, as determined by mass spectrometry and western blotting analyses, and demonstrated to be biologically active in immune enzymatic assays. The presence of the tag allowed to simplify pro-relaxin purification obtaining higher purity. Conclusions This work presents a strategy for microbial production of recombinant human pro-relaxin H2 in Pichia pastoris that allowed the obtainment of biologically active pro-hormone, with a final concentration in the fermentation broth ranging between 10 and 14 mg/L of product, as determined by densitometric analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Cimini
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy.
| | - K Della Corte
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - R Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - L Andreozzi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - A Stellavato
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - A V A Pirozzi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - F Ferrara
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - R Formisano
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - M De Rosa
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy
| | - M Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - L Lista
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - A Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - V Pavone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia I, 80126, Naples, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples and University of Campania Luigi Vanvitelli, via de Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
704
|
Pancsa R, Raimondi D, Cilia E, Vranken WF. Early Folding Events, Local Interactions, and Conservation of Protein Backbone Rigidity. Biophys J 2017; 110:572-583. [PMID: 26840723 DOI: 10.1016/j.bpj.2015.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 01/20/2023] Open
Abstract
Protein folding is in its early stages largely determined by the protein sequence and complex local interactions between amino acids, resulting in lower energy conformations that provide the context for further folding into the native state. We compiled a comprehensive data set of early folding residues based on pulsed labeling hydrogen deuterium exchange experiments. These early folding residues have corresponding higher backbone rigidity as predicted by DynaMine from sequence, an effect also present when accounting for the secondary structures in the folded protein. We then show that the amino acids involved in early folding events are not more conserved than others, but rather, early folding fragments and the secondary structure elements they are part of show a clear trend toward conserving a rigid backbone. We therefore propose that backbone rigidity is a fundamental physical feature conserved by proteins that can provide important insights into their folding mechanisms and stability.
Collapse
Affiliation(s)
- Rita Pancsa
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniele Raimondi
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Cilia
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
705
|
Assessment of Prokaryotic Signal Peptides for Secretion of Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) in E. coli: An in silico Approach. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
706
|
Gomes-Pepe ES, Machado Sierra EG, Pereira MR, Castellane TCL, Lemos EGDM. Bg10: A Novel Metagenomics Alcohol-Tolerant and Glucose-Stimulated GH1 ß-Glucosidase Suitable for Lactose-Free Milk Preparation. PLoS One 2016; 11:e0167932. [PMID: 28002476 PMCID: PMC5176175 DOI: 10.1371/journal.pone.0167932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
New ß-glucosidases with product (glucose) or ethanol tolerances are greatly desired to make industrial processes more marketable and efficient. Therefore, this report describes the in silico/vitro characterization of Bg10, a metagenomically derived homodimeric ß-glucosidase that exhibited a Vmax of 10.81 ± 0.43 μM min-1, Kcat of 175.1± 6.91 min-1, and Km of 0.49 ± 0.12 mM at a neutral pH and 37°C when pNP-ß-D-glucopyranoside was used as the substrate, and the enzyme retained greater than 80% activity within the respective pH and temperature ranges of 6.5 to 8.0 and 35 to 40°C. The enzyme was stimulated by its product, glucose; consequently, the Bg10 activity against 50 and 100 mM of glucose were increased by 36.8% and 22%, respectively, while half of the activity was retained at 350 mM. Moreover, the Bg10 was able to hydrolyse 55% (milk sample) and 100% (purified sugar) of the lactose at low (6°C) and optimum (37°C) temperatures, respectively, suggesting the possibility of further optimization of the reaction for lactose-free dairy production. In addition, the enzyme was able to fully hydrolyse 40 mM of cellobiose at one hour and was tolerant to ethanol up to concentrations of 500 mM (86% of activity), while a 1 M concentration still resulted in 41% residual activity, which could be interesting for biofuel production.
Collapse
Affiliation(s)
- Elisângela Soares Gomes-Pepe
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
- Agricultural Microbiology postgraduate program of UNESP, Jaboticabal, São Paulo State, Brazil
| | - Elwi Guillermo Machado Sierra
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| | - Mariana Rangel Pereira
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| | - Tereza Cristina Luque Castellane
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Department of Technology, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal. Via de Acesso Prof. Paulo Donato Castellane S/N, km 5, CEP, Jaboticabal, São Paulo State, Brazil
- Molecular Biology Laboratory; Institute for Research in Bioenergy (IPBEN), UNESP–Jaboticabal, SP, Brazil
| |
Collapse
|
707
|
Patwary NIA, Islam MS, Sohel M, Ara I, Sikder MOF, Shahik SM. In silico structure analysis and epitope prediction of E3 CR1-beta protein of Human Adenovirus E for vaccine design. Biomed J 2016; 39:382-390. [PMID: 28043417 PMCID: PMC6138513 DOI: 10.1016/j.bj.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/12/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human Adenoviruses are divided into 7 species of Human Adenovirus A to G based on DNA genome homology. The Human Adenovirus E (HAdVs-E) genome is a linear, double-stranded DNA containing 38 protein-coding genes. Wild-type adenoviruses type E, are linked to a number of slight illnesses. The most important part of HAdVs-E is E3 CR1-beta protein which controls the host immune response and viral attachment. METHOD We use numerous bio-informatics and immuno-informatics implements comprising sequence and construction tools for construction of 3D model and epitope prediction for HAdVs-E. RESULTS The 3D structure of E3 CR1-beta protein was generated and total of ten antigenic B cell epitopes, 6 MHC class I and 11 MHC class II binding peptides were predicted. CONCLUSION The study was carried out to predict antigenic determinants/epitopes of the E3 CR1-beta protein of Human Adenovirus E along with the 3D protein modeling. The study revealed potential T-cell and B-cell epitopes that can raise the desired immune response against E3 CR1-beta protein and useful in developing effective vaccines against HAdVs-E.
Collapse
Affiliation(s)
- Noman Ibna Amin Patwary
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Bangladesh
| | - Md Saiful Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Bangladesh
| | - Md Sohel
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Bangladesh
| | - Ismot Ara
- Department of Computer Science and Engineering, Faculty of Science and Technology, Atish Dipankar University of Science and Technology, Bangladesh; Department of Computer Science and Engineering, American International University-Bangladesh, Bangladesh
| | - Mohd Omar Faruk Sikder
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Bangladesh
| | - Shah Md Shahik
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Bangladesh.
| |
Collapse
|
708
|
Guilhelmelli F, Vilela N, Smidt KS, de Oliveira MA, da Cunha Morales Álvares A, Rigonatto MCL, da Silva Costa PH, Tavares AH, de Freitas SM, Nicola AM, Franco OL, Derengowski LDS, Schwartz EF, Mortari MR, Bocca AL, Albuquerque P, Silva-Pereira I. Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms. Front Microbiol 2016; 7:1844. [PMID: 27917162 PMCID: PMC5114273 DOI: 10.3389/fmicb.2016.01844] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs) are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp., which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with minimum inhibitory concentration values ranging from 3.12 to 200 μM and an analogous activity against Candida albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well as the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their cytotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Karina S Smidt
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Marco A de Oliveira
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Alice da Cunha Morales Álvares
- Laboratory of Molecular Biophysics, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Maria C L Rigonatto
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Pedro H da Silva Costa
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Aldo H Tavares
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Sônia M de Freitas
- Laboratory of Molecular Biophysics, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - André M Nicola
- Faculty of Medicine, University of Brasília Brasília, Brazil
| | - Octávio L Franco
- Center of Proteomic and Biochemistry Analysis, Post Graduation in Biotechnology and Genomic Sciences, Catholic University of Brasília Brasília, Brazil
| | - Lorena da Silveira Derengowski
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Elisabeth F Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Anamélia L Bocca
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of BrasíliaBrasília, Brazil; Faculty of Ceilândia, University of BrasíliaBrasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília Brasília, Brazil
| |
Collapse
|
709
|
Hofmann L, Tsybovsky Y, Alexander NS, Babino D, Leung NY, Montell C, Banerjee S, von Lintig J, Palczewski K. Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Biochemistry 2016; 55:6545-6557. [PMID: 27809489 DOI: 10.1021/acs.biochem.6b00907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-trans-retinal to all-trans-retinol, is catalyzed by retinol dehydrogenases. Here, we determined the structure of Drosophila melanogaster photoreceptor retinol dehydrogenase (PDH) isoform C that belongs to the short-chain dehydrogenase/reductase (SDR) family. This is the first reported structure of a SDR that possesses this biologically important activity. Two crystal structures of the same enzyme grown under different conditions revealed a novel conformational change of the NAD+ cofactor, likely representing a change during catalysis. Amide hydrogen-deuterium exchange of PDH demonstrated changes in the structure of the enzyme upon dinucleotide binding. In D. melanogaster, loss of PDH activity leads to photoreceptor degeneration that can be partially rescued by transgenic expression of human RDH12. Based on the structure of PDH, we analyzed mutations causing Leber congenital amaurosis 13 in a homology model of human RDH12 to obtain insights into the molecular basis of RDH12 disease-causing mutations.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yaroslav Tsybovsky
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathan S Alexander
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Darwin Babino
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Johannes von Lintig
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
710
|
Characterisation of a New Family of Carboxyl Esterases with an OsmC Domain. PLoS One 2016; 11:e0166128. [PMID: 27851780 PMCID: PMC5113044 DOI: 10.1371/journal.pone.0166128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022] Open
Abstract
Proteins in the serine esterase family are widely distributed in bacterial phyla and display activity against a range of biologically produced and chemically synthesized esters. A serine esterase from the psychrophilic bacterium Pseudoalteromonas arctica with a C-terminal OsmC-like domain was recently characterized; here we report on the identification and characterization of further putative esterases with OsmC-like domains constituting a new esterase family that is found in a variety of bacterial species from different environmental niches. All of these proteins contained the Ser-Asp-His motif common to serine esterases and a highly conserved pentapeptide nucleophilic elbow motif. We produced these proteins heterologously in Escherichia coli and demonstrated their activity against a range of esterase substrates. Two of the esterases characterized have activity of over two orders of magnitude higher than other members of the family, and are active over a wide temperature range. We determined the crystal structure of the esterase domain of the protein from Rhodothermus marinus and show that it conforms to the classical α/β hydrolase fold with an extended ‘lid’ region, which occludes the active site of the protein in the crystal. The expansion of characterized members of the esterase family and demonstration of activity over a wide-range of temperatures could be of use in biotechnological applications such as the pharmaceutical, detergent, bioremediation and dairy industries.
Collapse
|
711
|
Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, Rodenbrock A, Laverdure JP, Côté C, Mader S, Lemieux S, Thibault P, Perreault C. MHC class I-associated peptides derive from selective regions of the human genome. J Clin Invest 2016; 126:4690-4701. [PMID: 27841757 DOI: 10.1172/jci88590] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.
Collapse
|
712
|
Bianco PR. The tale of SSB. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:111-118. [PMID: 27838363 DOI: 10.1016/j.pbiomolbio.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/04/2016] [Indexed: 01/07/2023]
Abstract
The E. coli single stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism. Here, it has two seemingly disparate but equally important roles: it binds rapidly and cooperatively to single stranded DNA (ssDNA) and it binds to partner proteins that constitute the SSB interactome. These two roles are not disparate but are instead, intimately linked. A model is presented wherein the intrinsically disordered linker (IDL) is directly responsible for mediating protein-protein interactions. It does this by binding, via PXXP motifs, to the OB-fold (aka SH3 domain) of a nearby protein. When the nearby protein is another SSB tetramer, this leads to a highly efficient ssDNA binding reaction that rapidly and cooperatively covers and protects the exposed nucleic acid from degradation. Alternatively, when the nearby protein is a member of the SSB interactome, loading of the enzyme onto the DNA takes places.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, Department of Biochemistry, University at Buffalo, Buffalo, NY, 14214, USA; Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
713
|
Tacchi JL, Raymond BBA, Haynes PA, Berry IJ, Widjaja M, Bogema DR, Woolley LK, Jenkins C, Minion FC, Padula MP, Djordjevic SP. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae. Open Biol 2016; 6:150210. [PMID: 26865024 PMCID: PMC4772806 DOI: 10.1098/rsob.150210] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity.
Collapse
Affiliation(s)
- Jessica L Tacchi
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Iain J Berry
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Michael Widjaja
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Daniel R Bogema
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Lauren K Woolley
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA
| | - Matthew P Padula
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
714
|
Luna-Pineda VM, Reyes-Grajeda JP, Cruz-Córdova A, Saldaña-Ahuactzi Z, Ochoa SA, Maldonado-Bernal C, Cázares-Domínguez V, Moreno-Fierros L, Arellano-Galindo J, Hernández-Castro R, Xicohtencatl-Cortes J. Dimeric and Trimeric Fusion Proteins Generated with Fimbrial Adhesins of Uropathogenic Escherichia coli. Front Cell Infect Microbiol 2016; 6:135. [PMID: 27843814 PMCID: PMC5087080 DOI: 10.3389/fcimb.2016.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022] Open
Abstract
Urinary tract infections (UTIs) are associated with high rates of morbidity and mortality worldwide, and uropathogenic Escherichia coli (UPEC) is the main etiologic agent. Fimbriae assembled on the bacterial surface are essential for adhesion to the urinary tract epithelium. In this study, the FimH, CsgA, and PapG adhesins were fused to generate biomolecules for use as potential target vaccines against UTIs. The fusion protein design was generated using bioinformatics tools, and template fusion gene sequences were synthesized by GenScript in the following order fimH-csgA-papG-fimH-csgA (fcpfc) linked to the nucleotide sequence encoding the [EAAAK]5 peptide. Monomeric (fimH, csgA, and papG), dimeric (fimH-csgA), and trimeric (fimH-csgA-papG) genes were cloned into the pLATE31 expression vector and generated products of 1040, 539, 1139, 1442, and 2444 bp, respectively. Fusion protein expression in BL21 E. coli was induced with 1 mM IPTG, and His-tagged proteins were purified under denaturing conditions and refolded by dialysis using C-buffer. Coomassie blue-stained SDS-PAGE gels and Western blot analysis revealed bands of 29.5, 11.9, 33.9, 44.9, and 82.1 kDa, corresponding to FimH, CsgA, PapG, FC, and FCP proteins, respectively. Mass spectrometry analysis by MALDI-TOF/TOF revealed specific peptides that confirmed the fusion protein structures. Dynamic light scattering analysis revealed the polydispersed state of the fusion proteins. FimH, CsgA, and PapG stimulated the release of 372–398 pg/mL IL-6; interestingly, FC and FCP stimulated the release of 464.79 pg/mL (p ≤ 0.018) and 521.24 pg/mL (p ≤ 0.002) IL-6, respectively. In addition, FC and FCP stimulated the release of 398.52 pg/mL (p ≤ 0.001) and 450.40 pg/mL (p ≤ 0.002) IL-8, respectively. High levels of IgA and IgG antibodies in human sera reacted against the fusion proteins, and under identical conditions, low levels of IgA and IgG antibodies were detected in human urine. Rabbit polyclonal antibodies generated against FimH, CsgA, PapG, FC, and FCP blocked the adhesion of E. coli strain CFT073 to HTB5 bladder cells. In conclusion, the FC and FCP proteins were highly stable, demonstrated antigenic properties, and induced cytokine release (IL-6 and IL-8); furthermore, antibodies generated against these proteins showed protection against bacterial adhesion.
Collapse
Affiliation(s)
- Víctor M Luna-Pineda
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez"Ciudad de México, Mexico; Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | | | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez"Ciudad de México, Mexico; Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación de Inmunología y Proteómica, Hospital Infantil de México "Federico Gómez", Dirección De Investigación Ciudad de México, Mexico
| | - Vicenta Cázares-Domínguez
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Leticia Moreno-Fierros
- Unidad de Biomedicina, Laboratorio de Inmunidad en Mucosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Tlalnepantla, Mexico
| | - José Arellano-Galindo
- Departamento de Infectología, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González" Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| |
Collapse
|
715
|
Grasso EJ, Sottile AE, Coronel CE. Structural Prediction and In Silico Physicochemical Characterization for Mouse Caltrin I and Bovine Caltrin Proteins. Bioinform Biol Insights 2016; 10:225-236. [PMID: 27812283 PMCID: PMC5087620 DOI: 10.4137/bbi.s38191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/04/2023] Open
Abstract
It is known that caltrin (calcium transport inhibitor) protein binds to sperm cells during ejaculation and inhibits extracellular Ca2+ uptake. Although the sequence and some biological features of mouse caltrin I and bovine caltrin are known, their physicochemical properties and tertiary structure are mainly unknown. We predicted the 3D structures of mouse caltrin I and bovine caltrin by molecular homology modeling and threading. Surface electrostatic potentials and electric fields were calculated using the Poisson-Boltzmann equation. Several different bioinformatics tools and available web servers were used to thoroughly analyze the physicochemical characteristics of both proteins, such as their Kyte and Doolittle hydropathy scores and helical wheel projections. The results presented in this work significantly aid further understanding of the molecular mechanisms of caltrin proteins modulating physiological processes associated with fertilization.
Collapse
Affiliation(s)
- Ernesto J. Grasso
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET–Universidad Nacional de Córdoba, and Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Cátedra de Química Biológica, Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
| | - Adolfo E. Sottile
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET–Universidad Nacional de Córdoba, and Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Cátedra de Química Biológica, Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
| | - Carlos E. Coronel
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT) CONICET–Universidad Nacional de Córdoba, and Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Cátedra de Química Biológica, Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba, Argentina
| |
Collapse
|
716
|
Álvarez CA, Gomez FA, Mercado L, Ramírez R, Marshall SH. Piscirickettsia salmonis Imbalances the Innate Immune Response to Succeed in a Productive Infection in a Salmonid Cell Line Model. PLoS One 2016; 11:e0163943. [PMID: 27723816 PMCID: PMC5056700 DOI: 10.1371/journal.pone.0163943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Piscirickettsia salmonis is a facultative intracellular bacterium that causes the disease called "salmon rickettsial syndrome". Attempts to control this disease have been unsuccessful, because existing vaccines have not achieved the expected effectiveness and the antibiotics used fail to completely eradicate the pathogen. This is in part the product of lack of scientific information that still lacks on the mechanisms used by this bacterium to overcome infected-cell responses and survive to induce a productive infection in macrophages. For that, this work was focused in determining if P. salmonis is able to modify the expression and the imbalance of IL-12 and IL-10 using an in vitro model. Additionally, we also evaluated the role the antimicrobial peptide hepcidin had in the control of this pathogen in infected cells. Therefore, the expression of IL-10 and IL-12 was evaluated at earlier stages of infection in the RTS11 cell line derived from Oncorhynchus mykiss macrophages. Simultaneously, the hepcidin expression and location was analyzed in the macrophages infected with the pathogen. Our results suggest that IL-10 is clearly induced at early stages of infection with values peaking at 36 hours post infection. Furthermore, infective P. salmonis downregulates the expression of antimicrobial peptide hepcidin and vesicles containing this peptide were unable to merge with the infective bacteria. Our results suggest that P. salmonis is able to manipulate the behavior of host cytokines and likely might constitute a virulence mechanism that promotes intracellular bacterial replication in leukocytes cells lines of trout and salmon. This mechanism involves the generation of an optimum environment for the microorganism and the downregulation of antimicrobial effectors like hepcidin.
Collapse
Affiliation(s)
- Claudio A. Álvarez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fernando A. Gomez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Las Condes, Santiago, Chile
| | - Ramón Ramírez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Las Condes, Santiago, Chile
| | - Sergio H. Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Las Condes, Santiago, Chile
- * E-mail:
| |
Collapse
|
717
|
Salimraj R, Zhang L, Hinchliffe P, Wellington EMH, Brem J, Schofield CJ, Gaze WH, Spencer J. Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study. Antimicrob Agents Chemother 2016; 60:5828-40. [PMID: 27431213 PMCID: PMC5038237 DOI: 10.1128/aac.00750-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase production increasingly threatens the effectiveness of β-lactams, which remain a mainstay of antimicrobial chemotherapy. New activities emerge through both mutation of previously known β-lactamases and mobilization from environmental reservoirs. The spread of metallo-β-lactamases (MBLs) represents a particular challenge because of their typically broad-spectrum activities encompassing carbapenems, in addition to other β-lactam classes. Increasingly, genomic and metagenomic studies have revealed the distribution of putative MBLs in the environment, but in most cases their activity against clinically relevant β-lactams and, hence, the extent to which they can be considered a resistance reservoir remain uncharacterized. Here we characterize the product of one such gene, blaRm3, identified through functional metagenomic sampling of an environment with high levels of biocide exposure. blaRm3 encodes a subclass B3 MBL that, when expressed in a recombinant Escherichia coli strain, is exported to the bacterial periplasm and hydrolyzes clinically used penicillins, cephalosporins, and carbapenems with an efficiency limited by high Km values. An Rm3 crystal structure reveals the MBL superfamily αβ/βα fold, which more closely resembles that in mobilized B3 MBLs (AIM-1 and SMB-1) than other chromosomal enzymes (L1 or FEZ-1). A binuclear zinc site sits in a deep channel that is in part defined by a relatively extended N terminus. Structural comparisons suggest that the steric constraints imposed by the N terminus may limit its affinity for β-lactams. Sequence comparisons identify Rm3-like MBLs in numerous other environmental samples and species. Our data suggest that Rm3-like enzymes represent a distinct group of B3 MBLs with a wide distribution and can be considered an environmental reservoir of determinants of β-lactam resistance.
Collapse
Affiliation(s)
- Ramya Salimraj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lihong Zhang
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - William H Gaze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
718
|
Petrey AC, de la Motte CA. Thrombin Cleavage of Inter-α-inhibitor Heavy Chain 1 Regulates Leukocyte Binding to an Inflammatory Hyaluronan Matrix. J Biol Chem 2016; 291:24324-24334. [PMID: 27679489 DOI: 10.1074/jbc.m116.755660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 02/06/2023] Open
Abstract
Dynamic alterations of the extracellular matrix in response to injury directly modulate inflammation and consequently the promotion and resolution of disease. During inflammation, hyaluronan (HA) is increased at sites of inflammation where it may be covalently modified with the heavy chains (HC) of inter-α-trypsin inhibitor. Deposition of this unique, pathological form of HA (HC-HA) leads to the formation of cable-like structures that promote adhesion of leukocytes. Naive mononuclear leukocytes bind specifically to inflammation-associated HA matrices but do not adhere to HA constitutively expressed under homeostatic conditions. In this study, we have directly investigated a role for the blood-coagulation protease thrombin in regulating the adhesion of monocytic cells to smooth muscle cells producing an inflammatory matrix. Our data demonstrate that the proteolytic activity of thrombin negatively regulates the adhesion of monocytes to an inflammatory HC-HA complex. This effect is independent of protease-activated receptor activation but requires proteolytic activity toward a novel substrate. Components of HC-HA complexes were predicted to contain conserved thrombin-susceptible cleavage sites based on sequence analysis, and heavy chain 1 (HC1) was confirmed to be a substrate of thrombin. Thrombin treatment is sufficient to cleave HC1 associated with either cell-surface HA or serum inter-α-trypsin inhibitor. Furthermore, thrombin treatment of the inflammatory matrix leads to dissolution of HC-HA cable structures and abolishes leukocyte adhesion. These data establish a novel mechanism whereby thrombin cleavage of HC1 regulates the adhesive properties of an inflammatory HA matrix.
Collapse
Affiliation(s)
- Aaron C Petrey
- From the Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Carol A de la Motte
- From the Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195.
| |
Collapse
|
719
|
Cerri R, Barros RC, P. L. F. de Carvalho AC, Jin Y. Reduction strategies for hierarchical multi-label classification in protein function prediction. BMC Bioinformatics 2016; 17:373. [PMID: 27627880 PMCID: PMC5024469 DOI: 10.1186/s12859-016-1232-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hierarchical Multi-Label Classification is a classification task where the classes to be predicted are hierarchically organized. Each instance can be assigned to classes belonging to more than one path in the hierarchy. This scenario is typically found in protein function prediction, considering that each protein may perform many functions, which can be further specialized into sub-functions. We present a new hierarchical multi-label classification method based on multiple neural networks for the task of protein function prediction. A set of neural networks are incrementally training, each being responsible for the prediction of the classes belonging to a given level. RESULTS The method proposed here is an extension of our previous work. Here we use the neural network output of a level to complement the feature vectors used as input to train the neural network in the next level. We experimentally compare this novel method with several other reduction strategies, showing that it obtains the best predictive performance. Empirical results also show that the proposed method achieves better or comparable predictive performance when compared with state-of-the-art methods for hierarchical multi-label classification in the context of protein function prediction. CONCLUSIONS The experiments showed that using the output in one level as input to the next level contributed to better classification results. We believe the method was able to learn the relationships between the protein functions during training, and this information was useful for classification. We also identified in which functional classes our method performed better.
Collapse
Affiliation(s)
- Ricardo Cerri
- Department of Computer Science, UFSCar Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, 13565-905 SP Brazil
| | - Rodrigo C. Barros
- Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, 90619-900 RS Brazil
| | - André C. P. L. F. de Carvalho
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São Carlos 135, São Carlos, 13566-590 SP Brazil
| | - Yaochu Jin
- Department of Computer Science, University of Surrey, GU2 7XH Guildford, Surrey, United Kingdom
| |
Collapse
|
720
|
De Laurentiis EI, Mercier E, Wieden HJ. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange. J Biol Chem 2016; 291:23136-23148. [PMID: 27624934 DOI: 10.1074/jbc.m116.740381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conservation of critical kinetic parameters and the mechanistic strategies of elongation factor (EF) Ts-catalyzed nucleotide exchange in EF-Tu in bacteria and particularly in clinically relevant pathogens. EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity with the corresponding elongation factor from Escherichia coli Interestingly, the functionally closely linked EF-Ts only shares 55% sequence identity. To identify any differences in the nucleotide binding properties, as well as in the EF-Ts-mediated nucleotide exchange reaction, we performed a comparative rapid kinetics and mutagenesis analysis of the nucleotide exchange mechanism for both the E. coli and P. aeruginosa systems, identifying helix 13 of EF-Ts as a previously unnoticed regulatory element in the nucleotide exchange mechanism with species-specific elements. Our findings support the base side-first entry of the nucleotide into the binding pocket of the EF-Tu·EF-Ts binary complex, followed by displacement of helix 13 and rapid binding of the phosphate side of the nucleotide, ultimately leading to the release of EF-Ts.
Collapse
Affiliation(s)
- Evelina Ines De Laurentiis
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Evan Mercier
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
721
|
Molecular archeological evidence in support of the repeated loss of a papillomavirus gene. Sci Rep 2016; 6:33028. [PMID: 27604338 PMCID: PMC5015084 DOI: 10.1038/srep33028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 11/08/2022] Open
Abstract
It is becoming clear that, in addition to gene gain, the loss of genes may be an important evolutionary mechanism for many organisms. However, gene loss is often associated with an increased mutation rate, thus quickly erasing evidence from the genome. The analysis of evolutionarily related sequences can provide empirical evidence for gene loss events. This paper analyzes the sequences of over 300 genetically distinct papillomaviruses and provides evidence for a role of gene loss during the evolution of certain papillomavirus genomes. Phylogenetic analysis suggests that the viral E6 gene was lost at least twice. Despite belonging to distant papillomaviral genera, these viruses lacking a canonical E6 protein may potentially encode a highly hydrophobic protein from an overlapping open reading frame, which we designate E10. Evolutionary pressure working on this alternative frame, may explain why, despite having lost the E6 open reading frame between 20 and 60 million years ago, evidence of an E6-like protein is conserved.
Collapse
|
722
|
Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium. Int J Genomics 2016; 2016:8740901. [PMID: 27660755 PMCID: PMC5021877 DOI: 10.1155/2016/8740901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023] Open
Abstract
Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.
Collapse
|
723
|
Pandey P, Tarique KF, Mazumder M, Rehman SAA, Kumari N, Gourinath S. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori. Sci Rep 2016; 6:31181. [PMID: 27499105 PMCID: PMC4976356 DOI: 10.1038/srep31181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp.
Collapse
Affiliation(s)
- Preeti Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | |
Collapse
|
724
|
Meissner GO, de Resende Lara PT, Scott LPB, Braz ASK, Chaves-Moreira D, Matsubara FH, Soares EM, Trevisan-Silva D, Gremski LH, Veiga SS, Chaim OM. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands. J Mol Model 2016; 22:196. [PMID: 27488102 DOI: 10.1007/s00894-016-3067-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/10/2016] [Indexed: 01/16/2023]
Abstract
Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of μ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from μ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.
Collapse
Affiliation(s)
- Gabriel Otto Meissner
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Pedro Túlio de Resende Lara
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Luis Paulo Barbour Scott
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Eduardo Mendonça Soares
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.,Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital of Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.
| |
Collapse
|
725
|
Lamers SL, Fogel GB, Liu ES, Salemi M, McGrath MS. On the Physicochemical and Structural Modifications Associated with HIV-1 Subtype B Tropism Transition. AIDS Res Hum Retroviruses 2016; 32:829-40. [PMID: 27071630 DOI: 10.1089/aid.2015.0373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HIV-1 enters immune cells via binding the viral envelope to a host cell CD4 receptor, and then a secondary co-receptor, usually CCR5 (R5) or CXCR4 (X4), and some HIV can utilize both co-receptors (R5X4). Although a small set of amino-acid properties such as charge and sequence length applied to HIV-1 envelope V3 loop sequence data can be used to predict co-receptor usage, we sought to expand the fundamental understanding of the physiochemical basis of tropism by analyzing many, perhaps less obvious, amino-acid properties over a diverse array of HIV sequences. We examined 74 amino-acid physicochemical scales over 1,559 V3 loop sequences with biologically tested tropisms downloaded from the Los Alamos HIV sequence database. Linear regressions were then calculated for each feature relative to three tropism transitions (R5→X4; R5→R5X4; R5X4→X4). Independent correlations were rank ordered to determine informative features. A structural analysis of the V3 loop was performed to better interpret these findings relative to HIV tropism states. Similar structural changes are required for R5 and R5X4 to transition to X4, thus suggesting that R5 and R5X4 types are more similar than either phenotype is to X4. Overall, the analysis suggests a continuum of viral tropism that is only partially related to charge; in fact, the analysis suggests that charge modification may be primarily attributed to decreased R5 usage, and further structural changes, particularly those associated with β-sheet structure, are likely required for full X4 usage.
Collapse
Affiliation(s)
| | | | | | - Marco Salemi
- Department of Pathology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Michael S. McGrath
- Department of Laboratory Medicine, Pathology, and Medicine, and the AIDS and Cancer Specimen Resource, University of California, San Francisco, California
| |
Collapse
|
726
|
Vij A, Randhawa R, Parkash J, Changotra H. Investigating regulatory signatures of human autophagy related gene 5 (ATG5) through functional in silico analysis. Meta Gene 2016; 9:237-48. [PMID: 27617225 PMCID: PMC5006144 DOI: 10.1016/j.mgene.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an essential, homeostatic process which removes damaged cellular proteins and organelles for cellular renewal. ATG5, a part of E3 ubiquitin ligase-like complex (Atg12-Atg5/Atg16L1), is a key regulator involved in autophagosome formation - a crucial phase of autophagy. In this study, we used different in silico methods for comprehensive analysis of ATG5 to investigate its less explored regulatory activity. We have predicted various physico-chemical parameters and two possible transmembrane models that helped in exposing its functional regions. Twenty four PTM sites and 44 TFBS were identified which could be targeted to modulate the autophagy pathway. Furthermore, LD analysis identified 3 blocks of genotyped SNPs and 2 deleterious nsSNPs that may have damaging impact on protein function and thus could be employed for carrying genome-wide association studies. In conclusion, the information obtained in this study could be helpful for better understanding of regulatory roles of ATG5 and provides a base for its implication in population-based studies. ATG5 phylogenetic analysis shows its evolutionary relationship with other species. Two possible models for transmembrane regions detected in ATG5. 24 Post-translational modification sites were annotated over ATG5 domain structure. 44 Transcription factor binding sites were identified in ATG5. 2 nsSNPs were predicted to have damaging impact on ATG5 protein function.
Collapse
Affiliation(s)
- Avni Vij
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, Himachal Pradesh, India
| | - Rohit Randhawa
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, Himachal Pradesh, India
| | - Jyoti Parkash
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University Punjab, Mansa Road, Bathinda 151 001, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, Himachal Pradesh, India
| |
Collapse
|
727
|
Marklevitz J, Harris LK. Prediction driven functional annotation of hypothetical proteins in the major facilitator superfamily of S. aureus NCTC 8325. Bioinformation 2016; 12:254-262. [PMID: 28197063 PMCID: PMC5290667 DOI: 10.6026/97320630012254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance Staphylococcus aureus strains cause several life threatening infections. New drug treatment options are needed, but are slow to develop because 50% of the S. aureus genome is hypothetical. The goal of this is to aid in the annotation of the S. aureus NCTC 8325 genome by identifying hypothetical proteins related to the Major Facilitator Superfamily (MFS). The MFS is a broad protein group with members involved in drug efflux mechanisms causing resistance. To do this, sequences for three MFS proteins with x-ray crystal structures in E. coli were PSI-BLASTed against the S. aureus NCTC 8325 genome to identify homologs. Eleven identified hypothetical protein homologs underwent BLASTP against the non-redundant NCBI database to fit homologs specific to each hypothetical protein. ExPASy characterized the physiochemical features, CDD-BLAST and Pfam identified domains, and the SOSUI server defined transmembrane helices of each hypothetical protein. Based on size (300 - 700 amino acids), number of transmembrane helices (>7), CD06174 and MFS domains in CDD-BLAST and Pfam, respectively, and close relation to well-defined homologs, SAOUHSC_00058, SAOUHSC_00078, SAOUHSC_00952, SAOUHSC_02435, SAOUHSC_02752, and ABD31642.1 are members of the MFS. Further multiple-alignment and phylogeny analyses show SAOUHSC_00058 to be a quinolone resistance protein (NorB), SAOUHSC_00058 a siderophore biosynthesis protein (SbnD), SAOUHSC_00952 a glycolipid permease (LtaA), SAOUHSC_02435 a macrolide MFS transporter, SAOUHSC_02752 a chloramphenicol resistance (DHA1), and ABD31642.1 is a Bcr/CflA family drug resistance efflux transporter. These findings provide better annotation for the existing genome, and identify proteins related to antibiotic resistance in S. aureus NCTC 8325.
Collapse
Affiliation(s)
- Jessica Marklevitz
- Department of Science, Davenport University, 200 S. Grand Ave, Lansing, MI, 48933 United States of America
| | - Laura K. Harris
- Department of Science, Davenport University, 200 S. Grand Ave, Lansing, MI, 48933 United States of America
| |
Collapse
|
728
|
Norris EL, Headlam MJ, Dave KA, Smith DD, Bukreyev A, Singh T, Jayakody BA, Chappell KJ, Collins PL, Gorman JJ. Proteoform-Specific Insights into Cellular Proteome Regulation. Mol Cell Proteomics 2016; 15:3297-3320. [PMID: 27451424 PMCID: PMC5054351 DOI: 10.1074/mcp.o116.058438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 01/29/2023] Open
Abstract
Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.
Collapse
Affiliation(s)
| | | | | | - David D Smith
- §Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alexander Bukreyev
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | | | | | - Keith J Chappell
- ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter L Collins
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | - Jeffrey J Gorman
- From the ‡Protein Discovery Centre and ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
729
|
Santos-Júnior CD, Veríssimo A, Costa J. The recombination dynamics of Staphylococcus aureus inferred from spA gene. BMC Microbiol 2016; 16:143. [PMID: 27400707 PMCID: PMC4940709 DOI: 10.1186/s12866-016-0757-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Given the role of spA as a pivotal virulence factor decisive for Staphylococcus aureus ability to escape from innate and adaptive immune responses, one can consider it as an object subject to adaptive evolution and that variations in spA may uncover pathogenicity variations. Results The population genetic structure was deduced from the extracellular domains of SpA gene sequence (domains A-E and the X-region) and compared to the MLST-analysis of 41 genetically diverse methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains. Incongruence between tree topologies was noticeable and in the inferred spA tree most MSSA isolates were clustered in a distinct group. Conversely, the distribution of strains according to their spA-type was not always congruent with the tree inferred from the complete spA gene foreseeing that spA is a mosaic gene composed of different segments exhibiting different evolutionary histories. Evidences of a network-like organization were identified through several conflicting phylogenetic signals and indeed several intragenic recombination events (within subdomains of the gene) were detected within and between CC’s of MRSA strains. The alignment of SpA sequences enabled the clustering of several isoforms as a result of non-randomly distributed amino acid variations, located in two clusters of polymorphic sites in domains D to B and Xr (a). Nevertheless, evidences of cluster specific structural arrangements were detected reflecting alterations on specific residues with potential impact on S. aureus pathogenicity. Conclusions The detection of positive selection operating on spA combined with frequent non-synonymous mutations, domain duplication and frequent intragenic recombination events represent important mechanisms acting in the evolutionary adaptive mechanism promoting spA genetic plasticity. These findings argue that crucial allelic forms correlated with pathogenicity can be identified by sequences analysis enabling the design of more robust schemes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0757-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Célio D Santos-Júnior
- Department of Molecular Biology and Evolutionary Genetics, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - António Veríssimo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra - Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra - Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Joana Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra - Rua Larga, Faculdade de Medicina, Pólo I, 1° andar, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra - Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
730
|
Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration. Sci Rep 2016; 6:29322. [PMID: 27385052 PMCID: PMC4935852 DOI: 10.1038/srep29322] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022] Open
Abstract
Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.
Collapse
|
731
|
Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, Sillankorva S. Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Front Microbiol 2016; 7:1024. [PMID: 27446059 PMCID: PMC4923195 DOI: 10.3389/fmicb.2016.01024] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium.
Collapse
Affiliation(s)
- Luís D R Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Patrícia Veiga
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Nuno Cerca
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Andrew M Kropinski
- Departments of Food Science, Molecular and Cellular Biology, and Pathobiology, University of Guelph, Guelph ON, Canada
| | - Carina Almeida
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Joana Azeredo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Sanna Sillankorva
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| |
Collapse
|
732
|
School K, Marklevitz J, K. Schram W, K. Harris L. Predictive characterization of hypothetical proteins in Staphylococcus aureus NCTC 8325. Bioinformation 2016; 12:209-220. [PMID: 28149057 PMCID: PMC5267966 DOI: 10.6026/97320630012209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is one of the most common hospital acquired infections. It colonizes immunocompromised patients and with the number of antibiotic resistant strains increasing, medicine needs new treatment options. Understanding more about the proteins this organism uses would further this goal. Hypothetical proteins are sequences thought to encode a functional protein but for which little to no evidence of that function exists. About half of the genomic proteins in reference strain S. aureus NCTC 8325 are hypothetical. Since annotation of these proteins can lead to new therapeutic targets, a high demand to characterize hypothetical proteins is present. This work examines 35 hypothetical proteins from the chromosome of S. aureus NCTC 8325. Examination includes physiochemical characterization; sequence homology; structural homology; domain recognition; structure modeling; active site depiction; predicted protein-protein interactions; protein-chemical interactions; protein localization; protein stability; and protein solubility. The examination revealed some hypothetical proteins related to virulent domains and protein-protein interactions including superoxide dismutase, O-antigen, bacterial ferric iron reductase and siderophore synthesis. Yet other hypothetical proteins appear to be metabolic or transport proteins including ABC transporters, major facilitator superfamily, S-adenosylmethionine decarboxylase, and GTPases. Progress evaluating some hypothetical proteins, particularly the smaller ones, was incomplete due to limited homology and structural information in public repositories. These data characterizing hypothetical proteins will contribute to the scientific understanding of S. aureus by identifying potential drug targets and aiding in future drug discovery.
Collapse
Affiliation(s)
- Kuana School
- Department of Science, Davenport University, 200 S. Grand Ave, Lansing, Michigan, 48933, United States of America
| | - Jessica Marklevitz
- Department of Science, Davenport University, 200 S. Grand Ave, Lansing, Michigan, 48933, United States of America
| | - William K. Schram
- Department of Science, Davenport University, 27650 Dequindre Rd, Warren, Michigan, 48092, United States of America
| | - Laura K. Harris
- Department of Science, Davenport University, 200 S. Grand Ave, Lansing, Michigan, 48933, United States of America
| |
Collapse
|
733
|
Deepthi V, V. I. Nair V, Thomas V, Raj N, P. Ramakrishnan S, Khan J, Kaushik M, K. Dhar P, S. Nair A. Function annotation of peptides generated from the non-coding regions of D. melanogaster genome. Bioinformation 2016; 12:202-208. [PMID: 28149056 PMCID: PMC5267965 DOI: 10.6026/97320630012202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
De novo emergence of genes is the most fundamental form of genetic diversity that is attracting the attention of the scientific community. Identification of short open reading frames (sORFs) from the non-coding regions of different genomes has been leading this thought recently. The coding potential of these newly identified sORFs have been investigated through experimental and computational approaches in recent studies. In the present work we have tried to make peptides from intergenic sequences of D. melanogaster genome leading to therapeutic applications. Towards this goal of making novel peptides from non-coding genome, we have found strong computational evidence of 145 peptides with conformational stability from the intergenic sequences of D. melanogaster. The structure of these completely unique peptides was predicted using ab initio method. The function annotation of these peptides was carried out using this structural information. The newly generated proteins were categorised as DNA/Protein/ion binding proteins, electron transporters and a very few as enzymes too. Experimental studies can certainly provide validations to these preliminary findings. This work provides further evidence of untapped potential of non-coding genome.
Collapse
Affiliation(s)
- Varughese Deepthi
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Vineetha V. I. Nair
- Indian Institute of Information Technology and Management, Kerala,Technopark, Trivandrum, India
| | - Vipin Thomas
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Navya Raj
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Shidhi P. Ramakrishnan
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| | - Juveria Khan
- School of Biotechnology,Jawaharlal Nehru University, New Delhi 110067
| | - Monika Kaushik
- School of Biotechnology,Jawaharlal Nehru University, New Delhi 110067
| | - Pawan K. Dhar
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
- School of Biotechnology,Jawaharlal Nehru University, New Delhi 110067
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariyavattom, Trivandrum
| |
Collapse
|
734
|
Konte T, Terpitz U, Plemenitaš A. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae. Front Microbiol 2016; 7:901. [PMID: 27379041 PMCID: PMC4904012 DOI: 10.3389/fmicb.2016.00901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.
Collapse
Affiliation(s)
- Tilen Konte
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg Würzburg, Germany
| | - Ana Plemenitaš
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
735
|
Sommer R, Wagner S, Varrot A, Nycholat CM, Khaledi A, Häussler S, Paulson JC, Imberty A, Titz A. The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Chem Sci 2016; 7:4990-5001. [PMID: 30155149 PMCID: PMC6018602 DOI: 10.1039/c6sc00696e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/05/2016] [Indexed: 01/18/2023] Open
Abstract
P. aeruginosa causes a substantial number of nosocomial infections and is the leading cause of death of cystic fibrosis patients. This Gram-negative bacterium is highly resistant against antibiotics and further protects itself by forming a biofilm. Moreover, a high genomic variability among clinical isolates complicates therapy. Its lectin LecB is a virulence factor and necessary for adhesion and biofilm formation. We analyzed the sequence of LecB variants in a library of clinical isolates and demonstrate that it can serve as a marker for strain family classification. LecB from the highly virulent model strain PA14 presents 13% sequence divergence with LecB from the well characterized PAO1 strain. These differences might result in differing ligand binding specificities and ultimately in reduced efficacy of drugs directed towards LecB. Despite several amino acid variations at the carbohydrate binding site, glycan array analysis showed a comparable binding pattern for both variants. A common high affinity ligand could be identified and after its chemoenzymatic synthesis verified in a competitive binding assay: an N-glycan presenting two blood group O epitopes (H-type 2 antigen). Molecular modeling of the complex suggests a bivalent interaction of the ligand with the LecB tetramer by bridging two separate binding sites. This binding rationalizes the strong avidity (35 nM) of LecBPA14 to this human fucosylated N-glycan. Biochemical evaluation of a panel of glycan ligands revealed that LecBPA14 demonstrated higher glycan affinity compared to LecBPAO1 including the extraordinarily potent affinity of 70 nM towards the monovalent human antigen Lewisa. The structural basis of this unusual high affinity ligand binding for lectins was rationalized by solving the protein crystal structures of LecBPA14 with several glycans.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Ariane Khaledi
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Susanne Häussler
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - James C Paulson
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Alexander Titz
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| |
Collapse
|
736
|
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1674580. [PMID: 27294109 PMCID: PMC4879324 DOI: 10.1155/2016/1674580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/21/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.
Collapse
|
737
|
Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans. PLoS Negl Trop Dis 2016; 10:e0004688. [PMID: 27139907 PMCID: PMC4854454 DOI: 10.1371/journal.pntd.0004688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/14/2016] [Indexed: 11/19/2022] Open
Abstract
Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F. hepatica NEJ glycosylation and the first report of N-glycosylation of F. hepatica cathepsins. The significance of these findings for immunological studies and vaccine development is discussed.
Collapse
|
738
|
Guimarães SL, Coitinho JB, Costa DMA, Araújo SS, Whitman CP, Nagem RAP. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid. Biochemistry 2016; 55:2632-45. [PMID: 27082660 DOI: 10.1021/acs.biochem.6b00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.
Collapse
Affiliation(s)
- Samuel L Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Juliana B Coitinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Débora M A Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Simara S Araújo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin , Texas 78712-1071, United States
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
739
|
Martin V, Bryan Wu YC, Kipling D, Dunn-Walters D. Ageing of the B-cell repertoire. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0237. [PMID: 26194751 DOI: 10.1098/rstb.2014.0237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Older people are more susceptible to infection, less responsive to vaccination and have a more inflammatory immune environment. Using spectratype analysis, we have previously shown that the B-cell repertoire of older people shows evidence of inappropriate clonal expansions in the absence of challenge, and that this loss of B-cell diversity correlates with poor health. Studies on response to vaccination, using both spectratyping and high-throughput sequencing of the repertoire, indicate that older responses to challenge are lacking in magnitude and/or delayed significantly. Also that some of the biologically significant differences may be in different classes of antibody. We have also previously shown that normal young B-cell repertoires can vary between different phenotypic subsets of B cells. In this paper, we present an analysis of immunoglobulin repertoire in different subclasses of antibody in five different populations of B cell, and show how the repertoire in these different groups changes with age. Although some age-related repertoire differences occur in naive cells, before exogenous antigen exposure, we see indications that there is a general dysregulation of the selective forces that shape memory B-cell populations in older people.
Collapse
Affiliation(s)
- Victoria Martin
- Division of Infection, Immunity and Inflammatory Disease, King's College London Faculty of Life Sciences & Medicine, Guys Campus, London, UK
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, King's College London Faculty of Life Sciences & Medicine, Guys Campus, London, UK
| | - David Kipling
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Deborah Dunn-Walters
- Division of Infection, Immunity and Inflammatory Disease, King's College London Faculty of Life Sciences & Medicine, Guys Campus, London, UK
| |
Collapse
|
740
|
Lawton TJ, Kenney GE, Hurley JD, Rosenzweig AC. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins. Biochemistry 2016; 55:2278-90. [PMID: 27010565 PMCID: PMC5260838 DOI: 10.1021/acs.biochem.6b00175] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The CopC proteins are periplasmic copper binding proteins believed to play a role in bacterial copper homeostasis. Previous studies have focused on CopCs that are part of seven-protein Cop or Pco systems involved in copper resistance. These canonical CopCs contain distinct Cu(I) and Cu(II) binding sites. Mounting evidence suggests that CopCs are more widely distributed, often present only with the CopD inner membrane protein, frequently as a fusion protein, and that the CopC and CopD proteins together function in the uptake of copper to the cytoplasm. In the methanotroph Methylosinus trichosporium OB3b, genes encoding a CopCD pair are located adjacent to the particulate methane monooxygenase (pMMO) operon. The CopC from this organism (Mst-CopC) was expressed, purified, and structurally characterized. The 1.46 Å resolution crystal structure of Mst-CopC reveals a single Cu(II) binding site with coordination somewhat different from that in canonical CopCs, and the absence of a Cu(I) binding site. Extensive bioinformatic analyses indicate that the majority of CopCs in fact contain only a Cu(II) site, with just 10% of sequences corresponding to the canonical two-site CopC. Accordingly, a new classification scheme for CopCs was developed, and detailed analyses of the sequences and their genomic neighborhoods reveal new proteins potentially involved in copper homeostasis, providing a framework for expanded models of CopCD function.
Collapse
Affiliation(s)
- Thomas J. Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Grace E. Kenney
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph D. Hurley
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
741
|
Lopez-Zavala AA, Sotelo-Mundo RR, Hernandez-Flores JM, Lugo-Sanchez ME, Sugich-Miranda R, Garcia-Orozco KD. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate. J Bioenerg Biomembr 2016; 48:301-8. [PMID: 27072556 DOI: 10.1007/s10863-016-9660-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Rogerio R Sotelo-Mundo
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Jose M Hernandez-Flores
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Maria E Lugo-Sanchez
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Rocio Sugich-Miranda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Karina D Garcia-Orozco
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
742
|
Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK. MFPPI - Multi FASTA ProtParam Interface. Bioinformation 2016; 12:74-77. [PMID: 28104964 PMCID: PMC5237651 DOI: 10.6026/97320630012074] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 11/23/2022] Open
Abstract
Physico-chemical properties reflect the functional and structural characteristics of a protein. The comparative study of the physicochemical
properties is important to know role of a protein in exploring its molecular evolution. A number of online and offline
tools are available for calculating the physico-chemical properties of a single protein sequence. However, a tool is not available for
a comparative study with graphical visualization of Multi-FASTA sequences. Hence, we describe the development and utility of
MFPPI V.1.0 (a web interface developed in JAVA platform) to input each FASTA sequence from Multi-FASTA file into the
ProtParam web server for the calculation of physico-chemical properties. MFPPI V.1.0 calculates different physico-chemical
properties for a given set of proteins in a single run and saves the data in the MSExcel sheet. Furthermore, it provides a graphical
representation of protein physico-chemical properties for analysis and visualization of data in a user-friendly manner. Therefore,
the output from the analysis helps to understand compositional changes and functional relationship in evolution among
organisms. We have demonstrated the utility of MFPPI V.1.0 using 17 mtATP6 protein sequences from different mammalian
species. It is available for free at http://insilicogenomics.in/mfpcalc/mfppi.html.
Collapse
Affiliation(s)
- Vijay Kumar Garg
- Department of Computational Biology & Bioinformatics, Jacob School of Biotechnology & Bioengineering, Sam Higginbottom Institute of Agriculture Technology & Sciences, Allahabad-211007, Uttar Pradesh, Bharat (India)
| | - Himanshu Avashthi
- Department of Computational Biology & Bioinformatics, Jacob School of Biotechnology & Bioengineering, Sam Higginbottom Institute of Agriculture Technology & Sciences, Allahabad-211007, Uttar Pradesh, Bharat (India)
| | - Apoorv Tiwari
- Department of Computational Biology & Bioinformatics, Jacob School of Biotechnology & Bioengineering, Sam Higginbottom Institute of Agriculture Technology & Sciences, Allahabad-211007, Uttar Pradesh, Bharat (India)
| | - Prashant Ankur Jain
- Department of Computational Biology & Bioinformatics, Jacob School of Biotechnology & Bioengineering, Sam Higginbottom Institute of Agriculture Technology & Sciences, Allahabad-211007, Uttar Pradesh, Bharat (India)
| | - Pramod Wasudev Ramkete
- Department of Biological Sciences, Sam Higginbottom Institute of Agriculture Technology & Sciences, Allahabad-211007, Uttar Pradesh, Bharat (India)
| | - Arvind Mohan Kayastha
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, Bharat (India)
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, Bharat (India)
| |
Collapse
|
743
|
Godoy AS, de Lima MZT, Camilo CM, Polikarpov I. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17. Acta Crystallogr F Struct Biol Commun 2016; 72:288-93. [PMID: 27050262 PMCID: PMC4822985 DOI: 10.1107/s2053230x16003617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022] Open
Abstract
Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17 (BbGal43A) are described. BbGal43A was successfully produced and showed activity towards synthetic galactosides. BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences between BbGal43A and its characterized homologues.
Collapse
Affiliation(s)
- Andre S. Godoy
- Departamento de Física em São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| | - Mariana Z. T. de Lima
- Departamento de Física em São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| | - Cesar M. Camilo
- Centro de Tecnologia Canavieira, Fazenda Santo Antonio, PO Box 162, 13400-970 Piracicaba-SP, Brazil
| | - Igor Polikarpov
- Departamento de Física em São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| |
Collapse
|
744
|
Liu J, Li Y, Wang W, Gai J, Li Y. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics 2016; 17:223. [PMID: 26968518 PMCID: PMC4788864 DOI: 10.1186/s12864-016-2559-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Multidrug and toxic compound extrusion (MATE) family is an important group of the multidrug efflux transporters that extrude organic compounds, transporting a broad range of substrates such as organic acids, plant hormones and secondary metabolites. However, genome-wide analysis of MATE family in plant species is limited and no such studies have been reported in soybean. RESULTS A total of 117 genes encoding MATE transporters were identified from the whole genome sequence of soybean (Glycine max), which were denominated as GmMATE1 - GmMATE117. These 117 GmMATE genes were unevenly localized on soybean chromosomes 1 to 20, with both tandem and segmental duplication events detected, and most genes showed tissue-specific expression patterns. Soybean MATE family could be classified into four subfamilies comprising ten smaller subgroups, with diverse potential functions such as transport and accumulation of flavonoids or alkaloids, extrusion of plant-derived or xenobiotic compounds, regulation of disease resistance, and response to abiotic stresses. Eight soybean MATE transporters clustered together with the previously reported MATE proteins related to aluminum (Al) detoxification and iron translocation were further analyzed. Seven stress-responsive cis-elements such as ABRE, ARE, HSE, LTR, MBS, as well as a cis-element of ART1 (Al resistance transcription factor 1), GGNVS, were identified in the upstream region of these eight GmMATE genes. Differential gene expression analysis of these eight GmMATE genes in response to Al stress helps us identify GmMATE75 as the candidate gene for Al tolerance in soybean, whose relative transcript abundance increased at 6, 12 and 24 h after Al treatment, with more fold changes in Al-tolerant than Al-sensitive cultivar, which is consistent with previously reported Al-tolerance related MATE genes. CONCLUSIONS A total of 117 MATE transporters were identified in soybean and their potential functions were proposed by phylogenetic analysis with known plant MATE transporters. The cis-elements and expression patterns of eight soybean MATE genes related to Al detoxification/iron translocation were analyzed, and GmMATE75 was identified as a candidate gene for Al tolerance in soybean. This study provides a first insight on soybean MATE family and their potential roles in soybean response to abiotic stresses especially Al toxicity.
Collapse
Affiliation(s)
- Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wei Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
745
|
Muthu P, Lutz S. Quantitative Detection of Nucleoside Analogues by Multi-enzyme Biosensors using Time-Resolved Kinetic Measurements. ChemMedChem 2016; 11:660-6. [PMID: 26934468 DOI: 10.1002/cmdc.201600096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/05/2023]
Abstract
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures.
Collapse
Affiliation(s)
- Pravin Muthu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
746
|
Mabbitt PD, Correy GJ, Meirelles T, Fraser NJ, Coote ML, Jackson CJ. Conformational Disorganization within the Active Site of a Recently Evolved Organophosphate Hydrolase Limits Its Catalytic Efficiency. Biochemistry 2016; 55:1408-17. [DOI: 10.1021/acs.biochem.5b01322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peter D. Mabbitt
- Research
School of Chemistry, Australian National University, Acton 2601, Canberra, Australia
| | - Galen J. Correy
- Research
School of Chemistry, Australian National University, Acton 2601, Canberra, Australia
| | - Tamara Meirelles
- Research
School of Chemistry, Australian National University, Acton 2601, Canberra, Australia
| | - Nicholas J. Fraser
- Research
School of Chemistry, Australian National University, Acton 2601, Canberra, Australia
| | - Michelle L. Coote
- Research
School of Chemistry, Australian National University, Acton 2601, Canberra, Australia
- ARC Centre of
Excellence for Electromaterials Science
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National University, Acton 2601, Canberra, Australia
| |
Collapse
|
747
|
Feng C, Post CB. Insights into the allosteric regulation of Syk association with receptor ITAM, a multi-state equilibrium. Phys Chem Chem Phys 2016; 18:5807-18. [PMID: 26468009 PMCID: PMC4758936 DOI: 10.1039/c5cp05417f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphorylation of interdomain A (IA), a linker region between tandem SH2 domains of Syk tyrosine kinase, regulates the binding affinity for association of Syk with doubly-phosphorylated ITAM regions of the B cell receptor. The mechanism of this allosteric regulation has been suggested to be a switch from the high-affinity bifunctional binding, mediated through both SH2 domains binding two phosphotyrosine residues of ITAM, to a substantially lower-affinity binding of only one SH2 domain. IA phosphorylation triggers the switch by inducing disorder in IA and weakening the SH2-SH2 interaction. The postulated switch to a single-SH2-domain binding mode is examined using NMR to monitor site-specific binding to each SH2 domain of Syk variants engineered to have IA regions that differ in conformational flexibility. The combined analysis of titration curves and NMR line-shapes provides sufficient information to determine the energetics of inter-molecular binding at each SH2 site along with an intra-molecular binding or isomerization step. A less favorable isomerization equilibrium associated with the changes in the SH2-SH2 conformational ensemble and IA flexibility accounts for the inhibition of Syk association with membrane ITAM regions when IA is phosphorylated, and refutes the proposed switch to single-SH2-domain binding. Syk localizes in the cell through its SH2 interactions, and this basis for allosteric regulation of ITAM association proposes for the first time a phosphorylation-dependent model to regulate Syk binding to alternate receptors and other signaling proteins that differ either in the number of residues separating ITAM phosphotyrosines or by having only one phosphotyrosine, a half ITAM.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
748
|
Prior KK, Wittig I, Leisegang MS, Groenendyk J, Weissmann N, Michalak M, Jansen-Dürr P, Shah AM, Brandes RP. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. J Biol Chem 2016; 291:7045-59. [PMID: 26861875 PMCID: PMC4807287 DOI: 10.1074/jbc.m115.710772] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/24/2022] Open
Abstract
Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Kim-Kristin Prior
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany the Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany, the Cluster of Excellence "Macromolecular Complexes," Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Matthias S Leisegang
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| | - Jody Groenendyk
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Norbert Weissmann
- the Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University Member of the German Center for Lung Research (DZL), 60590 Giessen, Germany
| | - Marek Michalak
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Pidder Jansen-Dürr
- the Institute for Biomedical Ageing Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Insbruk, Austria
| | - Ajay M Shah
- the King's College London British Heart Foundation Centre, Cardiovascular Division, London WC2R 2LS, United Kingdom, and
| | - Ralf P Brandes
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| |
Collapse
|
749
|
Cross PJ, Heyes LC, Zhang S, Nazmi AR, Parker EJ. The Functional Unit of Neisseria meningitidis 3-Deoxy-ᴅ-Arabino-Heptulosonate 7-Phosphate Synthase Is Dimeric. PLoS One 2016; 11:e0145187. [PMID: 26828675 PMCID: PMC4735112 DOI: 10.1371/journal.pone.0145187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (NmeDAH7PS) adopts a homotetrameric structure consisting of an extensive and a less extensive interface. Perturbation of the less extensive interface through a single mutation of a salt bridge (Arg126-Glu27) formed at the tetramer interface of all chains resulted in a dimeric DAH7PS in solution, as determined by small angle X-ray scattering, analytical ultracentrifugation and analytical size-exclusion chromatography. The dimeric NmeDAH7PSR126S variant was shown to be catalytically active in the aldol-like condensation reaction between d-erythrose 4-phosphate and phosphoenolpyruvate, and allosterically inhibited by l-phenylalanine to the same extent as the wild-type enzyme. The dimeric NmeDAH7PSR126S variant exhibited a slight reduction in thermal stability by differential scanning calorimetry experiments and a slow loss of activity over time compared to the wild-type enzyme. Although NmeDAH7PSR126S crystallised as a tetramer, like the wild-type enzyme, structural asymmetry at the less extensive interface was observed consistent with its destabilisation. The tetrameric association enabled by this Arg126-Glu27 salt-bridge appears to contribute solely to the stability of the protein, ultimately revealing that the functional unit of NmeDAH7PS is dimeric.
Collapse
Affiliation(s)
- Penelope J. Cross
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Logan C. Heyes
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Shiwen Zhang
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Ali Reza Nazmi
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Emily J. Parker
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
- * E-mail:
| |
Collapse
|
750
|
Karkhah A, Amani J. A potent multivalent vaccine for modulation of immune system in atherosclerosis: an in silico approach. Clin Exp Vaccine Res 2016; 5:50-9. [PMID: 26866024 PMCID: PMC4742599 DOI: 10.7774/cevr.2016.5.1.50] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Atherosclerosis is classically defined as an immune-mediated disease characterized by accumulation of low-density lipoprotein cholesterol over intima in medium sized and large arteries. Recent studies have demonstrated that both innate and adaptive immune responses are involved in atherosclerosis. In addition, experimental and human models have recognized many autoantigens in pathophysiology of this disease. Oxidized low-density lipoproteins, β2 glycoprotein I (β-2-GPI), and heat shock protein 60 (HSP60) are the best studied of them which can represent promising approach to design worthwhile vaccines for modulation of atherosclerosis. Materials and Methods In silico approaches are the best tools for design and evaluation of the vaccines before initiating the experimental study. In this study, we identified immunogenic epitopes of HSP60, ApoB-100, and β-2-GPI as major antigens to construct a chimeric protein through bioinformatics tools. Additionally, we have evaluated physico-chemical properties, structures, stability, MHC binding properties, humoral and cellular immune responses, and allergenicity of this chimeric protein by means of bioinformatics tools and servers. Results Validation results indicated that 89.1% residues locate in favorite or additional allowed region of Ramachandran plot. Also, based on Ramachandran plot analysis this protein could be classified as a stable fusion protein. In addition, the epitopes in the chimeric protein had strong potential to induce both the B-cell and T-cell mediated immune responses. Conclusion Our results supported that this chimeric vaccine could be effectively utilized as a multivalent vaccine for prevention and modulation of atherosclerosis.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|