801
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
802
|
Tan D, Li G, Zhang P, Peng C, He B. LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells. Bioengineered 2022; 13:1838-1857. [PMID: 35014944 PMCID: PMC8805932 DOI: 10.1080/21655979.2021.2018099] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is defined as the most universally diagnosed class of lung cancer. Cisplatin (DDP) is an effective drug for NSCLC, but tumors are prone to drug resistance. The current study set out to evaluate the regulatory effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) in extracellular vesicles (EVs) derived from carcinoma-associated fibroblasts (CAFs) on DDP resistance in NSCLC cells. Firstly, NSCLC cells were treated with EVs, followed by detection of cell activity, IC50 values, cell proliferation and apoptosis, and Cy3-SNHG12. We observed that CAFs-EVs promoted IC50 values and cell proliferation and inhibited apoptosis. In addition, we learned that lncRNA SNHG12 carried by CAFs-EVs into NSCLC facilitated DDP resistance of NSCLC cells. Furthermore, ELAV like RNA binding protein 1 (HuR/ELAVL1) binding to lncRNA SNHG12 and X-linked inhibitor of apoptosis (XIAP) was verified and RNA stability of XIAP was also verified CAFs-EVs promoted RNA stability and transcription of XIAP, while silencing HuR could partially-reverse this promoting effect. Further joint experimentation showed that silencing XIAP partially inhibited DDP resistance in NSCLC cells. Additionally, the tumor growth and the positive rate of Ki67 and HuR were detected, which showed that CAFs-oe-EVs promoted the tumor and the positive rate of Ki67, as well as the levels of lncRNA SNHG12, HuR, and XIAP in vivo. Collectively, our findings indicated that lncRNA SNHG12 carried by CAFs-EVs into NSCLC cells promoted RNA stability and XIAP transcription by binding to HuR, thus augmenting DDP resistance in NSCLC cells.
Collapse
Affiliation(s)
- Deli Tan
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Gang Li
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Peng Zhang
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Chao Peng
- Department of Thoracic Surgery, Chongqing Ninth People’s Hospital, Chongqing, China
| | - Bo He
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing400038, China
| |
Collapse
|
803
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
804
|
De Castro F, De Luca E, Benedetti M, Fanizzi FP. Platinum compounds as potential antiviral agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
805
|
Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1741035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.
Collapse
Affiliation(s)
| | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
806
|
Interactions of Analgesics with Cisplatin: Modulation of Anticancer Efficacy and Potential Organ Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010046. [PMID: 35056355 PMCID: PMC8781901 DOI: 10.3390/medicina58010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin (CDDP), one of the most eminent cancer chemotherapeutic agents, has been successfully used to treat more than half of all known cancers worldwide. Despite its effectiveness, CDDP might cause severe toxic adverse effects on multiple body organs during cancer chemotherapy, including the kidneys, heart, liver, gastrointestinal tract, and auditory system, as well as peripheral nerves causing severely painful neuropathy. The latter, among other pains patients feel during chemotherapy, is an indication for the use of analgesics during treatment with CDDP. Different types of analgesics, such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDS), and narcotic analgesics, could be used according to the severity of pain. Administered analgesics might modulate CDDP’s efficacy as an anticancer drug. NSAIDS, on one hand, might have cytotoxic effects on their own and few of them can potentiate CDDP’s anticancer effects via inhibiting the CDDP-induced cyclooxygenase (COX) enzyme, or through COX-independent mechanisms. On the other hand, some narcotic analgesics might ameliorate CDDP’s anti-neoplastic effects, causing chemotherapy to fail. Concerning safety, some analgesics share the same adverse effects on normal tissues as CDDP, augmenting its potentially hazardous effects on organ impairment. This article offers an overview of the reported literature on the interactions between analgesics and CDDP, paying special attention to possible mechanisms that modulate CDDP’s cytotoxic efficacy and potential adverse reactions.
Collapse
|
807
|
FDA-Approved Drugs for Hematological Malignancies-The Last Decade Review. Cancers (Basel) 2021; 14:cancers14010087. [PMID: 35008250 PMCID: PMC8750348 DOI: 10.3390/cancers14010087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Hematological malignancies are diseases involving the abnormal production of blood cells. The aim of the study is to collect comprehensive information on new drugs used in the treatment of blood cancers which have introduced into therapy in the last decade. The approved drugs were analyzed for their structures and their biological activity mechanisms. Abstract Hematological malignancies, also referred to as blood cancers, are a group of diseases involving abnormal cell growth and persisting in the blood, lymph nodes, or bone marrow. The development of new targeted therapies including small molecule inhibitors, monoclonal antibodies, bispecific T cell engagers, antibody-drug conjugates, recombinant immunotoxins, and, finally, Chimeric Antigen Receptor T (CAR-T) cells has improved the clinical outcomes for blood cancers. In this review, we summarized 52 drugs that were divided into small molecule and macromolecule agents, approved by the Food and Drug Administration (FDA) in the period between 2011 and 2021 for the treatment of hematological malignancies. Forty of them have also been approved by the European Medicines Agency (EMA). We analyzed the FDA-approved drugs by investigating both their structures and mechanisms of action. It should be emphasized that the number of targeted drugs was significantly higher (46 drugs) than chemotherapy agents (6 drugs). We highlight recent advances in the design of drugs that are used to treat hematological malignancies, which make them more effective and less toxic.
Collapse
|
808
|
Zafon E, Echevarría I, Barrabés S, Manzano BR, Jalón FA, Rodríguez AM, Massaguer A, Espino G. Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(III) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Trans 2021; 51:111-128. [PMID: 34873601 DOI: 10.1039/d1dt03080a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy is an alternative to classical chemotherapy due to its potential to reduce side effects by a controlled activation of a photosensitizer through local irradiation with light. The photosensitizer then interacts with oxygen and generates reactive oxygen species. Iridium biscyclometallated complexes are very promising photosensitizers due to their exceptional photophysical properties and their ability to target mitochondria. Four Ir(III) biscyclometallated complexes of formula [Ir(C^N)2(N^N')]Cl, where N^N' is a ligand containing a benzimidazolyl fragment, have been synthesized and characterized. The C^N ligands were 2-phenylpyridinate (ppy) and 2-(2,4-difluorophenyl)pyridinate (dfppy). The complexes exhibited high photostability. The electrochemical and photophysical properties were modulated by both the cyclometallating and the ancillary ligands. The dfppy derivatives yielded the highest emission energy values, quantum yields of phosphorescence and excited state lifetimes. All complexes generated 1O2 in aerated solutions upon irradiation. Biological studies revealed that these complexes have a moderate cytotoxicity in the dark against different human cancer cell lines: prostate (PC-3), colon (CACO-2) and melanoma (SK-MEL-28), and against non-malignant fibroblasts (CCD-18Co). However, derivatives with ppy ligands ([1a]Cl, [2a]Cl) yielded a relevant photodynamic activity upon light irradiation (450 nm, 24.1 J cm-2), with phototoxicity indexes (EC50,dark/EC50,light) of 20.8 and 17.3, respectively, achieved in PC-3 cells. Mechanistic studies showed that these complexes are taken up by the cells through endocytosis and preferentially accumulate in mitochondria. Upon photoactivation, the complexes induced mitochondrial membrane depolarization and DNA damage, thus triggering cell death, mainly by apoptosis. Complex [1a]Cl is also able to oxidize NADH. This mitochondria-targeted photodynamic mechanism greatly inhibited the reproductive capacity of cancer cells and provides a valuable alternative to traditional chemotherapy for the controlled treatment of cancer.
Collapse
Affiliation(s)
- Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Igor Echevarría
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Sílvia Barrabés
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Escuela Técnica Superior de Ingenieros Industriales de Ciudad Real, Avda. Camilo J. Cela, 2, 13071 Ciudad Real, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
809
|
Musiol R, Malecki P, Pacholczyk M, Mularski J. Terpyridines as promising antitumor agents: an overview of their discovery and development. Expert Opin Drug Discov 2021; 17:259-271. [PMID: 34928186 DOI: 10.1080/17460441.2022.2017877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The fused aromatic system of terpyridines makes them good, innocent ligands for various metals. The resulting complexes have been extensively studied for both their biological activity and physico-chemical properties. However, although free ligands also have an interesting biological activity, their share in recent research is considerably limited. AREAS COVERED This review covers the literature on the anticancer activity of terpyridines with special attention being paid to their use as free ligands. Whenever possible, the mechanism of action has been discussed, thereby providing evidence of the substantial differences between sole ligands or less stable complexes and those that have heavier elements. EXPERT OPINION The existing literature indicates that there is a specific attitude for investigating terpyridines and their transition metal complexes. While the latter have been well explored and recognized in the scientific community, the free terpyridines are considered to be useful solely due to their complexing ability. At the same time, terpyridines could have similar or even higher anticancer potency than their complexes. Moreover, a mechanistic analysis of the stability and intracellular activity would provide information that would be useful for designing new drugs.
Collapse
Affiliation(s)
- Robert Musiol
- Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 7, Katowice, Poland
| | | | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, Poland
| | - Jacek Mularski
- Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 7, Katowice, Poland
| |
Collapse
|
810
|
Prasad R, Prasad SB. Modulatory Effect of Rutin on the Antitumor Activity and Genotoxicity of Cisplatin in Tumor-Bearing Mice. Adv Pharm Bull 2021; 11:746-754. [PMID: 34888222 PMCID: PMC8642793 DOI: 10.34172/apb.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose: Cisplatin is a cancer chemotherapeutic drug that has been extensively used in the treatment of a variety of cancers. However, the full usage of cisplatin is limited due to its treatment associated development of multiple side effects in the host. In the present study, the modulatory effect of rutin, a type of flavonoid, on the cisplatin mediated antitumor activity and allied genotoxicity in ascites Dalton’s lymphoma (DL)-bearing mice were investigated. Methods: The antitumor activity was determined by calculating the percent increase in the life span of mice, cell viability and scanning electron microscopy (SEM) of DL cells. Further, the modulatory effect of rutin on the cisplatin-induced genotoxic effects in the same DL-bearing mice was assessed by the analysis of micronuclei, chromosomal aberration and sperm abnormality. Results: The combination treatment of mice with rutin and cisplatin showed a considerable increase in the life span of the DL-bearing mice depicting better antitumor efficacy. SEM of these DL cells showed severe membrane deformities in DL cells such as fusion of cell membrane, membrane blebbing, cell shrinkage, membrane folding and loss in microvilli from the tumor cell surface which may lead to cell death. Cisplatin alone treatment caused an increase in the frequency of chromosomal aberrations, micronuclei and sperms abnormality. However, the combination treatment of DL-bearing mice with rutin and cisplatin comparatively reduced these genotoxic effects. Conclusion: The overall findings suggest that rutin enhances the cisplatin-mediated antitumor activity and cytotoxicity against DL cells and at the same time diminishes the genotoxic effects induced by cisplatin in the DL-bearing mice.
Collapse
Affiliation(s)
- Rajesh Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| | - Surya Bali Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| |
Collapse
|
811
|
Folk WP, Kumari A, Iwasaki T, Cassimere EK, Pyndiah S, Martin E, Homlar K, Sakamuro D. New Synthetic Lethality Re-Sensitizing Platinum-Refractory Cancer Cells to Cisplatin In Vitro: The Rationale to Co-Use PARP and ATM Inhibitors. Int J Mol Sci 2021; 22:ijms222413324. [PMID: 34948122 PMCID: PMC8704450 DOI: 10.3390/ijms222413324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
The pro-apoptotic tumor suppressor BIN1 inhibits the activities of the neoplastic transcription factor MYC, poly (ADP-ribose) polymerase-1 (PARP1), and ATM Ser/Thr kinase (ATM) by separate mechanisms. Although BIN1 deficits increase cancer-cell resistance to DNA-damaging chemotherapeutics, such as cisplatin, it is not fully understood when BIN1 deficiency occurs and how it provokes cisplatin resistance. Here, we report that the coordinated actions of MYC, PARP1, and ATM assist cancer cells in acquiring cisplatin resistance by BIN1 deficits. Forced BIN1 depletion compromised cisplatin sensitivity irrespective of Ser15-phosphorylated, pro-apoptotic TP53 tumor suppressor. The BIN1 deficit facilitated ATM to phosphorylate the DNA-damage-response (DDR) effectors, including MDC1. Consequently, another DDR protein, RNF8, bound to ATM-phosphorylated MDC1 and protected MDC1 from caspase-3-dependent proteolytic cleavage to hinder cisplatin sensitivity. Of note, long-term and repeated exposure to cisplatin naturally recapitulated the BIN1 loss and accompanying RNF8-dependent cisplatin resistance. Simultaneously, endogenous MYC was remarkably activated by PARP1, thereby repressing the BIN1 promoter, whereas PARP inhibition abolished the hyperactivated MYC-dependent BIN1 suppression and restored cisplatin sensitivity. Since the BIN1 gene rarely mutates in human cancers, our results suggest that simultaneous inhibition of PARP1 and ATM provokes a new BRCAness-independent synthetic lethal effect and ultimately re-establishes cisplatin sensitivity even in platinum-refractory cancer cells.
Collapse
Affiliation(s)
- Watson P. Folk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
| | - Alpana Kumari
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
| | - Tetsushi Iwasaki
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe 657, Japan
| | - Erica K. Cassimere
- Department of Biology, College of Science, Engineering and Technology, Texas Southern University, Houston, TX 77004, USA;
| | | | - Elizabeth Martin
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Department of Pathology, Medical College of Georgia, Augusta University Medical Center, Augusta, GA 30912, USA
| | - Kelly Homlar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University Medical Center, Augusta, GA 30912, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.P.F.); (A.K.); (T.I.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.M.); (K.H.)
- Correspondence: ; Tel.: +1-706-(721)-1018
| |
Collapse
|
812
|
Coccè V, Rimoldi I, Facchetti G, Ciusani E, Alessandri G, Signorini L, Sisto F, Giannì A, Paino F, Pessina A. In Vitro Activity of Monofunctional Pt-II Complex Based on 8-Aminoquinoline against Human Glioblastoma. Pharmaceutics 2021; 13:pharmaceutics13122101. [PMID: 34959382 PMCID: PMC8704014 DOI: 10.3390/pharmaceutics13122101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
A new cationic Pt(II) complex bearing 8-aminoquinoline as chelating ligand (called Pt-8AQ) was evaluated against two human carcinomas, one mesothelioma, and three glioblastoma cell lines. The in vitro comparison to the clinically approved CisPt showed a minor activity of Pt-8AQ against carcinoma and mesothelioma, whereas a significant activity of Pt-8AQ was observed on the proliferation of the three glioblastoma cell lines (U87-MG IC50 = 3.68 ± 0.69 µM; U373-MG IC50 = 11.53 ± 0.16 µM; U138-MG IC50 = 8.05 ± 0.23 µM) that was higher than that observed with the clinically approved CisPt (U87-MG IC50 = 7.27 + 1.80 µM; U373-MG IC50 = 22.69 ± 0.05 µM; U138-MG IC50 = 32.1 ± 4.44 µM). Cell cycle analysis proved that Pt-8AQ significantly affected the cell cycle pattern by increasing the apoptotic cells represented by the sub G0/G1 region related with a downregulation of p53 and Bcl-2. Moreover, an NMR investigation of Pt-8AQ interaction with 9-EtG, GSH, and Mets7 excluded DNA as the main target, suggesting a novel mechanism of action. Our study demonstrated the high stability of Pt-8AQ after incubation at 37 °C and a significant antineoplastic activity on glioblastomas. These features also make Pt-8AQ a good candidate for developing a new selective advanced cell chemotherapy approach in combination with MSCs.
Collapse
Affiliation(s)
- Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Isabella Rimoldi
- Department of Pharmaceutical Science, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Giorgio Facchetti
- Department of Pharmaceutical Science, University of Milan, Via Golgi 19, 20133 Milan, Italy;
- Correspondence: (G.F.); (A.P.)
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy;
| | - Giulio Alessandri
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy;
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Aldo Giannì
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
- Maxillo-Facial and Dental Unit, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Paino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
- Correspondence: (G.F.); (A.P.)
| |
Collapse
|
813
|
How can the cisplatin analogs with different amine act on DNA during cancer treatment theoretically? J Mol Model 2021; 28:2. [PMID: 34874466 DOI: 10.1007/s00894-021-04984-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Cisplatin is a widely used anti-cancer drug which inhibits the replication and polymerization of DNA molecule while showing some side effects and drug resistance. For this reason, to enhance its therapeutic index, researchers have synthesized several thousand analogs and tested their properties. In this project, several cisplatin analogs were designed to theoretically study the biological activity and lipophilicity effects on amine changes. The amines of the cisplatin molecule were substituted with aliphatic amines in different analogs. Computational methods such as molecular dynamics simulation, molecular docking, and molecular mechanics Poisson-Boltzmann surface area analysis were performed to investigate the binding of six cisplatin derivatives with DNA. The binding affinity and potential interactions of these drugs with double-strand DNA were analyzed. The stability effect of these drugs was investigated via root-mean-square deviation and root-mean-square fluctuation analysis, which showed that some analogs can break base-pair interaction at the end of DNA and reduced the stability of DNA. Also, the results revealed that the hydrogen bond is one of the most important factors in the binding of cisplatin's adduct to DNA. Molecular mechanics Poisson-Boltzmann surface area analysis indicated that electrostatic and van der Waals interactions are the most important deriving forces to the binding of cisplatin's drug to DNA. Finally, data revealed that cisplatin and the cis-dichloro-dimethylamine-platin tendency for binding to DNA are greater than that of other analogs.
Collapse
|
814
|
Materón EM, Shimizu FM, Figueiredo Dos Santos K, Nascimento GF, Geraldo VPN, Oliveira ON, Faria RC. Membrane model as key tool in the study of glutathione-s-transferase mediated anticancer drug resistance. Biomed Pharmacother 2021; 145:112426. [PMID: 34861633 DOI: 10.1016/j.biopha.2021.112426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/02/2022] Open
Abstract
Glutathione-s-transferase is believed to be involved in the resistance to chemotherapeutic drugs, which depends on the interaction with the cell membranes. In this study, we employed Langmuir monolayers of a mixture of phospholipids and cholesterol (MIX) as models for tumor cell membranes and investigated their interaction with the anticancer drugs cisplatin (CDDP) and doxorubicin (DOX). We found that both DOX and CDDP expand and affect the elasticity of MIX monolayers, but these effects are hindered when glutathione-s-transferase (GST) and its cofactor glutathione (GSH) are incorporated. Changes are induced by DOX or CDDP on the polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) data for MIX/GST/GSH monolayers, thus denoting some degree of interaction that is not sufficient to alter the monolayer mechanical properties. Overall, the results presented here give support to the hypothesis of the inactivation of DOX and CDDP by GST and point to possible directions to detect and fight drug resistance.
Collapse
Affiliation(s)
- Elsa M Materón
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil; São Carlos Institute of Physics, University of São Paulo, P.O Box 369, 13560-970 São Carlos, SP, Brazil.
| | - Flavio M Shimizu
- São Carlos Institute of Physics, University of São Paulo, P.O Box 369, 13560-970 São Carlos, SP, Brazil; Department of Applied Physics, "Gleb Wataghin" Institute of Physics (IFGW), University of Campinas (UNICAMP), Campinas, SP 13083-859, Brazil.
| | | | - Gustavo F Nascimento
- São Carlos Institute of Physics, University of São Paulo, P.O Box 369, 13560-970 São Carlos, SP, Brazil
| | - Vananélia P N Geraldo
- São Carlos Institute of Physics, University of São Paulo, P.O Box 369, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, P.O Box 369, 13560-970 São Carlos, SP, Brazil.
| | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil.
| |
Collapse
|
815
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Wu C, Pan X. Cellular defense system-destroying nanoparticles as a platform for enhanced chemotherapy against drug-resistant cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112494. [PMID: 34857280 DOI: 10.1016/j.msec.2021.112494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Cellular defense system represented by glutathione (GSH) greatly weakens the outcomes of cancer therapy by antioxidation and detoxification. GSH depletion has been proved to be an effective way to enhance the efficacy of reactive oxygen species (ROS)-based therapies and chemotherapy. However, the existing strategies of GSH depletion still face the problems of unclear biosafety and high complexity of multicomponent co-delivery. In this study, we developed a GSH-depleting carrier platform based on disulfide-bridged mesoporous organosilica nanoparticles (MONs) to destroy the cellular defense system for cancer therapy. Responding to the high level of GSH in cancer cells, the disulfide bonds in the framework of MONs could be broken and consumed substantial GSH at the same time. Moreover, this process also promoted the degradation of MONs. In order to evaluate the effect of this platform in cancer therapy, chemotherapeutic drug cisplatin was loaded into MONs (Pt@MONs) to treat drug-resistant non-small cell lung cancer. In vitro and in vivo results indicated that Pt@MONs efficiently triggered GSH depletion, promoted platinum-DNA adduct formation, and induced cell apoptosis, resulting in significant tumor growth inhibition without marked toxicity. Taken together, the cellular defense system-destroying nanoparticles provide a promising platform for enhanced cancer therapy.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
816
|
Liang L, Wen L, Weng Y, Song J, Li H, Zhang Y, He X, Zhao W, Zhan M, Li Y, Lu L, Xin Y, Lu C. Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer. CHEMICAL ENGINEERING JOURNAL 2021; 425:131451. [DOI: 10.1016/j.cej.2021.131451] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
|
817
|
Wahdan SA, Elsherbiny DA, Azab SS, El-Demerdash E. Piceatannol ameliorates behavioural, biochemical and histological aspects in cisplatin-induced peripheral neuropathy in rats. Basic Clin Pharmacol Toxicol 2021; 129:486-495. [PMID: 34390194 DOI: 10.1111/bcpt.13643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Peripheral neurotoxicity is a dose-limiting and a potentially lifelong persistent toxicity of cisplatin. This study investigated the possible protective effect of piceatannol (PIC) in a model of cisplatin-induced peripheral neuropathy in rats. PIC (10 mg/kg, i.p.) was given for 7 days, starting 2 days before cisplatin single injection (7 mg/kg, i.p.). Behavioural, biochemical and histological examinations were conducted. Cisplatin administration resulted in thermal hypoalgesia evidenced by increased paw and tail withdrawal latency times in the hotplate and tail flick tests, respectively, and reduced the abdominal constrictions in response to the acetic acid injection. Moreover, cisplatin treatment decreased rat locomotor activity and grip strength. These behavioural alterations were reversed by PIC coadministration. In addition, PIC decreased cisplatin-induced elevation in serum neurotensin and platinum accumulation in sciatic nerve. Also, PIC reversed, to a large extent, cisplatin-induced microscopical alterations in nerve axons and restored normal myelin thickness. Therefore, PIC may protect against cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa A Elsherbiny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
818
|
Saydam F, Nalkiran HS. Anticancer effects of a novel herbal combination as a potential therapeutic candidate against lung cancer. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
819
|
Pan L, Feng F, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma. Food Funct 2021; 12:12036-12046. [PMID: 34755740 DOI: 10.1039/d1fo02111g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diosmetin (DSM), a newly discovered natural flavonoid, found in citrus plants and olive leaves, has been reported to inhibit the progression of cancer when used as a food supplement. This study aimed to investigate DSM's anti-hepatocellular carcinoma (HCC) properties and possible molecular mechanisms. Hep3B and HCCLM3 cells were selected to evaluate the anti-HCC properties of DSM in vitro. RNA sequencing (RNA-seq) was used to identify the possible molecular targets and pathways. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of DSM treatment on the primary metabolites of HCCLM3 cells. Tumor xenograft was performed in nude mice to examine the anti-HCC properties of DSM in vivo. The results showed that DSM inhibited the proliferation and migration of HCC cells in vitro in a dose-dependent manner. RNA-seq identified 4459 differentially expressed genes (DEGs) that were highly enriched in the cell cycle pathway. In addition, DSM regulated cell growth by arresting the cell cycle in the G1 phase by decreasing the expression of BCL2, CDK1, and CCND1. Furthermore, metabolomics analysis revealed that DSM interfered with the lipid metabolism pathway of HCC cells by significantly inhibiting the synthesis of metabolites, such as acetic acid, decanoic acid, glycerol, and L-proline. Subcutaneous tumor formation experiments revealed that DSM significantly reduced the tumor volume and weight when compared to the control. Immunohistochemical analysis further revealed that DSM treatment significantly decreased the expression of the proliferative marker KI67. Our findings demonstrated that DSM exhibited antitumor effects on HCC cells by inhibiting cell proliferation via cell cycle arrest and interfering with lipid metabolism.
Collapse
Affiliation(s)
- Lianhong Pan
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China. .,Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Fan Feng
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jiaqin Wu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
820
|
Selective Anticancer and Antimicrobial Metallodrugs Based on Gold(III) Dithiocarbamate Complexes. Biomedicines 2021; 9:biomedicines9121775. [PMID: 34944591 PMCID: PMC8698672 DOI: 10.3390/biomedicines9121775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
New dithiocarbamate cycloaurated complexes have been synthesized and their physicochemical and in vitro antitumor properties have been evaluated. All the performed studies highlighted good transport through the blood and biodistribution, according to the balance between the properties of hydrophilicity/lipophilicity and the binding of moderate strength to the BSA protein. Furthermore, none of the complexes exhibited reduction or decomposition reactions, presenting excellent physiological stability. The in vitro cytotoxic effect was evaluated on human colon cancer cell line Caco-2/TC7, and the complexes showed great antiproliferative activity and excellent selectivity, as much less effect was detected on normal Caco-2/TC7 cells. Most of the complexes exhibit antiproliferative activity that was better than or similar to auranofin, and at least nine times better than that of cisplatin. Its action mechanism is still under discussion since no evidence of cell cycle arrest was found, but an antioxidant role was shown for some of the selective complexes. All complexes were also tested as antimicrobial drugs, exhibiting good activity towards S. aureus and E. coli. bacteria and C. albicans and C. neoformans fungi.
Collapse
|
821
|
De Castro F, De Luca E, Girelli CR, Barca A, Romano A, Migoni D, Verri T, Benedetti M, Fanizzi FP. First evidence for N7-Platinated Guanosine derivatives cell uptake mediated by plasma membrane transport processes. J Inorg Biochem 2021; 226:111660. [PMID: 34801970 DOI: 10.1016/j.jinorgbio.2021.111660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2'-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5'-(2'-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2- (3; dGTP = 5'-(2'-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1-3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds.
Collapse
Affiliation(s)
- Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Erik De Luca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Chiara Roberta Girelli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Amilcare Barca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Alessandro Romano
- Divisione di Neuroscienze, Istituto di Neurologia Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 60, I-20132 Milano, Italy.
| | - Danilo Migoni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Tiziano Verri
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
822
|
Wieczorek-Błauż A, Kowalczyk K, Błauż A, Makal A, Pawlędzio S, Eurtivong C, Arabshahi HJ, Reynisson J, Hartinger CG, Rychlik B, Plażuk D. Impact of the ferrocenyl group on cytotoxicity and KSP inhibitory activity of ferrocenyl monastrol conjugates. Dalton Trans 2021; 51:491-508. [PMID: 34787141 DOI: 10.1039/d1dt03553c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of the ferrocenyl moiety into a bioactive molecule may significantly alter the activity of the resulting conjugate. By applying this strategy, we designed ferrocenyl analogs of monastrol - the first low molecular weight kinesin spindle protein (KSP) inhibitor. The obtained compounds showed low micromolar antiproliferative activity towards a panel of sensitive and ABC-overexpressing cancer cells. Most cytotoxic compounds exhibited also higher KSP modulatory activity and ability for ROS generation compared to monastrol. The increased bioactivity of the studied compounds can be attributed to the presence of the ferrocenyl group.
Collapse
Affiliation(s)
- Anna Wieczorek-Błauż
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Karolina Kowalczyk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Anna Makal
- Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Sylwia Pawlędzio
- Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Chatchakorn Eurtivong
- Program in Chemical Science, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education (CHE), Ministry of Education, Bangkok 10400, Thailand
| | - Homayon J Arabshahi
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand.,School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
| | | | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
823
|
Jolkinolide B sensitizes bladder cancer to mTOR inhibitors via dual inhibition of Akt signaling and autophagy. Cancer Lett 2021; 526:352-362. [PMID: 34798195 DOI: 10.1016/j.canlet.2021.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
The monotherapy of mTOR inhibitors (mTORi) in cancer clinical practice has achieved limited success due to the concomitant activation of compensatory pathways, such as Akt signaling and cytoprotective autophagy. Thus, the combination of mTORi and the inhibitors of these pro-survival pathways has been considered a promising therapeutic strategy. Herein, we report the synergistic effects of a natural anti-cancer agent Jolkinolide B (JB) and mTORi (temsirolimus, rapamycin, and everolimus) for the effective treatment of bladder cancer. A mechanistic study revealed that JB induced a dual inhibition of Akt feedback activation and cytoprotective autophagy, potentiating the anti-proliferative efficacy of mTORi in both PTEN-deficient and cisplatin-resistant bladder cancer cells. Meanwhile, mTORi augmented the pro-apoptotic and pro-paraptotic effects of JB by reinforcing JB-activated endoplasmic reticulum stress and MAPK pathways. These synergistic mechanisms were related to cellular reactive oxygen species accumulation. Our study suggests that dual inhibition of Akt feedback activation and cytoprotective autophagy is an effective strategy in mTORi-based therapy, and JB + mTORi combination associated with multiple anti-cancer mechanisms and good tolerance in mouse models may serve as a promising treatment for bladder cancer.
Collapse
|
824
|
Recapitulating the Angiogenic Switch in a Hydrogel-Based 3D In Vitro Tumor-Stroma Model. Bioengineering (Basel) 2021; 8:bioengineering8110186. [PMID: 34821752 PMCID: PMC8614676 DOI: 10.3390/bioengineering8110186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
To ensure nutrient and oxygen supply, tumors beyond a size of 1–2 mm3 need a connection to the vascular system. Thus, tumor cells modify physiological tissue homeostasis by secreting inflammatory and angiogenic cytokines. This leads to the activation of the tumor microenvironment and the turning of the angiogenic switch, resulting in tumor vascularization and growth. To inhibit tumor growth by developing efficient anti-angiogenic therapies, an in depth understanding of the molecular mechanism initiating angiogenesis is essential. Yet so far, predominantly 2D cell cultures or animal models have been used to clarify the interactions within the tumor stroma, resulting in poor transferability of the data obtained to the in vivo situation. Consequently, there is an abundant need for complex, humanized, 3D models in vitro. We established a dextran-hydrogel-based 3D organotypic in vitro model containing microtumor spheroids, macrophages, neutrophils, fibroblasts and endothelial cells, allowing for the analysis of tumor–stroma interactions in a controlled and modifiable environment. During the cultivation period of 21 days, the microtumor spheroids in the model grew in size and endothelial cells formed elongated tubular structures resembling capillary vessels, that appeared to extend towards the tumor spheroids. The tubular structures exhibited complex bifurcations and expanded without adding external angiogenic factors such as VEGF to the culture. To allow high-throughput screening of therapeutic candidates, the 3D cell culture model was successfully miniaturized to a 96-well format, while still maintaining the same level of tumor spheroid growth and vascular sprouting. The quantification of VEGF in the conditioned medium of these cultures showed a continuous increase during the cultivation period, suggesting the contribution of endogenous VEGF to the induction of the angiogenic switch and vascular sprouting. Thus, this model is highly suitable as a testing platform for novel anticancer therapeutics targeting the tumor as well as the vascular compartment.
Collapse
|
825
|
Zafari J, Abbasinia H, Gharehyazi H, Javani Jouni F, Jamali S, Razzaghi M. Evaluation of Biological Activity of Different Wavelengths of Low-Level Laser Therapy on the Cancer Prostate Cell Line Compared With Cisplatin. J Lasers Med Sci 2021; 12:e17. [PMID: 34733740 DOI: 10.34172/jlms.2021.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Cancer is one of the most important problems in the world. Low-level laser therapy (LLLT) has been emerged as a new approach, having both stimulation and inhibition effects on cellular function. The goal of this study was to analyze and compare the different concentrations of cisplatin and wavelengths of laser therapy on the LnCap cell lines. Methods: LnCap cells were cultured and treated with different concentrations of cisplatin (0.1, 0.4, 0.8, 1.2 and 2 µg/mL for 24 hours) and wavelengths of laser therapy (610, 630 and 810 nm) (0.45 J/cm2) separately. The viability of cells was examined by MTT assay and IC50 was also calculated. Furthermore, a combination of cisplatin IC50 (24 hours) and different wavelengths of the laser was examined. Results: The results of this study showed that 2 µg/mL of cisplatin has the most significant reduction effect on the cell viability of the LnCap cell line. Cisplatin decreased the viability of cells in a dose-dependent manner. Moreover, IC50 of cisplatin was 1.24 µg/mL. On the other hand, LLLT with wavelengths of 610, 630 and 810 nm did not show notable biological effects on cell viability. Conclusion: As known, cisplatin has the capability to reduce the viability of LnCap cell lines. However, LLLT cannot be a remarkable option for the treatment of prostate cancer. Therefore, although laser therapy showed praiseful therapeutic activity against some cancer cell lines, in this study the results indicated that defined laser wavelengths had no inhibitory effects against the prostate cancer cell line.
Collapse
Affiliation(s)
- Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Abbasinia
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hediyeh Gharehyazi
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biomedical Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Jamali
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
826
|
Zalevskaya O, Gur'eva Y, Kutchin A, Aleksandrova Y, Yandulova E, Nikolaeva N, Neganova M. Palladium complexes with terpene derivatives of ethylenediamine and benzylamine: Synthesis and study of antitumor properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
827
|
Zain Aldin M, Zaragoza G, Deschamps W, Tomani JCD, Souopgui J, Delaude L. Synthesis, Characterization, and Biological Activity of Water-Soluble, Dual Anionic and Cationic Ruthenium-Arene Complexes Bearing Imidazol(in)ium-2-dithiocarboxylate Ligands. Inorg Chem 2021; 60:16769-16781. [PMID: 34669374 DOI: 10.1021/acs.inorgchem.1c02648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthetic protocol was devised for the preparation of five cationic ruthenium-arene complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands from the [RuCl2(p-cymene)]2 dimer and 2 equiv of an NHC·CS2 zwitterion. The reactions proceeded cleanly and swiftly in dichloromethane at room temperature to afford the expected [RuCl(p-cymene)(S2C·NHC)]Cl products in quantitative yields. When the [RuCl2(p-cymene)]2 dimer was reacted with only 1 equiv of a dithiolate betaine under the same experimental conditions, a set of five bimetallic compounds with the generic formula [RuCl(p-cymene)(S2C·NHC)][RuCl3(p-cymene)] was obtained in quantitative yields. These novel, dual anionic and cationic ruthenium-arene complexes were fully characterized by various analytical techniques. NMR titrations showed that the chelation of the dithiocarboxylate ligands to afford [RuCl(p-cymene)(S2C·NHC)]+ cations was quantitative and irreversible. Conversely, the formation of the [RuCl3(p-cymene)]- anion was limited by an equilibrium, and this species readily dissociated into Cl- anions and the [RuCl2(p-cymene)]2 dimer. The position of the equilibrium was strongly influenced by the nature of the solvent and was rather insensitive to the temperature. Two monometallic and two bimetallic complexes cocrystallized with water, and their molecular structures were solved by X-ray diffraction analysis. Crystallography revealed the existence of strong interactions between the azolium ring protons of the cationic complexes and neighboring donor groups from the anions or the solvent. The various compounds under investigation were highly soluble in water. They were all strongly cytotoxic against K562 cancer cells. Furthermore, with a selectivity index of 32.1, the [RuCl(p-cymene)(S2C·SIDip)]Cl complex remarkably targeted the erythroleukemic cells vs mouse splenocytes.
Collapse
Affiliation(s)
- Mohammed Zain Aldin
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du six Août 13, 4000 Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - William Deschamps
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jean-Claude Didelot Tomani
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du six Août 13, 4000 Liège, Belgium
| |
Collapse
|
828
|
Non-coding RNA-mediated autophagy in cancer: A protumor or antitumor factor? Biochim Biophys Acta Rev Cancer 2021; 1876:188642. [PMID: 34715268 DOI: 10.1016/j.bbcan.2021.188642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022]
Abstract
Autophagy, usually referred to as macroautophagy, is a cytoprotective behavior that helps cells, especially cancer cells, escape crises. However, the role of autophagy in cancer remains controversial. The induction of autophagy is favorable for tumor growth, as it can degrade damaged cell components accumulated during nutrient deficiency, chemotherapy, or other stresses in a timely manner. Whereas the antitumor effect of autophagy might be closely related to its crosstalk with metabolism, immunomodulation, and other pathways. Recent studies have verified that lncRNAs and circRNAs modulate autophagy in carcinogenesis, cancer cells proliferation, apoptosis, metastasis, and chemoresistance via multiple mechanisms. A comprehensive understanding of the regulatory relationships between ncRNAs and autophagy in cancer might resolve chemoresistance and also offer intervention strategies for cancer therapy. This review systematically displays the regulatory effects of lncRNAs and circRNAs on autophagy in the contexts of cancer initiation, progression, and resistance to chemo- or radiotherapy and provides a novel insight into cancer therapy.
Collapse
|
829
|
Ferreira-Gonçalves T, Constantin C, Neagu M, Reis CP, Sabri F, Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed Pharmacother 2021; 144:112356. [PMID: 34710839 DOI: 10.1016/j.biopha.2021.112356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis 38152, TN, United States.
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| |
Collapse
|
830
|
He PY, Hou YH, Yang Y, Li N. The anticancer effect of extract of medicinal mushroom Sanghuangprous vaninii against human cervical cancer cell via endoplasmic reticulum stress-mitochondrial apoptotic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114345. [PMID: 34146628 DOI: 10.1016/j.jep.2021.114345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanghuangprous vaninii (Ljub.) L.W. Zhou & Y.C. Dai, known as "Sanghuang" in China, is mainly distributed in the northeast of China. As a traditional medicinal mushroom, "Sanghuang" is medicinally used for resolving the symptoms of gynecological tumors including vaginal bleeding, leucorrhea, abdominal pain and abdominal mass. This mushroom is potential for gynecological cancers therapy. However, there is a lack of scientific evidence on its anti-tumor activity against human cervical cancer, the most common gynecological cancer. AIM OF THE STUDY To identify the anti-tumor potential of the extract of Sanghuangprous vaninii (ESV) on human cervical cancer SiHa cells, and explore detailed mechanisms of ESV inducing cancer cell death. MATERIALS AND METHODS The anti-proliferation effects were evaluated by Cell Counting Kit-8 (CCK8) assay. Transmission electron microscope was applied to determined the cellular ultrastructure changes. The cell cycle distribution, quantification of apoptotic cells, mitochondrial transmembrane potential, reactive oxygen species (ROS) level, and cytosolic calcium level were determined by flow cytometer. Western blot analysis was used to explore the alterations in the expression levels of endoplasmic reticulum stress-marked and apoptosis-related proteins. The in-vivo anti-tumor effect was identified by mouse xenograft model. RESULTS ESV significantly inhibited the proliferation of SiHa cells in vivo and vitro. Blocking cell cycle and causing cell apoptosis contributed to cell death induced by ESV. Mechanistically, ESV induced endoplasmic reticulum stress evidenced by the elevated expressions of GRP78 and CHOP, which accompanied by the release of calcium (Ca2+). The Ca2+ overload and oxidative stress facilitated the collapse of mitochondrial membrane potential and subsequently activated caspase-3 and -9, which eventually lead to cell apoptosis. CONCLUSIONS Our results revealed that Sanghuangprous vaninii was effective against human cervical cancer SiHa cells in vitro and vivo. There is a promising potential that Sanghuangprous vaninii might be a candidate for cervical cancer therapy.
Collapse
Affiliation(s)
- Ping-Ya He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Yu-Hao Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Yue Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, PR China.
| |
Collapse
|
831
|
Chemotherapy-induced hearing loss: the applications of bio-nanotechnologies and bile acid-based delivery matrices. Ther Deliv 2021; 12:723-737. [PMID: 34697955 DOI: 10.4155/tde-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Advancement in the prevention of chemotherapy-induced hearing loss has proposed new nano-based delivery matrices that can target inner ear regions most damaged by chemotherapy. Chemotherapy agents (e.g., cisplatin) induce increased reactive oxygen species formation in the inner ear that damage sensory hair cells and result in irreversible hearing impairment. Exogenous antioxidants (e.g., Probucol and metformin) have been shown to block the formation of these reactive oxygen species. Delivery of these drugs in effective concentrations remains a challenge. Microencapsulation in combination with drug excipients provides one technique to effectively deliver these drugs. This paper investigates the use of probucol and metformin in combination with drug excipients for novel, inner ear, delivery.
Collapse
|
832
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
833
|
de Almeida PSVB, de Arruda HJ, Sousa GLS, Ribeiro FV, de Azevedo-França JA, Ferreira LA, Guedes GP, Silva H, Kummerle AE, Neves AP. Cytotoxicity evaluation and DNA interaction of Ru II-bipy complexes containing coumarin-based ligands. Dalton Trans 2021; 50:14908-14919. [PMID: 34609400 DOI: 10.1039/d1dt01567b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although there are various treatment options for cancer, this disease still has caused an increasing number of deaths, demanding more efficient, selective and less harmful drugs. Several classes of ruthenium compounds have been investigated as metallodrugs for cancer, mainly after the entry of imidazolH [trans-RuCl4-(DMSO-S)(imidazole)] (NAMI-A) and indazolH [trans-RuCl4-(Indazol)2] (KP1019) in clinical trials. In this sense, RuII complexes with general formula [Ru(L1-3)(bipy)2]PF6 (1-3) (L1 = ethyl 3-(6-methyl-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L2 = ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L3 = ethyl 3-(8-methoxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate and bipy = bipyridine) have been synthesized. The crystal structure of 2 revealed that the RuII atom lies on a distorted octahedral geometry with the deprotonated ligand (L2-) coordinated through β-ketoester group oxygen atoms. In vitro cytotoxic activity of the compounds was evaluated against 4T1 (murine mammary carcinoma) and B16-F10 (murine metastatic melanoma) tumor cells, and the non-tumor cell line BHK-21 (baby hamster kidney). Coordination with RuII resulted in expressive enhancement of cytotoxic activity. The precursors were inactive below 100 μM and the final RuII complexes (1-3) showed IC50 ranging from 2.0 to 12.8 μM; 2 being the most potent compound. DNA interaction studies revealed a greater capacity of the complexes to interact with DNA than the ligands, where, 2 exhibited the highest Kb constant of 2.2 × 104 M-1. Fluorescence investigation demonstrated that 1-3 are capable of quenching the fluorescence emission of the EtdBr-DNA complex up to 40%. Molecular docking showed that the interaction of 1-3 between the DNA base pairs from the coumarin portion was with scores of 67.28, 68.62 and 64.88, respectively, and 75.45 for ellipticine, suggesting an intercalative mode of binding. Our findings show that the RuII complexes are eligible for continuing to be investigated as potential antitumor compounds.
Collapse
Affiliation(s)
- Patrícia S V B de Almeida
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Henrique Jefferson de Arruda
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Gleyton Leonel S Sousa
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Felipe Vitório Ribeiro
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | | | - Larissa A Ferreira
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Heveline Silva
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, MG, Brazil
| | - Arthur E Kummerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|
834
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
835
|
Feng F, Pan L, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int J Biol Sci 2021; 17:4340-4352. [PMID: 34803502 PMCID: PMC8579440 DOI: 10.7150/ijbs.64675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cepharanthine (CEP), a natural compound extracted from Stephania cepharantha Hayata, has been found to have the potential to treat a variety of tumors in recent years. This study aims to evaluate the anti-hepatocellular carcinoma (HCC) effect of CEP and determine its in-depth mechanism. In this study, Hep3B and HCCLM3 cells were selected to evaluate the antitumor effects of CEP in vitro, whereas tumor xenograft in nude mice was performed to make in vivo anti-tumor assessment. RNA-sequence (RNA-seq) was used to identify possible molecular targets and pathways. Further, gas chromatography mass spectrometry (GC-MS) was performed to assess the differential metabolites involved in mediating the effect of CEP on the HCC cell line. Our results showed that CEP treatment resulted in the dose-dependent inhibition of cell viability, migration, and proliferation and could also induce apoptosis in HCC cells. RNA-seq following CEP treatment identified 168 differentially expressed genes (DEGs), which were highly enriched in metabolism-associated pathways. In addition, CEP down-regulated many metabolites through the amino acid metabolism pathway. In vivo experiment showed that CEP significantly suppressed tumor growth. Our results indicate that CEP has significant antitumor effects and has the potential to be a candidate drug for HCC treatment.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lianhong Pan
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li Yang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chunli Wang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
836
|
Wu Q, Zhu C, Zhang S, Zhou Y, Zhong Y. Hematological Toxicities of Concurrent Chemoradiotherapies in Head and Neck Cancers: Comparison Among Cisplatin, Nedaplatin, Lobaplatin, and Nimotuzumab. Front Oncol 2021; 11:762366. [PMID: 34746003 PMCID: PMC8566976 DOI: 10.3389/fonc.2021.762366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cisplatin-based concurrent chemoradiotherapy is standard of care for locally advanced head and neck cancers (LAHNC). Nedaplatin, lobaplatin and nimotuzumab have shown anti-cancer effect with less gastrointestinal toxicity and nephrotoxicity. However, the profile of hematological toxicities of these agents in combination with radiotherapy has not been fully illustrated. METHODS We retrospectively collected the clinical data of consecutive LAHNC patients treated by cisplatin-, nedaplatin-, lobaplatin-, and nimotuzumab-based concurrent chemoradiotherapy. Routine blood cell counts were obtained every 4 to 7 days. Hematological toxicities were graded according to the Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. RESULTS A total of 181 eligible LAHNC patients were assigned to nimotuzumab group (n = 34), cisplatin group (n = 52), nedaplatin group (n = 62) or lobaplatin group (n = 33). Among the four groups, nimotuzumab group displayed lightest hematological toxicities, followed by cisplatin group, nedaplatin group, and lobaplatin group. Lobaplatin was more likely to produce grade 3/4 leukopenia compared with cisplatin (48.5% vs 25.0%). Compared with cisplatin, nedaplatin and lobaplatin were more likely to cause grade 3/4 thrombocytopenia (nedaplatin 19.4% vs cisplatin 3.8%; lobaplatin 30.3% vs cisplatin 3.8%). Similarly, nimotuzumab group showed highest nadir levels among the four groups, followed by cisplatin, nedaplatin, and lobaplatin group. Moreover, concurrent platinum treatment and induction chemotherapy were risk factors of developing grade 3/4 hematological toxicities. CONCLUSION Nimotuzumab-based concurrent chemoradiotherapy in head and neck cancers produced the lightest hematological toxicities, followed by cisplatin, nedaplatin, and lobaplatin. Patients should be given specific attention during concurrent chemoradiotherapy, particularly in the presence of previous induction chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
837
|
Abdalbari FH, Telleria CM. The gold complex auranofin: new perspectives for cancer therapy. Discov Oncol 2021; 12:42. [PMID: 35201489 PMCID: PMC8777575 DOI: 10.1007/s12672-021-00439-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced stages of cancer are highly associated with short overall survival in patients due to the lack of long-term treatment options following the standard form of care. New options for cancer therapy are needed to improve the survival of cancer patients without disease recurrence. Auranofin is a clinically approved agent against rheumatoid arthritis that is currently enrolled in clinical trials for potential repurposing against cancer. Auranofin mainly targets the anti-oxidative system catalyzed by thioredoxin reductase (TrxR), which protects the cell from oxidative stress and death in the cytoplasm and the mitochondria. TrxR is over-expressed in many cancers as an adaptive mechanism for cancer cell proliferation, rendering it an attractive target for cancer therapy, and auranofin as a potential therapeutic agent for cancer. Inhibiting TrxR dysregulates the intracellular redox state causing increased intracellular reactive oxygen species levels, and stimulates cellular demise. An alternate mechanism of action of auranofin is to mimic proteasomal inhibition by blocking the ubiquitin-proteasome system (UPS), which is critically important in cancer cells to prevent cell death when compared to non-cancer cells, because of its role on cell cycle regulation, protein degradation, gene expression, and DNA repair. This article provides new perspectives on the potential mechanisms used by auranofin alone, in combination with diverse other compounds, or in combination with platinating agents and/or immune checkpoint inhibitors to combat cancer cells, while assessing the feasibility for its repurposing in the clinical setting.
Collapse
Affiliation(s)
- Farah H Abdalbari
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
838
|
Wei X, Zhu J, Zhang Y, Zhao Q, Wang H, Gu K. miR-338-5p-ZEB2 axis in Diagnostic, Therapeutic Predictive and Prognostic Value of Gastric Cancer. J Cancer 2021; 12:6756-6772. [PMID: 34659565 PMCID: PMC8518007 DOI: 10.7150/jca.58249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/10/2021] [Indexed: 12/24/2022] Open
Abstract
MiRNAs have been widely reported to be involved in the occurrence and development of cancers. So far, some studies have revealed that miR-338-5p has the functions of tumorigenesis and tumor suppression. However, the role of miR-338-5p in the pathogenesis, progression and treatment of gastric cancer (GC) has not been reported. MiRNAs microarray analysis showed for the first time that miR-338-5p was significantly lower-expression in cisplin-resistant GC cells SGC7901/DDP, and cell viability assay and flow cytometry confirmed that overexpression of miR-338-5p could significantly increase cisplatin-sensitivity of SGC7901/DDP and BGC823 cells. Subsequently, we found that the expression of miR-338-5p in postoperative cancer tissues of GC patients was also significantly lower than the corresponding paracancer tissues. The expression of miR-338-5p in peripheral blood serum of GC patients is generally lower than that of healthy people. Moreover, the low expression of miR-338-5p in the cancer tissues and serum of GC patients was closely associated with larger tumor volume, lymph node metastasis, later stage, and even poorer survival, which was confirmed by close 5-year cases follow-up. ZEB2, as a predictive target of miR-338-5p, its expression was negatively regulated by miR-338-5p and can promote cisplatin-resistance in SGC7901/DDP and BGC823 cells. The expression of ZEB2 in cisplatin-resistant SGC7901/DDP cells and GC tissues were significantly higher than SGC7901 cells and paracancer tissues, respectively. Moreover, the expression of ZEB2 in tumor tissues was negatively correlated with miR-338-5p in tumor tissues and peripheral blood serum of GC patients, and the abnormally high expression of ZEB2 in prospective case studies is positively related with more serious clinical pathology and worse survival. More meaningfully, in a retrospective case study, we found that high ZEB2 expression predicts worse clinical efficacy of platinum chemotherapy. Thus, miR-338-5p-ZEB2 axis have novel diagnostic, therapeutic predictive, and prognostic value in GC patients.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiejie Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
839
|
Niu Z, Li X, Dong S, Gao J, Huang Q, Yang H, Qian H, Zhuo S, Zhuang T, Zhu J, Ding Y, Xu W. The E3 Ubiquitin Ligase HOIP inhibits Cancer Cell Apoptosis via modulating PTEN stability. J Cancer 2021; 12:6553-6562. [PMID: 34659546 PMCID: PMC8489130 DOI: 10.7150/jca.61996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy is widely used in a variety of solid tumors, such as lung cancer, gastric cancer and breast cancer. The genotoxic drugs, such as cisplatin, suppress cancer progression either by inhibition cell proliferation or facilitating apoptosis. However, the chemotherapy resistance remains an urgent challenge in cancer therapy, especially in advanced stages. Several studies showed that the activation of pro-survival pathways, such as PI3K-AKT, participated in mediating chemotherapy resistance. The insights into the molecular mechanisms for underlying chemotherapy resistance are of great importance to improve cancer patient survival in advanced stages. The HOIP protein belongs to the RING family E3 ubiquitin ligases and modulates several atypical ubiquitination processes in cellular signaling. Previous studies showed that HOIP might be an important effector in modulating cancer cell death under genotoxic drugs. Here, we report that HOIP associates with PTEN and facilitates PTEN degradation in cancer cells. Depletion of HOIP causes cell cycle arrest and apoptosis, which effects could be rescued by PTEN silencing. Besides, the survival data from public available database show that HOIP expression correlates with poor survival in several types of chemotherapy-treated cancer patients. In conclusion, our study establishes a novel mechanism by which HOIP modulates PTEN stability and facilitates chemotherapy resistance in malignancies.
Collapse
Affiliation(s)
- Zhiguo Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Xin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Shuxiao Dong
- Department of Gastroenterology surgery, Shandong Provincial Third Hospital, Jinan, 250000, China
| | - Jianhui Gao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Huijie Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Shu Zhuo
- Signet Therapeutics Inc, Shenzhen, China. Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518000, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China.,Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yinlu Ding
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| |
Collapse
|
840
|
Ak G, Akartas I, Özel B, Selvi Günel N, Karasulu HY, Gümüştaş B, Karasulu E, Hamarat Şanlıer Ş. Preparation, characterization and in vitro evaluation of cisplatin-bound triblock polymeric micelle solution for ovarian cancer treatment. Drug Dev Ind Pharm 2021; 47:1248-1260. [PMID: 34606388 DOI: 10.1080/03639045.2021.1989451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The main objective of this study was to prepare cisplatin (CDDP) bound triblock polymeric micelle solution which will have a hydrophilic shell not being phagocytosed by mononuclear phagocyte system, and evaluate in vitro behavior for the treatment of ovarian cancer. For this aim, CDDP was bound to polyglutamic acid (PGA) and the triblock polymer was prepared using polyethylene glycol)-polylactide-co-glycolide (PEG-PLGA). CDDP-bound triblock copolymer conjugation was characterized, in vitro release and permeability studies were performed using USP II method and Caco-2 cell lines, respectively. The release of CDDP from CDDP-bound triblock polymeric micelle solution was found 87.3 ± 3.56% at the end of the 24th hour. CDDP bound triblock polymeric micelle solution was detected as biocompatible, and permeable according to in vitro studies. According to the MTT results, the measured cytotoxicity was found to be maximum in CDDP-bound triblock polymeric micelle solution when compared with CDDP solution and conjugate in SKOV-3 and OVCAR-3 cells, whereas annexin V-FITC apoptosis results were found to be maximum in A2780 cells.
Collapse
Affiliation(s)
- Güliz Ak
- Faculty of Science, Biochemistry Department, Ege University, Izmir, Turkey.,Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Irfan Akartas
- Faculty of Pharmacy, European University of Lefke, Lefke, Turkish Republic of Northern Cyprus, Mersin, Turkey
| | - Buket Özel
- Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey.,Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Nur Selvi Günel
- Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey.,Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Hatice Yeşim Karasulu
- Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey.,Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| | - Barış Gümüştaş
- Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Ercüment Karasulu
- Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey.,Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacokinetics, Ege University, Izmir, Turkey
| | - Şenay Hamarat Şanlıer
- Faculty of Science, Biochemistry Department, Ege University, Izmir, Turkey.,Center for Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| |
Collapse
|
841
|
Frei A, Ramu S, Lowe GJ, Dinh H, Semenec L, Elliott AG, Zuegg J, Deckers A, Jung N, Bräse S, Cain AK, Blaskovich MAT. Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria. ChemMedChem 2021; 16:3165-3171. [PMID: 34018686 PMCID: PMC8596843 DOI: 10.1002/cmdc.202100157] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2 (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Soumya Ramu
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Gabrielle J. Lowe
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Alysha G. Elliott
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Johannes Zuegg
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Anke Deckers
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Nicole Jung
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mark A. T. Blaskovich
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| |
Collapse
|
842
|
Jiang M, Chu Y, Yang T, Li W, Zhang Z, Sun H, Liang H, Yang F. Developing a Novel Indium(III) Agent Based on Liposomes to Overcome Cisplatin-Induced Resistance in Breast Cancer by Multitargeting the Tumor Microenvironment Components. J Med Chem 2021; 64:14587-14602. [PMID: 34609868 DOI: 10.1021/acs.jmedchem.1c01068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To overcome the resistance of cancer cells to platinum-based drugs and effectively suppress tumor growth, we developed a novel indium (In) agent based on liposomes (Lips). Thus, we not only obtained an In(III) thiosemicarbazone agent (5b) with remarkable cytotoxicity by optimizing a series of In(III) thiosemicarbazone agents (1b-5b) but also successfully constructed a novel 5b-loaded Lip (5b-Lip) delivery system. Importantly, in vitro and in vivo results revealed that 5b/5b-Lip overcame the tumor cell resistance and effectively inhibited MCF-7/DDP tumor growth. In addition, Lips improved the intracellular accumulation of 5b. We also confirmed the mechanism by which 5b/5b-Lip overcomes breast cancer cell resistance. 5b/5b-Lip cannot act against DNA in cancer cells but attacks the two cell components in the tumor microenvironment, namely, by inducing apoptosis and lethal autophagy of cancer cells and resetting tumor-promoting M2 macrophages to the tumor-killing M1 phenotype.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China.,School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Yong Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
843
|
Zhu C, He M, Sun D, Huang Y, Huang L, Du M, Wang J, Wang J, Li Z, Hu B, Song Y, Li Y, Feng G, Liu L, Zhang L. 3D-Printed Multifunctional Polyetheretherketone Bone Scaffold for Multimodal Treatment of Osteosarcoma and Osteomyelitis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47327-47340. [PMID: 34587454 DOI: 10.1021/acsami.1c10898] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, we developed the first 3D-printed polyetheretherketone (PEEK)-based bone scaffold with multi-functions targeting challenging bone diseases such as osteosarcoma and osteomyelitis. A 3D-printed PEEK/graphene nanocomposite scaffold was deposited with a drug-laden (antibiotics and/or anti-cancer drugs) hydroxyapatite coating. The graphene nanosheets within the scaffold served as effective photothermal agents that endowed the scaffold with on-demand photothermal conversion function under near-infrared laser irradiation. The bioactive hydroxyapatite coating significantly boosted the stem cell proliferation in vitro and promoted new bone growth in vivo. The presence of antibiotics and anti-cancer drugs enabled eradication of drug-resistant bacteria and ablation of osteosarcoma cancer cells, the treatment efficacy of which can be further enhanced by on-demand laser-induced heating. The promising results demonstrate the strong potential of our multi-functional scaffold in applications such as bone defect repair and multimodal treatment of osteosarcoma and osteomyelitis.
Collapse
Affiliation(s)
- Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
- Department of Spine Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Miaomiao He
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Dan Sun
- Advanced Composite Research Group, School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, U.K
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Meixuan Du
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Jingcheng Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Juehan Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Zhongyang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Bowen Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
844
|
Yao F, Xiang X, Zhou C, Huang Q, Huang X, Xie Z, Wang Q, Wu Q. Identification of Circular RNAs Associated With Chemoresistance in Colorectal Cancer. Front Genet 2021; 12:696948. [PMID: 34603369 PMCID: PMC8484910 DOI: 10.3389/fgene.2021.696948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023] Open
Abstract
Chemoresistance is a major clinical obstacle for the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) are a new type of non-coding RNA that participated in the development of chemoresistance. However, the profiles and effects of circRNAs in 5-fluorouracil (5-Fu) and cisplatin resistance of CRC are still unclear and need to be elucidated. In the present study, the profiles of circRNAs in CRC chemoresistant (HCT8/5-Fu and HCT8/DDP) and chemosensitive (HCT8) cell lines were identified via RNA-sequencing. In total, 48 and 90 differentially expressed (DE)-circRNAs were detected in HCT8/5-Fu and HCT8/DDP cell lines, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted on the host genes of DE-circRNAs; the results showed that the most significant enrichment pathways in HCT8/5-Fu and HCT8/DDP cell lines were base excision repair and Hippo signaling pathway, respectively. In addition, 11 common DE-circRNAs in the two drug-resistant cell lines (two are upregulated and nine are downregulated) were screened and verified by quantitative real-time PCR; hsacirc_023607 and hsacirc_007420 were found to be the circRNAs with the highest upregulation and downregulation fold changes. However, functional studies showed hsacirc_023607 has no effect on CRC chemoresistance. Therefore, the regulatory networks of targeted miRNAs related to 5-Fu or cisplatin resistance were predicted and constructed, in which hsacirc_002482 was identified as a hub gene, and its overexpression could suppress HCT8/5-Fu and HCT8/DDP cell proliferation and promote cell apoptosis, and enhance cell chemosensitivity. Taken together, these results of the study suggested that hsacirc_002482 may play important roles in chemoresistance of CRC.
Collapse
Affiliation(s)
- Fei Yao
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chuanren Zhou
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyou Huang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoying Huang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhufu Xie
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
845
|
An JH, Li CY, Chen CY, Wu JB, Shen H. Raloxifene Protects Cisplatin-Induced Renal Injury in Mice via Inhibiting Oxidative Stress. Onco Targets Ther 2021; 14:4879-4890. [PMID: 34588782 PMCID: PMC8473575 DOI: 10.2147/ott.s314810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/04/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Cisplatin is one of the most widely used antineoplastic drugs but has limited therapeutic effects due to nephrotoxicity. The aim of this study was to determine the possible renoprotective effect of the antioxidant raloxifene on cisplatin-induced nephrotoxicity in mice. Materials and Methods Cisplatin-induced acute renal injury was established in female C57 mice that were treated with saline (normal control) or raloxifene over a 7-day period. The body weight of the mice was recorded. Histopathological examinations of the kidney tissues were performed using H&E, PAS staining and TEM. The histomorphology of liver and other organs was observed by H&E staining. The serum levels of creatinine, blood urea nitrogen (BUN), alanine transaminase (ALT) and glutamic oxalacetic transaminase (AST) were analyzed by specific kits. Superoxide dismutase (SOD) and glutathione (GSH) activity, and the content of malondialdehyde (MDA) in the kidney, liver homogenates and HK-2 cells were measured by WST-8 and thiobarbituric acid colorimetric methods. Moreover, the mitochondrial structures of HK-2 cells were performed using TEM. The viability and proliferation of HK-2 cells were examined by CCK-8 and EdU incorporation assays. The mitochondrial membrane potential was measured by JC-1 fluorescence. Results Raloxifene significantly reduced the levels of serum creatinine, urea, ALT and AST in the cisplatin-treated mice, and alleviated cisplatin-induced renal and hepatic tissue injury. Furthermore, raloxifene also increased the activity of GSH and SOD in the renal tissues and HK-2 cells, and reduced MDA levels, thereby limiting oxidative stress in the kidney. Conclusion Raloxifene protected against cisplatin-induced nephrotoxicity by activating the antioxidant system, along with alleviating liver damage. It should be considered as a potential adjuvant in cisplatin-based chemotherapeutic protocols.
Collapse
Affiliation(s)
- Jian-Hong An
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Chun-Yan Li
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Chun-Ya Chen
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Jian-Bin Wu
- Department of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Hong Shen
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
846
|
Cui HY, Rong JS, Chen J, Guo J, Zhu JQ, Ruan M, Zuo RR, Zhang SS, Qi JM, Zhang BH. Exosomal microRNA-588 from M2 polarized macrophages contributes to cisplatin resistance of gastric cancer cells. World J Gastroenterol 2021; 27:6079-6092. [PMID: 34629821 PMCID: PMC8476330 DOI: 10.3748/wjg.v27.i36.6079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is a prevalent malignant cancer with a high incidence and significantly affects the health of modern people globally. Cisplatin (DDP) is one of the most common and effective chemotherapies for patients with gastric cancer, but DDP resistance remains a severe clinical challenge.
AIM To explore the function of M2 polarized macrophages-derived exosomal microRNA (miR)-588 in the modulation of DDP resistance of gastric cancer cells.
METHODS M2 polarized macrophages were isolated and identified by specific markers using flow cytometry analysis. The exosomes from M2 macrophages were identified by transmission electron microscopy and related markers. The uptake of the PKH67-labelled M2 macrophages-derived exosomes was detected in SGC7901 cells. The function and mechanism of exosomal miR-588 from M2 macrophages in the modulation of DDP resistance of gastric cancer cells was analyzed by CCK-8 assay, apoptosis analysis, colony formation assay, Western blot analysis, qPCR analysis, and luciferase reporter assay in SGC7901 and SGC7901/DDP cells, and by tumorigenicity analysis in nude mice.
RESULTS M2 polarized macrophages were isolated from mouse bone marrow stimulated with interleukin (IL)-13 and IL-4. Co-cultivation of gastric cancer cells with M2 polarized macrophages promoted DDP resistance. M2 polarized macrophages-derived exosomes could transfer in gastric cancer cells to enhance DDP resistance. Exosomal miR-588 from M2 macrophages contributed to DDP resistance of gastric cancer cells. miR-588 promoted DDP-resistant gastric cancer cell growth in vivo. miR-588 was able to target cylindromatosis (CYLD) in gastric cancer cells. The depletion of CYLD reversed miR-588 inhibition-regulated cell proliferation and apoptosis of gastric cancer cells exposed to DDP.
CONCLUSION In conclusion, we uncovered that exosomal miR-588 from M2 macrophages contributes to DDP resistance of gastric cancer cells by partly targeting CYLD. miR-588 may be applied as a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hai-Yan Cui
- Department of Pathology, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Jian-Sheng Rong
- Department of Pathology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Ju Chen
- Department of Ultrasound Medicine, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Jie Guo
- Department of Health, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Jia-Qin Zhu
- Department of Gastroenterology, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Mei Ruan
- Department of Oncology, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Rong-Rong Zuo
- Department of Pathology, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Shuang-Shuang Zhang
- Department of Pathology, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Jun-Mei Qi
- Department of Pathology, The Fourth People’s Hospital of Zibo City, Zibo 255000, Shandong Province, China
| | - Bao-Hua Zhang
- Department of Pathology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| |
Collapse
|
847
|
Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. METALS 2021. [DOI: 10.3390/met11101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, therapeutic metallodrugs have become substantially effective in the treatment of cancer. Thus, developing new effective anticancer drugs is a significant research area against the continuing increase in cancers worldwide. In the search for heterobimetallic prodrugs containing V/Cu, a new cyclo-tetravanadate was synthesized and characterized by UV-visible and FTIR spectroscopies and single-crystal X-ray diffraction. L-Glutamine and 1,10-phenanthroline allow the crystallization of [Cu(L-Gln)(phen)(H2O)]4[V4O12]∙8(H2O) (1), in which the cyclo-tetravanadate acts as a free anion. Density functional theory (DFT) calculations were carried out to characterize the frontier molecular orbitals and molecular electrostatic potential. Global reactivity indexes were calculated and analyzed to give insight into the cyclo-tetravanadate anion and complex counterions interactions. Also, using Bader’s theory of atoms in molecules (AIM), non-covalent interactions were analyzed. Docking analysis with the Casiopeina-like complex resulting from the hydrolysis of compound 1 provided insights into these complex potential anticancer activities by interacting with DNA/tRNA via H-bonds and hydrophobic interactions. The release of both components could act together or separately, acting as prodrugs with potential dual antineoplastic activities.
Collapse
|
848
|
Jia D, Wang F, Yang Y, Hu P, Song H, Lu Y, Wang R, Li G, Liu R, Li J, Yuan F. Coupling EGFR-Antagonistic Affibody Enhanced Therapeutic Effects of Cisplatin Liposomes in EGFR-expressing Tumor Models. J Pharm Sci 2021; 111:450-457. [PMID: 34547305 DOI: 10.1016/j.xphs.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an efficient target for cancer therapy. In this study, a high-affinity EGFR-antagonistic affibody (ZEGFR) molecule coupled with cisplatin-loaded PEGylated liposomes (LS-DDP) was applied to actively target EGFR+ A431 tumor cells in vitro and in vivo. The LS-DDP coupled with ZEGFR (AS-DDP) had an average size of 140.01 ± 0.84 nm, low polydispersity, a zeta potential of -13.40 ± 0.8 mV, an acceptable encapsulation efficiency of 17.30 ± 1.35%, and released cisplatin in a slow-controlled manner. In vitro, AS-DDP demonstrated a higher amount of platinum intracellular uptake by A431 cells than LS-DDP. The IC50 value of AS-DDP (9.02 ± 1.55 μg/ml) was much lower than that of LS-DDP (16.44 ± 0.87 μg/ml), indicating that the anti-tumor effects of AS-DDP were remarkable due to the modification of ZEGFR. In vivo, the concentration of AS-DDP in the tumor site increased more than 1.76-fold, while an increase in apoptotic cells at 48 h compared to the LS-DDP was also observed, illustrating that AS-DDP possessed excellent tumor-targeting efficiency. As a result, the targeted nano-liposomes achieved greater tumor suppression. Therefore, selective targeting of LS-DDP coupled with ZEGFR enhanced the anti-tumor effects and appeared to be a promising strategy for the treatment of EGFR+ tumors.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yujiao Yang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Hao Song
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/ Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Yue Lu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Guangyong Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Renmin Liu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China.
| |
Collapse
|
849
|
Xiang L, Zeng Q, Liu J, Xiao M, He D, Zhang Q, Xie D, Deng M, Zhu Y, Liu Y, Bo H, Liu X, Zhou M, Xiong W, Zhou Y, Zhou J, Li X, Cao K. MAFG-AS1/MAFG positive feedback loop contributes to cisplatin resistance in bladder urothelial carcinoma through antagonistic ferroptosis. Sci Bull (Beijing) 2021; 66:1773-1788. [PMID: 36654385 DOI: 10.1016/j.scib.2021.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
Though promoting ferroptosis can reduce cisplatin resistance in tumor cells, ferroptosis and cisplatin resistance in bladder urothelial carcinoma (BUC) following long non-coding RNAs (lncRNAs) is largely unknown. Here, we found the highly expressed lncRNA MAF transcription factor G antisense RNA 1 (MAFG-AS1) in BUC, and its inhibition increased the sensitivity of BUC cells to cisplatin by promoting ferroptosis. Mechanically, binding to iron chaperone poly(rC)-binding protein 2 (PCBP2) facilitated the recruitments of MAFG-AS1 to deubiquitinase ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5), thus stabilizing PCBP2 protein itself. Then PCBP2 was confirmed to interact with ferroportin 1 (FPN1), an iron export protein, leading to inhibition of ferroptosis. Moreover, the expression of MAFG-AS1 was regulated by the transcriptional factor MAFG. Interestingly, MAFG-AS1 stimulated MAFG transcription by recruiting histone acetyltransferase p300 (EP300) to promote the histone 3 at lysine 27 (H3K27ac) at genomic locus of MAFG, forming a MAFG-AS1/MAFG positive feedback loop. In patient samples, higher expression of MAFG-AS1 and MAFG in BUC tissues was significantly correlated with T status and N status, such that MAFG-AS1, MAFG, and the combination of the two were independent prognostic indicators and chemotherapy sensitivity predictive biomarkers for BUC patients. These findings suggest that inhibition of MAFG-AS1 and MAFG can increase the sensitivity of BUC cells to cisplatin through promoting ferroptosis, indicating the novel chemotherapy sensitivity biomarkers and therapeutic target for BUC.
Collapse
Affiliation(s)
- Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yan Liu
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410083, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Wei Xiong
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha 410078, China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiaohui Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
850
|
Peega T, Magwaza RN, Harmse L, Kotzé IA. Synthesis and evaluation of the anticancer activity of [Pt(diimine)(N,N-dibutyl-N'-acylthiourea)] + complexes. Dalton Trans 2021; 50:11742-11762. [PMID: 34369524 DOI: 10.1039/d1dt01385h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the concerted efforts to develop targeted cancer treatments, these therapies are plagued by the rapid development of resistance and serious adverse drug reactions. Based on the wide clinical use and successes of the platinum drugs like cisplatin and oxaliplatin, we investigated the synthesis and potential anticancer efficacy of alternative platinum complexes. A series of nine cationic square planar platinum(ii) complexes were synthesized and characterized and then evaluated for their anticancer activity. The complexes were of the type [Pt(diimine)(Ln-κO,S)]+ where diimine is either 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (dmp) or dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) and Ln-κO,S representing various N,N-dibutyl-N'-acylthiourea ligands. The anticancer activity of the synthesised complexes was evaluated against two lung cancer cell lines (A549 and H1975) and a colorectal cancer cell line, HT-29. The 50% inhibitory concentrations (IC50) for the most cytotoxic compounds were determined and the mode of cell death evaluated. The structure-activity relationships indicated that complexes with the 5,6-dimethyl-1,10-phenanthroline variation of the diimine ligand were the most active against the cell lines tested, while the activity of complexes based on the acylthiourea ligand varied between the cell lines. IC50 values for the three active platinum complexes were in the low micromolar range for the three cell lines and ranged between 0.68 μM and 2.28 μM. Changes to cell morphology indicate that the active platinum complexes induce cell death by both apoptosis and paraptosis. The complexes were able to induce the nuclear expression of the cyclin-dependent kinase inhibitor, p21, which is an indicator of DNA damage. The collective data indicate that these platinum complexes are valuable lead compounds for further analysis and cancer drug discovery.
Collapse
Affiliation(s)
- Tebogo Peega
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | |
Collapse
|