801
|
Xu XX, Zhang XH, Diao Y, Huang YX. Achyranthes bidentate saponins protect rat articular chondrocytes against interleukin-1β-induced inflammation and apoptosis in vitro. Kaohsiung J Med Sci 2017; 33:62-68. [DOI: 10.1016/j.kjms.2016.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 12/18/2022] Open
|
802
|
|
803
|
Pakfar A, Irani S, Hanaee-Ahvaz H. Expressions of pathologic markers in PRP based chondrogenic differentiation of human adipose derived stem cells. Tissue Cell 2017; 49:122-130. [DOI: 10.1016/j.tice.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/23/2016] [Accepted: 11/01/2016] [Indexed: 01/27/2023]
|
804
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
805
|
Affiliation(s)
- Steven B Heymsfield
- From Pennington Biomedical Research Center, Louisiana State University, Baton Rouge (S.B.H.); and the Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.A.W.)
| | - Thomas A Wadden
- From Pennington Biomedical Research Center, Louisiana State University, Baton Rouge (S.B.H.); and the Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.A.W.)
| |
Collapse
|
806
|
JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci Rep 2017; 7:39914. [PMID: 28054591 PMCID: PMC5215076 DOI: 10.1038/srep39914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 11/08/2022] Open
Abstract
The proinflammatory cytokine interleukin 1β (IL-1β) induces prostaglandin E2 (PGE2) production via upregulation of cyclooxygenase-2 (COX-2) expression in synovial fibroblasts. This effect of IL-1β is involved in osteoarthritis. We investigated MAPK signaling pathways in IL-1β-induced COX-2 expression in feline synovial fibroblasts. In the presence of MAPK inhibitors, IL-1β-induced COX-2 expression and PGE2 release were both attenuated. IL-1β induced the phosphorylation of p38, JNK, MEK, and ERK1/2. A JNK inhibitor prevented not only JNK phosphorylation but also MEK and ERK1/2 phosphorylation in IL-1β-stimulated cells, but MEK and ERK1/2 inhibitors had no effect on JNK phosphorylation. A p38 inhibitor prevented p38 phosphorylation, but had no effect on MEK, ERK1/2, and JNK phosphorylation. MEK, ERK1/2, and JNK inhibitors had no effect on p38 phosphorylation. We also observed that in IL-1β-treated cells, phosphorylated MEK, ERK1/2, and JNK were co-precipitated with anti-phospho-MEK, ERK1/2, and JNK antibodies. The silencing of JNK1 in siRNA-transfected fibroblasts prevented IL-1β to induce phosphorylation of MEK and ERK1/2 and COX-2 mRNA expression. These observations suggest that JNK1 phosphorylation is necessary for the activation of the MEK/ERK1/2 pathway and the subsequent COX-2 expression for PGE2 release, and p38 independently contributes to the IL-1β effect in synovial fibroblasts.
Collapse
|
807
|
Systemic inflammation and painful joint burden in osteoarthritis: a matter of sex? Osteoarthritis Cartilage 2017; 25:53-59. [PMID: 27546883 DOI: 10.1016/j.joca.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the association between serum levels of C-reactive protein (CRP) and the extent of multijoint pain among individuals with hip/knee osteoarthritis (OA) and determined whether the association differs by sex. DESIGN Serum CRP and cartilage oligomeric matrix protein (COMP) were determined by enzyme-linked immunosorbent assay (ELISA) in 189 individuals (101 female, 88 male) scheduled for total hip/knee arthroplasty for OA. Patients indicated on a homunculus all painful joints; a summed count was derived. A series of negative binomial regression models was used to investigate the cross-sectional association between painful joint count (outcome) and serum CRP concentrations, adjusting for age, sex, body mass index (BMI), comorbidity count and COMP. An interaction between sex and these biomarkers was tested. RESULTS Mean age: 66 among women, 65 among men. Women had higher mean joint count (3.7 vs 2.5, P < 0.01; 4+ joint count reported by 37% women, 25% men). Median CRP concentration was higher in women (15.4 mg/l vs 9.3, P = 0.07). From adjusted analyses, the effects of both ln(CRP) and ln(COMP) were modified by sex (P < 0.05). Increasing ln(CRP) was associated with greater painful joint count among women, but not men. CONCLUSIONS There may be a dose-response association between painful joint burden in OA and systemic inflammation, and it appears the association is sex-specific, which may in part explain inconsistent findings in the literature. Our results underline the importance of showing sex-specific associations in OA, especially when studying the influence of inflammation.
Collapse
|
808
|
Yu L, Li QH, Deng F, Yu ZW, Luo XZ, Sun JL. Synovial fluid concentrations of cold-inducible RNA-binding protein are associated with severity in knee osteoarthritis. Clin Chim Acta 2017; 464:44-49. [DOI: 10.1016/j.cca.2016.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
809
|
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis (RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the "classical" IL-6 pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the "trans-signaling" pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular cartilage. The "shedding" of sIL-6R from the plasma membrane is carried out by a family of enzymes known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R may be an important target for future drug development in OA by ameliorating cartilage extracellular protein degradation.
Collapse
Affiliation(s)
- Graham Akeson
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J. Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, USA
- Correspondence: ; Tel.: +1-(216)-844-7846 or +1-(216)-536-1945; Fax: +1-(216)-844-2288
| |
Collapse
|
810
|
Vitamin C Protects Chondrocytes against Monosodium Iodoacetate-Induced Osteoarthritis by Multiple Pathways. Int J Mol Sci 2016; 18:ijms18010038. [PMID: 28035982 PMCID: PMC5297673 DOI: 10.3390/ijms18010038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease. Dietary intake of vitamin C relates to a reduction in cartilage loss and OA. This study examined the efficacy of vitamin C to prevent OA with the in vitro chondrosarcoma cell line (SW1353) and the in vivo monosodium iodoacetate (MIA)-induced OA rat. Results demonstrated that, in SW1353 cells, treatment with 5 μM MIA inhibited cell growth and increased oxidative stress, apoptosis, and proteoglycan loss. In addition, the expression levels of the pro-inflammatory cytokines IL-6, IL-17A, and TNF-α and matrix metalloproteinases (MMPs) MMP-1, MMP-3, and MMP-13 were increased. All of these MIA-induced changes could be prevented with treatment of 100 μM vitamin C. In an animal model, intra-articular injection of MIA-induced cartilage degradation resembled the pathological changes of OA, and treatment of vitamin C could lessen these changes. Unexpectedly, vitamin C’s effects did not strengthen with the increasing dosage, while the 100 mg/kg dosage was more efficient than the 200 or 300 mg/kg dosages. Vitamin C possessed multiple capacities for prevention of OA progress, including a decrease in apoptosis and in the expression of pro-inflammatory cytokines and MMPs in addition to the well-known antioxidation.
Collapse
|
811
|
Sun F, Zhang Y, Li Q. Therapeutic mechanisms of ibuprofen, prednisone and betamethasone in osteoarthritis. Mol Med Rep 2016; 15:981-987. [DOI: 10.3892/mmr.2016.6068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/10/2016] [Indexed: 11/05/2022] Open
|
812
|
Jiang LB, Meng DH, Lee SM, Liu SH, Xu QT, Wang Y, Zhang J. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway. Sci Rep 2016; 6:38979. [PMID: 27941926 PMCID: PMC5150254 DOI: 10.1038/srep38979] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis is a disease with inflammatory and catabolic imbalance in cartilage. Dihydroartemisinin (DHA), a natural and safe anti-malarial agent, has been reported to inhibit inflammation, but its effects on chondrocytes have yet to be elucidated. We investigated the effects of DHA on catabolism in chondrocytes. Viability of SD rats chondrocytes was analyzed. Autophagy levels were determined via expression of autophagic markers LC3 and ATG5, GFP-LC3 analysis, acridine orange staining, and electron microscopy. ATG5 siRNA induced autophagic inhibition. Catabolic gene and chemokine expression was evaluated using qPCR. The NF-κB inhibitor SM7368 and p65 over-expression were used to analyze the role of NF-κB pathway in autophagic activation. A concentration of 1 μM DHA without cytotoxicity increased LC3-II and ATG5 levels as well as autophagosomal numbers in chondrocytes. DHA inhibited TNF-α-induced expression of MMP-3 and -9, ADAMTS5, CCL-2 and -5, and CXCL1, which was reversed by autophagic inhibition. TNF-α-stimulated nuclear translocation and degradation of the p65 and IκBα proteins, respectively, were attenuated in DHA-treated chondrocytes. NF-κB inhibition activated autophagy in TNF-α-treated chondrocytes, but p65 over-expression reduced the autophagic response to DHA. These results indicate that DHA might suppress the levels of catabolic and inflammatory factors in chondrocytes by promoting autophagy via NF-κB pathway inhibition.
Collapse
Affiliation(s)
- Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - De-Hua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Soo-Min Lee
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu-Hao Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Tong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
813
|
Strontium-Substituted Bioceramics Particles: A New Way to Modulate MCP-1 and Gro-α Production by Human Primary Osteoblastic Cells. MATERIALS 2016; 9:ma9120985. [PMID: 28774105 PMCID: PMC5456992 DOI: 10.3390/ma9120985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Background: To avoid morbidity and limited availability associated with autografts, synthetic calcium phosphate (CaP) ceramics were extensively developed and used as bone filling materials. Controlling their induced-inflammatory response nevertheless remained a major concern. Strontium-containing CaP ceramics were recently demonstrated for impacting cytokines’ secretion pattern of human primary monocytes. The present study focuses on the ability of strontium-containing CaP to control the human primary bone cell production of two major inflammatory and pro-osteoclastogenic mediators, namely MCP-1 and Gro-α, in response to ceramics particles. Methods: This in vitro study was performed using human primary osteoblasts in which their response to ceramics was evaluated by PCR arrays, antibody arrays were used for screening and real-time PCR and ELISA for more focused analyses. Results: Study of mRNA and protein expression highlights that human primary bone cells are able to produce these inflammatory mediators and reveal that the adjunction of CaP in the culture medium leads to their enhanced production. Importantly, the current work determines the down-regulating effect of strontium-substituted CaP on MCP-1 and Gro-α production. Conclusion: Our findings point out a new capability of strontium to modulate human primary bone cells’ communication with the immune system.
Collapse
|
814
|
Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2016; 18:286. [PMID: 27906035 PMCID: PMC5134070 DOI: 10.1186/s13075-016-1178-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA. Some of the processes by which these membrane-bound vesicles can alter joint tissue include extracellular matrix degradation, cell-to-cell communication, modulation of inflammation, angiogenesis, and antigen presentation. For example, EVs from IL-1β-stimulated fibroblast-like synoviocytes have been shown to induce osteoarthritic changes in chondrocytes. RA models have shown that EVs stimulated with inflammatory cytokines are capable of inducing apoptosis resistance in T cells, presenting antigen to T cells, and causing extracellular damage with matrix-degrading enzymes. EVs derived from rheumatoid models have also been shown to induce secretion of COX-2 and stimulate angiogenesis. Additionally, there is evidence that synovium-derived EVs may be promising biomarkers of disease in both OA and RA. The characterization of EVs in the joint space has also opened up the possibility for delivery of small molecules. This article reviews current knowledge on the role of EVs in both RA and OA, and their potential role as therapeutic targets for modulation of these debilitating diseases.
Collapse
Affiliation(s)
- Joseph Withrow
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Cameron Murphy
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Monte Hunter
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA, 30912, USA.
| |
Collapse
|
815
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
816
|
Cucchiarini M, de Girolamo L, Filardo G, Oliveira JM, Orth P, Pape D, Reboul P. Basic science of osteoarthritis. J Exp Orthop 2016; 3:22. [PMID: 27624438 PMCID: PMC5021646 DOI: 10.1186/s40634-016-0060-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Kirrbergerstr. Bldg 37, D-66421, Homburg, Germany.
| | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Filardo
- Orthopaedic and Traumatologic I Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, University of Bologna, Bologna, Italy
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco GMR, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Barco, Guimarães, Portugal
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Kirrbergerstr. Bldg 37, D-66421, Homburg, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center and Saarland University, Homburg, Saar, Germany
| | - Dietrich Pape
- Department of Orthopaedic Surgery, Centre Hospitalier de Luxembourg, Luxembourg ville, Luxembourg
- Sports Medicine Research Laboratory, Public Research Centre for Health, Luxembourg, Centre Médical de la Fondation Norbert Metz, Luxembourg ville, Luxembourg
| | - Pascal Reboul
- UMR 7365 CNRS-Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
817
|
Tao K, Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Madry H, Lin J, Cucchiarini M. rAAV-mediated combined gene transfer and overexpression of TGF-β and SOX9 remodels human osteoarthritic articular cartilage. J Orthop Res 2016; 34:2181-2190. [PMID: 26970525 DOI: 10.1002/jor.23228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/06/2016] [Indexed: 02/04/2023]
Abstract
Direct administration of therapeutic candidate gene sequences using the safe and effective recombinant adeno-associated virus (rAAV) vectors is a promising strategy to stimulate the biologic activities of articular chondrocytes as an adapted tool to treat human osteoarthritic (OA) cartilage. In the present study, we developed a combined gene transfer approach based on the co-delivery of the pleiotropic transformation growth factor beta (TGF-β) with the specific transcription factor SOX9 via rAAV to human normal and OA chondrocytes in vitro and cartilage explants in situ in light of the mitogenic and pro-anabolic properties of these factors. Effective, durable co-overexpression of TGF-β and SOX9 significantly enhanced the levels of cell proliferation both in human normal and OA chondrocytes and cartilage explants over an extended period of time (21 days), while stimulating the biosynthesis of key matrix components (proteoglycans, type-II collagen) compared with control conditions (reporter lacZ gene transfer, absence of vector treatment). Of further note, expression of hypertrophic type-X collagen significantly decreased following co-treatment by the candidate vectors. The present findings show the value of combining the transfer and expression of potent candidate factors in human OA cartilage as a means to re-establish essential features of normal cartilage and counteract the pathological shift of homeostasis. These observations support the concept of developing dual therapeutic rAAV gene transfer strategies as future, adapted tools for the direct treatment of human OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2181-2190, 2016.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Arthritis, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Peking University Health Science Center, Beijing, 100191, People's Republic of China
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Janina Frisch
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
- Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jianhao Lin
- Institute of Arthritis, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
818
|
Butein inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. Int Immunopharmacol 2016; 42:1-10. [PMID: 27863298 DOI: 10.1016/j.intimp.2016.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/22/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by irreversible articular cartilage destruction. Butein, a polyphenolic compound isolated from the stem bark of cashews and Rhus verniciflua Stokes, has been reported to have anti-inflammatory effects. This study aimed to assess the effect of butein on human OA chondrocytes and mice OA models induced by destabilization of the medial meniscus (DMM). In vitro, human OA chondrocytes were pretreated with butein at 10, 50μM and subsequently stimulated with IL-1β (10ng/ml) for 24h. Production of NO, PGE2, TNF-α and IL-6 was evaluated by the Griess reaction and ELISAs. The mRNA expression of COX-2, iNOS, TNF-α, IL-6, MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, COL-2 and SOX-9 were measured by real-time PCR. The protein expression of COX-2, iNOS, MMP-13, COL-2, SOX-9, p65 and IκB-α were detected by Western blot. P65 nuclear translocation was detected by immunofluorescence. In vivo, the severity of OA was determined by histological analysis. We found that butein significantly inhibited the IL-1β-induced production of NO and PGE2, expression of COX-2, iNOS, TNF-α, IL-6 and MMP-13, degradation of COL-2 and SOX-9 at mRNA and protein levels as well as MMP-1, MMP-3, ADAMTS-4 and ADAMTS-5 gene expression. Furthermore, butein dramatically suppressed IL-1β-stimulated IκB-α degradation and NF-kB p65 activation. In vivo, the cartilage in butein-treated mice exhibited less Safranin O loss, cartilage erosion and lower OARSI scores. Butein also reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that butein may be a potential agent in the treatment of OA.
Collapse
|
819
|
Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes. Nat Commun 2016; 7:13336. [PMID: 27830706 PMCID: PMC5109547 DOI: 10.1038/ncomms13336] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
In vitro studies have shown that Rela/p65, a key subunit mediating NF-κB signalling, is involved in chondrogenic differentiation, cell survival and catabolic enzyme production. Here, we analyse in vivo functions of Rela in embryonic limbs and adult articular cartilage, and find that Rela protects chondrocytes from apoptosis through induction of anti-apoptotic genes including Pik3r1. During skeletal development, homozygous knockout of Rela leads to impaired growth through enhanced chondrocyte apoptosis, whereas heterozygous knockout of Rela does not alter growth. In articular cartilage, homozygous knockout of Rela at 7 weeks leads to marked acceleration of osteoarthritis through enhanced chondrocyte apoptosis, whereas heterozygous knockout of Rela results in suppression of osteoarthritis development through inhibition of catabolic gene expression. Haploinsufficiency or a low dose of an IKK inhibitor suppresses catabolic gene expression, but does not alter anti-apoptotic gene expression. The biphasic regulation of chondrocytes by Rela contributes to understanding the pathophysiology of osteoarthritis. Rela is a transcription factor shown to have seemingly contradictory roles in anabolism and catabolism of cartilage. Here the authors find that Rela prevents chondrocyte apoptosis and that homozygous knockout causes accelerated osteoarthritis in adults, whereas heterozygous knockout suppresses osteoarthritis by maintaining wild-type effects on apoptosis but inhibiting catabolic gene expression.
Collapse
|
820
|
Chen WK, Yu XH, Yang W, Wang C, He WS, Yan YG, Zhang J, Wang WJ. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif 2016; 50. [PMID: 27859817 PMCID: PMC6529103 DOI: 10.1111/cpr.12313] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
The term long non‐coding RNA (lncRNA) refers to a group of RNAs with length more than 200 nucleotides, limited protein‐coding potential, and having widespread biological functions, including regulation of transcriptional patterns and protein activity, formation of endogenous small interfering RNAs (siRNAs) and natural microRNA (miRNA) sponges. Intervertebral disc degeneration (IDD) and osteoarthritis (OA) are the most common chronic, prevalent and age‐related degenerative musculoskeletal disorders. Numbers of lncRNAs are differentially expressed in human degenerative nucleus pulposus tissue and OA cartilage. Moreover, some lncRNAs have been shown to be involved in multiple pathological processes during OA, including extracellular matrix (ECM) degradation, inflammatory responses, apoptosis and angiogenesis. In this review, we summarize current knowledge concerning lncRNAs, from their biogenesis, classification and biological functions to molecular mechanisms and therapeutic potential in IDD and OA.
Collapse
Affiliation(s)
- Wen-Kang Chen
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Medical Research Center, University of South China, Hengyang, Hunan, China
| | - Wei Yang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
821
|
Gomes WF, Lacerda ACR, Brito-Melo GEA, Fonseca SF, Rocha-Vieira E, Leopoldino AAO, Amorim MR, Mendonça VA. Aerobic training modulates T cell activation in elderly women with knee osteoarthritis. ACTA ACUST UNITED AC 2016; 49:e5181. [PMID: 27828665 PMCID: PMC5112538 DOI: 10.1590/1414-431x20165181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023]
Abstract
Osteoarthritis of the knee (kOA) is a disease that mainly affects the elderly and can
lead to major physical and functional limitations. However, the specific effects of
walking, particularly on the immune system, are unknown. Therefore, this study aimed
to analyze the effect of 12 weeks of walking (3×/week) on the leukocyte profile and
quality of life (QL) of elderly women with kOA. Sixteen women (age: 67±4 years, body
mass index: 28.07±4.16 kg/m2) participated in a walking program. The
variables were assessed before and after 12 weeks of training with a progressively
longer duration (30–55 min) and higher intensity (72–82% of HRmax determined using a
graded incremental treadmill test). The QL was assessed using the Medical Outcomes
Study 36-Item Short Form Health Survey (SF-36), and blood samples were collected for
analysis with a cell counter and the San Fac flow cytometer. Walking training
resulted in a 47% enhancement of the self-reported QL (P<0.05) and a 21% increase
in the VO2max (P<0.0001) in elderly women with kOA. Furthermore, there
was a reduction in CD4+ cells (pre=46.59±7%, post=44.58±9%, P=0.0189) and a higher
fluorescence intensity for CD18+CD4+ (pre=45.30±10, post=64.27±33, P=0.0256) and
CD18+CD8+ (pre=64.2±27, post=85.02±35, P=0.0130). In
conclusion, the walking program stimulated leukocyte production, which may be related
to the immunomodulatory effect of exercise. Walking also led to improvements in the
QL and physical performance in elderly women with kOA.
Collapse
Affiliation(s)
- W F Gomes
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - A C R Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - G E A Brito-Melo
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - S F Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - E Rocha-Vieira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - A A O Leopoldino
- Departamento de Fisioterapia e Terapia Ocupacional, Escola de Educação Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M R Amorim
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - V A Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| |
Collapse
|
822
|
Behrendt P, Preusse-Prange A, Klüter T, Haake M, Rolauffs B, Grodzinsky AJ, Lippross S, Kurz B. IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis Cartilage 2016; 24:1981-1988. [PMID: 27349464 DOI: 10.1016/j.joca.2016.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to examine whether anti-inflammatory interleukin-10 (IL-10) exerts chondroprotective effects in an in vitro model of a single mechanical injury of mature articular cartilage. METHOD Articular cartilage was harvested from the femoro-patellar groove of adult cows (Bos taurus) and cultured w/o bovine IL-10. After 24 h of equilibration explants were subjected to an axial unconfined compression (50% strain, velocity 2 mm/s, held for 10 s). After 96 h cell death was measured histomorphometrically (nuclear blebbing, NB) and the release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analyzed. mRNA levels of matrix degrading enzymes and nitric oxide synthetase were measured by quantitative real time PCR. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. RESULTS Injurious compression significantly increased the number of cells with NB, release of GAG and nitric oxide and expression of MMP-3, -13, ADAMTS-4 and NOS2. Administration of IL-10 significantly reduced the injury related cell death and release of GAG and NO, respectively. Expression of MMP-3, -13, ADAMTS-4 and NOS2 were significantly reduced. CONCLUSION Joint injury is a complex process involving specific mechanical effects on cartilage as well as induction of an inflammatory environment. IL-10 prevented crucial mechanisms of chondrodegeneration induced by an injurious single compression. IL-10 might be a multipurpose drug candidate for the treatment of cartilage-related sports injuries or osteoarthritis (OA).
Collapse
Affiliation(s)
- P Behrendt
- Department of Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany.
| | - A Preusse-Prange
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany.
| | - T Klüter
- Department of Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany.
| | - M Haake
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany.
| | - B Rolauffs
- Siegfried Weller Institute for Trauma Research & Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany; Department of Orthopedics and Trauma Surgery, Albert Ludwigs University of Freiburg, Freiburg, Germany.
| | - A J Grodzinsky
- Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - S Lippross
- Department of Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany.
| | - B Kurz
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany.
| |
Collapse
|
823
|
Upregulation of miR-98 Inhibits Apoptosis in Cartilage Cells in Osteoarthritis. Genet Test Mol Biomarkers 2016; 20:645-653. [DOI: 10.1089/gtmb.2016.0011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
824
|
Abstract
OBJECTIVE The goal of this study was to quantify aging effects upon the global knee joint and surrounding capsule and soft tissue inflammation using fluorine-18 fluorodeoxyglucose (18F-FDG) PET imaging. METHODS This reanalysis of a prospective study included 64 patients who had undergone 18F-FDG-PET for evaluation of hip joint prostheses, and whose scans included the knee joints in the field of view. Mean patient age was 53 years (range: 33-84 years). A fixed-sized three-dimensional region of interest was placed around each knee joint, paying close attention to exclude the popliteal vessels. 18F-FDG-avid regions in each knee joint were then segmented using an adaptive contrast-oriented thresholding method, and metabolically active volume (MAV), mean standardized uptake value (SUV mean), partial volume-corrected SUV mean (cSUV mean), and partial volume-corrected mean metabolic volumetric product (cMVP mean = cSUV mean × MAV) of the segmented regions were calculated. Finally, global knee inflammation (GKI) for each knee joint was calculated as the sum of cMVP mean in all segmented regions. Association of GKI with age was assessed with Pearson's correlation and linear regression methods, and GKI was compared between patients at different ages - between patients younger than 55 years and those older than 55 years - using the unpaired t-test. RESULTS The correlation coefficient of GKI with advancing age was 0.57 (P = 0.02). In the linear regression model, considering GKI as the dependent variable and age and sex as independent covariates, the β coefficient of age was 2.1 (95% confidence interval: 1.1-3.2). For patients aged younger than 55 years versus those aged older than 55 years, the mean GKI was 157 and 190 cm3, respectively (P = 0.01). CONCLUSION Through the use of novel quantitative techniques, we were able to calculate GKI and demonstrate a significant increase in the entity of joint inflammation with advancing age. As degenerative disease is age-related and inflammation is implicated in its pathogenesis, our findings further support this association. These preliminary data suggest that this approach can potentially provide a means to objectively quantify the degree of inflammation in various joint disorders, and possibly in other knee degenerative/inflammatory diseases.
Collapse
|
825
|
Srivastava S, Saksena AK, Khattri S, Kumar S, Dagur RS. Curcuma longa extract reduces inflammatory and oxidative stress biomarkers in osteoarthritis of knee: a four-month, double-blind, randomized, placebo-controlled trial. Inflammopharmacology 2016; 24:377-388. [DOI: 10.1007/s10787-016-0289-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022]
|
826
|
Li Z, Liu B, Wang B, Liu Y, Zhang Y, Tian F, Li B, Zhao D. Carvedilol suppresses cartilage matrix destruction. Biochem Biophys Res Commun 2016; 480:309-313. [PMID: 27746177 DOI: 10.1016/j.bbrc.2016.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Collagen type Ⅱ (col Ⅱ) and aggrecan, the main components of the extracellular matrix (ECM) in human joint cartilage, have been reported to be reduced by chronic production of inflammatory cytokine interleukin (IL)-1β in arthritic joints. Carvedilol, a licensed medicine, has been used for treatment of hypertension, congestive heart failure and coronary disease in clinics. In this study, we investigated the effects of Carvedilol on the expression of col Ⅱ and aggrecan. Our results demonstrate that treatment with Carvedilol didn't change the expression of aggrecan or col Ⅱ at mRNA levels in SW1353 chondrocytes. However, the expression of aggrecan and Col II at protein levels were significantly reduced by IL-1β treatment, which were reversed by Carvedilol in a dose dependent manner, suggesting the inhibitory effects of Carvedilol on the expression of aggrecan and Col II are at post-translational modification levels. In addition, it was shown that IL-1β treatment highly induced MMP-1 and MMP-13 expression in SW1353 chondrocytes at both gene and protein expression levels, which were restored by Carvedilol in a dose dependent manner. Mechanistically, exposure to IL-1β increased phosphorylation of IKK-α/β and degradation of IκB-α in SW1353 chondrocytes, which were suppressed by pretreatment with Carvedilol. Administration of Carvedilol inhibited IL-1β-induced translocation of NF-κB p65 from cytosol to nucleus manner. Notably, a luciferase reporter assay showed that IL-1β severely increased NF-κB luciferase activity, which was markedly suppressed by Carvedilol treatment. Our results suggest that Carvedilol might be a potential therapeutic agent for chondro-protective therapy.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, PR China; Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Baoyi Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Benjie Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Yupeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Yao Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Fengde Tian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Borui Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, PR China.
| |
Collapse
|
827
|
Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med Sci 2016; 32:101-108. [DOI: 10.1007/s10103-016-2091-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/27/2016] [Indexed: 12/25/2022]
|
828
|
de Oliveira VLC, Silva JA, Serra AJ, Pallotta RC, da Silva EAP, de Farias Marques AC, Feliciano RDS, Marcos RL, Leal-Junior ECP, de Carvalho PDTC. Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 2016; 32:87-94. [PMID: 27726041 DOI: 10.1007/s10103-016-2089-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on inflammatory indicators, i.e., inflammatory mediators (TNF-α and CINC-1), and pain characterized by hyperalgesia and B1 and B2 receptor activation at 6, 24, and 48 h after papain-induced osteoarthritis (OA) in rats. Fifty-four rats were subjected to hyperalgesia evaluations and then divided randomly into three groups-a control group and two groups OA and OA PBMT group by using laser parameters at wavelength (808 nm), output power (50 mW), energy per point (4 Joules), power density (1.78 W/cm2), laser beam (0.028 cm2), and energy density (144 J/cm2)-the induction of osteoarthritis was then performed with 20-μl injections of a 4 % papain solution dissolved in 10 μl of saline solution, to which 10 μl of cysteine solution (0.03 M). The statistical analysis was performed using two-way ANOVA with Bonferroni's post hoc test for comparisons between the 6, 24, and 48 h and team points within each group, and between the control, injury, and PBMT groups, and p < 0.05 was considered to indicate a significant difference. The hyperalgesia was evaluated at 6, 24, and 48 h after the injury. PBMT at a wavelength of 808 nm and doses of 4 J, administered afterward, promotes increase at the threshold of pressure stimulus at 6, 24, and 48 h after application and promote cytokine attenuation levels (TNF and CINC-1) and bradykinin receptor (B1 and B2) along the experimental period. We conclude that photobiomodulation therapy was able to promote the reduction of proinflammatory cytokines such as TNF-α and CINC-1, to reduce the gene and protein expression of the bradykinin receptor (B1 and B2), as well as increasing the stimulus response threshold of pressure in an experimental model of acute osteoarthritis.
Collapse
Affiliation(s)
| | - José Antonio Silva
- Postgraduate Program in Medicine Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Rodney Capp Pallotta
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | - Anna Cristina de Farias Marques
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | | | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil.,Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil. .,Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
| |
Collapse
|
829
|
Abstract
The knee is a fascinating yet complex joint. Researchers and clinicians agree that the joint is an organ comprised of highly specialized intrinsic and extrinsic tissues contributing to both health and disease. Key to the function and movement of the knee are the menisci, exquisite fibrocartilage structures that are critical structures for maintaining biological and biomechanical integrity of the joint. The biological/physiological functions of the menisci must be understood at the tissue, cellular and even molecular levels in order to determine clinically relevant methods for assessing it and influencing it. By investigating normal and pathological functions at the basic science level, we can begin to translate data to patients. The objective of this article is to provide an overview of this translational pathway so that progression toward improved diagnostic, preventative, and therapeutic strategies can be effectively pursued. We have thoroughly examined the pathobiological, biomarker, and imaging aspects of meniscus research. This translational approach can be effective toward optimal diagnosis, prevention, and treatment for the millions of patients who suffer from meniscal disorders each year.
Collapse
Affiliation(s)
- James L Cook
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Keiichi Kuroki
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Aaron M Stoker
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Farrah A Monibi
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Brandon L Roller
- b Department of Radiology , Wake Forest Baptist Medical Center , Winston-Salem , NC , USA
| |
Collapse
|
830
|
Eo SH, Choi SY, Kim SJ. PEP-1-SIRT2-induced matrix metalloproteinase-1 and -13 modulates type II collagen expression via ERK signaling in rabbit articular chondrocytes. Exp Cell Res 2016; 348:201-208. [PMID: 27697532 DOI: 10.1016/j.yexcr.2016.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are critical for the degradation of the extracellular matrix (ECM), which includes cartilage-specific collagen types I, II and XI. We previously found that PEP-1-sirtuin (SIRT)2 could induce dedifferentiation of articular chondrocytes; however, the underlying mechanisms remains unclear. We addressed this in the present study by examining the association between PEP-1-SIRT2 and the expression of MMP-1 and MMP-13 and type II collagen in rabbit articular chondrocytes. We found that PEP-1-SIRT2 increased MMP-1 and -13 expression in a dose- and time-dependent manner, as determined by western blotting. A similar trend in MMP-1 and -13 levels was observed in cultures during expansion to four passages. Pharmacological inhibition of MMP-1 and -13 blocked the PEP-1-SIRT2-induced decrease in type II collagen level. Phosphorylation of extracellular regulated kinase (ERK) was increased by PEP-1-SIRT2; however, treatment with the mitogen-activated protein kinase inhibitor PD98059 suppressed PEP-1-SIRT2-induced MMP-1 and -13 expression and dedifferentiation while restoring type II collagen expression in passage 2 cells. These results suggest that PEP-1-SIRT2 promotes MMP-induced dedifferentiation via ERK signaling in articular chondrocytes.
Collapse
Affiliation(s)
- Seong-Hui Eo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudaehak-ro, Gongju, Chungnam 32588, Republic of Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Republic of Korea.
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudaehak-ro, Gongju, Chungnam 32588, Republic of Korea.
| |
Collapse
|
831
|
Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism and Susceptibility to Osteoarthritis of the Knee: A Case-Control Study and Meta-Analysis. PLoS One 2016; 11:e0161754. [PMID: 27657933 PMCID: PMC5033346 DOI: 10.1371/journal.pone.0161754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Studies of angiotensin-converting enzyme insertion/deletion (ACE I/D) polymorphisms and the risks of knee osteoarthritis (OA) have yielded conflicting results. Objective To determine the association between ACE I/D and knee OA, we conducted a combined case-control study and meta-analysis. Methods For the case-control study, 447 knee OA cases and 423 healthy controls were recruited between March 2010 and July 2011. Knee OA cases were defined using the Kellgren-Lawrence grading system, and the ACE I/D genotype was determined using a standard polymerase chain reaction. The association between ACE I/D and knee OA was detected using allele, genotype, dominant, and recessive models. For the meta-analysis, PubMed and Embase databases were systematically searched for prospective observational studies published up until August 2015. Studies of ACE I/D and knee OA with sufficient data were selected. Pooled results were expressed as odds ratios (ORs) with corresponding 95% confidence intervals (CI) for the D versus I allele with regard to knee OA risk. Results We found no significant association between the D allele and knee OA [OR: 1.09 (95% CI: 0.76–1.89)] in the present case-control study, and the results of other genetic models were also nonsignificant. Five current studies were included, and there were a total of six study populations after including our case-control study (1165 cases and 1029 controls). In the meta-analysis, the allele model also yielded nonsignificant results [OR: 1.37 (95% CI: 0.95–1.99)] and a high heterogeneity (I2: 87.2%). Conclusions The association between ACE I/D and knee OA tended to yield negative results. High heterogeneity suggests a complex, multifactorial mechanism, and an epistasis analysis of ACE I/D and knee OA should therefore be conducted.
Collapse
|
832
|
Kunanusornchai W, Witoonpanich B, Tawonsawatruk T, Pichyangkura R, Chatsudthipong V, Muanprasat C. Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: An in vitro and in vivo study. Pharmacol Res 2016; 113:458-467. [PMID: 27650754 DOI: 10.1016/j.phrs.2016.09.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Synovial inflammation plays an important role in the early pathogenesis of osteoarthritis (OA). Chitosan oligosaccharide (COS) has been shown to activate AMPK and suppress inflammatory responses in intestinal epithelial cells. This study aimed to investigate the effect of COS on AMPK activation and synovial inflammation using both primary cultures of synoviocytes and a rabbit model of anterior cruciate ligament (ACL) transection-induced OA. COS induced AMPK activation in both rabbit and human synoviocytes. The mechanism of COS-induced AMPK activation involves an increase in the ADP/ATP ratio but not calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ). Interestingly, COS suppressed the TNFα-induced iNOS and COX-2 expression via an AMPK-dependent mechanism in both rabbit and human synoviocytes. Importantly, oral administration of COS (10mg/kg/day) induced AMPK activation and alleviated signs of inflammation including COX-2 expression in the synovium of a rabbit ACL transection model. Taken together, our results indicate that COS suppresses synovial inflammation in vitro and in vivo via AMPK activation. COS may be useful in the prevention of OA.
Collapse
Affiliation(s)
- Wanlop Kunanusornchai
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Bhee Witoonpanich
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Phayathai, Bangkok 10330, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand; Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand.
| |
Collapse
|
833
|
Munkholm TK, Arendt-Nielsen L. The interaction between NGF-induced hyperalgesia and acid-provoked pain in the infrapatellar fat pad and tibialis anterior muscle of healthy volunteers. Eur J Pain 2016; 21:474-485. [PMID: 27634419 DOI: 10.1002/ejp.941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Tissue pH is lowered in inflamed tissues, and the increased proton concentration activates acid-sensing ion channels (ASICs), contributing to pain and hyperalgesia. ASICs can be upregulated by nerve growth factor (NGF). The aim of this study was to investigate two new human experimental pain models combining NGF- and acid-induced pain in a randomized, controlled, double-blind study. METHODS In experiment 1, volunteers (N = 16) received an injection of either NGF or isotonic saline in each infrapatellar fat pad (IFP). One day after 5 mL of phosphate-buffered acidic saline was infused into each IFP at a rate of 20 mL/h. In experiment 2, the tibialis anterior (TA) muscle of additional volunteers (N = 16) was examined, following the same procedure except that the volume and infusion rate of acid were different (10 mL, 30 mL/h). Continuous pain ratings were recorded during and after acid infusions. In addition, soreness scores on a Likert scale and pressure pain thresholds (PPTs) were assessed. RESULTS The PPT of the IFP was significantly decreased at the NGF injection site on day 1, but acid-provoked pain ratings and the change in PPT from pre- to postinfusion between the knees were similar. In the muscle pain model, local mechanical hyperalgesia developed 3 h after the NGF injection and a significant additional decrease in PPT was found after acid infusion compared to preinfusion. CONCLUSIONS NGF sensitization in the IFP was not facilitated by acid, whereas an acid-provoked enhancement of muscle hyperalgesia was found. NGF sensitization of adipose tissue responds differently to acid provocation compared to muscle tissue. SIGNIFICANCE Quantification of two novel pain models combining NGF and acid. Hyperalgesia developed after NGF injection in the infrapatellar fat pad, but it was not facilitated by acid provocation. Contrary, NGF-induced hyperalgesia in muscle tissue was enhanced by acid.
Collapse
Affiliation(s)
- T K Munkholm
- Center for Sensory-Motor Interaction (SMI), Aalborg University, Denmark
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Aalborg University, Denmark
| |
Collapse
|
834
|
Bauer C, Niculescu-Morzsa E, Jeyakumar V, Kern D, Späth SS, Nehrer S. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. J Inflamm (Lond) 2016; 13:31. [PMID: 27625590 PMCID: PMC5020517 DOI: 10.1186/s12950-016-0139-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is described by an imbalance between anabolic and catabolic processes in the affected joint. This dysregulation of metabolism affects not only chondrocytes within cartilage tissue but also the cells of the synovial membrane across the border of the joint. An important factor in OA is the low viscosity of the synovial fluid. High-molecular-weight hyaluronic acid (HA) can be used to increase the viscosity and also reduce inflammatory processes. The purpose was to establish an in vitro inflammation model and to evaluate the effects of high-molecular-weight HA in a co-cultivation inflammation model of osteoarthritic chondrocytes and M1 macrophages. METHODS For the establishment of the inflammation model THP-1 cells were, at first, differentiated to M0 macrophages and then activated to the M1 subtype after 5 days of resting period. Surface markers, cytokine release, and gene expression, were analyzed to examine the successful differentiation. In the inflammation model, the defined M1 macrophages were co-cultivated with osteoarthritic chondrocytes for 2 days, with and without the addition of 10 % HA and further analyzed for chondrogenic gene expression markers and the release of cytokines in the supernatant. RESULTS The differentiation and activation process was successful as M1 macrophages expressed higher levels of pro-inflammatory cytokines and specific genes. Similarly, the surface marker CD14 was significantly decreased compared to M0 macrophages. For the co-culture system, the analysis of gene expression showed that HA increased the expression of cartilage-specific genes while catabolic-encoding genes exhibited lower expression levels than the control group. This positive effect of HA was also demonstrated by the measurement of pro-inflammatory cytokines, as their level decreased. CONCLUSION Our study implies that high-molecular-weight HA has a chondroprotective effect in the present co-cultivation inflammation model, as it decreases pro-inflammatory cytokines and increases anabolic factors.
Collapse
Affiliation(s)
- Christoph Bauer
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Eugenia Niculescu-Morzsa
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Vivek Jeyakumar
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Daniela Kern
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Stephan S. Späth
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube-University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, Austria
| |
Collapse
|
835
|
Boyan BD, Hyzy SL, Pan Q, Scott KM, Coutts RD, Healey R, Schwartz Z. 24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats. PLoS One 2016; 11:e0161782. [PMID: 27575371 PMCID: PMC5019362 DOI: 10.1371/journal.pone.0161782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) in humans is associated with low circulating 25-hydroxyvitamin D3 [25(OH)D3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] accumulates in articular cartilage following injection of [3H]-25(OH)D3. Previously, we showed that 24R,25(OH)2D3 blocks chondrocyte apoptosis via phospholipase D and p53, suggesting a role for 24R,25(OH)2D3 in maintaining cartilage health. We examined the ability of 24R,25(OH)2D3 to prevent degenerative changes in articular cartilage in an OA-like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes were treated with IL-1β with and without 24R,25(OH)2D3 or 1α,25(OH)2D3. 24R,25(OH)2D3 but not 1α,25(OH)2D3 blocked the effects of IL-1β in a dose-dependent manner, and its effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral anterior cruciate ligament transections were performed in immunocompetent rats followed by intra-articular injections of 24R,25(OH)2D3 or vehicle (t = 0, 7, 14, 21 days). Tissues were harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints treated with 24R,25(OH)2D3 had less articular cartilage damage and levels of inflammatory mediators. These results indicate that 24R,25(OH)2D3 protects against OA, and suggest that it may be a therapeutic approach for preventing trauma-induced osteoarthritis.
Collapse
MESH Headings
- 24,25-Dihydroxyvitamin D 3/administration & dosage
- 24,25-Dihydroxyvitamin D 3/pharmacology
- Animals
- Anterior Cruciate Ligament Injuries/drug therapy
- Anterior Cruciate Ligament Injuries/etiology
- Anterior Cruciate Ligament Injuries/genetics
- Anterior Cruciate Ligament Injuries/metabolism
- Cartilage, Articular/cytology
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Humans
- Injections, Intra-Articular
- Interleukin-1beta/adverse effects
- Male
- Osteoarthritis, Knee/prevention & control
- Rats
- Signal Transduction/drug effects
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Vitamins/administration & dosage
- Vitamins/pharmacology
Collapse
Affiliation(s)
- Barbara D. Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sharon L. Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Qingfen Pan
- School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kayla M. Scott
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard D. Coutts
- Department of Orthopedic Surgery, University of California San Diego, San Diego, California, United States of America
| | - Robert Healey
- Department of Orthopedic Surgery, University of California San Diego, San Diego, California, United States of America
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
836
|
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12:580-92. [PMID: 27539668 DOI: 10.1038/nrrheum.2016.136] [Citation(s) in RCA: 975] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. Furthermore, we now appreciate that OA pathogenesis involves not only breakdown of cartilage, but also remodelling of the underlying bone, formation of ectopic bone, hypertrophy of the joint capsule, and inflammation of the synovial lining. That is, OA is a disorder of the joint as a whole, with inflammation driving many pathologic changes. The inflammation in OA is distinct from that in rheumatoid arthritis and other autoimmune diseases: it is chronic, comparatively low-grade, and mediated primarily by the innate immune system. Current treatments for OA only control the symptoms, and none has been FDA-approved for the prevention or slowing of disease progression. However, increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies. Indeed, several anti-inflammatory therapies have shown promise in animal models of OA. Further work is needed to identify effective inhibitors of the low-grade inflammation in OA, and to determine whether therapies that target this inflammation can prevent or slow the development and progression of the disease.
Collapse
Affiliation(s)
- William H Robinson
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Christin M Lepus
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Qian Wang
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Harini Raghu
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Rong Mao
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Tamsin M Lindstrom
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Jeremy Sokolove
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
837
|
Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20600-20613. [PMID: 27404480 DOI: 10.1021/acsami.6b06509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | | | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
- Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center , Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| |
Collapse
|
838
|
Walter B, Purmessur D, Moon A, Occhiogrosso J, Laudier D, Hecht A, Iatridis J. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells. Eur Cell Mater 2016; 32:123-36. [PMID: 27434269 PMCID: PMC5072776 DOI: 10.22203/ecm.v032a08] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.
Collapse
Affiliation(s)
- B.A. Walter
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - D Purmessur
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A. Moon
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J. Occhiogrosso
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D.M. Laudier
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A.C. Hecht
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J.C. Iatridis
- Leni & Peter W. May Department of Orthopaedics at the Icahn School of Medicine at Mount Sinai, New York, NY, USA,Address for correspondence: James C. Iatridis Leni & Peter W. May Department of Orthopaedics, Box 1188, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, Telephone Number: 1-212-241-1517, FAX Number: 1-212-876-3168 www.ecmjournal.org
| |
Collapse
|
839
|
Mesenchymal Stromal Cells from Osteoarthritic Synovium Are a Distinct Population Compared to Their Bone-Marrow Counterparts regarding Surface Marker Distribution and Immunomodulation of Allogeneic CD4+ T-Cell Cultures. Stem Cells Int 2016; 2016:6579463. [PMID: 27516777 PMCID: PMC4969547 DOI: 10.1155/2016/6579463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 01/15/2023] Open
Abstract
Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis. Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs. Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-α as well as increasing IL-6 secretion. Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches.
Collapse
|
840
|
Jiang B, Suen R, Wang JJ, Zhang ZJ, Wertheim JA, Ameer GA. Mechanocompatible Polymer-Extracellular-Matrix Composites for Vascular Tissue Engineering. Adv Healthc Mater 2016; 5:1594-605. [PMID: 27109033 DOI: 10.1002/adhm.201501003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Indexed: 11/09/2022]
Abstract
Small-diameter vascular grafts developed from vascular extracellular matrix (ECM) can potentially be used for bypass surgeries and other vascular reconstruction and repair procedures. The addition of heparin to the ECM improves graft hemocompatibility but often involves chemical cross-linking, which increases ECM mechanical stiffness compared to native arteries. Herein, the importance of maintaining ECM mechanocompatibility is demonstrated, and a mechanocompatible strategy to immobilize heparin onto the ECM via a biodegradable elastomer is described. Specifically, poly(1,8-octamethylene citrate)-co-cysteine is hybridized to the ECM, forming a polymer-ECM composite that allows for heparin immobilization via maleimide-thiol "click" chemistry. Heparinized composites reduce platelet adhesion by >60% in vitro, without altering the elastic modulus of the ECM. In a rat abdominal aortic interposition model, intimal hyperplasia in heparinized mechanocompatible grafts is 65% lower when compared to ECM-only control grafts at four weeks. In contrast, grafts that are heparinized with carbodiimide chemistry exhibit increased intimal hyperplasia (4.2-fold) and increased macrophage infiltration (3.5-fold) compared to ECM-only control grafts. All grafts show similar, partial endothelial cell coverage and little to no ECM remodeling. Overall, a mechanocompatible strategy to improve ECM thromboresistance is described and the importance of ECM mechanical properties for proper in vivo graft performance is highlighted.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department; Northwestern University; Evanston IL 60208 USA
- Comprehensive Transplant Center; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
| | - Rachel Suen
- Weinberg College of Arts and Sciences; Northwestern University; Evanston IL 60208 USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
| | - Zheng J. Zhang
- Comprehensive Transplant Center; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
| | - Jason A. Wertheim
- Biomedical Engineering Department; Northwestern University; Evanston IL 60208 USA
- Comprehensive Transplant Center; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
- Department of Surgery; Jesse Brown VA Medical Center; Chicago IL 60612 USA
- Chemistry of Life Processes Institute; Northwestern University; Evanston IL 60208 USA. Simpson Querrey Institute; Northwestern University; Chicago IL 60611 USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department; Northwestern University; Evanston IL 60208 USA
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago IL 60611 USA
- Chemistry of Life Processes Institute; Northwestern University; Evanston IL 60208 USA
- Simpson Querrey Institute; Northwestern University; Chicago IL 60611 USA
| |
Collapse
|
841
|
SOCS1 suppresses IL-1β-induced C/EBPβ expression via transcriptional regulation in human chondrocytes. Exp Mol Med 2016; 48:e241. [PMID: 27339399 PMCID: PMC4929694 DOI: 10.1038/emm.2016.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/31/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
CAAT/enhancer-binding protein-beta (C/EBPβ) is a transcription factor that regulates interleukin-1β (IL-1β)-induced catabolic pathways, including the expression of matrix metalloproteinases (MMPs), in chondrocytes. We previously reported that suppressor of cytokine signaling 1 (SOCS1) inhibits IL-1β signaling in chondrocytes. However, the effect of SOCS1 on C/EBPβ has not been explored. To investigate the interaction between SOCS1 and C/EBPβ, we established human SW1353 cells with overexpression or knockdown of SOCS1 or C/EBPβ. Both SOCS1 and C/EBPβ were involved in transcription of MMP-3 and MMP-13. When stimulated with IL-1β, C/EBPβ levels were significantly increased by SOCS1 knockdown and decreased by SOCS1 overexpression. A similar change in IL-1β-induced C/EBPβ expression was observed in SOCS1-transfected human articular chondrocytes. However, C/EBPβ overexpression or knockdown did not change the levels of IL-1β-induced SOCS1. SOCS1 regulated the levels of C/EBPβ mRNA by ubiquitination of C/EBPβ as well as transcriptional regulation. Furthermore, it suppressed the phosphorylation of cAMP response element-binding protein (CREB), an active transcription factor of C/EBPβ. In addition, p38 mitogen-activated protein kinases, a target of SOCS1, was involved in CREB phosphorylation. The chromatin immunoprecipitation assay confirmed that SOCS1 overexpression led to reduced binding of C/EBPβ to the MMP-13 promoter. Taken together, our results demonstrate that SOCS1 downregulates the p38-CREB-C/EBPβ pathway resulting in increased expression of MMPs in chondrocytes.
Collapse
|
842
|
Russo F, D’Este M, Vadalà G, Cattani C, Papalia R, Alini M, Denaro V. Platelet Rich Plasma and Hyaluronic Acid Blend for the Treatment of Osteoarthritis: Rheological and Biological Evaluation. PLoS One 2016; 11:e0157048. [PMID: 27310019 PMCID: PMC4911091 DOI: 10.1371/journal.pone.0157048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction Osteoarthritis (OA) is the most common musculoskeletal disease. Current treatments for OA are mainly symptomatic and inadequate since none results in restoration of fully functional cartilage. Hyaluronic Acid (HA) intra-articular injections are widely accepted for the treatment of pain associated to OA. The goal of HA viscosupplementation is to reduce pain and improve viscoelasticity of synovial fluid. Platelet-rich plasma (PRP) has been also employed to treat OA to possibly induce cartilage regeneration. The combination of HA and PRP could supply many advantages for tissue repair. Indeed, it conjugates HA viscosupplementation with PRP regenerative properties. The aim of this study was to evaluate the rheological and biological properties of different HA compositions in combination with PRP in order to identify (i) the viscoelastic features of the HA-PRP blends, (ii) their biological effect on osteoarthritic chondrocytes and (iii) HA formulations suitable for use in combination with PRP. Materials and Methods HA/PRP blends have been obtained mixing human PRP and three different HA at different concentrations: 1) Sinovial, 0.8% (SN); 2) Sinovial Forte 1.6% (SF); 3) Sinovial HL 3.2% (HL); 4) Hyalubrix 1.5% (HX). Combinations of phosphate buffered saline (PBS) and the four HA types were used as control. Rheological measurements were performed on an Anton PaarMCR-302 rheometer. Amplitude sweep, frequency sweep and rotational measurements were performed and viscoelastic properties were evaluated. The rheological data were validated performing the tests in presence of Bovine Serum Albumin (BSA) up to ultra-physiological concentration (7%). Primary osteoarthritic chondrocytes were cultured in vitro with the HA and PRP blends in the culture medium for one week. Cell viability, proliferation and glycosaminoglycan (GAG) content were assessed. Results PRP addition to HA leads to a decrease of viscoelastic shear moduli and increase of the crossover point, due to a pure dilution effect. For viscosupplements with HA concentration below 1% the viscoelasticity is mostly lost. Results were validated also in presence of proteins, which in synovial fluid are more abundant than HA. Chondrocytes proliferated overtime in all different culture conditions. The proliferation rate was higher in chondrocytes cultured in the media containing PRP compared to the cultures with different HA alone. GAG content was significantly higher in chondrocytes cultured in PRP and HL blend. Discussion We investigated the rheological and biological properties of four different HA concentrations when combined with PRP giving insights on viscoelastic and biological properties of a promising approach for future OA therapy. Our data demonstrate that PRP addition is not detrimental to the viscosupplementation effect of HA. Viscosupplements containing low HA concentration are not indicated for combination with PRP, as the viscoelastic properties are lost. Although having the same rheological behavior of SF and HX, HL was superior in stimulating extracellular matrix production in vitro.
Collapse
Affiliation(s)
- Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Matteo D’Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
- * E-mail:
| | - Caterina Cattani
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| |
Collapse
|
843
|
Lemarchant S, Dunghana H, Pomeshchik Y, Leinonen H, Kolosowska N, Korhonen P, Kanninen KM, García-Berrocoso T, Montaner J, Malm T, Koistinaho J. Anti-inflammatory effects of ADAMTS-4 in a mouse model of ischemic stroke. Glia 2016; 64:1492-507. [PMID: 27301579 DOI: 10.1002/glia.23017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022]
Abstract
ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs type 4) is a metalloprotease capable to degrade chondroitin sulfate proteoglycans leading to cartilage destruction during arthritis or to neuroplasticity during spinal cord injury (SCI). Although ADAMTS-4 is an inflammatory-regulated enzyme, its role during inflammation has never been investigated. The aim of this study was to investigate the role of ADAMTS-4 in neuroinflammation. First, we evidenced an increase of ADAMTS-4 expression in the ischemic brain hemisphere of mouse and human patients suffering from ischemic stroke. Then, we described that ADAMTS-4 has predominantly an anti-inflammatory effect in the CNS. Treatment of primary microglia or astrocyte cultures with low doses of a human recombinant ADAMTS-4 prior to LPS exposure decreased NO production and the synthesis/release of pro-inflammatory cytokines including NOS2, CCL2, TNF-α, IL-1β and MMP-9. Accordingly, when cell cultures were transfected with silencing siRNA targeting ADAMTS-4 prior to LPS exposure, the production of NO and the synthesis/release of pro-inflammatory cytokines were increased. Finally, the feasibility of ADAMTS-4 to modulate neuroinflammation was investigated in vivo after permanent middle cerebral artery occlusion in mice. Although ADAMTS-4 treatment did not influence the lesion volume, it decreased astrogliosis and macrophage infiltration, and increased the number of microglia expressing arginase-1, a marker of alternatively activated cells with inflammation inhibiting functions. Additionally, ADAMTS-4 increased the production of IL-10 and IL-6 in the peri-ischemic area. By having anti-inflammatory and neuroregenerative roles, ADAMTS-4 may represent an interesting target to treat acute CNS injuries, such as ischemic stroke, SCI or traumatic brain injury. GLIA 2016;64:1492-1507.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Hiramani Dunghana
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Henri Leinonen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Natalia Kolosowska
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Paula Korhonen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Katja M Kanninen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Tarja Malm
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Jari Koistinaho
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| |
Collapse
|
844
|
Kortekaas MC, Kwok WY, Reijnierse M, Stijnen T, Kloppenburg M. Brief Report: Association of Inflammation With Development of Erosions in Patients With Hand Osteoarthritis: A Prospective Ultrasonography Study. Arthritis Rheumatol 2016; 68:392-7. [PMID: 26414489 DOI: 10.1002/art.39438] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 09/10/2015] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To investigate the association between features of ultrasound-detected inflammation and development of erosive disease in patients with hand osteoarthritis (OA) over 2.3 years of followup. METHODS The study group comprised 56 consecutive patients with hand OA (mean age 61 years, 86% female) fulfilling the American College of Rheumatology criteria. Effusion, synovial thickening, and power Doppler signal in all interphalangeal (IP) joints were assessed with ultrasonography, using standardized methods, at baseline and followup. Radiographs were scored at both time points for osteophytes/joint space narrowing using the Osteoarthritis Research Society International method and for erosive disease (E phase [erosive] and R phase [remodeling]) using the method described by Verbruggen and Veys. Erosion development was defined as progression from N phase (normal) to E phase or R phase. Joints that were in E phase or R phase at baseline were excluded. Associations were analyzed using generalized estimating equations with adjustment for age, sex, body mass index, and baseline structural abnormalities. RESULTS At baseline, 51 IP joints (in 18 patients) and at followup 89 IP joints (in 26 patients) had erosions; thus, erosions developed in 38 IP joints. Moderate/severe synovial thickening and a power Doppler signal at baseline were associated with erosion development (adjusted odds ratio [OR] 8.8, 95% confidence interval [95% CI] 2.4-32.3 and OR 7.1, 95% CI 1.9-26.9, respectively). Persistent inflammation was particularly associated with the development of erosions. CONCLUSION Ultrasound-detected features of inflammation are associated with the development of erosions in patients with hand OA, suggesting that inflammation plays a role in the pathogenesis of hand OA and could be a therapeutic target.
Collapse
Affiliation(s)
- Marion C Kortekaas
- Leiden University Medical Center, Leiden, The Netherlands, and Flevoziekenhuis, Almere, The Netherlands
| | - Wing-Yee Kwok
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Theo Stijnen
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
845
|
Azadi M, Nia HT, Gauci SJ, Ortiz C, Fosang AJ, Grodzinsky AJ. Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse. J Biomech 2016; 49:1634-1640. [PMID: 27086115 DOI: 10.1016/j.jbiomech.2016.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/04/2016] [Accepted: 03/28/2016] [Indexed: 11/28/2022]
Abstract
Aggrecan loss in human and animal cartilage precedes clinical symptoms of osteoarthritis, suggesting that aggrecan loss is an initiating step in cartilage pathology. Characterizing early stages of cartilage degeneration caused by aging and overuse is important in the search for therapeutics. In this study, atomic force microscopy (AFM)-based force-displacement micromechanics, AFM-based wide bandwidth nanomechanics (nanodynamic), and histologic assessments were used to study changes in distal femur cartilage of wildtype mice and mice in which the aggrecan interglobular domain was mutated to make the cartilage aggrecanase-resistant. Half the animals were subjected to voluntary running-wheel exercise of varying durations. Wildtype mice at three selected age groups were compared. While histological assessment was not sensitive enough to capture any statistically significant changes in these relatively young populations of mice, micromechanical assessment captured changes in the quasi-equilibrium structural-elastic behavior of the cartilage matrix. Additionally, nanodynamic assessment captured changes in the fluid-solid poroelastic behavior and the high frequency stiffness of the tissue, which proved to be the most sensitive assessment of changes in cartilage associated with aging and joint-overuse. In wildtype mice, aging caused softening of the cartilage tissue at the microscale and at the nanoscale. Softening with increased animal age was found at high loading rates (frequencies), suggesting an increase in hydraulic permeability, with implications for loss of function pertinent to running and impact-injury. Running caused substantial changes in fluid-solid interactions in aggrecanase-resistant mice, suggestive of tissue degradation. However, higher nanodynamic stiffness magnitude and lower hydraulic permeability was observed in running aggrecanase-resistant mice compared to running wildtype controls at the same age, thereby suggesting protection from joint-overuse.
Collapse
Affiliation(s)
- Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA 94132, United States; Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Hadi Tavakoli Nia
- Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Stephanie J Gauci
- University of Melbourne Department of Pediatrics & Murdoch Children׳s Research Institute, Parkville, Australia
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Amanda J Fosang
- University of Melbourne Department of Pediatrics & Murdoch Children׳s Research Institute, Parkville, Australia
| | - Alan J Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
846
|
Kosloski MP, Goss S, Wang SX, Liu J, Loebbert R, Medema JK, Liu W, Dutta S. Pharmacokinetics and Tolerability of a Dual Variable Domain Immunoglobulin ABT-981 Against IL-1α and IL-1β in Healthy Subjects and Patients With Osteoarthritis of the Knee. J Clin Pharmacol 2016; 56:1582-1590. [PMID: 27150261 DOI: 10.1002/jcph.764] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 02/05/2023]
Abstract
The interleukin (IL)-1 family of proinflammatory cytokines are thought to play a significant role in the structural progression of osteoarthritis and its associated symptoms. IL-1α and IL-1β are 2 distinct cytokines found in the cartilage, synovial membrane, and synovial fluid of patients with osteoarthritis. The aim of these studies was to evaluate the pharmacokinetics of ABT-981, a dual variable domain immunoglobulin (DVD-Ig) capable of simultaneously binding IL-1α and IL-1β, in healthy subjects and patients with osteoarthritis of the knee. Fifty-six healthy adult subjects were randomized to receive single doses of ABT-981 intravenously (0.3, 1, 3, or 10 mg/kg), subcutaneously (0.3, 1, 3 mg/kg), or matching placebo in a 3:1 ratio. Thirty-six patients with osteoarthritis of the knee were randomized to receive 4 subcutaneous ABT-981 doses of 0.3, 1, or 3 mg/kg administered every 2 weeks, 3 subcutaneous doses of ABT-981 3 mg/kg every 4 weeks, or matching placebo in a 7:2 active:placebo ratio. ABT-981 behaved similarly to conventional monoclonal antibodies following single or multiple doses with mean maximum serum concentrations 2 to 9 days after subcutaneous doses, mean terminal half-lives of 10 to 14 days, and an absolute subcutaneous bioavailability of 46%. Exposure of ABT-981 was approximately linear following single or multiple doses every 2 weeks with monoexponential decline of terminal-phase concentrations. The most common adverse events associated with ABT-981 were diarrhea and headache in healthy subjects and injection site erythema in subjects with osteoarthritis of the knee. Decreased absolute neutrophil counts were observed in response to ABT-981 administration.
Collapse
Affiliation(s)
| | | | | | - Jia Liu
- AbbVie Inc, North Chicago, IL, USA
| | - Ralf Loebbert
- AbbVie Deutschland GmbH and Co KG, Wiesbaden, Hesse, Germany
| | | | - Wei Liu
- AbbVie Inc, North Chicago, IL, USA
| | | |
Collapse
|
847
|
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15:513-28. [DOI: 10.1016/j.autrev.2016.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
848
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
849
|
Nikpou P, Nejad DM, Shafaei H, Roshangar L, Samadi N, Navali AM, Sadegpour AR, Shanehbandi D, Rad JS. Study of chondrogenic potential of stem cells in co-culture with chondrons. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:638-45. [PMID: 27482345 PMCID: PMC4951603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering due to similarity of their nanofibrous architecture to native extracellular matrix. Co-culture system has stimulatory effect on chondrogenesis of adult mesenchymal stem cells. This work presents a co-culture strategy using human articular chondrons and adipose-derived stem cells (ASCs) from infrapatellar fat pad (IPFP) for cartilage tissue production. MATERIALS AND METHODS Isolated stem cells were characterized by flowcytometry. Electrospun and polycaprolactone (PCL) scaffolds (900 nm fiber diameter) was obtained from Bon Yakhteh (Tehran-Iran) and human infrapatellar fat pad-derived stem cells (IPFP-ASCs) were seeded on them. IPFP-ASCs on scaffolds were co-cultured with articular chondrons using transwell. After 21 day, chondrogenic differentiation of stem cell was evaluated by determining the genes expression of collagen2, aggrecan and Indian hedgehog using real-time RT-PCR. RESULTS Genes expression of collagen2, aggrecan by IPFP-ASCs did not alter significantly in comparison with control group. Howevers, expression of Indian hedgehog decreased significantly compared to control group (P< 0.05). CONCLUSION These findings indicate that chondrons obtained from osteoarthritic articular cartilage did not stimulate chondrogenic differentiation of IPFP-ASCs in co-culture.
Collapse
Affiliation(s)
- Parisa Nikpou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry and Laboratory Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Reza Sadegpour
- Department of Orthopedy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Department of Immunolog, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Umblical Cord Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Jafar Soleimani Rad. Gholgasht Ave, Tabriz University of Medical Sciences, Faculty of Medicine, Tabriz, Iran. Tel: +98-41-33342086; Fax: +98-41-33342086;
| |
Collapse
|
850
|
Egloff C, Hart DA, Hewitt C, Vavken P, Valderrabano V, Herzog W. Joint instability leads to long-term alterations to knee synovium and osteoarthritis in a rabbit model. Osteoarthritis Cartilage 2016; 24:1054-60. [PMID: 26850822 DOI: 10.1016/j.joca.2016.01.341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/04/2016] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Joint instability is believed to promote early osteoarthritic changes in the knee. Inflammatory reactions are associated with cartilage degradation in osteoarthritis (OA) but their possible synergistic or additive effects remain largely unexplored. The goal of the present study was to investigate the in vivo effects of Botulinum Toxin A (BTX-A) induced joint instability on intraarticular alterations in an otherwise intact rabbit knee joint model. METHODS Ten 1-year-old female New Zealand White rabbits (average 5.7 kg, range 4.8-6.6 kg) were randomly assigned to receive three monthly unilateral intramuscular injections of BTX-A (experimental group), or no treatment (control group). After 90 days, all knees were analyzed for specific mRNA levels using RT-qPCR. The synovium and cartilage tissue was assessed for histological alterations using the OARSI scoring system. RESULTS Cartilage and synovial histology showed significant higher OARSI scores in the BTX-A group animals compared to the untreated controls and contralateral limbs. There were no differences between the untreated control and the contralateral experimental limbs. Gene expression showed significant elevations for collagen I, collagen III, nitric oxide, TGF-β, IL-1 and IL-6 compared to the healthy controls. CONCLUSION BTX-A induced joint instability in a muscle weakness model uniquely leads to alterations in gene expression and histological changes in the synovial membranes and cartilage in otherwise intact knee joints. These results lead to the conclusion that joint instability may promote an inflammatory intraarticular milieu, thereby contributing to the development of OA.
Collapse
Affiliation(s)
- C Egloff
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Orthopaedics and Trauma Surgery, University Hospital of Basel, Basel, Switzerland.
| | - D A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada.
| | - C Hewitt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | - P Vavken
- Division of Sports Medicine & Department of Orthopedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | - V Valderrabano
- Orthopaedic and Trauma Department, Schmerzklinik Basel, Genolier Swiss Private Clinic Group GSMN, Basel, Switzerland.
| | - W Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|