801
|
Davis D, Stokoe D. Zinc finger nucleases as tools to understand and treat human diseases. BMC Med 2010; 8:42. [PMID: 20594338 PMCID: PMC2904710 DOI: 10.1186/1741-7015-8-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022] Open
Abstract
Recent work has shown that it is possible to target regulatory elements to DNA sequences of an investigator's choosing, increasing the armamentarium for probing gene function. In this review, we discuss the development and use of designer zinc finger proteins (ZFPs) as sequence specific tools. While the main focus of this review is to discuss the attachment of the FokI nuclease to ZFPs and the ability of the resulting fusion protein (termed zinc finger nucleases (ZFNs)) to genomically manipulate a gene of interest, we will also cover the utility of other functional domains, such as transcriptional activators and repressors, and highlight how these are being used as discovery and therapeutic tools.
Collapse
Affiliation(s)
- David Davis
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| | - David Stokoe
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
802
|
Nieminen M, Tuuri T, Savilahti H. Genetic recombination pathways and their application for genome modification of human embryonic stem cells. Exp Cell Res 2010; 316:2578-86. [PMID: 20542027 DOI: 10.1016/j.yexcr.2010.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/31/2010] [Accepted: 06/06/2010] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.
Collapse
Affiliation(s)
- Mikko Nieminen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | | | | |
Collapse
|
803
|
Schambach A, Cantz T, Baum C, Cathomen T. Generation and genetic modification of induced pluripotent stem cells. Expert Opin Biol Ther 2010; 10:1089-103. [DOI: 10.1517/14712598.2010.496775] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
804
|
Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 2010; 38:e152. [PMID: 20530528 PMCID: PMC2926620 DOI: 10.1093/nar/gkq512] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously demonstrated high-frequency, targeted DNA addition mediated by the homology-directed DNA repair pathway. This method uses a zinc-finger nuclease (ZFN) to create a site-specific double-strand break (DSB) that facilitates copying of genetic information into the chromosome from an exogenous donor molecule. Such donors typically contain two approximately 750 bp regions of chromosomal sequence required for homology-directed DNA repair. Here, we demonstrate that easily-generated linear donors with extremely short (50 bp) homology regions drive transgene integration into 5-10% of chromosomes. Moreover, we measure the overhangs produced by ZFN cleavage and find that oligonucleotide donors with single-stranded 5' overhangs complementary to those made by ZFNs are efficiently ligated in vivo to the DSB. Greater than 10% of all chromosomes directly incorporate this exogenous DNA via a process that is dependent upon and guided by complementary 5' overhangs on the donor DNA. Finally, we extend this non-homologous end-joining (NHEJ)-based technique by directly inserting donor DNA comprising recombinase sites into large deletions created by the simultaneous action of two separate ZFN pairs. Up to 50% of deletions contained a donor insertion. Targeted DNA addition via NHEJ complements our homology-directed targeted integration approaches, adding versatility to the manipulation of mammalian genomes.
Collapse
|
805
|
Affiliation(s)
- Jizhong Zou
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
806
|
Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2010; 5:584-95. [PMID: 19951687 DOI: 10.1016/j.stem.2009.11.009] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of human somatic cells uses readily accessible tissue, such as skin or blood, to generate embryonic-like induced pluripotent stem cells (iPSCs). This procedure has been applied to somatic cells from patients who are classified into a disease group, thus creating "disease-specific" iPSCs. Here, we examine the challenges and assumptions in creating a disease model from a single cell of the patient. Both the kinetics of disease onset and progression as well as the spatial localization of disease in the patient's body are challenges to disease modeling. New tools in genetic modification, reprogramming, biomaterials, and animal models can be used for addressing these challenges.
Collapse
Affiliation(s)
- Krishanu Saha
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
807
|
Abstract
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) possess the potential to become all cell and tissue types of the human body. Under chemically defined culture systems, hESCs and hiPSCs have been efficiently directed to functional spinal motoneurons and astrocytes. The differentiation process faithfully recapitulates the developmental process predicted from studies in vertebrate animals and human specimens, suggesting the usefulness of stem cell differentiation systems in understanding human cellular development. Motoneurons and astrocytes differentiated from genetically altered hESCs or disease hiPSCs exhibit predicted phenotypes. They thus offer a simplified dynamic model for analyzing pathological processes that lead to human motoneuron degeneration, which in turn may serve as a template for pharmaceutical screening. In addition, the human stem cell-derived motoneurons and astrocytes, including those specifically derived from a patient, may become a source for cell therapy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Human Anatomy and Histology, Institute of Stem Cells and Regenerative Medicine, Fudan University Shanghai Medical School, Shanghai, China
- Department of Anatomy and Department of Neurology, School of Medicine and Public Health; Waisman Center; University of Wisconsin, Madison, WI, USA
| | - Su-Chun Zhang
- Department of Anatomy and Department of Neurology, School of Medicine and Public Health; Waisman Center; University of Wisconsin, Madison, WI, USA
| |
Collapse
|
808
|
DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, Sancak Y, Cui X, Steine EJ, Miller JC, Tam P, Bartsevich VV, Meng X, Rupniewski I, Gopalan SM, Sun HC, Pitz KJ, Rock JM, Zhang L, Davis GD, Rebar EJ, Cheeseman IM, Yamamoto KR, Sabatini DM, Jaenisch R, Gregory PD, Urnov FD. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 2010; 20:1133-42. [PMID: 20508142 DOI: 10.1101/gr.106773.110] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Isogenic settings are routine in model organisms, yet remain elusive for genetic experiments on human cells. We describe the use of designed zinc finger nucleases (ZFNs) for efficient transgenesis without drug selection into the PPP1R12C gene, a "safe harbor" locus known as AAVS1. ZFNs enable targeted transgenesis at a frequency of up to 15% following transient transfection of both transformed and primary human cells, including fibroblasts and hES cells. When added to this locus, transgenes such as expression cassettes for shRNAs, small-molecule-responsive cDNA expression cassettes, and reporter constructs, exhibit consistent expression and sustained function over 50 cell generations. By avoiding random integration and drug selection, this method allows bona fide isogenic settings for high-throughput functional genomics, proteomics, and regulatory DNA analysis in essentially any transformed human cell type and in primary cells.
Collapse
Affiliation(s)
- Russell C DeKelver
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
809
|
Olsen PA, Gelazauskaite M, Randøl M, Krauss S. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction. BMC Mol Biol 2010; 11:35. [PMID: 20459736 PMCID: PMC2875229 DOI: 10.1186/1471-2199-11-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. RESULTS A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. CONCLUSIONS The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of illegitimate integration emphasizes the importance of careful characterization of ZFN treated cells. In order to reduce off-target events, reversible cell cycle arrest of the target cells in the G2/M phase is an efficient way for increasing the ratio between specific HR and illegitimate integration.
Collapse
Affiliation(s)
- Petter A Olsen
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Monika Gelazauskaite
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Markus Randøl
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Stefan Krauss
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| |
Collapse
|
810
|
Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 2010; 7:459-60. [PMID: 20436476 DOI: 10.1038/nmeth.1456] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/25/2010] [Indexed: 11/09/2022]
Abstract
Zinc-finger nucleases (ZFNs) are powerful tools for editing the genomes of cell lines and model organisms. Given the breadth of their potential application, simple methods that increase ZFN activity, thus ensuring genome modification, are highly attractive. Here we show that transient hypothermia generally and robustly increased the level of stable, ZFN-induced gene disruption, thereby providing a simple technique to enhance the experimental efficacy of ZFNs.
Collapse
|
811
|
Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 2010; 38:W462-8. [PMID: 20435679 PMCID: PMC2896148 DOI: 10.1093/nar/gkq319] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ZiFiT (Zinc Finger Targeter) is a simple and intuitive web-based tool that provides an interface to identify potential binding sites for engineered zinc finger proteins (ZFPs) in user-supplied DNA sequences. In this updated version, ZiFiT identifies potential sites for ZFPs made by both the modular assembly and OPEN engineering methods. In addition, ZiFiT now integrates additional tools and resources including scoring schemes for modular assembly, an interface with the Zinc Finger Database (ZiFDB) of engineered ZFPs, and direct querying of NCBI BLAST servers for identifying potential off-target sites within a host genome. Taken together, these features facilitate design of ZFPs using reagents made available to the academic research community by the Zinc Finger Consortium. ZiFiT is freely available on the web without registration at http://bindr.gdcb.iastate.edu/ZiFiT/.
Collapse
Affiliation(s)
- Jeffry D Sander
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
812
|
Marchetto MCN, Winner B, Gage FH. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 2010; 19:R71-6. [PMID: 20418487 DOI: 10.1093/hmg/ddq159] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most of our current knowledge about cellular phenotypes in neurodevelopmental and neurodegenerative diseases in humans was gathered from studies in postmortem brain tissues. These samples often represent the end-stage of the disease and therefore are not always a fair representation of how the disease developed. Moreover, under these circumstances, the pathology observed could be a secondary effect rather than the authentic disease cellular phenotype. Likewise, the rodent models available do not always recapitulate the pathology from human diseases. In this review, we will examine recent literature on the use of induced pluripotent stem cells to model neurodegenerative and neurodevelopmental diseases. We highlight the characteristics of diseases like spinal muscular atrophy and familial dysautonomia that allowed partial modeling of the disease phenotype. We review human stem cell literature on common neurodegenerative late-onset diseases such as Parkinson's disease and amyotrophic lateral sclerosis where patients' cells have been successfully reprogrammed but a disease phenotype has not yet been described. So far, the technique is of great interest for early onset monogenetic neurodevelopmental diseases. We speculate about potential further experimental requirements and settings for reprogrammed neurons for in vitro disease modeling and drug discovery.
Collapse
|
813
|
Abstract
Precise genetic manipulation of human pluripotent stem cells will be required to realize their scientific and therapeutic potential. Here, we show that adeno-associated virus (AAV) gene targeting vectors can be used to genetically engineer human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different types of sequence-specific changes, including the creation and correction of mutations, were introduced into the human HPRT1 and HMGA1 genes (HPRT1 mutations being responsible for Lesch-Nyhan syndrome). Gene targeting occurred at high frequencies in both ESCs and iPSCs, with over 1% of all colony-forming units (CFUs) undergoing targeting in some experiments. AAV vectors could also be used to target genes in human fibroblasts that were subsequently used to derive iPSCs. Accurate and efficient targeting took place with minimal or no cytotoxicity, and most of the gene-targeted stem cells produced were euploid and pluripotent.
Collapse
|
814
|
Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther 2010; 18:1103-10. [PMID: 20389291 DOI: 10.1038/mt.2010.57] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Zinc Finger nucleases (ZFNs) have been used to create precise genome modifications at frequencies that might be therapeutically useful in gene therapy. We created a mouse model of a generic recessive genetic disease to establish a preclinical system to develop the use of ZFN-mediated gene correction for gene therapy. We knocked a mutated GFP gene into the ROSA26 locus in murine embryonic stem (ES) cells and used these cells to create a transgenic mouse. We used ZFNs to determine the frequency of gene correction by gene targeting in different primary cells from this model. We achieved targeting frequencies from 0.17 to 6% in different cell types, including primary fibroblasts and astrocytes. We demonstrate that ex vivo gene-corrected fibroblasts can be transplanted back into a mouse where they retained the corrected phenotype. In addition, we achieved targeting frequencies of over 1% in ES cells, and the targeted ES cells retained the ability to differentiate into cell types from all three germline lineages. In summary, potentially therapeutically relevant frequencies of ZFN-mediated gene targeting can be achieved in a variety of primary cells and these cells can then be transplanted back into a recipient.
Collapse
|
815
|
Song H, Chung SK, Xu Y. Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 2010; 6:80-9. [PMID: 20074536 DOI: 10.1016/j.stem.2009.11.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/20/2009] [Accepted: 11/25/2009] [Indexed: 02/07/2023]
Abstract
Although mouse models have been valuable for studying human disease, the cellular and physiological differences between mouse and human have made it increasingly important to develop more relevant human disease models for mechanistic studies and drug discovery. Human embryonic stem cells (hESCs), which can undergo unlimited self-renewal and retain the potential to differentiate into all cell types, present a possible solution. To improve the efficiency of genetic manipulation of hESCs, we have developed bacterial artificial chromosome (BAC) based approach that enables high efficiency homologous recombination. By sequentially disrupting both alleles of ATM or p53 with BAC targeting vectors, we have established ATM(-/-) and p53(-/-) hESCs as models for two major human genetic instability syndromes and used the generated cells to reveal the importance of p53 in maintaining genome stability of hESCs. Our findings suggest that it will be feasible to develop genetically modified hESCs as relevant human disease models.
Collapse
Affiliation(s)
- Hoseok Song
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
816
|
Abstract
Recent reports indicate that a growing number of intracellular proteins are not only prone to pathological aggregation but can also be released and "infect" neighboring cells. Therefore, many complex diseases may obey a simple model of propagation where the penetration of seeds into hosts determines spatial spread and disease progression. We term these proteins prionoids, as they appear to infect their neighbors just like prions--but how can bulky protein aggregates be released from cells and how do they access other cells? The widespread existence of such prionoids raises unexpected issues that question our understanding of basic cell biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | |
Collapse
|
817
|
Bu L, Gao X, Jiang X, Chien KR, Wang Z. Targeted conditional gene knockout in human embryonic stem cells. Cell Res 2010; 20:379-82. [PMID: 20142843 DOI: 10.1038/cr.2010.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
818
|
Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 2010; 5:e8870. [PMID: 20111598 PMCID: PMC2810328 DOI: 10.1371/journal.pone.0008870] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/04/2010] [Indexed: 01/13/2023] Open
Abstract
Background Although the rat is extensively used as a laboratory model, the inability to utilize germ line-competent rat embryonic stem (ES) cells has been a major drawback for studies that aim to elucidate gene functions. Recently, zinc-finger nucleases (ZFNs) were successfully used to create genome-specific double-stranded breaks and thereby induce targeted gene mutations in a wide variety of organisms including plants, drosophila, zebrafish, etc. Methodology/Principal Findings We report here on ZFN-induced gene targeting of the rat interleukin 2 receptor gamma (Il2rg) locus, where orthologous human and mouse mutations cause X-linked severe combined immune deficiency (X-SCID). Co-injection of mRNAs encoding custom-designed ZFNs into the pronucleus of fertilized oocytes yielded genetically modified offspring at rates greater than 20%, which possessed a wide variety of deletion/insertion mutations. ZFN-modified founders faithfully transmitted their genetic changes to the next generation along with the severe combined immune deficiency phenotype. Conclusions and Significance The efficient and rapid generation of gene knockout rats shows that using ZFN technology is a new strategy for creating gene-targeted rat models of human diseases. In addition, the X-SCID rats that were established in this study will be valuable in vivo tools for evaluating drug treatment or gene therapy as well as model systems for examining the treatment of xenotransplanted malignancies.
Collapse
|
819
|
|
820
|
|
821
|
|
822
|
Müther N, Noske N, Ehrhardt A. Viral hybrid vectors for somatic integration - are they the better solution? Viruses 2009; 1:1295-324. [PMID: 21994594 PMCID: PMC3185507 DOI: 10.3390/v1031295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system.
Collapse
Affiliation(s)
- Nadine Müther
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Nadja Noske
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institut, Department of Virology, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| |
Collapse
|
823
|
Cathomen T, Schambach A. Zinc positive: tailored genome engineering meets reprogramming. Gene Ther 2009; 17:1-3. [DOI: 10.1038/gt.2009.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
824
|
Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 2009; 19:363-71. [DOI: 10.1007/s11248-009-9323-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|