751
|
Kim NY, Koh HJ, Li H, Lee HJ, Ryu JH. Inhibitory Effect of a Sesquiterpene from Artemisia iwayomogi on Expression of Inducible Nitric Oxide Synthase by Suppression of I-κBα Degradation in LPS-stimulated RAW 264.7 Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.2.92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Na Yeon Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hye Jin Koh
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hua Li
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hwa Jin Lee
- Department of Natural Medicine Resources, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Jae-Ha Ryu
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
752
|
da Rosa JS, de Mello SVGV, Vicente G, Moon YJK, Daltoé FP, Lima TC, de Jesus Souza R, Biavatti MW, Fröde TS. Calea uniflora Less. attenuates the inflammatory response to carrageenan-induced pleurisy in mice. Int Immunopharmacol 2017; 42:139-149. [DOI: 10.1016/j.intimp.2016.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/27/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
|
753
|
Chen L, Liu X, Wang H, Qu M. Gastrodin Attenuates Pentylenetetrazole-Induced Seizures by Modulating the Mitogen-Activated Protein Kinase-Associated Inflammatory Responses in Mice. Neurosci Bull 2016; 33:264-272. [PMID: 27909971 DOI: 10.1007/s12264-016-0084-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023] Open
Abstract
Gastrodin, the major component isolated from the rhizome of the Chinese traditional medicinal herb Gastrodia elata ("Tianma"), has a long history in the treatment of epilepsy and other neurological disorders. However, the molecular mechanisms are not clear. Here, we found that gastrodin ameliorated pentylenetetrazole (PTZ)-induced epileptic seizures with improvement of the electroencephalographic pattern in mice. Further studies demonstrated that gastrodin decreased the levels of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α while increasing interleukin-10, an anti-inflammatory cytokine in the brain. Furthermore, gastrodin attenuated the PTZ-induced microglial activation along with inhibition of mitogen-activated protein kinases, cAMP response element binding protein, and NF-κB. Our data suggest that gastrodin attenuates seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses.
Collapse
Affiliation(s)
- Liming Chen
- Neurology Department, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China
| | - Xinan Liu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hua Wang
- Neurology Department, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China.
| | - Min Qu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| |
Collapse
|
754
|
Jia M, Zhu M, Zhou F, Wang M, Sun M, Yang Y, Wang X, Wang J, Jin L, Xiang J, Zhang Y, Chang J, Wei Q. Genetic variants of JNK and p38α pathways and risk of non-small cell lung cancer in an Eastern Chinese population. Int J Cancer 2016; 140:807-817. [DOI: 10.1002/ijc.30508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Ming Jia
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center; Shanghai China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
| | - Meiling Zhu
- Department of Oncology; Xinhua Hospital affiliated to Shanghai Jiaotong University, School of Medicine; Shanghai China
| | - Fei Zhou
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center; Shanghai China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
| | - Mengyun Wang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center; Shanghai China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
| | - Menghong Sun
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
- Department of Pathology; Fudan University Shanghai Cancer Center; Xuhui, Shanghai China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai China
- Fudan-Taizhou Institute of Health Sciences; Taizhou Jiangsu China
| | - Xiaofeng Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai China
- Fudan-Taizhou Institute of Health Sciences; Taizhou Jiangsu China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai China
- Fudan-Taizhou Institute of Health Sciences; Taizhou Jiangsu China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences; Fudan University; Shanghai China
- Fudan-Taizhou Institute of Health Sciences; Taizhou Jiangsu China
| | - Jiaqing Xiang
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
- Department of Thoracic Surgery; Fudan University Shanghai Cancer Center; Xuhui, Shanghai China
| | - Yawei Zhang
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
- Department of Thoracic Surgery; Fudan University Shanghai Cancer Center; Xuhui, Shanghai China
| | - Jianhua Chang
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
- Department of Medical Oncology; Fudan University Shanghai Cancer Center; Xuhui, Shanghai China
| | - Qingyi Wei
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center; Shanghai China
- Department of Oncology; Shanghai Medical College, Fudan University; Shanghai China
- Duke Cancer Institute, Duke University Medical Center, and Department of Medicine; Duke University School of Medicine; Durham NC
| |
Collapse
|
755
|
Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways. PLoS One 2016; 11:e0165845. [PMID: 27806136 PMCID: PMC5091858 DOI: 10.1371/journal.pone.0165845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs) and PI3-kinase (PI3K)/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK) MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress.
Collapse
|
756
|
Lin W, Zhong M, Liang S, Chen Y, Liu D, Yin Z, Cao Q, Wang C, Ling C. Emodin inhibits migration and invasion of MHCC-97H human hepatocellular carcinoma cells. Exp Ther Med 2016; 12:3369-3374. [PMID: 27882165 DOI: 10.3892/etm.2016.3793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
Emodin, an anthraquinone derivative from the root and rhizome of Rheum palmatum L., was found to have antitumor effects in different types of cancer by regulating multi-molecular targets. The aim of the present study was to explore the effect of emodin on the migration and invasion of MHCC-97H human hepatocellular carcinoma cells and the underlying molecular mechanisms. Firstly, it was demonstrated that emodin can inhibit cell proliferation and induce apoptosis of cells in a time- and dose-dependent manner, using a MTT assay and flow cytometry, respectively. However, when emodin concentration was <50 µmol/l, it had little effect on the inhibition of proliferation or the induction of apoptosis. Then, it was observed that emodin can significantly suppress cell migration and invasion with a treatment dose <50 µmol/l compared with the control (P<0.05), which was not attributed to a decrease in cell number. Further study demonstrated that emodin significantly suppressed the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 compared with the control, which may be mediated by the activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and suppression of extracellular signal regulated kinase (ERK)/MAPK and phosphatidylinositol 3-kinase/Akt signaling pathways. Therefore, the present study, for the first time, used MHCC-97H cells, which have the high potential of malignant invasion, to demonstrate that emodin may inhibit cell migration and invasion.
Collapse
Affiliation(s)
- Wanfu Lin
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Maofeng Zhong
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Shufang Liang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yongan Chen
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Dong Liu
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Zifei Yin
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qingxin Cao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
757
|
Yang C, Zheng SD, Wu HJ, Chen SJ. Regulatory Mechanisms of the Molecular Pathways in Fibrosis Induced by MicroRNAs. Chin Med J (Engl) 2016; 129:2365-72. [PMID: 27647197 PMCID: PMC5040024 DOI: 10.4103/0366-6999.190677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs. We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis. DATA SOURCES Papers published in English from January 2010 to August 2015 were selected from the PubMed and Web of Science databases using the search terms "microRNA", "miR", "transforming growth factor β", "tgf β", "mitogen-activated protein kinase", "mapk", "integrin", "p38", "c-Jun NH2-terminal kinase", "jnk", "extracellular signal-regulated kinase", "erk", and "fibrosis". STUDY SELECTION Articles were obtained and reviewed to analyze the regulatory effects of miRNAs on molecular signaling pathways involved in the fibrosis. RESULTS Recent evidence has shown that miRNAs are involved in regulating fibrosis by targeting different substrates in the molecular processes that drive fibrosis, such as immune cell sensitization, effector cell activation, and extracellular matrix remodeling. Moreover, several important molecular signaling pathways involve in fibrosis, such as the transforming growth factor-beta (TGF-β) pathway, mitogen-activated protein kinase (MAPK) pathways, and the integrin pathway are regulated by miRNAs. Third, regulation of the fibrotic pathways induced by miRNAs is found in many other tissues in addition to the heart, lung, liver, and kidney. Interestingly, the actions of many drugs on the human body are also induced by miRNAs. It is encouraging that the fibrotic process can be blocked or reversed by targeting specific miRNAs and their signaling pathways, thereby protecting the structures and functions of different organs. CONCLUSIONS miRNAs not only regulate molecular signaling pathways in fibrosis but also serve as potential targets of novel therapeutic interventions for fibrosing diseases.
Collapse
Affiliation(s)
- Cui Yang
- Department of Cardiology, Huairou Hospital of Traditional Chinese Medicine, Beijing 101400, China
| | - Si-Dao Zheng
- Department of Cardiology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Hong-Jin Wu
- Department of Cardiology, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China
| | - Shao-Jun Chen
- Department of Cardiology, Huairou Hospital of Traditional Chinese Medicine, Beijing 101400, China
| |
Collapse
|
758
|
GDPD5, a choline-generating enzyme and its novel role in tumor cell migration. Arch Toxicol 2016; 90:3143-3144. [DOI: 10.1007/s00204-016-1847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
|
759
|
Hoenen C, Gustin A, Birck C, Kirchmeyer M, Beaume N, Felten P, Grandbarbe L, Heuschling P, Heurtaux T. Alpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant. PLoS One 2016; 11:e0162717. [PMID: 27622765 PMCID: PMC5021287 DOI: 10.1371/journal.pone.0162717] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases.
Collapse
Affiliation(s)
- Claire Hoenen
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Audrey Gustin
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Cindy Birck
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Mélanie Kirchmeyer
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Nicolas Beaume
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Paul Felten
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Paul Heuschling
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Tony Heurtaux
- Life Sciences Research Unit, Laboratory of Neurobiology, University of Luxembourg, Faculty of Science, Technology and Communication, 7, avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- * E-mail:
| |
Collapse
|
760
|
Mitochondrion-Mediated Apoptosis Induced by Acrylamide is Regulated by a Balance Between Nrf2 Antioxidant and MAPK Signaling Pathways in PC12 Cells. Mol Neurobiol 2016; 54:4781-4794. [DOI: 10.1007/s12035-016-0021-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
|
761
|
Sarroca S, Molina-Martínez P, Aresté C, Etzrodt M, García de Frutos P, Gasa R, Antonell A, Molinuevo JL, Sánchez-Valle R, Saura CA, Lladó A, Sanfeliu C. Preservation of cell-survival mechanisms by the presenilin-1 K239N mutation may cause its milder clinical phenotype. Neurobiol Aging 2016; 46:169-79. [PMID: 27498054 DOI: 10.1016/j.neurobiolaging.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Presenilin 1 (PSEN1) mutations are the main cause of monogenic Alzheimer's disease. We studied the functional effects of the mutation K239N, which shows incomplete penetrance at the age of 65 years and compared it with the more aggressive mutation E120G. We engineered stable cell lines expressing human PSEN1 wild type or with K239N or E120G mutations. Both mutations induced dysfunction of γ-secretase in the processing of amyloid-β protein precursor, leading to an increase in the amyloid β42/amyloid β40 ratio. Analysis of homeostatic mechanisms showed that K239N induced lower basal and hydrogen peroxide induced intracellular levels of reactive oxygen species than E120G. Similarly, K239N induced lower vulnerability to apoptosis by hydrogen peroxide injury than E120G. Accordingly, the proapoptotic signaling pathways c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase maintained PSEN1-mediated negative regulation in K239N but not in E120G-bearing cells. Furthermore, the activation of the prosurvival signaling pathways mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt was lower in E120G-bearing cells. Therefore, preservation of mechanisms regulating cell responses independent of amyloid-β protein precursor processing may account for the milder phenotype induced by the PSEN1 K239N mutation.
Collapse
Affiliation(s)
- Sara Sarroca
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain
| | | | - Cristina Aresté
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pablo García de Frutos
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Gasa
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Antonell
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - José Luís Molinuevo
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Albert Lladó
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
762
|
Yu D, Shi M, Bao J, Yu X, Li Y, Liu W. Genipin ameliorates hypertension-induced renal damage via the angiotensin II-TLR/MyD88/MAPK pathway. Fitoterapia 2016; 112:244-53. [DOI: 10.1016/j.fitote.2016.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/17/2022]
|
763
|
Deryabin PI, Borodkina AV, Nikolsky NN, Burova EB. The relationship between p53/p21/Rb and MAPK signaling pathways in human endometrium-derived stem cells under oxidative stress. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16030056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
764
|
Regulation of MAPKs Signaling Contributes to the Growth Inhibition of 1,7-Dihydroxy-3,4-dimethoxyxanthone on Multidrug Resistance A549/Taxol Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2018704. [PMID: 27403196 PMCID: PMC4925979 DOI: 10.1155/2016/2018704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/03/2016] [Accepted: 05/26/2016] [Indexed: 01/04/2023]
Abstract
1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN) is a bioactive compound isolated from Securidaca inappendiculata Hassk. and validated with antiproliferative activities on a panel of cancer cell lines. This study was designed to investigate its growth inhibitory effects on multidrug resistance (MDR) non-small cell lung carcinoma (NSCLC) cell line A549/Taxol and explore the possible linkage between modulation of MAPKs and the bioactivities. Its growth inhibitory potency on the cells was estimated by MTT assay, and flow cytometric analysis was employed to investigate its potential cell cycle arrest and proapoptosis effects. Expressions of hallmark proteins were assessed by Western-Blot method. The results showed A549/Taxol cells were sensitive to XAN. XAN inhibited the proliferation of A549/Taxol cells in the time and concentration dependent manners. It acted as a potent inducer of apoptosis and cell cycle arrest in the cells. Western-Blot investigation validated the proapoptosis and cell cycle arrest activities of XAN and the potential of MDR reversion. Upregulation of p38 by XAN, which accounted for the cell cycle arrest at G2 phase, and the downregulation of ERK associated with the proapoptosis activity were also revealed. Further analysis found p53 may be the central role mediated the bioactivities of MAPKs in A549/Taxol cells. Based on these evidences, a conclusion has been deduced that XAN could be a potential agent for MDR NSCLC therapy targeting specifically MAPKs.
Collapse
|
765
|
Xu G, Feng L, Song P, Xu F, Li A, Wang Y, Shen Y, Wu X, Luo Q, Wu X, Sun Y, Wu X, Xu Q. Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-κB and ERK pathway. Int Immunopharmacol 2016; 38:175-85. [PMID: 27285671 DOI: 10.1016/j.intimp.2016.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/30/2022]
Abstract
Macrophage polarization plays an important role in inflammation. Regulation of the polarization has been reported to be effective therapeutics for various kinds of inflammatory diseases. The aims of the present study were to investigate the anti-inflammatory property of isomeranzin isolating from Murraya exotica as well as potential molecular mechanisms. Results showed that isomeranzin specifically reduced the M1 macrophage-associated pro-inflammatory cytokines through down-regulation of NF-κB and ERK signals. Immunoprecipitation and RNA silencing indicated suppression of isomeranzin in NF-κB activation was relying on the decreasing of TRAF6 ubiquitination. In vivo studies showed isomeranzin evidently inhibited LPS-induced sepsis for rising survival rate, improving tissue damage and lessening inflammatory cytokines. In accordance with in vitro studies, isomeranzin significantly blocked expression of p-p65 and p-ERK in lung and liver tissues. Moreover, isomeranzin ameliorated DSS and TNBS-induced colitis due to its anti-inflammatory effects. Taken together, isomeranzin suppressed inflammatory diseases by controlling M1 macrophage polarization through the NF-κB and ERK pathway.
Collapse
Affiliation(s)
- Ge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Lili Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Pingping Song
- The Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Ang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, No 5. Xinmofan Road, Nanjing 210009, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xian Lin Road, Nanjing 210093, China.
| |
Collapse
|
766
|
Pieralisi A, Martini C, Soto D, Vila MC, Calvo JC, Guerra LN. N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes. Redox Biol 2016; 9:39-44. [PMID: 27281491 PMCID: PMC4906124 DOI: 10.1016/j.redox.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress plays critical roles in the pathogenesis of diabetes, hypertension, and atherosclerosis; some authors reported that fat accumulation correlates to systemic oxidative stress in human and mice, but cellular redox environment effect on lipid accumulation is still unclear. In our laboratory we used mouse embryonic fibroblasts (undifferentiated cells: CC), which are capable of differentiating into mature adipocytes (differentiated cells: DC) and accumulate lipids, as obesity model. Here we analyzed the role of the well-known antioxidant and glutathione precursor N-acetylcysteine (NAC) in cellular MAPK modulation and lipid accumulation. We evaluated the effect of NAC on the adipogenic differentiation pathway using different doses: 0.01, 0.1, 1 and 5 mM; no toxic doses in these cells. A dose of 5 mM NAC [DCN-5] provoked a significant decrease in triglyceride accumulation (72±10 [DCN-5] vs 169±15 [DC], p<0.01), as well in Oil Red O stained neutral lipid content (120±2 [DCN-5] vs 139±12 [DC], p<0.01). Molecular mechanisms responsible for adipogenic differentiation involve increase of the expression of phosphoERK½ and phosphoJNK, 5 mM NAC treatment inhibited both pERK½ and pJNK protein levels. We also evaluated the mitotic clonal expansion (MCE) which takes place during adipogenesis and observed an increase in DC at a rate of 1.5 cells number compared to CC at day 2, whereas the highest doses of NAC significantly inhibited MCE. Our results suggest that NAC inhibits lipid accumulation and the MAPK phosphorylation in mouse embryonic fibroblasts during adipogenic differentiation and further contribute to probe the importance of cellular redox environment in adipogenesis. NAC, up to 5 mM, is not toxic in adipocytes obtained from mouse embryonic fibroblasts. NAC inhibited phosphorylation of ERK½ and JNK in adipogenic differentiation. NAC inhibited mitotic clonal expansion in adipogenic differentiation. NAC inhibited triglyceride and lipid accumulation in mouse embryonic adipocytes.
Collapse
Affiliation(s)
- A Pieralisi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - C Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - D Soto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - M C Vila
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina
| | - J C Calvo
- IBYME, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - L N Guerra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IQUIBICEN, CONICET, Intendente Güiraldes 2160, Pabellón 2, 1428 Buenos Aires, Argentina.
| |
Collapse
|
767
|
Wei B, Bai X, Chen K, Zhang X. SP600125 enhances the anti-apoptotic capacity and migration of bone marrow mesenchymal stem cells treated with tumor necrosis factor-α. Biochem Biophys Res Commun 2016; 475:301-7. [PMID: 27233606 DOI: 10.1016/j.bbrc.2016.05.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 05/21/2016] [Indexed: 01/21/2023]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are chronic disorders associated with inflammation of joints characterized by damage to the underlying cartilage and bone. Bone marrow mesenchymal stem cells (BMSCs) are candidates for regeneration of bone and cartilage, which is inhibited by inflammatory cytokines in OA and RA, in particular tumor necrosis factor-α (TNF-α). This study aimed to investigate if the c-Jun N-terminal kinases (JNK)-specific inhibitor SP600125 could enhance the anti-apoptosis and migration of BMSCs treated with TNF-α. The level of apoptosis was evaluated via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)/4',6-diamidino-2-phenylindole (DAPI) staining, annexin V/propidium iodide (PI) staining and western blotting. Migration of BMSCs was assessed using transwell migration chambers. We showed that the survival capacity and migration of BMSCs was significantly inhibited by TNF-α, which was blocked by pretreatment with SP600125. In the presence of SP600125, expression of cleaved caspase-9/-3 and p53 as well as the ratio of Bax to Bcl-2 was significantly decreased compared to treatment with TNF-α alone. Our results therefore indicate that SP600125 improves the migration capacity of TNF-α-treated BMSCs and exerts a significant effect on the viability of TNF-α-treated BMSCs through reducing the up-regulation of p53, caspase-9/-3 and the Bcl-2 family induced by TNF-α. These findings suggest that SP600125 is of potential use in promoting the regeneration of bone and cartilage in OA and RA.
Collapse
Affiliation(s)
- Bo Wei
- Department of Orthopedics, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China; Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China
| | - Xizhuang Bai
- Department of Orthopedics, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China; Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China.
| | - Kang Chen
- Department of Orthopedics, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China; Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China
| | - Xiaonan Zhang
- Department of Orthopedics, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China; Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenhe, Shenyang, Liaoning 110016, China
| |
Collapse
|
768
|
Joo H, Lee HJ, Shin EA, Kim H, Seo KH, Baek NI, Kim B, Kim SH. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells. Phytother Res 2016; 30:596-603. [PMID: 26787261 DOI: 10.1002/ptr.5563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Abstract
Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC.
Collapse
Affiliation(s)
- HyeEun Joo
- Department of East West Medical Science, Graduate School of East West Medical Science, Kyung Hee University, Suwon, South Korea
| | - Hyun Joo Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hangil Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Kyeong-Hwa Seo
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| |
Collapse
|
769
|
Dey G, Bharti R, Banerjee I, Das AK, Das CK, Das S, Jena BC, Misra M, Sen R, Mandal M. Pre-clinical risk assessment and therapeutic potential of antitumor lipopeptide ‘Iturin A’ in an in vivo and in vitro model. RSC Adv 2016. [DOI: 10.1039/c6ra13476a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial lipopeptide “Iturin A” is a versatile bio-active molecule with potent antitumor action. Pre-clinical study of this lipopeptide showed very minimum toxicity in rodent model.
Collapse
Affiliation(s)
- Goutam Dey
- School of Medical Science & Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Rashmi Bharti
- School of Medical Science & Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Indranil Banerjee
- Division of Nuclear Medicine
- Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Anjan Kumar Das
- Department of Pathology
- Calcutta National Medical Collage
- Kolkata-70014
- India
| | - Chandan Kanta Das
- School of Medical Science & Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Subhayan Das
- School of Medical Science & Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Bikash Chandra Jena
- School of Medical Science & Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Mridula Misra
- Division of Nuclear Medicine
- Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Ramkrishna Sen
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Mahitosh Mandal
- School of Medical Science & Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
770
|
Yang ZH, Wu BL, Ye C, Jia S, Yang XJ, Hou R, Lei DL, Wang L. Targeting P38 Pathway Regulates Bony Formation via MSC Recruitment during Mandibular Distraction Osteogenesis in Rats. Int J Med Sci 2016; 13:783-789. [PMID: 27766028 PMCID: PMC5069414 DOI: 10.7150/ijms.16663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Distraction osteogenesis (DO) is a widely used self-tissue engineering. However, complications and discomfort due to the long treatment period are still the bottleneck of DO. Novel strategies to accelerate bone formation in DO are still needed. P38 is capable of regulating the osteogenic differentiation of both mesenchymal stem cells (MSCs) and osteoblasts, which are crucial to bone regeneration. However, it is not clear whether targeting p38 could regulate bony formation in DO. The purpose of the current work was to investigate the effects of local application of either p38 agonist anisomycin or p38 inhibitor SB203580 in a rat model of DO. 30 adult rats were randomly divided into 3 groups: (A) rats injected with DMSO served as the control group; (B) rats injected with p38 agonist anisomycin; (C) rats injected with p38 inhibitor SB203580. All the rats were subjected to mandibular distraction and the injection was performed daily during this period. The distracted mandibles were harvested on days 15 and 30 after surgery and subjected to the following analysis. Micro-computed tomography and histological evaluation results showed that local application of p38 agonist anisomycin increased new bone formation in DO, whereas p38 inhibitor SB203580 decreased it. Immunohistochemical analysis suggested that anisomycin promoted MSC recruitment in the distraction gap. In conclusion, this study demonstrated that local application of p38 agonist anisomycin can increase new bone formation during DO. This study may lead to a novel cell-based strategy for the improvement of bone regeneration.
Collapse
Affiliation(s)
- Zi-Hui Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Bao-Lei Wu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Chen Ye
- Shanghai Key Laboratory of Stomatology, Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Sen Jia
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Xin-Jie Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - De-Lin Lei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, China.; Shanghai Key Laboratory of Stomatology, Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
771
|
Behrendt P, Arnold P, Brueck M, Rickert U, Lucius R, Hartmann S, Klotz C, Lucius R. A Helminth Protease Inhibitor Modulates the Lipopolysaccharide-Induced Proinflammatory Phenotype of Microglia in vitro. Neuroimmunomodulation 2016; 23:109-21. [PMID: 27088850 DOI: 10.1159/000444756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine whether the natural protease inhibitor Av-cystatin (rAv17) of the parasitic nematode Acanthocheilonema viteae exerts anti-inflammatory effects in an in vitro model of lipopolysaccharide (LPS)-activated microglia. METHODS Primary microglia were harvested from the brains of 2-day-old Wistar rats and cultured with or without rAv17 (250 nM). After 6 and 24 h the release of nitric oxide (Griess reagent) and TNF-α (ELISA) was measured in the supernatant. Real-time PCR was performed after 2, 6 and 24 h of culture to measure the mRNA expression of IL-1β, IL-6, TNF-α, COX-2, iNOS and IL-10. To address the involved signaling pathways, nuclear NF-x0138;B translocation was visualized by immunocytochemistry. Morphological changes of microglia were analyzed by Coomassie blue staining. Differences between groups were calculated using one-way ANOVA with Bonferroni's post hoc test. RESULTS Morphological analysis indicated that LPS-induced microglial transformation towards an amoeboid morphology is inhibited by rAv17. Av-cystatin caused a time-dependent downregulation of proinflammatory cytokines, iNOS and COX-2 mRNA expression, respectively. This was paralleled by an upregulated expression of IL-10 in resting as well as in LPS-stimulated microglia. Av-cystatin reduced the release of NO and TNF-α in the culture supernatant. Immunocytochemical staining demonstrated an attenuated translocation of NF-x0138;B by Av-cystatin in response to LPS. In addition, Western blot analysis revealed a rAv17-dependent reduction of the LPS-induced ERK1/2-pathway activation. CONCLUSION The parasite-derived secretion product Av-cystatin inhibits proinflammatory mechanisms of LPS-induced microglia with IL-10, a potential key mediator.
Collapse
Affiliation(s)
- Peter Behrendt
- Department of Trauma Surgery, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
772
|
Söveges B, Imre T, Szende T, Póti ÁL, Cserép GB, Hegedűs T, Kele P, Németh K. A systematic study of protein labeling by fluorogenic probes using cysteine targeting vinyl sulfone-cyclooctyne tags. Org Biomol Chem 2016; 14:6071-8. [DOI: 10.1039/c6ob00810k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein labeling by cycloocytynylated vinyl sulfone linkers is fast and thiol-selective, and subsequent click reaction with fluorogenic azides generates intensive fluorescence.
Collapse
Affiliation(s)
- B. Söveges
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - T. Imre
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- MS Metabolomics Research Group
- Hungary
| | - T. Szende
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - Á. L. Póti
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Enzymology
- Protein Research Group
- Hungary
| | - G. B. Cserép
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - T. Hegedűs
- MTA-SE Molecular Biophysics Research Group
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto u. 37-47
- H-1094 Budapest
| | - P. Kele
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - K. Németh
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| |
Collapse
|
773
|
Zhang Y, Dong H, Wang M, Zhang J. Quercetin Isolated from Toona sinensis Leaves Attenuates Hyperglycemia and Protects Hepatocytes in High-Carbohydrate/High-Fat Diet and Alloxan Induced Experimental Diabetic Mice. J Diabetes Res 2016; 2016:8492780. [PMID: 27975068 PMCID: PMC5126429 DOI: 10.1155/2016/8492780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023] Open
Abstract
The development of diabetes mellitus is related to oxidant stress induced by a high carbohydrate/high-fat diet (HFD). Quercetin, as a major bioactive component in Toona sinensis leaves (QTL), is a natural antioxidant. However, the exact mechanism by which QTL ameliorate diabetes mellitus is still unknown. In this study, we investigated the hypoglycemic effects and hepatocytes protection of QTL on HFD and alloxan induced diabetic mice. Intragastric administration of QTL significantly reduced body weight gain, serum glucose, insulin, total cholesterol, triglyceride, low density lipoprotein-cholesterol, alanine aminotransferase, and aspartate aminotransferase serum levels compared to those of diabetic mice. Furthermore, it significantly attenuated oxidative stress, as determined by lipid peroxidation, nitric oxide content, and inducible nitric oxide synthase activity and as a result attenuated liver injury. QTL also significantly suppressed the diabetes-induced activation of the p65/NF-κB and ERK1/2/MAPK pathways, as well as caspase-9 and caspase-3 levels in liver tissues of diabetic mice. Finally, micrograph analysis of liver samples showed decreased cellular organelle injury in hepatocytes of QTL treated mice. Taken together, QTL can be viewed as a promising dietary agent that can be used to reduce the risk of diabetes mellitus and its secondary complications by ameliorating oxidative stress in the liver.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mimi Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- *Jingfang Zhang:
| |
Collapse
|
774
|
Yang M, Huang CZ. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol 2015; 21:11673-11679. [PMID: 26556994 PMCID: PMC4631968 DOI: 10.3748/wjg.v21.i41.11673] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/11/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such that the majority of patients are diagnosed at a stage when efficient therapeutic treatment is not available. Therefore, in-depth research is needed to investigate the mechanism of gastric cancer metastasis and invasion to improve outcomes and provide biomarkers for early diagnosis. The mitogen-activated protein kinase (MAPK) signaling pathway is widely expressed in multicellular organisms, with critical roles in multiple biological processes, such as cell proliferation, death, differentiation, migration, and invasion. The MAPK pathway typically responds to extracellular stimulation. However, the MAPK pathway is often involved in the occurrence and progression of cancer when abnormally regulated. Many studies have researched the relationship between the MAPK signaling pathway and cancer metastasis and invasion, but little is known about the important roles that the MAPK signaling pathway plays in gastric cancer. Based on an analysis of published data, this review aims to summarize the important role that the MAP kinases play in the invasion and metastasis of gastric cancer and attempts to provide potential directions for further research and clinical treatment.
Collapse
|
775
|
Yang CC, Lin CC, Chien PTY, Hsiao LD, Yang CM. Thrombin/Matrix Metalloproteinase-9-Dependent SK-N-SH Cell Migration is Mediated Through a PLC/PKC/MAPKs/NF-κB Cascade. Mol Neurobiol 2015; 53:5833-5846. [PMID: 26497035 DOI: 10.1007/s12035-015-9485-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
Abstract
Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH3), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH3, Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Peter Tzu-Yu Chien
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.
| |
Collapse
|
776
|
Effects of Electroacupuncture on Chronic Unpredictable Mild Stress Rats Depression-Like Behavior and Expression of p-ERK/ERK and p-P38/P38. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:650729. [PMID: 26366182 PMCID: PMC4558448 DOI: 10.1155/2015/650729] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 01/20/2023]
Abstract
We investigate the antidepressant-like effect and mechanism of electroacupuncture (EA) on a chronic unpredictable mild stress rats depression-like behavior. In our study, depression in rats was induced by unpredictable chronic mild stress (UCMS) and isolation for four weeks. Male Sprague-Dawley rats were randomly divided into four groups: Normal, Model, EA, and Sham EA. EA treatment was administered for two weeks, once a day for five days a week. Two acupoints, Yintang (EX-HN3) and Baihui (GV20), were selected. For sham EA, acupuncture needles were inserted shallowly into the acupoints: EX-HN3 and GV20. No electrostimulator was connected. The antidepressant-like effect of the electroacupuncture treatment was measured by sucrose intake test, open field test, and forced swimming test in rats. The protein levels of phosphorylated extracellular regulated protein kinases (p-ERK1/2)/ERK1/2 and p-P38/P38 in the hippocampus (HP) were examined by Western blot analysis. Our data demonstrate that EA treatment decreased the immobility time of forced swimming test and improved the sucrose solution intake in comparison to unpredictable chronic mild stress and placebo sham control. Electroacupuncture may act on depression by enhancing p-ERK1/2 and p-p38 in the hippocampus.
Collapse
|
777
|
Peng M, Wang Z, Yang Z, Tao L, Liu Q, Yi LU, Wang X. Overexpression of short TRPM8 variant α promotes cell migration and invasion, and decreases starvation-induced apoptosis in prostate cancer LNCaP cells. Oncol Lett 2015; 10:1378-1384. [PMID: 26622677 DOI: 10.3892/ol.2015.3373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the function of a transient receptor potential melastatin 8 (TRPM8) splice variant, short TRMP8α (sM8α), in the androgen-dependent prostate cancer LNCaP cell line, and to evaluate the potential involvement of the mitogen-activated protein kinase (MAPK) signaling pathway. The coding DNA for sM8α was cloned and transfected into LNCaP cells to generate cells that overexpress this isoform of TRPM8. Cellular proliferation was determined by performing an MTT assay, and flow cytometry was used to analyze apoptosis and cell cycle distribution. Furthermore, cellular migration and invasion were evaluated using Transwell® migration assays. The subcellular location of recombinant sM8α was detected by quantum dots-based immunofluorescent imaging, western blotting was performed to examine the expression levels of proteins in the MAPK signaling pathway and reverse transcription-polymerase chain reaction was used to determine the expression of sM8α mRNA transcripts. The present study demonstrated that sM8α mRNA was expressed at a low level in the LNCaP, DU145 and PC-3 prostate cancer cell lines. Additionally, the recombinant sM8α protein was located in the cytoplasm of LNCaP cells and its overexpression significantly reduced starvation-induced apoptosis in these cells (P<0.05), possibly by means of reduced activation of phosphorylated-c-Jun N-terminal kinase (p-JNK). The migration and invasion of the LNCaP cells were markedly enhanced by the overexpression of sM8α, possibly via activation of MMP-2. Furthermore, overexpression of sM8α in LNCaP cells did not alter the expression of full-length TRPM8 and had no effect on cellular proliferation. Overall, the results of the present study indicate that sM8α may be important in the regulation of prostate cancer cell migration and invasion through the activation of matrix metalloproteinase-2, as well as in the regulation of apoptosis through the activation of p-JNK in the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mou Peng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liu Tao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qingliang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - L U Yi
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
778
|
Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 2015; 16:11873-91. [PMID: 26016499 PMCID: PMC4490420 DOI: 10.3390/ijms160611873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.
Collapse
|