801
|
Therrien M, Parker JA. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans. Front Genet 2014; 5:85. [PMID: 24860590 PMCID: PMC4029022 DOI: 10.3389/fgene.2014.00085] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/30/2014] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.
Collapse
Affiliation(s)
- Martine Therrien
- Départment de Pathologie et Biologie Cellulaire, CRCHUM-Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - J Alex Parker
- Départment de Pathologie et Biologie Cellulaire, Départment de Neurosciences, CRCHUM-Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
802
|
Abstract
Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in β-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified, and a similar number has been found in fungi. In both mammals and fungi, variations in the prion conformation encipher the biological properties of distinct prion strains. Increasing evidence argues that prions cause many neurodegenerative diseases (NDs), including Alzheimer's, Parkinson's, Creutzfeldt-Jakob, and Lou Gehrig's diseases, as well as the tauopathies. The majority of NDs are sporadic, and 10% to 20% are inherited. The late onset of heritable NDs, like their sporadic counterparts, may reflect the stochastic nature of prion formation; the pathogenesis of such illnesses seems to require prion accumulation to exceed some critical threshold before neurological dysfunction manifests.
Collapse
Affiliation(s)
- Stanley B Prusiner
- Institute for Neurodegenerative Diseases and Department of Neurology, University of California, San Francisco, California 94143;
| |
Collapse
|
803
|
Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. Genetic heterogeneity of amyotrophic lateral sclerosis: Implications for clinical practice and research. Muscle Nerve 2014; 49:786-803. [DOI: 10.1002/mus.24198] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaowei W. Su
- Department of Neurosurgery; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - James R. Broach
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - James R. Connor
- Department of Neurosurgery; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - Glenn S. Gerhard
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - Zachary Simmons
- Department of Neurology; Penn State Milton S. Hershey Medical Center; 30 Hope Drive (Suite EC037) Hershey Pennsylvania 17033 USA
| |
Collapse
|
804
|
Mohan A, Goodwin M, Swanson MS. RNA-protein interactions in unstable microsatellite diseases. Brain Res 2014; 1584:3-14. [PMID: 24709120 DOI: 10.1016/j.brainres.2014.03.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
A novel RNA-mediated disease mechanism has emerged from studies on dominantly inherited neurological disorders caused by unstable microsatellite expansions in non-coding regions of the genome. These non-coding tandem repeat expansions trigger the production of unusual RNAs that gain a toxic function, which involves the formation of RNA repeat structures that interact with, and alter the activities of, various factors required for normal RNA processing as well as additional cellular functions. In this review, we explore the deleterious effects of toxic RNA expression and discuss the various model systems currently available for studying RNA gain-of-function in neurologic diseases. Common themes, including bidirectional transcription and repeat-associated non-ATG (RAN) translation, have recently emerged from expansion disease studies. These and other discoveries have highlighted the need for further investigations designed to provide the additional mechanistic insights essential for future therapeutic development.
Collapse
Affiliation(s)
- Apoorva Mohan
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA.
| |
Collapse
|
805
|
Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, Han S, Peng T, Thams S, Mikkilineni S, Mellin C, Merkle FT, Davis-Dusenbery BN, Ziller M, Oakley D, Ichida J, Di Costanzo S, Atwater N, Maeder ML, Goodwin MJ, Nemesh J, Handsaker RE, Paull D, Noggle S, McCarroll SA, Joung JK, Woolf CJ, Brown RH, Eggan K. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 2014; 14:781-95. [PMID: 24704492 DOI: 10.1016/j.stem.2014.03.004] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/18/2013] [Accepted: 03/11/2014] [Indexed: 12/12/2022]
Abstract
Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem-cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates that at least a subset of these changes are more broadly conserved in ALS.
Collapse
Affiliation(s)
- Evangelos Kiskinis
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Jackson Sandoe
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Luis A Williams
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Gabriella L Boulting
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rob Moccia
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Brian J Wainger
- FM Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Steve Han
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Theodore Peng
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Sebastian Thams
- Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, Departments of Pathology, Neurology and Neuroscience, Columbia University, Center for Motor Neuron Biology and Disease (MNC), and Columbia Stem Cell Initiative (CSCI), New York, NY 10027, USA
| | - Shravani Mikkilineni
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Cassidy Mellin
- FM Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Florian T Merkle
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Brandi N Davis-Dusenbery
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Michael Ziller
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Derek Oakley
- Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, Departments of Pathology, Neurology and Neuroscience, Columbia University, Center for Motor Neuron Biology and Disease (MNC), and Columbia Stem Cell Initiative (CSCI), New York, NY 10027, USA
| | - Justin Ichida
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stefania Di Costanzo
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nick Atwater
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Morgan L Maeder
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Mathew J Goodwin
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10023, USA
| | - Scott Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY 10023, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kevin Eggan
- The Howard Hughes Medical Institute, USA; Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA.
| |
Collapse
|
806
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
807
|
Pressman PS, Miller BL. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry 2014; 75:574-81. [PMID: 24315411 PMCID: PMC4194080 DOI: 10.1016/j.biopsych.2013.11.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia was documented over a century ago. The last decade, however, has seen substantial changes in our conceptions of this increasingly recognized disorder. Different clinical variants have been delineated, the most common of which is the behavioral variant (bvFTD). Updated diagnostic criteria have been established. New histopathological findings and genetic etiologies have been discovered. Research continues to uncover molecular mechanisms by which abnormal proteins accumulate in degenerating brain tissue. Novel neuroimaging techniques suggest that functional networks are diminished in bvFTD that might be relevant to empathy and social behavior. Despite rapid advances in our understanding of bvFTD, the disease is still under-recognized and commonly misdiagnosed. The result is inappropriate patient care. Recognizing the various presentations of bvFTD and its histological and genetic subtypes might further diagnosis, treatment, and research.
Collapse
Affiliation(s)
- Peter S Pressman
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, California.
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
808
|
Yokoyama JS, Sirkis DW, Miller BL. C9ORF72 hexanucleotide repeats in behavioral and motor neuron disease: clinical heterogeneity and pathological diversity. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2014; 3:1-18. [PMID: 24753999 PMCID: PMC3986607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of frontotemporal dementia (FTD), a predominantly behavioral disease, and amyotrophic lateral sclerosis (ALS), a disease of motor neurons. The primary objectives of this review are to highlight the clinical heterogeneity associated with C9ORF72 pathogenic expansion and identify potential molecular mechanisms underlying selective vulnerability of distinct neural populations. The proposed mechanisms by which C9ORF72 expansion causes behavioral and motor neuron disease highlight the emerging role of impaired RNA and protein homeostasis in a spectrum of neurodegeneration and strengthen the biological connection between FTD and ALS.
Collapse
Affiliation(s)
| | - Daniel W Sirkis
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at BerkeleyBerkeley, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of CaliforniaSan Francisco, CA, USA
| |
Collapse
|
809
|
Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 2014; 507:195-200. [PMID: 24598541 PMCID: PMC4046618 DOI: 10.1038/nature13124] [Citation(s) in RCA: 736] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
Abstract
A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Aaron R. Haeusler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Christopher J. Donnelly
- Department of Neurology, Johns Hopkins University Baltimore, MD, 21205, USA
- The Brain Science Institute, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Eric A.J. Simko
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Patrick G. Shaw
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore, MD, 21205, USA
| | | | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Rita Sattler
- Department of Neurology, Johns Hopkins University Baltimore, MD, 21205, USA
- The Brain Science Institute, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Jeffrey D. Rothstein
- Department of Neuroscience, Johns Hopkins University Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University Baltimore, MD, 21205, USA
- The Brain Science Institute, Johns Hopkins University Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University Baltimore, MD, 21205, USA
| |
Collapse
|
810
|
Mackenzie IRA, Frick P, Neumann M. The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol 2014; 127:347-57. [PMID: 24356984 DOI: 10.1007/s00401-013-1232-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022]
Abstract
An abnormal expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72) is the most common genetic abnormality in familial and sporadic FTLD and ALS and the cause in most families where both, FTLD and ALS, are inherited. Pathologically, C9ORF72 expansion cases show a combination of FTLD-TDP and classical ALS with abnormal accumulation of TDP-43 into neuronal and oligodendroglial inclusions consistently seen in the frontal and temporal cortex, hippocampus and pyramidal motor system. In addition, a highly specific feature in C9ORF72 expansion cases is the presence of ubiquitin and p62 positive, but TDP-43 negative neuronal cytoplasmic and intranuclear inclusions. These TDP-43 negative inclusions contain dipeptide-repeat (DPR) proteins generated by unconventional repeat-associated translation of C9ORF72 transcripts with the expanded repeats and are most abundant in the cerebellum, hippocampus and all neocortex regions. Another consistent pathological feature associated with the production of C9ORF72 transcripts with expanded repeats is the formation of nuclear RNA foci that are frequently observed in the frontal cortex, hippocampus and cerebellum. Here, we summarize the complexity and heterogeneity of the neuropathology associated with the C9ORF72 expansion. We discuss implications of the data to the current classification of FTLD and critically review current insights from clinico-pathological correlative studies regarding the fundamental questions as to what processes are required and sufficient to trigger neurodegeneration in C9ORF72 disease pathogenesis.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, Canada
| | | | | |
Collapse
|
811
|
Cooper-Knock J, Shaw PJ, Kirby J. The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol 2014; 127:333-45. [PMID: 24493408 PMCID: PMC3925297 DOI: 10.1007/s00401-014-1251-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
Abstract
The GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) and ALS-FTLD, as well as contributing to sporadic forms of these diseases. Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9ORF72 carriers have a higher incidence of bulbar onset disease. In contrast, C9ORF72-FTLD is predominantly associated with behavioural variant FTD, which often presents with psychosis, most commonly in the form of hallucinations and delusions. However, C9ORF72 expansions are not restricted to these clinical phenotypes. There is a higher than expected incidence of parkinsonism in ALS patients with C9ORF72 expansions, and the G4C2 repeat has also been reported in other motor phenotypes, such as primary lateral sclerosis, progressive muscular atrophy, corticobasal syndrome and Huntington-like disorders. In addition, the expansion has been identified in non-motor phenotypes including Alzheimer's disease and Lewy body dementia. It is not currently understood what is the basis of the clinical variation seen with the G4C2 repeat expansion. One potential explanation is repeat length. Sizing of the expansion by Southern blotting has established that there is somatic heterogeneity, with different expansion lengths in different tissues, even within the brain. To date, no correlation with expansion size and clinical phenotype has been established in ALS, whilst in FTLD only repeat size in the cerebellum was found to correlate with disease duration. Somatic heterogeneity suggests there is a degree of instability within the repeat and evidence of anticipation has been reported with reducing age of onset in subsequent generations. This variability/instability in expansion length, along with its interactions with environmental and genetic modifiers, such as TMEM106B, may be the basis of the differing clinical phenotypes arising from the mutation.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ UK
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
812
|
Ferraiuolo L, Meyer K. Astrocyte toxicity in motor neuron disease: progress and future hopes. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Motor neuron disease or amyotrophic lateral sclerosis is a complex multicompartmental disorder that belongs to a spectrum of neurodegenerative conditions ranging from pure motor neuron disease to frontotemporal dementia. The symptoms and causes of death are determined by the progressive and relentless loss of motor neurons in the motor cortex and spinal cord, resulting in paralysis and respiratory failure. However, in the past 10 years, compelling evidence has demonstrated that astrocytes are also affected by the disease mechanisms and actively contribute to the neurodegenerative process. This review focuses on the pathways that are dysregulated in astrocytes and how they affect the relationship between astrocytes and motor neurons in amyotrophic lateral sclerosis. Ongoing research using new methodologies to unravel the contribution of specific cell types to the disease are predicted to open the door to new therapeutic interventions to slow disease progression in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kathrin Meyer
- Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
813
|
Gendron TF, Belzil VV, Zhang YJ, Petrucelli L. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 2014; 127:359-76. [PMID: 24394885 DOI: 10.1007/s00401-013-1237-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
A hexanucleotide repeat expansion within a non-coding region of the C9ORF72 gene is the most common mutation causative of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Elucidating how this bidirectionally transcribed G4C2·C4G2 expanded repeat causes "C9FTLD/ALS" has since become an important goal of the field. Likely pathogenic mechanisms include toxicity induced by repeat-containing RNAs, and loss of C9orf72 function due to epigenetic changes resulting in decreased C9ORF72 mRNA expression. With regards to the former, sense and antisense transcripts of the expanded repeat aberrantly interact with various RNA-binding proteins and form discrete nuclear structures, termed RNA foci. These foci have the capacity to sequester select RNA-binding proteins, thereby impairing their function. (G4C2)exp and (C4G2)exp transcripts also succumb to an alternative fate: repeat-associated non-ATG (RAN) translation. This unconventional mode of translation, which occurs in the absence of an initiating codon, results in the abnormal production of poly(GA), poly(GP), poly(GR), poly(PR) and poly(PA) peptides, collectively referred to as C9RAN proteins. C9RAN proteins form neuronal inclusions throughout the central nervous system of C9FTLD/ALS patients and may contribute to disease pathogenesis. This review aims to summarize the important findings from studies examining mechanisms of disease in C9FTLD/ALS, and will also highlight some of the many questions in need of further investigation.
Collapse
|
814
|
Proudfoot M, Gutowski NJ, Edbauer D, Hilton DA, Stephens M, Rankin J, Mackenzie IRA. Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability. Acta Neuropathol 2014; 127:451-8. [PMID: 24445903 DOI: 10.1007/s00401-014-1245-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Familial cases of frontotemporal dementia (FTD) provide an opportunity to study the pathophysiology of this clinically diverse condition. The C9ORF72 mutation is the most common cause of familial FTD, recent pathological descriptions challenge existing TDP-43 based hypotheses of sporadic FTD pathogenesis. Non-ATG dependent translation of the hexanucleotide expansion into aggregating dipeptide repeat (DPR) proteins may represent a novel pathomechanism. We report detection of the DPR aggregates very early in C9ORF72 FTD development and also describe childhood intellectual disability as a clinical feature preceding dementia. The index case presented with psychiatric symptoms, progressing into typical FTD. Autopsy revealed extensive neuronal DPR aggregates but only minimal TDP-43 pathology. Her intellectually disabled elder son, also carrying the C9ORF72 mutation, died aged 26 years and at autopsy only DPR aggregates without TDP-43 were found. A second son also has intellectual disability, his C9ORF72 status is unknown, but chromosomal microarray revealed no other cause of disability. These cases both extend the existing phenotype of C9ORF72 mutation and highlight the potential significance of DPR translation early in disease development.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Department of Neurology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK,
| | | | | | | | | | | | | |
Collapse
|
815
|
Stepto A, Gallo JM, Shaw CE, Hirth F. Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol 2014; 127:377-89. [PMID: 24366528 DOI: 10.1007/s00401-013-1235-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/11/2022]
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) has been identified as the most common genetic abnormality in both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). To investigate the role of C9ORF72-related G4C2 repeat expansion in ALS and FTLD, several animal and cell culture models have been generated that reveal initial insights into the disease pathogenesis of C9 ALS/FTLD. These models include neurons differentiated from patient-derived pluripotent stem cells as well as genetically engineered cells and organisms that knock down C9ORF72 orthologues or express G4C2 repeats. Targeted reduction or knockdown of C9ORF72 homologues in zebrafish and mice so far produced conflicting results which neither rule out, nor confirm reduced expression of C9ORF72 as a pathogenic mechanism in C9 ALS/FTLD. In contrast, studies using patient-derived cells, as well as Drosophila and zebrafish models overexpressing disease-related hexanucleotide expansions, can cause repeat length-dependent formation of RNA foci, which directly and progressively correlate with cellular toxicity. RNA foci formation is accompanied by sequestration of specific RNA-binding proteins (RBPs), including Pur-alpha, hnRNPH and ADARB2, suggesting that G4C2-mediated sequestration and functional depletion of RBPs are cytotoxic and thus directly contribute to disease. Moreover, these studies provide experimental evidence that repeat-associated non-ATG translation of repeat-containing sense and antisense RNA leads to dipeptide-repeat proteins (DPRs) that can accumulate and aggregate, indicating that accumulation of DPRs may represent another pathogenic pathway underlying C9 ALS/FTLD. These studies in cell and animal models therefore identify RNA toxicity, RBP sequestration and accumulation of DPRs as emerging pathogenic pathways underlying C9 ALS/FTLD.
Collapse
Affiliation(s)
- Alan Stepto
- Department of Neuroscience, Institute of Psychiatry, King's College London, PO Box 37, 16 De Crespigny Park, London, SE5 8AF, UK
| | | | | | | |
Collapse
|
816
|
|
817
|
van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC, DeJesus-Hernandez M, Finch NA, Brown PH, Murray ME, Hsiung GYR, Stewart H, Karydas AM, Finger E, Kertesz A, Bigio EH, Weintraub S, Mesulam M, Hatanpaa KJ, White CL, Strong MJ, Beach TG, Wszolek ZK, Lippa C, Caselli R, Petrucelli L, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Mackenzie IR, Seeley WW, Grinberg LT, Miller BL, Boylan KB, Graff-Radford NR, Boeve BF, Dickson DW, Rademakers R. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 2014; 127:397-406. [PMID: 24385136 DOI: 10.1007/s00401-013-1240-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions [with or without motor neuron disease (MND); cohort 2], and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls [11.9 vs. 19.1 %, odds ratio (OR) 0.57, p = 0.014; same direction as carriers of GRN mutations]. The strongest evidence was provided by FTD patients (OR 0.33, p = 0.009) followed by FTD/MND patients (OR 0.38, p = 0.017), whereas no significant difference was observed in MND patients (OR 0.85, p = 0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR 0.77, p = 0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR 0.26, p < 0.001). Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations and might be relevant for prognostic testing, and as a promising therapeutic target for the entire spectrum of FTLD-TDP.
Collapse
Affiliation(s)
- Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
818
|
Belzil VV, Petrucelli L. Epigenetic modifications of the C9ORF72 gene: a potential biomarker of disease? FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
819
|
Gallagher MD, Suh E, Grossman M, Elman L, McCluskey L, Van Swieten JC, Al-Sarraj S, Neumann M, Gelpi E, Ghetti B, Rohrer JD, Halliday G, Van Broeckhoven C, Seilhean D, Shaw PJ, Frosch MP, Alafuzoff I, Antonell A, Bogdanovic N, Brooks W, Cairns NJ, Cooper-Knock J, Cotman C, Cras P, Cruts M, De Deyn PP, DeCarli C, Dobson-Stone C, Engelborghs S, Fox N, Galasko D, Gearing M, Gijselinck I, Grafman J, Hartikainen P, Hatanpaa KJ, Highley JR, Hodges J, Hulette C, Ince PG, Jin LW, Kirby J, Kofler J, Kril J, Kwok JBJ, Levey A, Lieberman A, Llado A, Martin JJ, Masliah E, McDermott CJ, McKee A, McLean C, Mead S, Miller CA, Miller J, Munoz DG, Murrell J, Paulson H, Piguet O, Rossor M, Sanchez-Valle R, Sano M, Schneider J, Silbert LC, Spina S, van der Zee J, Van Langenhove T, Warren J, Wharton SB, White CL, Woltjer RL, Trojanowski JQ, Lee VMY, Van Deerlin V, Chen-Plotkin AS. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 2014; 127:407-18. [PMID: 24442578 PMCID: PMC4003885 DOI: 10.1007/s00401-013-1239-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
Abstract
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
Collapse
Affiliation(s)
- Michael D Gallagher
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
820
|
Riedl L, Mackenzie IR, Förstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat 2014; 10:297-310. [PMID: 24600223 PMCID: PMC3928059 DOI: 10.2147/ndt.s38706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer's disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management.
Collapse
Affiliation(s)
- Lina Riedl
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Hans Förstl
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Kurz
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Janine Diehl-Schmid
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
821
|
Belzil VV, Bauer PO, Gendron TF, Murray ME, Dickson D, Petrucelli L. Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res 2014; 1584:15-21. [PMID: 24530272 DOI: 10.1016/j.brainres.2014.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/13/2022]
Abstract
A significant number of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two diseases commonly seen in comorbidity, carry an expanded noncoding hexanucleotide repeat in the C9orf72 gene, a condition collectively referred to as c9FTD/ALS. Repeat expansions, also present in other neurodegenerative diseases, have been shown to alter epigenetic mechanisms and consequently lead to decreased gene expression, while also leading to toxic RNA gain-of-function. As expression of multiple C9orf72 transcript variants is known to be reduced in c9FTD/ALS cases, our group and others have sought to uncover the mechanisms causing this reduction. We recently demonstrated that histones H3 and H4 undergo trimethylation at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) in all pathogenic repeat carrier brain samples, confirming the role of altered histone methylation in disease. It was also reported that about 40% of c9ALS cases show hypermethylation of the CpG island located at the 5' end of the repeat expansion in blood, frontal cortex, and spinal cord. To determine whether the same CpG island is hypermethylated in the cerebella of cases in whom aberrant histone methylation has been identified, we bisulfite-modified the extracted DNA and PCR-amplified 26 CpG sites within the C9orf72 promoter region. Among the ten c9FTD/ALS (4 c9ALS, 6 c9FTD), nine FTD/ALS, and eight disease control samples evaluated, only one c9FTD sample was found to be hypermethylated within the C9orf72 promoter region. This study is the first to report cerebellar hypermethylation in c9FTD/ALS, and the first to identify a c9FTD patient with aberrant DNA methylation. Future studies will need to evaluate hypermethylation of the C9orf72 promoter in a larger cohort of c9FTD patients, and to assess whether DNA methylation variation across brain regions reflects disease phenotype.
Collapse
Affiliation(s)
- Veronique V Belzil
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Peter O Bauer
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Tania F Gendron
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Melissa E Murray
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Dennis Dickson
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Leonard Petrucelli
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
822
|
Gascon E, Gao FB. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders. J Neurogenet 2014; 28:30-40. [PMID: 24506814 DOI: 10.3109/01677063.2013.876021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) share some clinical, pathological, and molecular features as part of a common neurodegenerative spectrum disorder. In recent years, enormous progress has been made in identifying both pathological proteins and genetic mutations associated with FTD-ALS. However, the molecular pathogenic mechanisms of disease onset and progression remain largely unknown. Recent studies have uncovered unexpected links between FTD-ALS and multiple aspects of RNA metabolism, setting the stage for further understanding of the disorder. Here, the authors will focus on microRNAs and review the emerging roles of these small RNAs in several aspects of FTD-ALS pathogenesis.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts , USA
| | | |
Collapse
|
823
|
Ferrari R, Kero M, Mok K, Paetau A, Tienari PJ, Tynninen O, Hardy J, Momeni P, Verkkoniemi-Ahola A, Myllykangas L. A familial frontotemporal dementia associated with C9orf72 repeat expansion and dysplastic gangliocytoma. Neurobiol Aging 2014; 35:444.e11-4. [DOI: 10.1016/j.neurobiolaging.2013.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022]
|
824
|
Recent progress in the genetics of motor neuron disease. Eur J Med Genet 2014; 57:103-12. [DOI: 10.1016/j.ejmg.2014.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/14/2014] [Indexed: 01/07/2023]
|
825
|
Rossi G, Bastone A, Piccoli E, Morbin M, Mazzoleni G, Fugnanesi V, Beeg M, Del Favero E, Cantù L, Motta S, Salsano E, Pareyson D, Erbetta A, Elia AE, Del Sorbo F, Silani V, Morelli C, Salmona M, Tagliavini F. Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features. Neurobiol Aging 2014; 35:408-17. [DOI: 10.1016/j.neurobiolaging.2013.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 02/06/2023]
|
826
|
Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 2014; 127:151-73. [PMID: 24306942 DOI: 10.1007/s00401-013-1222-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
The number of patients with neurodegenerative diseases is increasing significantly worldwide. Thus, intense research is being pursued to uncover mechanisms of disease development in an effort to identify molecular targets for therapeutic intervention. Analysis of postmortem tissue from patients has yielded important histological and biochemical markers of disease progression. However, this approach is inherently limited because it is not possible to study patient neurons prior to degeneration. As such, transgenic and knockout models of neurodegenerative diseases are commonly employed. While these animal models have yielded important insights into some molecular mechanisms of disease development, they do not provide the opportunity to study mechanisms of neurodegeneration in human neurons at risk and thus, it is often difficult or even impossible to replicate human pathogenesis with this approach. The generation of patient-specific induced pluripotent stem (iPS) cells offers a unique opportunity to overcome these obstacles. By expanding and differentiating iPS cells, it is possible to generate large numbers of functional neurons in vitro, which can then be used to study the disease of the donating patient. Here, we provide an overview of human stem cell models of neurodegeneration using iPS cells from patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, spinal muscular atrophy and other neurodegenerative diseases. In addition, we describe how further refinements of reprogramming technology resulted in the generation of patient-specific induced neurons, which have also been used to model neurodegenerative changes in vitro.
Collapse
Affiliation(s)
- Gunnar Hargus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany,
| | | | | | | |
Collapse
|
827
|
Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T, Adamson G, Mudanohwo E, McColgan P, Haworth A, Wild EJ, Sweeney MG, Houlden H, Mead S, Tabrizi SJ. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 2014; 82:292-9. [PMID: 24363131 PMCID: PMC3929197 DOI: 10.1212/wnl.0000000000000061] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. METHODS A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. RESULTS Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. DISCUSSION This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data.
Collapse
Affiliation(s)
- Davina J Hensman Moss
- From the Departments of Neurodegenerative Disease (D.J.H.M., P.M., E.J.W., S.M., S.J.T.) and Molecular Neuroscience (H.H.), UCL Institute of Neurology, London; MRC Prion Unit (M.P., J.B., T.C., G.A.), London; and Neurogenetics Unit (J.H., J.M.P., E.M., A.H., M.G.S., H.H.), National Hospital for Neurology and Neurosurgery, University College London Hospitals, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
828
|
Waite AJ, Bäumer D, East S, Neal J, Morris HR, Ansorge O, Blake DJ. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging 2014; 35:1779.e5-1779.e13. [PMID: 24559645 PMCID: PMC3988882 DOI: 10.1016/j.neurobiolaging.2014.01.016] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/09/2013] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
An intronic G4C2 hexanucleotide repeat expansion in C9ORF72 is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several mechanisms including RNA toxicity, repeat-associated non-AUG translation mediated dipeptide protein aggregates, and haploinsufficiency of C9orf72 have been implicated in the molecular pathogenesis of this disorder. The aims of this study were to compare the use of two different Southern blot probes for detection of repeat expansions in an amyotrophic lateral sclerosis and frontotemporal lobar degeneration pathological cohort and to determine the levels of C9orf72 transcript variants and protein isoforms in patients versus control subjects. Our Southern blot studies identified smaller repeat expansions (250–1800 bp) that were only detectable with the flanking probe highlighting the potential for divergent results using different Southern blotting protocols that could complicate genotype–phenotype correlation studies. Further, we characterize a new C9orf72 antibody and show for the first time decreased C9orf72 protein levels in the frontal cortex from patients with a pathological hexanucleotide repeat expansion. These data suggest that a reduction in C9orf72 protein may be a consequence of the disease.
Collapse
Affiliation(s)
- Adrian J Waite
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cathays, Cardiff, UK.
| | - Dirk Bäumer
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Simon East
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James Neal
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, Royal Free Hospital, London, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Derek J Blake
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cathays, Cardiff, UK
| |
Collapse
|
829
|
Mompeán M, Buratti E, Guarnaccia C, Brito RMM, Chakrabartty A, Baralle FE, Laurents DV. "Structural characterization of the minimal segment of TDP-43 competent for aggregation". Arch Biochem Biophys 2014; 545:53-62. [PMID: 24440310 DOI: 10.1016/j.abb.2014.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
TDP-43 is a nuclear protein whose abnormal aggregates are implicated in ALS and FTLD. Recently, an Asn/Gln rich C-terminal segment of TDP-43 has been shown to produce aggregation in vitro and reproduce most of the protein's pathological hallmarks in cells, but little is known about this segment's structure. Here, CD and 2D heteronuclear NMR spectroscopies provide evidence that peptides corresponding to the wild type and mutated sequences of this segment adopt chiefly disordered conformations that, in the case of the wild type sequence, spontaneously forms a β-sheet rich oligomer. Moreover, MD simulation provides evidence for a structure consisting of two β-strands and a well-defined, yet non-canonical structural element. Furthermore, MD simulations of four pathological mutations (Q343R, N345K, G348V and N352S) occurring in this segment predict that all of them could affect this region's structure. In particular, the Q343R variant tends to stabilize disordered conformers, N345K permits the formation of longer, more stable β-strands, and G348V tends to shorten and destabilize them. Finally, N352S acts to alter the β-stand register and when S352 is phosphorylated, it induces partial unfolding. Our results provide a better understanding of TDP-43 aggregation process and will be useful to design effectors capable to modulate its progression.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto de Química Física "Rocasolano" CSIC, Serrano 119, E-28006 Madrid, Spain
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, I-34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, I-34149 Trieste, Italy
| | - Rui M M Brito
- Chemistry Dept., Faculty of Science and Technology & Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Avijit Chakrabartty
- Dept. of Biochemistry, University of Toronto, Toronto Medical Discovery Tower 4-305, MaRS Centre, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology, I-34149 Trieste, Italy.
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano" CSIC, Serrano 119, E-28006 Madrid, Spain.
| |
Collapse
|
830
|
Frontotemporal Lobar Degeneration: Genetics and Clinical Phenotypes. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
831
|
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) represent the two major forms of motoneuron disease. In both forms of disease, spinal and bulbar motoneurons become dysfunctional and degenerate. In ALS, cortical motoneurons are also affected, which contributes to the clinical phenotype. The gene defects for most familial forms of ALS and SMA have been discovered and they point to a broad spectrum of disease mechanisms, including defects in RNA processing, pathological protein aggregation, altered apoptotic signaling, and disturbed energy metabolism. Despite the fact that lack of neurotrophic factors or their corresponding receptors are not found as genetic cause of motoneuron disease, signaling pathways initiated by neurotrophic factors for motoneuron survival, axon growth, presynaptic development, and synaptic function are disturbed in ALS and SMA. Better understanding of how neurotrophic factors and downstream signaling pathways interfere with these disease mechanisms could help to develop new therapies for motoneuron disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- M Sendtner
- Institute for Clinical Neurobiology, University of Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany,
| |
Collapse
|
832
|
Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis? Trends Mol Med 2014; 20:25-35. [DOI: 10.1016/j.molmed.2013.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/03/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
|
833
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
834
|
Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 2013; 111:829-32. [PMID: 24379375 DOI: 10.1073/pnas.1314085111] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.
Collapse
|
835
|
Zamiri B, Reddy K, Macgregor RB, Pearson CE. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J Biol Chem 2013; 289:4653-9. [PMID: 24371143 DOI: 10.1074/jbc.c113.502336] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.
Collapse
Affiliation(s)
- Bita Zamiri
- From the Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2
| | | | | | | |
Collapse
|
836
|
Therrien M, Rouleau GA, Dion PA, Parker JA. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 2013; 8:e83450. [PMID: 24349511 PMCID: PMC3861484 DOI: 10.1371/journal.pone.0083450] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022] Open
Abstract
An expansion of the hexanucleotide GGGGCC repeat in the first intron of C9ORF72 gene was recently linked to amyotrophic lateral sclerosis. It is not known if the mutation results in a gain of function, a loss of function or if, perhaps both mechanisms are linked to pathogenesis. We generated a genetic model of ALS to explore the biological consequences of a null mutation of the Caenorhabditis elegans C9ORF72 orthologue, F18A1.6, also called alfa-1. alfa-1 mutants displayed age-dependent motility defects leading to paralysis and the specific degeneration of GABAergic motor neurons. alfa-1 mutants showed differential susceptibility to environmental stress where osmotic stress provoked neurodegeneration. Finally, we observed that the motor defects caused by loss of alfa-1 were additive with the toxicity caused by mutant TDP-43 proteins, but not by the mutant FUS proteins. These data suggest that a loss of alfa-1/C9ORF72 expression may contribute to motor neuron degeneration in a pathway associated with other known ALS genes.
Collapse
Affiliation(s)
- Martine Therrien
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Patrick A. Dion
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - J. Alex Parker
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
- Département de neuroscience, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
837
|
Sreedharan J, Brown RH. Amyotrophic lateral sclerosis: Problems and prospects. Ann Neurol 2013; 74:309-16. [PMID: 24038380 DOI: 10.1002/ana.24012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal degenerative disorder of motoneurons, which may occur concurrently with frontotemporal dementia. Genetic analyses of the ∼10% of ALS cases that are dominantly inherited provide insight into ALS pathobiology. Two broad themes are evident. One, prompted by investigations of the SOD1 gene, is that conformational instability of proteins triggers downstream neurotoxic processes. The second, from studies of the TDP43, FUS, and C9orf72 genes, is that perturbations of RNA processing can be highly adverse in motoneurons. Several investigations support the concept that non-neuronal cells (microglia, astroglia, oligodendroglia) participate in the degenerative process in ALS. Recent data also emphasize the importance of molecular events in the axon and distal motoneuron terminals. Only 1 compound, riluzole, is approved by the US Food and Drug Administration for ALS; several therapies are in clinical trials, including 2 mesenchymal stem cell trials. The challenges and unmet needs in ALS emphasize the importance of new research directions: high-throughput sequencing of large DNA sets of familial and sporadic ALS, which will define scores of candidate ALS genes and pathways and facilitate studies of epistasis and epigenetics; infrastructures for candidate gene validation, including in vitro and in vivo modeling; valid biomarkers that elucidate causative molecular events and accelerate clinical trials; and in the long term, methods to identify environmental toxins. The unprecedented intensity of research in ALS and the advent of extraordinary technologies (rapid, inexpensive DNA sequencing; stem cell production from skin-derived fibroblasts; silencing of miscreant mutant genes) bode well for discovery of innovative ALS therapies.
Collapse
Affiliation(s)
- Jemeen Sreedharan
- Babraham Institute, Cambridge, United Kingdom; Department of Neurology, University of Massachusetts Medical School, Worcester, MA; Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA
| | | |
Collapse
|
838
|
Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P, Isaacs AM. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 2013; 126:845-57. [PMID: 24170096 PMCID: PMC3830745 DOI: 10.1007/s00401-013-1200-z] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 12/11/2022]
Abstract
An expanded GGGGCC repeat in a non-coding region of the C9orf72 gene is a common cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis. Non-coding repeat expansions may cause disease by reducing the expression level of the gene they reside in, by producing toxic aggregates of repeat RNA termed RNA foci, or by producing toxic proteins generated by repeat-associated non-ATG translation. We present the first definitive report of C9orf72 repeat sense and antisense RNA foci using a series of C9FTLD cases, and neurodegenerative disease and normal controls. A sensitive and specific fluorescence in situ hybridisation protocol was combined with protein immunostaining to show that both sense and antisense foci were frequent, specific to C9FTLD, and present in neurons of the frontal cortex, hippocampus and cerebellum. High-resolution imaging also allowed accurate analyses of foci number and subcellular localisation. RNA foci were most abundant in the frontal cortex, where 51 % of neurons contained foci. RNA foci also occurred in astrocytes, microglia and oligodendrocytes but to a lesser degree than in neurons. RNA foci were observed in both TDP-43- and p62-inclusion bearing neurons, but not at a greater frequency than expected by chance. RNA foci abundance in the frontal cortex showed a significant inverse correlation with age at onset of disease. These data establish that sense and antisense C9orf72 repeat RNA foci are a consistent and specific feature of C9FTLD, providing new insight into the pathogenesis of C9FTLD.
Collapse
Affiliation(s)
- Sarah Mizielinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Tammaryn Lashley
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Frances E. Norona
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Emma L. Clayton
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Charlotte E. Ridler
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| | - Adrian M. Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
839
|
Mori K, Arzberger T, Grässer FA, Gijselinck I, May S, Rentzsch K, Weng SM, Schludi MH, van der Zee J, Cruts M, Van Broeckhoven C, Kremmer E, Kretzschmar HA, Haass C, Edbauer D. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 2013; 126:881-93. [PMID: 24132570 DOI: 10.1007/s00401-013-1189-3] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/12/2022]
Abstract
Massive GGGGCC repeat expansion in the first intron of the gene C9orf72 is the most common known cause of familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Despite its intronic localization and lack of an ATG start codon, the repeat region is translated in all three reading frames into aggregating dipeptide-repeat (DPR) proteins, poly-(Gly-Ala), poly-(Gly-Pro) and poly-(Gly-Arg). We took an antibody-based approach to further validate the translation of DPR proteins. To test whether the antisense repeat RNA transcript is also translated, we raised antibodies against the predicted products, poly-(Ala-Pro) and poly-(Pro-Arg). Both antibodies stained p62-positive neuronal cytoplasmic inclusions throughout the cerebellum and hippocampus indicating that not only sense but also antisense strand repeats are translated into DPR proteins in the absence of ATG start codons. Protein products of both strands co-aggregate suggesting concurrent translation of both strands. Moreover, an antibody targeting the putative carboxyl terminus of DPR proteins can detect inclusion pathology in C9orf72 repeat expansion carriers suggesting that the non-ATG translation continues through the entire repeat and beyond. A highly sensitive monoclonal antibody against poly-(Gly-Arg), visualized abundant inclusion pathology in all cortical regions and some inclusions also in motoneurons. Together, our data show that the GGGGCC repeat is bidirectionally translated into five distinct DPR proteins that co-aggregate in the characteristic p62-positive TDP-43 negative inclusions found in FTLD/ALS cases with C9orf72 repeat expansion. Novel monoclonal antibodies against poly-(Gly-Arg) will facilitate pathological diagnosis of C9orf72 FTLD/ALS.
Collapse
Affiliation(s)
- Kohji Mori
- Adolf Butenandt Institute, Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
840
|
Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PEA, Caulfield T, Daughrity L, Dunmore JH, Castanedes-Casey M, Chew J, Cosio DM, van Blitterswijk M, Lee WC, Rademakers R, Boylan KB, Dickson DW, Petrucelli L. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 2013; 126:829-44. [PMID: 24129584 PMCID: PMC3830741 DOI: 10.1007/s00401-013-1192-8] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.
Collapse
Affiliation(s)
- Tania F. Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin F. Bieniek
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Peter E. A. Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Judith H. Dunmore
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | | | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Danielle M. Cosio
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | | | - Wing C. Lee
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin B. Boylan
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| |
Collapse
|
841
|
Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, Pregent L, Daughrity L, Baker MC, Rademakers R, Boylan K, Patel TC, Dickson DW, Petrucelli L. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 2013; 126:895-905. [PMID: 24166615 PMCID: PMC3830740 DOI: 10.1007/s00401-013-1199-1] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause "c9FTD/ALS" has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.
Collapse
|
842
|
|
843
|
The clinical and pathological phenotypes of frontotemporal dementia with C9ORF72 mutations. J Neurol Sci 2013; 335:26-35. [DOI: 10.1016/j.jns.2013.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022]
|
844
|
Crippa V, Boncoraglio A, Galbiati M, Aggarwal T, Rusmini P, Giorgetti E, Cristofani R, Carra S, Pennuto M, Poletti A. Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Front Cell Neurosci 2013; 7:234. [PMID: 24324403 PMCID: PMC3840302 DOI: 10.3389/fncel.2013.00234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/07/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motoneuron disease characterized by misfolded proteins aggregation in affected motoneurons. In mutant SOD1 (mutSOD1) ALS models, aggregation correlates to impaired functions of proteasome and/or autophagy, both essential for the intracellular chaperone-mediated protein quality control (PQC), and to a reduced mutSOD1 clearance from motoneurons. Skeletal muscle cells are also sensitive to mutSOD1 toxicity, but no mutSOD1 aggregates are formed in these cells, that might better manage mutSOD1 than motoneurons. Thus, we analyzed in spinal cord and in muscle of transgenic (tg) G93A-SOD1 mice at presymptomatic (PS, 8 weeks) and symptomatic (S, 16 weeks) stages, and in age-matched control mice, whether mutSOD1 differentially modulates relevant PQC players, such as HSPB8, BAG3, and BAG1. Possible sex differences were also considered. No changes of HSPB8, BAG3, and BAG1 at PS stage (8 weeks) were seen in all tissues examined in tg G93A-SOD1 and control mice. At S stage (16 weeks), HSPB8 dramatically increased in skeletal muscle of tg G93A-SOD1 mice, while a minor increase occurred in spinal cord of male, but not female tg G93A-SOD1 mice. BAG3 expression increased both in muscle and spinal cord of tg G93A-SOD1 mice at S stage, BAG1 expression increased only in muscle of the same mice. Since, HSPB8-BAG3 complex assists mutSOD1 autophagic removal, we analyzed two well-known autophagic markers, LC3 and p62. Both LC3 and p62 mRNAs were significantly up-regulated in skeletal muscle of tg G93A-SOD1 mice at S stage (16 weeks). This suggests that mutSOD1 expression induces a robust autophagic response specifically in muscle. Together these results demonstrate that, in muscle mutSOD1-induced autophagic response is much higher than in spinal cord. In addition, if mutSOD1 exerts toxicity in muscle, this may not be mediated by misfolded proteins accumulation. It remains unclear whether in muscle mutSOD1 toxicity is related to aberrant autophagy activation.
Collapse
Affiliation(s)
- Valeria Crippa
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano Milano, Italy ; Centro InterUniversitario sulle Malattie Neurodegenerative, Università degli Studi di Firenze Milano, Genova e Roma Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
845
|
Abstract
TDP-43 (TAR DNA-binding protein 43) is an hnRNP (heterogeneous nuclear ribonucleoprotein) protein whose role in cellular processes has come to the forefront of neurodegeneration research after the observation that it is the main component of brain inclusions in ALS (amyotrophic lateral sclerosis) and FTLD (frontotemporal lobar degeneration) patients. Functionally, this aberrant aggregation and mislocalization implies that, in the affected neurons, transcripts regulated by TDP-43 may be altered. Since then, a considerable amount of data has been gathered on TDP-43 interactions and on the genes that are influenced by its absence or overexpression. At present, however, most of these data come from high-throughput searches, making it problematic to separate the direct effects of TDP-43 from secondary misregulations occurring at different levels of the gene expression process. Furthermore, our knowledge of the biochemistry of TDP-43, its RNA-binding characteristics, its nuclear and cytoplasmic targets, and the details of its interactions with other proteins is still incomplete. The understanding of these features could hold the key for uncovering TDP-43′s role in ALS and FTLD pathogenesis. We describe in the present paper our work on TDP-43 RNA binding, self-regulation and aggregation processes, and attempt to relate them to the neurodegenerative pathologies.
Collapse
|
846
|
RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A 2013; 110:E4968-77. [PMID: 24248382 DOI: 10.1073/pnas.1315438110] [Citation(s) in RCA: 628] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The finding that a GGGGCC (G4C2) hexanucleotide repeat expansion in the chromosome 9 ORF 72 (C9ORF72) gene is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) links ALS/FTD to a large group of unstable microsatellite diseases. Previously, we showed that microsatellite expansion mutations can be bidirectionally transcribed and that these mutations express unexpected proteins by a unique mechanism, repeat-associated non-ATG (RAN) translation. In this study, we show that C9ORF72 antisense transcripts are elevated in the brains of C9ORF72 expansion-positive [C9(+)] patients, and antisense GGCCCC (G2C4) repeat-expansion RNAs accumulate in nuclear foci in brain. Additionally, sense and antisense foci accumulate in blood and are potential biomarkers of the disease. Furthermore, we show that RAN translation occurs from both sense and antisense expansion transcripts, resulting in the expression of six RAN proteins (antisense: Pro-Arg, Pro-Ala, Gly-Pro; and sense: Gly-Ala, Gly-Arg, Gly-Pro). These proteins accumulate in cytoplasmic aggregates in affected brain regions, including the frontal and motor cortex, hippocampus, and spinal cord neurons, with some brain regions showing dramatic RAN protein accumulation and clustering. The finding that unique antisense G2C4 RNA foci and three unique antisense RAN proteins accumulate in patient tissues indicates that bidirectional transcription of expanded alleles is a fundamental pathologic feature of C9ORF72 ALS/FTD. Additionally, these findings suggest the need to test therapeutic strategies that target both sense and antisense RNAs and RAN proteins in C9ORF72 ALS/FTD, and to more broadly consider the role of antisense expression and RAN translation across microsatellite expansion diseases.
Collapse
|
847
|
Fernandes SA, Douglas AGL, Varela MA, Wood MJA, Aoki Y. Oligonucleotide-Based Therapy for FTD/ALS Caused by the C9orf72 Repeat Expansion: A Perspective. J Nucleic Acids 2013; 2013:208245. [PMID: 24349764 PMCID: PMC3855979 DOI: 10.1155/2013/208245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and lethal disease of motor neuron degeneration, leading to paralysis of voluntary muscles and death by respiratory failure within five years of onset. Frontotemporal dementia (FTD) is characterised by degeneration of frontal and temporal lobes, leading to changes in personality, behaviour, and language, culminating in death within 5-10 years. Both of these diseases form a clinical, pathological, and genetic continuum of diseases, and this link has become clearer recently with the discovery of a hexanucleotide repeat expansion in the C9orf72 gene that causes the FTD/ALS spectrum, that is, c9FTD/ALS. Two basic mechanisms have been proposed as being potentially responsible for c9FTD/ALS: loss-of-function of the protein encoded by this gene (associated with aberrant DNA methylation) and gain of function through the formation of RNA foci or protein aggregates. These diseases currently lack any cure or effective treatment. Antisense oligonucleotides (ASOs) are modified nucleic acids that are able to silence targeted mRNAs or perform splice modulation, and the fact that they have proved efficient in repeat expansion diseases including myotonic dystrophy type 1 makes them ideal candidates for c9FTD/ALS therapy. Here, we discuss potential mechanisms and challenges for developing oligonucleotide-based therapy for c9FTD/ALS.
Collapse
Affiliation(s)
- Stephanie A. Fernandes
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Biosciences, University of Sao Paulo, Rua do Matao, 05508-090 Sao Paulo, SP, Brazil
| | - Andrew G. L. Douglas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J. A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Yoshitsugu Aoki
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
848
|
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013; 79:416-38. [PMID: 23931993 DOI: 10.1016/j.neuron.2013.07.033] [Citation(s) in RCA: 1339] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.
Collapse
Affiliation(s)
- Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093-0670, USA
| | | | | |
Collapse
|
849
|
The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD. Nat Neurosci 2013; 16:1725-7. [PMID: 24185425 PMCID: PMC4397902 DOI: 10.1038/nn.3566] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Using transgenic animals harboring a targeted LacZ insertion, we studied the expression pattern of the C9ORF72 mouse ortholog. Unlike most genes mutated in ALS, which are ubiquitously expressed, the C9ORF72-ortholog was most highly transcribed in the neuronal populations sensitive to degeneration in ALS and FTD. Thus, our study provides a potential explanation for the cell type specificity of neuronal degeneration caused by C9ORF72 mutations.
Collapse
|
850
|
Iguchi Y, Katsuno M, Ikenaka K, Ishigaki S, Sobue G. Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol 2013; 260:2917-27. [PMID: 24085347 DOI: 10.1007/s00415-013-7112-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting both upper and lower motor neurons. The prognosis for ALS is extremely poor, but there is a limited course of treatment with only one approved medication. A most striking recent discovery is that TDP-43 is identified as a key molecule that is associated with both sporadic and familial forms of ALS. TDP-43 is not only a pathological hallmark, but also a genetic cause for ALS. Subsequently, a number of ALS-causative genes have been found. Above all, the RNA-binding protein, such as FUS, TAF15, EWSR1 and hnRNPA1, have structural and functional similarities to TDP-43, and physiological functions of some molecules, including VCP, UBQLN2, OPTN, FIG4 and SQSTM1, are involved in a protein degradation system. These discoveries provide valuable insight into the pathogenesis of ALS, and open doors for developing an effective disease-modifying therapy.
Collapse
Affiliation(s)
- Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | |
Collapse
|