801
|
Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, Drake CG, Powell JD. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 2007; 111:251-9. [PMID: 17909080 PMCID: PMC2200810 DOI: 10.1182/blood-2007-03-081646] [Citation(s) in RCA: 392] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue-derived adenosine, acting via the adenosine A(2A) receptor (A(2A)R), is emerging as an important negative regulator of T-cell function. In this report, we demonstrate that A(2A)R stimulation not only inhibits the generation of adaptive effector T cells but also promotes the induction of adaptive regulatory T cells. In vitro, antigen recognition in the setting of A(2A)R engagement induces T-cell anergy, even in the presence of costimulation. T cells initially stimulated in the presence of an A(2A)R agonist fail to proliferate and produce interleukin-2 and interferon (IFN)-gamma when rechallenged in the absence of A(2A)R stimulation. Likewise, in an in vivo model of autoimmunity, tissue-derived adenosine promotes anergy and abrogates tissue destruction. Indeed, A(2A)R stimulation inhibits interleukin-6 expression while enhancing the production of transforming growth factor-beta. Accordingly, treating mice with A(2A)R agonists not only inhibits Th1 and Th17 effector cell generation but also promotes the generation of Foxp3(+) and LAG-3(+) regulatory T cells. In this regard, A(2A)R agonists fail to prevent autoimmunity by LAG-3(-/-) clonotypic T cells, implicating an important role for LAG-3 in adenosine-mediated peripheral tolerance. Overall, our findings demonstrate that extracellular adenosine stimulates the A(2A)R to promote long-term T-cell anergy and the generation of adaptive regulatory T cells.
Collapse
Affiliation(s)
- Paul E Zarek
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
802
|
Raskovalova T, Lokshin A, Huang X, Su Y, Mandic M, Zarour HM, Jackson EK, Gorelik E. Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res 2007; 67:5949-56. [PMID: 17575165 DOI: 10.1158/0008-5472.can-06-4249] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of this study was to investigate the effects of adenosine and its stable analogue 2-chloroadenosine (CADO) on the cytotoxic activity and cytokine production by human antimelanoma specific CD8+ and CD4+ T-helper type 1 (Th1) clones. The cytotoxic activity of CD8+ T cells was inhibited by adenosine and CADO. Using Lab MAP multiplex technology, we found that adenosine inhibits production of various cytokines and chemokines by CD8+ and CD4+ T cells. Studies with CGS21680, a specific agonist of adenosine A2A receptor (AdoRA2A), and ZM241385, an AdoRA2-selective antagonist, indicate that the inhibitory effects of adenosine are mediated via cyclic AMP (cAMP)-elevating AdoRA2A, leading to protein kinase A (PKA) activation. Using cAMP analogues with different affinities for the A and B sites of the regulatory subunits of PKAI and PKAII, we found that activation of PKAI, but not of PKAII, mimicked the inhibitory effects of adenosine on T-cell cytotoxic activity and cytokine production. Inhibitors of the PKA catalytic subunits (H89 and PKA inhibitor peptide 14-22) failed to abrogate the inhibitory effects of CADO. In contrast, Rp-8-Br-cAMPS that antagonizes binding of cAMP to the regulatory I subunit and PKA activation was efficient in blocking the inhibitory effect of adenosine on the functional activity of T cells. Our findings on the ability of adenosine to inhibit the effector function of antimelanoma specific T cells suggest that intratumor-produced adenosine could impair the function of tumor-infiltrating T lymphocytes. Thus, blocking the inhibitory activity of tumor-produced adenosine might represent a new strategy for improvement of cancer immunotherapy.
Collapse
Affiliation(s)
- Tatiana Raskovalova
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
803
|
Lukashev D, Ohta A, Sitkovsky M. Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 2007; 26:273-9. [PMID: 17404693 DOI: 10.1007/s10555-007-9054-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolutionarily selected tissue-protecting mechanisms are likely to be triggered by an event of universal significance for all surrounding cells. Such an event could be damage to blood vessels, which would result in local tissue hypoxia. It is now recognized that tissue hypoxia can initiate the tissue-protecting mechanism mediated by at least two different biochemical pathways. The central message of this review is that tumor cells are protected from immune damage in hypoxic and immunosuppressive tumor microenvironments due to the inactivation of anti-tumor T cells by the combined action of these two hypoxia-driven mechanisms. Firstly, tumor hypoxia-produced extracellular adenosine inhibits anti-tumor T cells via their G(s)-protein-coupled and cAMP-elevating A2A and A2B adenosine receptors (A2AR/A2BR). Levels of extracellular adenosine are increased in tumor microenvironments due to the changes in activities of enzymes involved in adenosine metabolism. Secondly, TCR-activated and/or tumor hypoxia-exposed anti-tumor T cells may be inhibited in tumor microenvironments by Hypoxia-inducible Factor 1alpha (HIF-1alpha) Hence, HIF-1alpha activity in T cells may contribute to the tumor-protecting immunosuppressive effects of tumor hypoxia. Here, we summarize the data that support the view that protection of hypoxic cancerous tissues from anti-tumor T cells is mediated by the same mechanism that protects normal tissues from the excessive collateral damage by overactive immune cells during acute inflammation.
Collapse
Affiliation(s)
- D Lukashev
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 113 Mugar, Boston, MA 02115, USA
| | | | | |
Collapse
|
804
|
Thiel M, Caldwell CC, Kreth S, Kuboki S, Chen P, Smith P, Ohta A, Lentsch AB, Lukashev D, Sitkovsky MV. Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS One 2007; 2:e853. [PMID: 17786224 PMCID: PMC1959117 DOI: 10.1371/journal.pone.0000853] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/04/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sepsis patients may die either from an overwhelming systemic immune response and/or from an immunoparalysis-associated lack of anti-bacterial immune defence. We hypothesized that bacterial superantigen-activated T cells may be prevented from contribution into anti-bacterial response due to the inhibition of their effector functions by the hypoxia inducible transcription factor (HIF-1alpha) in inflamed and hypoxic areas. METHODOLOGY/PRINCIPAL FINDINGS Using the Cre-lox-P-system we generated mice with a T-cell targeted deletion of the HIF-1alpha gene and analysed them in an in vivo model of bacterial sepsis. We show that deletion of the HIF-1alpha gene leads to higher levels of pro-inflammatory cytokines, stronger anti-bacterial effects and much better survival of mice. These effects can be at least partially explained by significantly increased NF-kappaB activation in TCR activated HIF-1 alpha deficient T cells. CONCLUSIONS/SIGNIFICANCE T cells can be recruited to powerfully contribute to anti-bacterial response if they are relieved from inhibition by HIF-1alpha in inflamed and hypoxic areas. Our experiments uncovered the before unappreciated reserve of anti-bacterial capacity of T cells and suggest novel therapeutic anti-pathogen strategies based on targeted deletion or inhibition of HIF-1 alpha in T cells.
Collapse
Affiliation(s)
- Manfred Thiel
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Anaesthesiology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Charles C. Caldwell
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Trauma, Sepsis and Inflammation Research Group, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Research, Shriner's Hospital for Children, Cincinnati, Ohio, United States of America
| | - Simone Kreth
- Department of Anaesthesiology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Satoshi Kuboki
- Trauma, Sepsis and Inflammation Research Group, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - P. Chen
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick Smith
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Akio Ohta
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Alex B. Lentsch
- Trauma, Sepsis and Inflammation Research Group, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Dmitry Lukashev
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Michail V. Sitkovsky
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
805
|
Fredholm BB, Chern Y, Franco R, Sitkovsky M. Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 2007; 83:263-76. [PMID: 17804147 DOI: 10.1016/j.pneurobio.2007.07.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/05/2007] [Accepted: 07/19/2007] [Indexed: 01/10/2023]
Abstract
Many of our current hopes of finding better ways to treat Parkinson's disease or to stop its progression rely on studies of adenosine A2A receptors in the brain. Yet any drug targeting central receptors will also potentially affect receptors in other sites. Furthermore, several fundamental aspects of adenosine receptor biology must be taken into account. For these reasons the "Targeting adenosine A2A receptors in Parkinson's disease and other CNS disorders" meeting in Boston included selected aspects of the general biology of adenosine A2A receptor signaling. Some of the presentations from this part of the meeting are summarized in this first chapter. As will be apparent to the reader, these different parts do not form an integrated whole, but they do indicate areas the organizers felt might illuminate remaining questions regarding the roles of adenosine A2A receptors. The contributors to this part of the meeting have summarized some of the key questions below.
Collapse
MESH Headings
- Adenosine/metabolism
- Animals
- Dimerization
- Encephalitis/genetics
- Encephalitis/immunology
- Encephalitis/metabolism
- Humans
- Hypoxia, Brain/genetics
- Hypoxia, Brain/immunology
- Hypoxia, Brain/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Parkinson Disease/genetics
- Parkinson Disease/immunology
- Parkinson Disease/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
806
|
Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257-65. [PMID: 17502665 PMCID: PMC2118603 DOI: 10.1084/jem.20062512] [Citation(s) in RCA: 1832] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 04/19/2007] [Indexed: 12/13/2022] Open
Abstract
The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5'-nucleotidase distinguishes CD4(+)/CD25(+)/Foxp3(+) T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector cells generates immunosuppressive loops, indicating roles in the inhibitory function of T reg cells. Consequently, T reg cells from Cd39-null mice show impaired suppressive properties in vitro and fail to block allograft rejection in vivo. We conclude that CD39 and CD73 are surface markers of T reg cells that impart a specific biochemical signature characterized by adenosine generation that has functional relevance for cellular immunoregulation.
Collapse
Affiliation(s)
- Silvia Deaglio
- Department of Medicine, Harvard Medical School, Transplantation Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
807
|
Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007; 14:1315-23. [PMID: 17396131 DOI: 10.1038/sj.cdd.4402132] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly coupled to G(s) like G proteins. These receptors are antagonized by xanthines including caffeine. Via these receptors it affects many cells and organs, usually having a cytoprotective function. Joel Linden recently grouped these protective effects into four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects and stimulation of angiogenesis. This review will briefly summarize what is known and what is not in this regard. It is argued that drugs targeting adenosine receptors might be useful adjuncts in many therapeutic approaches.
Collapse
Affiliation(s)
- B B Fredholm
- Department of Physiology and Pharmacology, Karolinska Insitutet, Stockholm, Sweden.
| |
Collapse
|
808
|
From "Hellstrom Paradox" to anti-adenosinergic cancer immunotherapy. Purinergic Signal 2007; 3:129-34. [PMID: 18404426 PMCID: PMC2096757 DOI: 10.1007/s11302-006-9044-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/12/2006] [Indexed: 02/06/2023] Open
Abstract
Cancer therapy by endogenous or adoptively transferred anti-tumor T cells is considered complementary to conventional cancer treatment by surgery, radiotherapy or chemotherapy. However, the scope of promising immunotherapeutic protocols is currently limited because tumors can create a ‘hostile–immunosuppressive microenvironment that prevents their destruction by anti-tumor T cells. There is a possibility to develop better and more effective immunotherapies by inactivating mechanisms that inhibit anti-tumor T cells in the tumor microenvironment and thereby protect cancerous tissues from immune damage. This may be now possible because of the recent demonstration that genetic deletion of immunosuppressive A2A and A2B adenosine receptors (A2AR and A2BR) or their pharmacological inactivation can prevent the inhibition of anti-tumor T cells by the hypoxic tumor microenvironment and as a result facilitate full tumor rejection [Ohta A, Gorelik E, Prasad SJ et al (2006) Proc Natl Acad Sci USA 103(35):13132–3137]. This approach is based on in vivo genetic evidence that A2AR play a critical role in the protection of normal tissues from overactive immune cells in acutely inflamed and hypoxic areas. The observations of much improved T-cell-mediated rejection of tumors in mice with inactivated A2AR strongly suggest that A2AR also protects hypoxic cancerous tissues and that A2AR should be inactivated in order to improve tumor rejection by anti-tumor T cells.
Collapse
|