851
|
Ma X, Xia M, Wei L, Guo K, Sun R, Liu Y, Qiu C, Jiang J. ABX-1431 inhibits the development of endometrial adenocarcinoma and reverses progesterone resistance by targeting MGLL. Cell Death Dis 2022; 13:1067. [PMID: 36550099 PMCID: PMC9780207 DOI: 10.1038/s41419-022-05507-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Endometrial cancer is a common gynecological malignancy. With the onset of EC patients younger, conservative treatment with progesterone has become an important option for patients trying to preserve reproductive function. However, progesterone resistance is a key factor affecting the efficacy of therapy and it is urgent to clarify the mechanism so as to propose a potential target and inhibit the development of endometrial adenocarcinoma and progesterone resistance. MGLL, an important factor involved in lipid mobilization, is overexpressed in many tumors, however the biological function of MGLL in the development of endometrial adenocarcinoma and the process of progesterone resistance still remains unclear. In this study, we first found MGLL was highly expressed in progesterone resistant samples of endometrial adenocarcinoma, and then we verified its expression was increased in endometrial adenocarcinoma. Through in vitro and in vivo experiments, we demonstrated that overexpression of MGLL promoted tumor proliferation, metastasis and the occurrence of progestogen resistance, knockdown MGLL inhibited tumor proliferation, metastasis and reversed progestogen resistance. In addition, knockdown of MGLL can sensitize endometrial adenocarcinoma cells to progesterone, possibly by affecting ROS generation and reducing the expression of AKR1C1. Finally, it was verified that ABX-1431, MGLL inhibitor, reversed progesterone resistance and enhanced the sensitivity of endometrial adenocarcinoma to progesterone both in vitro and in vivo. In conclusion, the high expression of MGLL is involved in the occurrence and development of endometrial adenocarcinoma and progesterone resistance. Targeted inhibition of MGLL by inhibitors may be an effective method for the treatment of progesterone resistance in endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Department of Gynecology and Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 264000, Yantai, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Min Xia
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Department of Gynecology and Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 264000, Yantai, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Lina Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Kui Guo
- Department of Gynecology and Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 264000, Yantai, China
| | - Rui Sun
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Yao Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Chunping Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Jie Jiang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
852
|
Lambert AW, Fiore C, Chutake Y, Verhaar ER, Strasser PC, Chen MW, Farouq D, Das S, Li X, Eaton EN, Zhang Y, Liu Donaher J, Engstrom I, Reinhardt F, Yuan B, Gupta S, Wollison B, Eaton M, Bierie B, Carulli J, Olson ER, Guenther MG, Weinberg RA. ΔNp63/p73 drive metastatic colonization by controlling a regenerative epithelial stem cell program in quasi-mesenchymal cancer stem cells. Dev Cell 2022; 57:2714-2730.e8. [PMID: 36538894 PMCID: PMC10002472 DOI: 10.1016/j.devcel.2022.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) may serve as the cellular seeds of tumor recurrence and metastasis, and they can be generated via epithelial-mesenchymal transitions (EMTs). Isolating pure populations of CSCs is difficult because EMT programs generate multiple alternative cell states, and phenotypic plasticity permits frequent interconversions between these states. Here, we used cell-surface expression of integrin β4 (ITGB4) to isolate highly enriched populations of human breast CSCs, and we identified the gene regulatory network operating in ITGB4+ CSCs. Specifically, we identified ΔNp63 and p73, the latter of which transactivates ΔNp63, as centrally important transcriptional regulators of quasi-mesenchymal CSCs that reside in an intermediate EMT state. We found that the transcriptional program controlled by ΔNp63 in CSCs is largely distinct from the one that it orchestrates in normal basal mammary stem cells and, instead, it more closely resembles a regenerative epithelial stem cell response to wounding. Moreover, quasi-mesenchymal CSCs repurpose this program to drive metastatic colonization via autocrine EGFR signaling.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Elisha R Verhaar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Joana Liu Donaher
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ian Engstrom
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA.
| |
Collapse
|
853
|
Gao W, Chen D, Liu J, Zang L, Xiao T, Zhang X, Li Z, Zhu H, Yu X. Interplay of four types of RNA modification writers revealed distinct tumor microenvironment and biological characteristics in pancreatic cancer. Front Immunol 2022; 13:1031184. [PMID: 36601127 PMCID: PMC9806142 DOI: 10.3389/fimmu.2022.1031184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most lethal malignancies and carries a dismal mortality and morbidity. Four types of RNA modification (namely m6A, m1A, APA and A-to-I) could be catalyzed by distinct enzymatic compounds ("writers"), mediating numerous epigenetic events in carcinogenesis and immunomodulation. We aim to investigate the interplay mechanism of these writers in immunogenomic features and molecular biological characteristics in PC. Methods We first accessed the specific expression pattern and transcriptional variation of 26 RNA modification writers in The Cancer Genome Atlas (TCGA) dataset. Unsupervised consensus clustering was performed to divide patients into two RNA modification clusters. Then, based on the differentially expressed genes (DEGs) among two clusters, RNA modification score (WM_Score) model was established to determine RNA modification-based subtypes and was validated in International Cancer Genome Consortium (ICGC) dataset. What's more, we manifested the unique status of WM_Score in transcriptional and post-transcriptional regulation, molecular biological characteristics, targeted therapies and immunogenomic patterns. Results We documented the tight-knit correlations between transcriptional expression and variation of RNA modification writers. We classified patients into two distinct RNA modification patterns (WM_Score_high and _low), The WM_Score_high subgroup was correlated with worse prognosis, Th2/Th17 cell polarization and oncogenic pathways (e.g. EMT, TGF-β, and mTORC1 signaling pathways), whereas the WM_Score_low subgroup associated with favorable survival rate and Th1 cell trend. WM_Score model also proved robust predictive power in interpreting transcriptional and post-transcriptional events. Additionally, the potential targeted compounds with related pathways for the WM_Score model were further identified. Conclusions Our research unfolds a novel horizon on the interplay network of four RNA modifications in PC. This WM_Score model demonstrated powerful predictive capacity in epigenetic, immunological and biological landscape, providing a theoretical basis for future clinical judgments of PC.
Collapse
Affiliation(s)
- Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jixing Liu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Longjun Zang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tijun Xiao
- Department of General Surgery, Shaoyang University Affiliated Second Hospital, Shaoyang University, Shaoyang, Hunan, China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zheng Li
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Hongwei Zhu, ; Xiao Yu,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Hongwei Zhu, ; Xiao Yu,
| |
Collapse
|
854
|
Zhang L, Hao C, Han B, Zeng G, Han L, Cao C, Liu H, Zhong Z, Zhao X, Wang J, Zhang Q. RMI2
is a novel prognostic and predictive biomarker for breast cancer. Cancer Med 2022; 12:8331-8350. [PMID: 36533385 PMCID: PMC10134310 DOI: 10.1002/cam4.5533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND RecQ-mediated genome instability 2 (RMI2) maintains genome stability by promoting DNA damage repair. It has been reported to accelerate the progression of several tumors. However, the functional mechanism of RMI2 in breast cancer remains unclear. METHODS Gene expression profiles were obtained from TCGA, GTEx, and GEO databases. The expression of RMI2 and its prognostic value in breast cancer was explored. In addition, we calculated pooled standardized mean deviation (SMD) and performed a summary receiver operating characteristic (sROC) curve analysis to further determine RMI2 expression status and diagnostic significance. The functions and related signaling pathways were investigated based on GO and KEGG analyses. The PPI network was constructed by combining the STRING database and Cytoscape software. Subsequently, in vitro assays were conducted to detect the effect of RMI2 on the proliferation and migration of breast cancer cells. RESULTS The expression of RMI2 was markedly upregulated in breast cancer tissues relative to that in normal tissues. Moreover, pooled SMD further confirmed the overexpression of RMI2 in breast cancer (SMD = 1.29, 95% confidence interval (CI): 1.18-1.41, p = 0.000). The sROC curve analysis result suggested that RMI2 had a relatively high diagnostic ability in breast cancer (AUC = 0.87, 95% CI: 0.84-0.90). High RMI2 expression was associated with poor prognosis. GO and KEGG analyses revealed that RMI2 was closely related to cell adhesion, various enzyme activities, and PI3K/AKT signaling pathway. PPI analysis showed that RMI2 had interactions with proteins involved in DNA damage repair. knockdown of RMI2 remarkably inhibited the proliferation and migration of breast cancer cells, while overexpression of RMI2 exerted the opposite effects. Furthermore, we identified that RMI2 accelerates the proliferation and migration of breast cancer cells via activation of the PI3K/AKT pathway. CONCLUSION The results suggest that RMI2 is a potential diagnostic and prognostic biomarker associated with cell proliferation and migration, and may be used as a novel therapeutic target for breast cancer in the future.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Chuncheng Hao
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Baojuan Han
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Guangchun Zeng
- Department of Pathology Harbin Medical University Cancer Hospital Harbin China
| | - Lili Han
- Department of Orthopedic Surgery, The First Hospital of Suihua Suihua China
| | - Cong Cao
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Hui Liu
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Zhenbin Zhong
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Xue Zhao
- Department of Head and Neck Radiation Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Jingxuan Wang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| | - Qingyuan Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Harbin China
| |
Collapse
|
855
|
Long X, Wang D, Wu Z, Liao Z, Xu J. Circular RNA hsa_circ_0004689 (circSWT1) promotes NSCLC progression via the miR‐370‐3p/SNAIL axis by inducing cell epithelial‐mesenchymal transition (EMT). Cancer Med 2022; 12:8289-8305. [PMID: 36530171 PMCID: PMC10134258 DOI: 10.1002/cam4.5527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Previous studies have reported the role of circular RNAs (circRNAs) in the progression of non-small-cell lung cancer (NSCLC). SWT1-derived circRNAs were confirmed to affect the apoptosis of cardiomyocytes; however, the biological functions of SWT1-derived circRNAs in cancers are still unknown. Here, we investigated the potential role of SWT1-derived circRNAs in NSCLC. METHODS We used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression of circSWT1 in NSCLC tissues and paired normal tissues. The potential functions of circSWT1 in tumor progression were assessed by CCK-8, colony formation, wound healing, and matrigel transwell assays in vitro and by xenograft tumor models in vivo. Next, epithelial-mesenchymal transition (EMT) was evaluated by western blotting, immunofluorescence, and immunohistochemistry (IHC). Moreover, circRIP, RNA pulldown assays, luciferase reporter gene assays, and FISH were conducted to illuminate the molecular mechanisms of circSWT1 via the miR-370-3p/SNAIL signal pathway. Then, we knocked out SNAIL in A549 and H1299 cells to identify the roles of circSWT1 in the progression and EMT of NSCLC through SNAIL. Finally, circSWT1 functions were confirmed in vivo using xenograft tumor models. RESULTS CircSWT1 expression was significantly upregulated in NSCLC tissues, and high expression of circSWT1 predicted poor prognosis in NSCLC via survival analysis. In addition, overexpression of circSWT1 promoted the invasion and migration of NSCLC cells. Subsequently, we found that overexpression of circSWT1 induced EMT and that knockdown of circSWT1 inhibited EMT in NSCLC cells. Mechanistically, circSWT1 relieved the inhibition of downstream SNAIL by sponging miR-370-3p. Moreover, we found that these effects could be reversed by knocking out SNAIL. Finally, we verified that circSWT1 promoted NSCLC progression and EMT in xenograft tumor models. CONCLUSION CircSWT1 promoted the invasion, migration, and EMT of NSCLC. CircSWT1 could serve as a potential biomarker and a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiang Long
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Ding‐Guo Wang
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhi‐Bo Wu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Zhong‐Min Liao
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| | - Jian‐Jun Xu
- Department of Cardiothoracic Surgery The Second Affiliated Hospital of Nanchang University Nanchang People's Republic of China
| |
Collapse
|
856
|
Vegliante R, Pastushenko I, Blanpain C. Deciphering functional tumor states at single-cell resolution. EMBO J 2022; 41:e109221. [PMID: 34918370 PMCID: PMC8762559 DOI: 10.15252/embj.2021109221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023] Open
Abstract
Within a tumor, cancer cells exist in different states that are associated with distinct tumor functions, including proliferation, differentiation, invasion, metastasis, and resistance to anti-cancer therapy. The identification of the gene regulatory networks underpinning each state is essential for better understanding functional tumor heterogeneity and revealing tumor vulnerabilities. Here, we review the different studies identifying tumor states by single-cell sequencing approaches and the mechanisms that promote and sustain these functional states and regulate their transitions. We also describe how different tumor states are spatially distributed and interact with the specific stromal cells that compose the tumor microenvironment. Finally, we discuss how the understanding of tumor plasticity and transition states can be used to develop new strategies to improve cancer therapy.
Collapse
Affiliation(s)
- Rolando Vegliante
- Laboratory of Stem Cells and CancerUniversité Libre de BruxellesBrusselsBelgium
| | | | - Cédric Blanpain
- Laboratory of Stem Cells and CancerUniversité Libre de BruxellesBrusselsBelgium
- WELBIOUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
857
|
Liu S, Ortiz A, Stavrou A, Talusan AR, Costa M. Extracellular Vesicles as Mediators of Nickel-Induced Cancer Progression. Int J Mol Sci 2022; 23:ijms232416111. [PMID: 36555753 PMCID: PMC9785150 DOI: 10.3390/ijms232416111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that extracellular vesicles (EVs), which represent a crucial mode of intercellular communication, play important roles in cancer progression by transferring oncogenic materials. Nickel (Ni) has been identified as a human group I carcinogen; however, the underlying mechanisms governing Ni-induced carcinogenesis are still being elucidated. Here, we present data demonstrating that Ni exposure generates EVs that contribute to Ni-mediated carcinogenesis and cancer progression. Human bronchial epithelial (BEAS-2B) cells and human embryonic kidney-293 (HEK293) cells were chronically exposed to Ni to generate Ni-treated cells (Ni-6W), Ni-transformed BEAS-2B cells (Ni-3) and Ni-transformed HEK293 cells (HNi-4). The signatures of EVs isolated from Ni-6W, Ni-3, HNi-4, BEAS-2B, and HEK293 were analyzed. Compared to their respective untreated cells, Ni-6W, Ni-3, and HNi-4 released more EVs. This change in EV release coincided with increased transcription of the EV biogenesis markers CD82, CD63, and flotillin-1 (FLOT). Additionally, EVs from Ni-transformed cells had enriched protein and RNA, a phenotype also observed in other studies characterizing EVs from cancer cells. Interestingly, both epithelial cells and human umbilical vein endothelial (HUVEC) cells showed a preference for taking up Ni-altered EVs compared to EVs released from the untreated cells. Moreover, these Ni-altered EVs induced inflammatory responses in both epithelial and endothelial cells and increased the expression of coagulation markers in endothelial cells. Prolonged treatment of Ni-alerted EVs for two weeks induced the epithelial-to-mesenchymal transition (EMT) in BEAS-2B cells. This study is the first to characterize the effect of Ni on EVs and suggests the potential role of EVs in Ni-induced cancer progression.
Collapse
Affiliation(s)
| | | | | | | | - Max Costa
- Correspondence: ; Tel.: +1-646-754-9443
| |
Collapse
|
858
|
Chen D, Zhang Y, Meng L, Lu L, Meng G. circRNA DENND1B inhibits tumorigenicity of clear cell renal cell carcinoma via miR-122-5p/TIMP2 axis. Open Med (Wars) 2022; 17:2085-2097. [PMID: 36578555 PMCID: PMC9761921 DOI: 10.1515/med-2022-0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancers. However, circ_DENND1B has not been studied yet. GSE100186 dataset was used for the level analysis of circ_DENND1B. The quantitative real-time PCR was used to verify the expression of circ_DENND1B, microRNA-122-5p (miR-122-5p) and tissue inhibitor of metalloproteinases-2 (TIMP2) in ccRCC tissues and cells. Cell proliferation, migration, invasion and apoptosis were detected by colony formation assay, thymidine analog 5-ethynyl-2'-deoxyuridine assay, 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide, transwell and flow cytometry. The binding of miR-122-5p to circ_DENND1B/TIMP2 was investigated by dual-luciferase reporter assay. Finally, the role of circ_DENND1B in ccRCC was detected by tumorigenesis experiment in mice. circ_DENND1B was downregulated in ccRCC and circ_DENND1B overexpression suppressed the malignant behaviors of ccRCC cells. circ_DENND1B acted as a sponge of miR-122-5p. miR-122-5p upregulation reversed the effects of circ_DENND1B on cell proliferation, migration, invasion and apoptosis. TIMP2 was a target of miR-122-5p. Overexpression of circ_DENND1B regulated TIMP2 level by inhibiting miR-122-5p expression in ccRCC cells. circ_DENND1B overexpression inhibited the tumor growth of ccRCC in vivo. circ_DENND1B inhibited ccRCC cell progression by promoting TIMP2 expression by sponging miR-122-5p, suggesting that circ_DENND1B might be an effective therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Deqiang Chen
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| | - Yanchun Zhang
- Department of Rehabilitation, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061001, China
| | - Liang Meng
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| | - Li Lu
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| | - Gaopei Meng
- Department of CT Diagnosis, Cangzhou Central Hospital, Hebei 061001, China
| |
Collapse
|
859
|
Cheng T, Zhang S, Xia T, Zhang Y, Ji Y, Pan S, Xie H, Ren Q, You Y, You B. EBV promotes vascular mimicry of dormant cancer cells by potentiating stemness and EMT. Exp Cell Res 2022; 421:113403. [PMID: 36336028 DOI: 10.1016/j.yexcr.2022.113403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Vascular mimicry (VM) is defined as a vascular channel-like structure composed of tumor cells that correlates with the growth of cancer cells by providing blood circulation. However, whether VM can be formed in dormant cancer cells remains unclear. Our previous research revealed that polyploid giant cancer cells (PGCCs) are specific dormant cells related to the poor prognosis of head and neck cancer. Here, we demonstrated that EBV could promote VM formation by PGCCs in vivo and in vitro. Furthermore, we revealed that the activation of the ERK pathway partly mediated by LMP2A is responsible for stemness, and the acquisition of the stemness phenotype is crucial to the malignant biological behavior of PGCCs. The epithelial-to-mesenchymal transition (EMT) process plays a considerable role in PGCCs, and EMT progression is vital for EBV-positive PGCCs to form VM. This is the first study to reveal that EBV creates plasticity in PGCC-VM and provide a new strategy for targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tianyi Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Tian Xia
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Yanshu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yan Ji
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Qianqian Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China; Medical College of Nantong University, Nantong 226019, Jiangsu Province, China. Department of Pathology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, 226019, Jiangsu Province, China.
| |
Collapse
|
860
|
Lu J, Liu Q, Zhu L, Liu Y, Zhu X, Peng S, Chen M, Li P. Endothelial cell-specific molecule 1 drives cervical cancer progression. Cell Death Dis 2022; 13:1043. [PMID: 36522312 PMCID: PMC9755307 DOI: 10.1038/s41419-022-05501-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The expression, biological functions and underlying molecular mechanisms of endothelial cell-specific molecule 1 (ESM1) in human cervical cancer remain unclear. Bioinformatics analysis revealed that ESM1 expression was significantly elevated in human cervical cancer tissues, correlating with patients' poor prognosis. Moreover, ESM1 mRNA and protein upregulation was detected in local cervical cancer tissues and various cervical cancer cells. In established and primary cervical cancer cells, ESM1 shRNA or CRISPR/Cas9-induced ESM1 KO hindered cell proliferation, cell cycle progression, in vitro cell migration and invasion, and induced significant apoptosis. Whereas ESM1 overexpression by a lentiviral construct accelerated proliferation and migration of cervical cancer cells. Further bioinformatics studies and RNA sequencing data discovered that ESM1-assocaited differentially expressed genes (DEGs) were enriched in PI3K-Akt and epithelial-mesenchymal transition (EMT) cascades. Indeed, PI3K-Akt cascade and expression of EMT-promoting proteins were decreased after ESM1 silencing in cervical cancer cells, but increased following ESM1 overexpression. Further studies demonstrated that SYT13 (synaptotagmin 13) could be a primary target gene of ESM1. SYT13 silencing potently inhibited ESM1-overexpression-induced PI3K-Akt cascade activation and cervical cancer cell migration/invasion. In vivo, ESM1 knockout hindered SiHa cervical cancer xenograft growth in mice. In ESM1-knockout xenografts tissues, PI3K-Akt inhibition, EMT-promoting proteins downregulation and apoptosis activation were detected. In conclusion, overexpressed ESM1 is important for cervical cancer growth in vitro and in vivo, possibly by promoting PI3K-Akt activation and EMT progression. ESM1 represents as a promising diagnostic marker and potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Jingjing Lu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qin Liu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lixia Zhu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yuanyuan Liu
- grid.452273.50000 0004 4914 577XClinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Xiaoren Zhu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shiqing Peng
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ping Li
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
861
|
Dong N, Ma X, Shen J, Zheng Y, Li G, Zheng S, Huang X. Identification and validation of critical genes with prognostic value in gastric cancer. Front Cell Dev Biol 2022; 10:1072062. [PMID: 36589754 PMCID: PMC9795222 DOI: 10.3389/fcell.2022.1072062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Gastric cancer (GC) is a digestive system tumor with high morbidity and mortality rates. Molecular targeted therapies, including those targeting human epidermal factor receptor 2 (HER2), have proven to be effective in clinical treatment. However, better identification and description of tumor-promoting genes in GC is still necessary for antitumor therapy. Methods: Gene expression and clinical data of GC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Last absolute shrinkage and selection operator (LASSO) Cox regression were applied to build a prognostic model, the Prognosis Score. Functional enrichment and single-sample gene set enrichment analysis (ssGSEA) were used to explore potential mechanisms. Western blotting, RNA interference, cell migration, and wound healing assays were used to detect the expression and function of myosin light chain 9 (MYL9) in GC. Results: A four-gene prognostic model was constructed and GC patients from TCGA and meta-GEO cohorts were stratified into high-prognosis score groups or low-prognosis score groups. GC patients in the high-prognosis score group had significantly poorer overall survival (OS) than those in the low-prognosis score groups. The GC prognostic model was formulated as PrognosisScore = (0.06 × expression of BGN) - (0.008 × expression of ATP4A) + (0.12 × expression of MYL9) - (0.01 × expression of ALDH3A1). The prognosis score was identified as an independent predictor of OS. High expression of MYL9, the highest weighted gene in the prognosis score, was correlated with worse clinical outcomes. Functional analysis revealed that MYL9 is mainly associated with the biological function of epithelial-mesenchymal transition (EMT). Knockdown of MYL9 expression inhibits migration of GC cells in vitro. Conclusion: We found that PrognosisScore is potential reliable prognostic marker and verified that MYL9 promotes the migration and metastasis of GC cells.
Collapse
Affiliation(s)
- Ningxin Dong
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Shen
- Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunlu Zheng
- Department of Information, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guiyuan Li
- Department of Oncology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaoqiang Zheng
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Shaoqiang Zheng, ; Xiaoyi Huang,
| | - Xiaoyi Huang
- Department of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China,Shanghai Municipal Key Clinical Speciality, Shanghai, China,*Correspondence: Shaoqiang Zheng, ; Xiaoyi Huang,
| |
Collapse
|
862
|
Wang EJY, Chen IH, Kuo BYT, Yu CC, Lai MT, Lin JT, Lin LYT, Chen CM, Hwang T, Sheu JJC. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022; 12:biom12121862. [PMID: 36551290 PMCID: PMC9775460 DOI: 10.3390/biom12121862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Collapse
Affiliation(s)
- Evan Ja-Yang Wang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan
| | - Jen-Tai Lin
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
| | - Leo Yen-Ting Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 7102)
| |
Collapse
|
863
|
Chen C, Ibrahim Z, Marchand MF, Piolot T, Kamboj S, Carreiras F, Yamada A, Schanne-Klein MC, Chen Y, Lambert A, Aimé C. Three-Dimensional Collagen Topology Shapes Cell Morphology, beyond Stiffness. ACS Biomater Sci Eng 2022; 8:5284-5294. [PMID: 36342082 DOI: 10.1021/acsbiomaterials.2c00879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity is associated with many physiological processes, including pathological ones, such as morphogenesis and tumorigenesis. The extracellular matrix (ECM) is a key player in the generation of cellular heterogeneity. Advances in our understanding rely on our ability to provide relevant in vitro models. This requires obtainment of the characteristics of the tissues that are essential for controlling cell fate. To do this, we must consider the diversity of tissues, the diversity of physiological contexts, and the constant remodeling of the ECM along these processes. To this aim, we have fabricated a library of ECM models for reproducing the scaffold of connective tissues and the basement membrane by using different biofabrication routes based on the electrospinning and drop casting of biopolymers from the ECM. Using a combination of electron microscopy, multiphoton imaging, and AFM nanoindentation, we show that we can vary independently protein composition, topology, and stiffness of ECM models. This in turns allows one to generate the in vivo complexity of the phenotypic landscape of ovarian cancer cells. We show that, while this phenotypic shift cannot be directly correlated with a unique ECM feature, the three-dimensional collagen fibril topology patterns cell shape, beyond protein composition and stiffness of the ECM. On this line, this work is a further step toward the development of ECM models recapitulating the constantly remodeled environment that cells face and thus provides new insights for cancer model engineering and drug testing.
Collapse
Affiliation(s)
- Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Zeinab Ibrahim
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Marion F Marchand
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231, France
| | - Tristan Piolot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231, France
| | - Sahil Kamboj
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Maison Internationale de la Recherche, Rue Descartes, Neuville sur Oise Cedex 95031, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Maison Internationale de la Recherche, Rue Descartes, Neuville sur Oise Cedex 95031, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Ambroise Lambert
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Maison Internationale de la Recherche, Rue Descartes, Neuville sur Oise Cedex 95031, France
| | - Carole Aimé
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
864
|
Eguchi T, Csizmadia E, Kawai H, Sheta M, Yoshida K, Prince TL, Wegiel B, Calderwood SK. SCAND1 Reverses Epithelial-to-Mesenchymal Transition (EMT) and Suppresses Prostate Cancer Growth and Migration. Cells 2022; 11:cells11243993. [PMID: 36552758 PMCID: PMC9777339 DOI: 10.3390/cells11243993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular program that transiently places epithelial (E) cells into pseudo-mesenchymal (M) cell states. The malignant progression and resistance of many carcinomas depend on EMT activation, partial EMT, or hybrid E/M status in neoplastic cells. EMT is activated by tumor microenvironmental TGFβ signal and EMT-inducing transcription factors, such as ZEB1/2, in tumor cells. However, reverse EMT factors are less studied. We demonstrate that prostate epithelial transcription factor SCAND1 can reverse the cancer cell mesenchymal and hybrid E/M phenotypes to a more epithelial, less invasive status and inhibit their proliferation and migration in DU-145 prostate cancer cells. SCAND1 is a SCAN domain-containing protein and hetero-oligomerizes with SCAN-zinc finger transcription factors, such as MZF1, for accessing DNA and the transcriptional co-repression of target genes. We found that SCAND1 expression correlated with maintaining epithelial features, whereas the loss of SCAND1 was associated with mesenchymal phenotypes of tumor cells. SCAND1 and MZF1 were mutually inducible and coordinately included in chromatin with hetero-chromatin protein HP1γ. The overexpression of SCAND1 reversed hybrid E/M status into an epithelial phenotype with E-cadherin and β-catenin relocation. Consistently, the co-expression analysis in TCGA PanCancer Atlas revealed that SCAND1 and MZF1 expression was negatively correlated with EMT driver genes, including CTNNB1, ZEB1, ZEB2 and TGFBRs, in prostate adenocarcinoma specimens. In addition, SCAND1 overexpression suppressed tumor cell proliferation by reducing the MAP3K-MEK-ERK signaling pathway. Of note, in a mouse tumor xenograft model, SCAND1 overexpression significantly reduced Ki-67(+) and Vimentin(+) tumor cells and inhibited migration and lymph node metastasis of prostate cancer. Kaplan-Meier analysis showed high expression of SCAND1 and MZF1 to correlate with better prognoses in pancreatic cancer and head and neck cancers, although with poorer prognosis in kidney cancer. Overall, these data suggest that SCAND1 induces expression and coordinated heterochromatin-binding of MZF1 to reverse the hybrid E/M status into an epithelial phenotype and, inhibits tumor cell proliferation, migration, and metastasis, potentially by repressing the gene expression of EMT drivers and the MAP3K-MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6661 (T.E.); +1-617-667-4240 (S.K.C.); Fax: +81-86-235-6664 (T.E.); +1-617-667-4245 (S.K.C.)
| | - Eva Csizmadia
- Division of Surgical Sciences, Department of Surgery, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Mona Sheta
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral and Craniofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | | | - Barbara Wegiel
- Division of Surgical Sciences, Department of Surgery, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6661 (T.E.); +1-617-667-4240 (S.K.C.); Fax: +81-86-235-6664 (T.E.); +1-617-667-4245 (S.K.C.)
| |
Collapse
|
865
|
Leung D, Price ZK, Lokman NA, Wang W, Goonetilleke L, Kadife E, Oehler MK, Ricciardelli C, Kannourakis G, Ahmed N. Platinum-resistance in epithelial ovarian cancer: an interplay of epithelial-mesenchymal transition interlinked with reprogrammed metabolism. J Transl Med 2022; 20:556. [PMID: 36463238 PMCID: PMC9719259 DOI: 10.1186/s12967-022-03776-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics. This was validated in the platinum resistant versus sensitive parental cell lines, as well as platinum resistant versus sensitive human ovarian cancer patient samples. The prognostic significance of the different proteomics-identified marker proteins in prognosis prediction on survival as well as their correlative association and influence on immune cell infiltration was determined by public domain data bases. METHODS We explored the proteomic differences between carboplatin-sensitive OVCAR5 cells (parental) and their carboplatin-resistant counterpart, OVCAR5 CBPR cells. qPCR and western blots were performed to validate differentially expressed proteins at the mRNA and protein levels, respectively. Association of the identified proteins with epithelial-mesenchymal transition (EMT) prompted the investigation of cell motility. Cellular bioenergetics and proliferation were studied to delineate any biological adaptations that facilitate cancer progression. Expression of differentially expressed proteins was assessed in ovarian tumors obtained from platinum-sensitive (n = 15) versus platinum-resistant patients (n = 10), as well as matching tumors from patients at initial diagnosis and following relapse (n = 4). Kaplan-Meier plotter and Tumor Immune Estimation Resource (TIMER) databases were used to determine the prognostic significance and influence of the different proteomics-identified proteins on immune cell infiltration in the tumor microenvironment (TME). RESULTS Our proteomics study identified 2422 proteins in both cell lines. Of these, 18 proteins were upregulated and 14 were downregulated by ≥ twofold (p < 0.05) in OVCAR5 CBPR cells. Gene ontology enrichment analysis amongst upregulated proteins revealed an overrepresentation of biological processes consistent with EMT in the resistant cell line. Enhanced mRNA and/or protein expression of the identified EMT modulators including ITGA2, TGFBI, AKR1B1, ITGAV, ITGA1, GFPT2, FLNA and G6PD were confirmed in OVCAR5 CBPR cells compared to parental OVCAR5 cell line. Consistent with the altered EMT profile, the OVCAR5 CBPR cells demonstrated enhanced migration and reduced proliferation, glycolysis, and oxidative phosphorylation. The upregulation of G6PD, AKR1B1, ITGAV, and TGFβ1 in OVCAR5 CBPR cells was also identified in the tumors of platinum-resistant compared to platinum-sensitive high grade serous ovarian cancer (HGSOC) patients. Matching tumors of relapsed versus newly diagnosed HGSOC patients also showed enhanced expression of AKR1B1, ITGAV, TGFβ1 and G6PD protein in relapsed tumors. Among the identified proteins, significant enhanced expression of GFPT2, FLNA, TGFBI (CDGG1), ITGA2 predicted unfavorable prognosis in ovarian cancer patients. Further analysis suggested that the expression of TGFBI to correlate positively with the expression of identified and validated proteins such as GFPT2, FLNA, G6PD, ITGAV, ITGA1 and ITGA2; and with the infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic cells in the TME. CONCLUSIONS Our research demonstrates proteomic-based discovery of novel EMT-related markers with an altered metabolic profile in platinum-resistant versus sensitive ovarian cancer cell lines. The study also confirms the expression of selected identified markers in the tumors of platinum-resistant versus sensitive, and in matching relapsed versus newly diagnosed HGSOC patients. The study provides insights into the metabolic adaptation of EMT-induced carboplatin resistant cells that confers on them reduced proliferation to provide effective migratory advantage; and the role of some of these identified proteins in ovarian cancer prognosis. These observations warrant further investigation of these novel target proteins in platinum-resistant patients.
Collapse
Affiliation(s)
- Dilys Leung
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia
| | - Zoe K. Price
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Noor A. Lokman
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Wanqi Wang
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Lizamarie Goonetilleke
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia
| | - Martin K. Oehler
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia ,grid.416075.10000 0004 0367 1221Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| | - Carmela Ricciardelli
- grid.1010.00000 0004 1936 7304Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005 Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat, Vic 3353 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia ,grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| |
Collapse
|
866
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
867
|
Li X, Chen H, Zhang D. Discoidin domain receptor 1 may be involved in biological barrier homeostasis. J Clin Pharm Ther 2022; 47:2397-2407. [PMID: 35665520 DOI: 10.1111/jcpt.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase involved in the pathological processes of several diseases, such as keloid formation, renal fibrosis, atherosclerosis, tumours, and inflammatory processes. The biological barrier is the first line of defence against pathogens, and its disruption is closely related to diseases. In this review, we attempt to elucidate the relationship between DDR1 and the biological barrier, explore the potential biological value of DDR1, and review the current research status and clinical potential of DDR1-selective inhibitors. METHODS We conducted an extensive literature search on PubMed to collect studies on the relevance of DDR1 to biological barriers and DDR1-selective inhibitors. With these studies, we explored the relationship between DDR1 and biological barriers and briefly reviewed representative DDR1-selective inhibitors that have been reported in recent years. RESULTS AND DISCUSSION First, the review of the potential mechanisms by which DDR1 regulates biological barriers, including the epithelial, vascular, glomerular filtration, blood-labyrinth, and blood-brain barriers. In the body, DDR1 dysfunction and aberrant expression may be involved in the homeostasis of the biological barrier. Secondly, the review of DDR1 inhibitors reported in recent years shows that DDR1-targeted inhibition is an attractive and promising pharmacological intervention. WHAT IS NEW AND CONCLUSIONS This review shows that DDR1 is involved in various physiological and pathological processes and in the regulation of biological barrier homeostasis. However, studies on DDR1 and biological barriers are still scarce, and further studies are needed to elucidate their specific mechanisms. The development of targeted inhibitors provides a new direction and idea to study the mechanism of DDR1.
Collapse
Affiliation(s)
- Xiaoli Li
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Huiling Chen
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, LanZhou University, Lanzhou, China
| |
Collapse
|
868
|
Zhang R, Li X, Gao Y, Tao Q, Lang Z, Zhan Y, Li C, Zheng J. Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
869
|
Cao Y, Liang W, Fang L, Liu M, Zuo J, Peng Y, Shan J, Sun R, Zhao J, Wang J. PD-L1/PD-L1 signalling promotes colorectal cancer cell migration ability through RAS/MEK/ERK. Clin Exp Pharmacol Physiol 2022; 49:1281-1293. [PMID: 36050267 PMCID: PMC9826327 DOI: 10.1111/1440-1681.13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
Programmed death ligand 1 (PD-L1) is widely known as an immune checkpoint, and immunotherapy through the inhibition of checkpoint molecules has become an important component in the successful treatment of tumours via programmed death 1 (PD-1)/PD-L1 signalling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) are elusive. We previously found that PD-L1 can bind to PD-L1 and cause cell detachment. However, the detailed molecular mechanisms of how PD-L1 binds to PD-L1 and how it transmits signals to the cell remain unclear. In this study, we disclosed that PD-L1 expression was dramatically upregulated in CRC compared to normal tissues. Ectopic expression of PD-L1 inhibits cell adhesive capacity and promotes cell migration in CRC cell lines, while silencing PD-L1 had the opposite effects and suppressed invasion and proliferation. Mechanistically, PD-L1 was found to promote epithelial-mesenchymal transition (EMT) through the ERK signalling molecule pathway and interacted with the 1-86 aa fragment of KRAS to transduce signals. Collectively, our study demonstrated the role of PD-L1 after binding to PD-L1 in CRC, thereby providing a new theoretical basis for further improving immunotherapy with anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Yihui Cao
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Weiye Liang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Lian Fang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ming‐kai Liu
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia Zuo
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying‐long Peng
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia‐jie Shan
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Rui‐xia Sun
- Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| | - Jie Zhao
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jian Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina,Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina,Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| |
Collapse
|
870
|
Li H, Xue S, Zhang X, Li F, Bei S, Feng L. CircRNA PVT1 modulated cell migration and invasion through Epithelial-Mesenchymal Transition (EMT) mediation in gastric cancer through miR-423-5p/Smad3 pathway. Regen Ther 2022; 21:25-33. [PMID: 35663842 PMCID: PMC9133701 DOI: 10.1016/j.reth.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) progression is related with gene regulations. Objectives This study explored underlying regulatory axis of circRNA PVT1 (circPVT1) in GC. Methods GC cell lines were detected for circPVT1 expression with the normal mucous epithelial cell GES-1 as control. After regulation of circPVT1, miR-423-5p and SMAD3 expression through transfection, CCK8 evaluated the cell viability, Transwell measured the migratory and invasive capability of cells. Luciferase verified the paired bindings between miR-423-5p and CircPVT1 or SMAD3. The functions of CircPVT1/miR-423-5p/SMAD3 were evaluated using RT-PCR, CCK8, Transwell assays. Western blot analyzed EMT-related proteins and phosphorylation of Smad3 in GC cells. Immunofluorescence method was used to evaluate the EMT-related proteins as well. Results CircPVT1 displayed higher expression in GC cells and knockdown led to decrease in cell growth, invasion and migration. CircPVT1 was targeted by miR-423-5p as a ceRNA of SMAD3. miR-423-5p upregulation suppressed both cicRNA PVT1 and SMAD3 in GC cells. Decrease in SMAD3 expression suppressed CircPVT1 by releasing miR-423-5p in cells, inhibiting cell growth, invasion and migration and suppressing the EMT process. Conclusion CircPVT1 modulated cell growth, invasion and migration through EMT mediation in gastric cancer through miR-423-5p/Smad3 pathway.
Collapse
|
871
|
Aberrant inactivation of SCNN1G promotes the motility of head and neck squamous cell carcinoma. Pathol Res Pract 2022; 240:154175. [DOI: 10.1016/j.prp.2022.154175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
872
|
Zheng LL, Cai L, Zhang XQ, Lei Z, Yi CS, Liu XD, Yang JG. Dysregulated RUNX1 Predicts Poor Prognosis by Mediating Epithelialmesenchymal Transition in Cervical Cancer. Curr Med Sci 2022; 42:1285-1296. [PMID: 36544038 DOI: 10.1007/s11596-022-2661-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Runt-related transcription factor 1 (RUNX1) has been proven to be over-expressed and vital in many malignancies. However, its role in cervical cancer is still unclear. METHODS Some online databases (Oncomine, GEPIA, UALCAN, LinkedOmics, and others) were used to explore the expression level, prognostic significance, and gene mutation characteristics of RUNX1 in cervical cancer. The protein levels of RUNX1 in cervical cancer were measured by immunohistochemistry (IHC). The functional changes of cervical cancer cells were measured in vitro after decreasing RUNX1. RESULTS Bioinformatic results revealed that RUNX1 was upregulated in cervical cancer compared to normal tissues. Moreover, over-expression of RUNX1 was significantly correlated with cervical cancer patients' clinical parameters (e.g., individual cancer stages, patients' age, nodal metastasis status, and others). Meanwhile, functional enrichment analysis of RUNX1-related genes indicated that RUNX1 was mainly involved in the epithelial-mesenchymal transition (EMT) process in cervical cancer. Furthermore, RUNX1 may be upregulated by hsamiR-616-5p and hsa-miR-766 identified by miRDB, TargetScan, and miRWalk. Finally, RUNX1 was upregulated in cervical cancer compared to normal tissues by IHC in collected cervical cancer samples. The invasion and migration abilities of cervical cancer cells were significantly reduced by repressing EMT after knocking down RUNX1 in vitro. CONCLUSION RUNX1 was highly expressed in cervical cancer, and upregulated RUNX1 could significantly promote the invasive abilities of cervical cancer cells by inducing EMT. Therefore, RUNX1 may be a potential biomarker for early diagnosis and targeted therapy of cervical cancer.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Qing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhe Lei
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chang-Sheng Yi
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450003, China.
| | - Xing-Dang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Ji-Gang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
873
|
Lv Y, Xu L. Tamoxifen Regulates Epithelial–Mesenchymal Transition in Endometrial Cancer <i>via</i> the CANP10/NRP1 Signaling Pathway. Biol Pharm Bull 2022; 45:1818-1824. [DOI: 10.1248/bpb.b22-00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Lei Xu
- Yantai Yuhuangding Hospital
| |
Collapse
|
874
|
Abstract
Renal fibrosis is a hallmark of end-stage chronic kidney disease. It is characterized by increased accumulation of extracellular matrix (ECM), which disrupts cellular organization and function within the kidney. Here, we review the bi-directional interactions between cells and the ECM that drive renal fibrosis. We will discuss the cells involved in renal fibrosis, changes that occur in the ECM, the interactions between renal cells and the surrounding fibrotic microenvironment, and signal transduction pathways that are misregulated as fibrosis proceeds. Understanding the underlying mechanisms of cell-ECM crosstalk will identify novel targets to better identify and treat renal fibrosis and associated renal disease.
Collapse
Affiliation(s)
- Kristin P. Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Caitlin E. Williams
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
875
|
Li X, Zhang M, Lei T, Zou W, Huang R, Wang F, Huang Q, Wang C, Liu C. Single-cell RNA-sequencing dissects cellular heterogeneity and identifies two tumor-suppressing immune cell subclusters in HPV-related cervical adenosquamous carcinoma. J Med Virol 2022; 94:6047-6059. [PMID: 36000446 DOI: 10.1002/jmv.28084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023]
Abstract
The intratumor heterogeneity of human papillomavirus (HPV)-related cervical cancer remains poorly defined. We performed single-cell RNA sequencing on 18 046 individual cells derived from two HPV-related cervical adenosquamous carcinoma samples to analyze the transcriptional heterogeneity of both epithelial and immune constituents, identifying seven epithelial (Epi1-7) and 11 immune subclusters. Based on expression of known cervical cancer markers, Epi1-2 primarily displayed features of adenocarcinoma, whereas Epi3-6 were instead characterized by features of squamous carcinoma. Our analyses also revealed that hypoxia and Kirsten rat sarcoma viral oncogene signaling were highly represented within Epi1; metabolic pathways mediating glycolysis and oxidative phosphorylation were enriched in Epi2-4; while Epi5 was enriched in p53 pathway components and features of epithelial-mesenchymal transition. Moreover, CD8+ FGFBP2+ T cells and FGFBP2+ natural killer cells were found to display high levels of cytotoxic effectors (GZMA, GZMB, GNLY, and PRF1) and low levels of inhibitory markers (PDCD1, TIGIT, and CTLA4), such that tumor infiltration by these populations was positively associated with survival in a cohort of n = 165 patients with HPV-related cervical cancer from The Cancer Genome Atlas database (p = 0.017 and 0.014, respectively). These results shed new light on the intratumor heterogeneity of HPV-related cervical adenosquamous carcinoma, which will help to refine diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenxue Zou
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Rui Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fuhao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qingyu Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, China
| |
Collapse
|
876
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
877
|
COL17A1 facilitates tumor growth and predicts poor prognosis in pancreatic cancer. Biochem Biophys Res Commun 2022; 632:1-9. [DOI: 10.1016/j.bbrc.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
|
878
|
Ning J, Cui X, Li N, Li N, Zhao B, Miao J, Lin Z. Activation of GRP78 ATPase suppresses A549 lung cancer cell migration by promoting ITGB4 degradation. Cell Adh Migr 2022; 16:107-114. [PMID: 36203272 PMCID: PMC9542429 DOI: 10.1080/19336918.2022.2130415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hypochlorous acid (HOCl) is an essential signal molecule in cancer cells. Activated GRP78 ATPase by a HOCl probe named ZBM-H inhibits lung cancer cell growth. However, the role and underlying mechanism of GRP78 ATPase in lung cancer cell migration have not been established. Here, we reported that activation of GRP78 ATPase by ZBM-H suppressed A549 cell migration and inhibited EMT process. Notably, ZBM-H time-dependently decreased the protein level of integrin β4 (ITGB4) in A549 cells. Combinatorial treatment of 3BDO (an autophagy inhibitor) and ZBM-H partially rescued the protein level of ITGB4. Consistently, 3BDO partially reversed ZBM-H-inhibited cell migration. Furthermore, ZBM-H promoted the interaction between ANXA7 and Hsc70, which participated in the regulation of selective autophagy and degradation of ITGB4.
Collapse
Affiliation(s)
- Junya Ning
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, P.R. China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Nan Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China,CONTACT Junying Miao Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Zhaomin Lin
- Central Research Laboratory, the Second Hospital, Shandong University, Jinan, P.R. China,Zhaomin Lin Central Research Laboratory, the Second Hospital, Shandong University, Jinan, P.R. China
| |
Collapse
|
879
|
Wang X, Li Y, Pan M, Lu T, Wang M, Wang Z, Liu C, Hu G. CEACAM5 inhibits the lymphatic metastasis of head and neck squamous cell carcinoma by regulating epithelial-mesenchymal transition via inhibiting MDM2. Clin Sci (Lond) 2022; 136:1691-1710. [PMID: 36377775 PMCID: PMC9702577 DOI: 10.1042/cs20220581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 10/30/2024]
Abstract
Lymph node (LN) metastasis affects both the management and prognosis of head and neck squamous cell carcinoma (HNSCC). Here, we explored the relationship between lymphatic metastasis and CEA family member 5 (CEACAM5), including its possible regulatory role in HNSCC. The levels of CEACAM5 in tissues from patients with HNSCC, with and without LN metastases, were assessed by transcriptome sequencing. The associations between CEACAM5 and the N stage of LN metastasis in HNSCC were predicted through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and a pan-cancer analysis of CEACAM5 expression in 33 common human tumors was conducted. CEACAM5 levels were analyzed in tumor and normal tissue specimens from HNSCC patients and the correlation between CEACAM5 levels and prognosis was evaluated. The influence of CEACAM5 on cell proliferation, invasion, migration, and apoptosis was investigated in HNSCC cell lines, as were the downstream regulatory mechanisms. A mouse model of LN metastasis was constructed. CEACAM5 levels were significantly higher in HNSCC tissue without LN metastasis than in that with LN metastasis. Similar findings were obtained for the clinical specimens. CEACAM5 levels were associated with better clinical prognosis. CEACAM5 was found to inhibit the proliferation and migration and promote the apoptosis of HNSCC cells. A mouse xenograft model showed that CEACAM5 inhibited LN metastasis. In conclusions, CEACAM5 inhibited epithelial-mesenchymal transition (EMT) in HNSCC by reducing murine double minute 2 (MDM2) expression and thereby suppressing LN metastasis. CEACAM5 has potential as both a prognostic marker and a therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Otorhinolaryngology, The People’s Hospital of Jianyang City, Jianyang, Sichuan 641400, China
| | - Yanshi Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
880
|
Garg R, Melstrom L, Chen J, He C, Goel A. Targeting FTO Suppresses Pancreatic Carcinogenesis via Regulating Stem Cell Maintenance and EMT Pathway. Cancers (Basel) 2022; 14:5919. [PMID: 36497402 PMCID: PMC9737034 DOI: 10.3390/cancers14235919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional RNA modification regulating cancer self-renewal. However, despite its functional importance and prognostic implication in tumorigenesis, the relevance of FTO, an m6A eraser, in pancreatic cancer (PC) remains elusive. Here, we establish the oncogenic role played by FTO overexpression in PC. FTO is upregulated in PC cells compared to normal human pancreatic ductal epithelial (HPDE) cells. Both RNAi depletion and CS1-mediated pharmacological inhibition of FTO caused a diminution of PC cell proliferation via cell cycle arrest in the G1 phase and p21cip1 and p27kip1 induction. While HPDE cells remain insensitive to CS1 treatment, FTO overexpression confers enhancements in growth, motility, and EMT transition, thereby inculcating tumorigenic properties in HPDE cells. Notably, shRNA-mediated FTO depletion in PC cells impairs their mobility and invasiveness, leading to EMT reversal. Mechanistically, this was associated with impaired tumorsphere formation and reduced expression of CSCs markers. Furthermore, FTO depletion in PC cells weakened their tumor-forming capabilities in nude mice; those tumors had increased apoptosis, decreased proliferation markers, and MET conversion. Collectively, our study demonstrates the functional importance of FTO in PC and the maintenance of CSCs via EMT regulation. Thus, FTO may represent an attractive therapeutic target for PC.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Monrovia, CA 91010, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91010, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Monrovia, CA 91010, USA
| |
Collapse
|
881
|
Tang S, Ling Z, Jiang J, Gu X, Leng Y, Wei C, Cheng H, Li X. Integrating the tumor-suppressive activity of Maspin with p53 in retuning the epithelial homeostasis: A working hypothesis and applicable prospects. Front Oncol 2022; 12:1037794. [PMID: 36523976 PMCID: PMC9745138 DOI: 10.3389/fonc.2022.1037794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/20/2024] Open
Abstract
Epithelial malignant transformation and tumorous development were believed to be closely associated with the loss of its microenvironment integrity and homeostasis. The tumor-suppressive molecules Maspin and p53 were demonstrated to play a crucial role in body epithelial and immune homeostasis. Downregulation of Maspin and mutation of p53 were frequently associated with malignant transformation and poor prognosis in various human cancers. In this review, we focused on summarizing the progress of the molecular network of Maspin in studying epithelial tumorous development and its response to clinic treatment and try to clarify the underlying antitumor mechanism. Notably, Maspin expression was reported to be transcriptionally activated by p53, and the transcriptional activity of p53 was demonstrated to be enhanced by its acetylation through inhibition of HDAC1. As an endogenous inhibitor of HDAC1, Maspin possibly potentiates the transcriptional activity of p53 by acetylating the p53 protein. Hereby, it could form a "self-propelling" antitumor mechanism. Thus, we summarized that, upon stimulation of cellular stress and by integrating with p53, the aroused Maspin played the epigenetic surveillant role to prevent the epithelial digressional process and retune the epithelial homeostasis, which is involved in activating host immune surveillance, regulating the inflammatory factors, and fine-tuning its associated cell signaling pathways. Consequentially, in a normal physiological condition, activation of the above "self-propelling" antitumor mechanism of Maspin and p53 could reduce cellular stress (e.g., chronic infection/inflammation, oxidative stress, transformation) effectively and achieve cancer prevention. Meanwhile, designing a strategy of mimicking Maspin's epigenetic regulation activity with integrating p53 tumor-suppressive activity could enhance the chemotherapy efficacy theoretically in a pathological condition of cancer.
Collapse
Affiliation(s)
- Sijie Tang
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Xiang Gu
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Yuzhong Leng
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Chaohui Wei
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Huiying Cheng
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Xiaohua Li
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| |
Collapse
|
882
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
883
|
Yang Z, Zhang S, Xia T, Fan Y, Shan Y, Zhang K, Xiong J, Gu M, You B. RNA Modifications Meet Tumors. Cancer Manag Res 2022; 14:3223-3243. [PMID: 36444355 PMCID: PMC9700476 DOI: 10.2147/cmar.s391067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/14/2023] Open
Abstract
RNA modifications occur through the whole process of gene expression regulation, including transcription, translation, and post-translational processes. They are closely associated with gene expression, RNA stability, and cell cycle. RNA modifications in tumor cells play a vital role in tumor development and metastasis, changes in the tumor microenvironment, drug resistance in tumors, construction of tumor cell-cell "internet", etc. Several types of RNA modifications have been identified to date and have various effects on the biological characteristics of different tumors. In this review, we discussed the function of RNA modifications, including N 6-methyladenine (m6A), 5-methylcytosine (m5C), N 7-methyladenosine (m7G), N 1-methyladenosine (m1A), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I), in the microenvironment and therapy of solid and liquid tumors.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Siyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yue Fan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Ying Shan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jiayan Xiong
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Miao Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
884
|
Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, Giordano A, Barboni B. "In medio stat virtus": Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol 2022; 10:1038841. [PMID: 36467417 PMCID: PMC9715750 DOI: 10.3389/fcell.2022.1038841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Adrián Cerveró-Varona
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Morrione
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Sbarro Health Research Organization (SHRO), Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
885
|
Hong Y, Zhang Y, Zhao H, Chen H, Yu QQ, Cui H. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1051306. [PMID: 36467404 PMCID: PMC9716033 DOI: 10.3389/fcell.2022.1051306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent and deadly type of liver cancer. While the underlying molecular mechanisms are poorly understood, it is documented that lncRNAs may play key roles. Many HCC-associated lncRNAs have been linked to HBV and HCV infection, mediating gene expression, cell growth, development, and death. Studying the regulatory mechanisms and biological functions of HCC-related lncRNAs will assist our understanding of HCC pathogenesis as well as its diagnosis and management. Here, we address the potential of dysregulated lncRNAs in HCC as diagnostic and therapeutic biomarkers, and we evaluate the oncogenic or tumor-suppressive properties of these lncRNAs.
Collapse
Affiliation(s)
- Yuling Hong
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yunxing Zhang
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Haibo Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hailing Chen
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qing-Qing Yu
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hongxia Cui
- Jining First People’s Hospital, Jining Medical College, Jining, China
| |
Collapse
|
886
|
Comprehensive Analysis of the Prognostic Value and Molecular Function of CRNDE in Glioma at Bulk and Single-Cell Levels. Cells 2022; 11:cells11223669. [PMID: 36429098 PMCID: PMC9688829 DOI: 10.3390/cells11223669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is an oncogenic long noncoding RNA (lncRNA) overexpressed in diverse malignancies. Here, we comprehensively analyze the prognostic value and molecular function of CRNDE in glioma. Bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), and single-cell RNA-sequencing data from the Tumor Immune Single-Cell Hub (TISCH) were analyzed. Kaplan-Meier survival analysis was applied to verify the prognostic value of CRNDE. Then, a nomogram based on multivariate Cox regression was established for individualized survival prediction. Subsequently, the expression characteristic and biological function of CRNDE were analyzed at the single-cell level. Lastly, the effects of CRNDE on the proliferation and invasion of glioma cell were explored in vitro. We discovered that CRNDE was a powerful marker for risk stratification of glioma patients. Regardless of the status of IDH and 1p/19q, CRNDE could effectively stratify patients' prognosis. The nomogram that incorporated the CRNDE expression was proved to be a reliable tool for survival prediction. In addition, epithelial-mesenchymal transition may be the most important biological process regulated by CRNDE, which was identified at both the bulk and single-cell levels. Moreover, CRNDE knockdown significantly inhibited the proliferation and invasion of glioma cell. Overall, CRNDE is a vital oncogene and may be a valuable supplement to improve the clinical stratification of glioma.
Collapse
|
887
|
Liu H, Xiang L, Mei Y. miR-877-5p Inhibits Epithelial Mesenchymal Transformation of Breast Cancer Cells by Targeting FGB. DISEASE MARKERS 2022; 2022:4882375. [PMID: 36438895 PMCID: PMC9691316 DOI: 10.1155/2022/4882375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/25/2023]
Abstract
PURPOSE This present study is aimed at exploring the FGB expression in breast cancer (BC) and the role of FGB in BC. METHODS A total of 150 pairs of BC tissues and adjacent tissues from BC surgery patients were collected. RT-qPCR was utilized to evaluate the mRNA expression of FGB and miR-877-5p. Immunohistochemistry was applied to evaluate the protein expression of FGB. Chi-square test was performed to evaluate the relationship between FGB expression level and clinical characteristics. Cell proliferation was examined using CCK-8 assay. Cell invasion was evaluated by transwell assay. Flow cytometry assay was applied to measure cell apoptosis. The protein expression was evaluated by western blot. BALB/C nude mice were used to establish the xenograft tumor model. RESULTS FGB was more highly expressed in BC tumor, and the expression of FGB was relevant to TNM stage and lymph node metastasis and showed a positive correlation. FGB was proved to be directly regulated via miR-877-5p and enhanced proliferation and invasion of BC cells. FGB downregulation markedly inhibited the tumor growth, including tumor weight and volume. In addition, the Ki-67 expression was observably declined in the sh-FGB group. The protein expression of E-cadherin was markedly raised in the sh-FGB group while the protein expression of N-cadherin and vimentin was markedly declined in the sh-FGB group. CONCLUSION In conclusion, miR-877-5p inhibits epithelial mesenchymal transformation, cell proliferation, and invasion of BC cells via downregulating FGB.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Pathology, Jinan Maternity and Child Care Hospital, 250001 Jinan, Shandong, China
| | - Lili Xiang
- Department of Children's Health Care, Jinan Maternity and Child Care Hospital, 250001 Jinan, Shandong, China
| | - Yu Mei
- Department of Breast Surgery, Jinan Maternity and Child Care Hospital, 250001 Jinan, Shandong, China
| |
Collapse
|
888
|
Wang W, Hapach LA, Griggs L, Smart K, Wu Y, Taufalele PV, Rowe MM, Young KM, Bates ME, Johnson AC, Ferrell NJ, Pozzi A, Reinhart-King CA. Diabetic hyperglycemia promotes primary tumor progression through glycation-induced tumor extracellular matrix stiffening. SCIENCE ADVANCES 2022; 8:eabo1673. [PMID: 36399580 PMCID: PMC9674287 DOI: 10.1126/sciadv.abo1673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/29/2022] [Indexed: 05/31/2023]
Abstract
Diabetes mellitus is a complex metabolic disorder that is associated with an increased risk of breast cancer. Despite this correlation, the interplay between tumor progression and diabetes, particularly with regard to stiffening of the extracellular matrix, is still mechanistically unclear. Here, we established a murine model where hyperglycemia was induced before breast tumor development. Using the murine model, in vitro systems, and patient samples, we show that hyperglycemia increases tumor growth, extracellular matrix stiffness, glycation, and epithelial-mesenchymal transition of tumor cells. Upon inhibition of glycation or mechanotransduction in diabetic mice, these same metrics are reduced to levels comparable with nondiabetic tumors. Together, our study describes a novel biomechanical mechanism by which diabetic hyperglycemia promotes breast tumor progression via glycating the extracellular matrix. In addition, our work provides evidence that glycation inhibition is a potential adjuvant therapy for diabetic cancer patients due to the key role of matrix stiffening in both diseases.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren A. Hapach
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Griggs
- College of Engineering, Pennsylvania State University, State College, PA 16802, USA
| | - Kyra Smart
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew M. Rowe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine M. Young
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Madison E. Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew C. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nicholas J. Ferrell
- Department of Internal Medicine, Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Veterans Affairs Hospitals, Nashville, TN 37684, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
889
|
Sato H, Hara T, Tatekawa S, Sasaki K, Kobayashi S, Kitagawa T, Doki Y, Eguchi H, Ogawa K, Uchida S, Ishii H. Emerging roles of long noncoding and circular RNAs in pancreatic ductal adenocarcinoma. Front Physiol 2022; 13:1025923. [PMID: 36452037 PMCID: PMC9702346 DOI: 10.3389/fphys.2022.1025923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2024] Open
Abstract
An international project on the human genome revealed that various RNAs (e.g., messenger RNAs, microRNAs, and long noncoding RNAs [lncRNAs] and their subclass circular RNA [circRNA)) are involved in the pathogenesis of different human diseases, including cancer. Recent studies have highlighted the critical roles of lncRNAs and circRNA in pancreatic ductal adenocarcinoma (PDAC), especially in the epithelial-mesenchymal transition, a phenomenon regulating cancer metastasis. Growing research in this field has indicated that the tertiary structure of lncRNAs supposedly regulates biological function via RNA-RNA or RNA-protein associations, aiding early diagnosis and therapy selection for various diseases, including cancer. Here we describe the emerging roles of ncRNAs in PDAC and highlight how these ncRNAs can be used to detect and control this intractable cancer.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Sasaki
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Yuichiro Doki
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
890
|
Integrated Analysis of the Role of Enolase 2 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:6539203. [DOI: 10.1155/2022/6539203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Enolase 2 (ENO2) has increasingly been documented in multiple cancers in recent years. However, the role of ENO2 in clear cell renal carcinoma (ccRCC) has not been fully explored. In the present study, open-access data were downloaded from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) databases. All statistical analyses were performed in R and GraphPad Prism 8 softwares. Results showed that ENO2 was overexpressed in ccRCC tissues and cell lines and correlated with worse clinical features and prognosis. In vitro experiments indicated that the inhibition of ENO2 could hamper the malignant behaviors of ccRCC cells. Gene Set Enrichment Analysis showed that epithelial-mesenchymal transition, KRAS signaling, inflammatory response, angiogenesis, hypoxia, and WNT/β-catenin pathways were upregulated in the ENO2 high-expression group; whereas adipogenesis, DNA repair, and androgen response pathways were downregulated. Immune infiltration analysis indicated that patients with high ENO2 levels might have higher M2 macrophages and lower γβ T cells in the tumor microenvironment, which may account to some extent for the worse prognosis of ENO2. Moreover, it was found that patients with low and high ENO2 expression might be more sensitive to PD-1 therapy and CTLA-4 therapy, respectively. In addition, patients with high ENO2 expression showed lower sensitivity to common chemotherapy drugs for ccRCC, including axitinib, cisplatin, gemcitabine, pazopanib, sunitinib, and temsirolimus. Overall, these results suggest that ENO2 is a potential prognosis biomarker of ccRCC and could affect the malignant biological behavior of cancer cells, highlighting its value as a potential therapeutic target.
Collapse
|
891
|
Noubissi Nzeteu GA, Geismann C, Arlt A, Hoogwater FJH, Nijkamp MW, Meyer NH, Bockhorn M. Role of Epithelial-to-Mesenchymal Transition for the Generation of Circulating Tumors Cells and Cancer Cell Dissemination. Cancers (Basel) 2022; 14:5483. [PMID: 36428576 PMCID: PMC9688619 DOI: 10.3390/cancers14225483] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor-related death is primarily caused by metastasis; consequently, understanding, preventing, and treating metastasis is essential to improving clinical outcomes. Metastasis is mainly governed by the dissemination of tumor cells in the systemic circulation: so-called circulating tumor cells (CTCs). CTCs typically arise from epithelial tumor cells that undergo epithelial-to-mesenchymal transition (EMT), resulting in the loss of cell-cell adhesions and polarity, and the reorganization of the cytoskeleton. Various oncogenic factors can induce EMT, among them the transforming growth factor (TGF)-β, as well as Wnt and Notch signaling pathways. This entails the activation of numerous transcription factors, including ZEB, TWIST, and Snail proteins, acting as transcriptional repressors of epithelial markers, such as E-cadherin and inducers of mesenchymal markers such as vimentin. These genetic and phenotypic changes ultimately facilitate cancer cell migration. However, to successfully form distant metastases, CTCs must primarily withstand the hostile environment of circulation. This includes adaption to shear stress, avoiding being trapped by coagulation and surviving attacks of the immune system. Several applications of CTCs, from cancer diagnosis and screening to monitoring and even guided therapy, seek their way into clinical practice. This review describes the process leading to tumor metastasis, from the generation of CTCs in primary tumors to their dissemination into distant organs, as well as the importance of subtyping CTCs to improve personalized and targeted cancer therapy.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24118 Kiel, Germany
| | - Alexander Arlt
- Department for Gastroenterology and Hepatology, University Hospital Oldenburg, Klinikum Oldenburg AöR, European Medical School (EMS), 26133 Oldenburg, Germany
| | - Frederik J. H. Hoogwater
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W. Nijkamp
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
892
|
EMT Molecular Signatures of Pancreatic Neuroendocrine Neoplasms. Int J Mol Sci 2022; 23:ijms232113645. [PMID: 36362433 PMCID: PMC9657865 DOI: 10.3390/ijms232113645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are relatively rare neoplasms occurring predominantly in the gastrointestinal tract and pancreas. Their heterogeneity poses challenges for diagnosis and treatment. There is a paucity of markers for characterisation of NEN tumours. For routine diagnosis, immunohistochemistry of the NEN-specific markers CgA and synaptophysin and the proliferation marker Ki-67 are used. These parameters, however, are qualitative and lack the capacity to fully define the tumour phenotype. Molecules of epithelial–mesenchymal transition (EMT) are potential candidates for improved tumour characterisation. Using qRT-PCR, we measured mRNA levels of 27 tumour markers, including 25 EMT-associated markers, in tumour tissue and matched non-tumour tissues for 13 patients with pancreatic NENs. Tissue from patients with three different grades of tumour had distinctly different mRNA profiles. Of the 25 EMT-associated markers analysed, 17 were higher in G3 tissue relative to matched non-tumour tissue, including CD14, CD24, CD31, CD44, CD45, CD56, CK6, CK7, CK13, CK20, NSE, CDX2, CgA, DAXX, PCNA, laminin and Ki-67. The differences in levels of seven EMT-associated markers, Ki-67, DAXX, CD24, CD44, vimentin, laminin and PDX1 plus CgA and NSE (neuroendocrine markers) enabled a distinct molecular signature for each tumour grade to be generated. EMT molecules differentially expressed in three tumour grades have potential for use in tumour stratification and prognostication and as therapeutic targets for treatment of neuroendocrine cancers, following validation with additional samples.
Collapse
|
893
|
Qin C, Li T, Wang Y, Zhao B, Li Z, Li T, Yang X, Zhao Y, Wang W. CHRNB2 represses pancreatic cancer migration and invasion via inhibiting β-catenin pathway. Cancer Cell Int 2022; 22:340. [DOI: 10.1186/s12935-022-02768-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is one of the most lethal disease with highly fatal and aggressive properties. Lymph node ratio (LNR), the ratio of the number of metastatic lymph nodes to the total number of examined lymph nodes, is an important index to assess lymphatic metastasis and predict prognosis, but the molecular mechanism underlying high LNR was unclear.
Methods
Gene expression and clinical information data of pancreatic cancer were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Patients in TCGA were averagely divided into low and high LNR groups. Then, Weighted Gene Co-expression Network Analysis (WGCNA) was utilized to build co-expression network to explore LNR-related modules and hub genes. GO and KEGG analysis was performed to find key pathways related to lymph node metastasis. Next, GSE101448 and the overall survival data in TCGA was employed to further select significant genes from hub genes. Considering the key role of CHRNB2 in LNR and survival, gene set enrichment analysis (GSEA) was applied to find pathways related to CHRNB2 expression in pancreatic cancer. The contribution of CHRNB2 to migrative and invasive ability of pancreatic cancer cells was confirmed by Transwell assays. We finally explored the role of CHRNB2 in EMT and β-catenin pathway via Western Blot.
Results
High LNR was significantly related to high T stages and poor prognosis. In WGCNA, 14 hub genes (COL5A1, FN1, THBS2, etc.) were positively related to high LNR, 104 hub genes (FFAR1, SCG5, TMEM63C, etc.) were negatively related to high LNR. After taking the intersection with GSE101448, 13 genes (CDK5R2, SYT7, CACNA2D2, etc.) which might prevent lymph node metastasis were further selected. Among them, CHRNB2 showed the strongest relationship with long survival. Moreover, CHRNB2 also negatively related to the T stages and LNR. Next, knockdown of CHRNB2 expression could acetylcholine (ACh)-independently increase the migration and invasion of pancreatic cancer cells, while CHRNB2 overexpression ACh-independently decrease the migration and invasion of pancreatic cancer cells. For exploring the underlying mechanism, CHRNB2 downregulated β-catenin pathway might through controlling its upstream regulators such as SOX6, SRY, SOX17, and TCF7L2.
Conclusions
CHRNB2 negatively relates to lymph node metastasis in pancreatic cancer patients. CHRNB2 could inhibit β-catenin pathway, EMT, migration and invasion of pancreatic cancer cells via ACh-independent mechanism.
Collapse
|
894
|
Zhou B, Zhou X, Zhan C, Jin M, Yan S. FAM83A promotes the progression and metastasis of human pancreatic neuroendocrine tumors by inducing the epithelial-mesenchymal transition via the PI3K/AKT and ERK pathways. J Endocrinol Invest 2022; 46:1115-1130. [PMID: 36344884 DOI: 10.1007/s40618-022-01959-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Family with sequence similarity 83, member A (FAM83A) has been reported to play an important role in cancer progression and metastasis. The purpose of this study was to clarify the role and mechanism of FAM83A in pancreatic neuroendocrine tumors (PanNETs). METHODS PanNET specimens and adjacent nontumor pancreatic tissues obtained from 68 patients who underwent curative surgery for PanNETs were assessed for FAM83A expression using immunochemical staining. The relationships between FAM83A expression, clinicopathological parameters and prognosis were statistically analyzed. PanNET cell lines were used to study the role of FAM83A in the progression and metastasis of PanNETs in vitro and in vivo. RESULTS FAM83A was overexpressed in PanNET specimens compared with adjacent nontumor tissues. Furthermore, FAM83A expression was closely associated with lymph node metastasis (P = 0.02), perineural invasion (P = 0.001), WHO classification (P = 0.039), AJCC stage (P = 0.01) and shorter disease-free survival in patients with PanNETs (P < 0.001). FAM83A overexpression effectively promoted PanNET cell proliferation, migration, invasion and growth both in vitro and in vivo, whereas FAM83A inhibition exerted the opposite effects. Subsequent mechanistic investigations revealed that FAM83A promotes the progression and metastasis of PanNETs by inducing epithelial-mesenchymal transition (EMT) via the PI3K/AKT and ERK pathways. CONCLUSIONS FAM83A plays an important role in the progression and metastasis of PanNET by inducing the EMT via the activation of the ERK and PI3K/AKT pathways and may serve as a valuable molecular target in PanNET treatment.
Collapse
Affiliation(s)
- B Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - X Zhou
- Department of Nursing Operating Room, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - C Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - M Jin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - S Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
895
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
896
|
Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, Barber B, Futran N, Houlton J, Sather C, Sicinska E, Taylor A, Minot SS, Johnston CD, Bullman S. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022; 611:810-817. [PMID: 36385528 PMCID: PMC9684076 DOI: 10.1038/s41586-022-05435-0] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immuno‑suppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion-adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.
Collapse
Affiliation(s)
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | - Neal Futran
- University of Washington Medical Center, Seattle, WA, USA
| | - Jeffrey Houlton
- University of Washington Medical Center, Seattle, WA, USA
- Head and Neck Specialists, Sarah Cannon Cancer Institute, Charleston, SC, USA
| | - Cassie Sather
- Genomics Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Samuel S Minot
- Data Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
897
|
Transcription factor Sp1 and oncoprotein PPP1R13L regulate nicotine-induced epithelial-mesenchymal transition in lung adenocarcinoma via a feedback loop. Biochem Pharmacol 2022; 206:115344. [DOI: 10.1016/j.bcp.2022.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
|
898
|
Pavlič A, Boštjančič E, Kavalar R, Ilijevec B, Bonin S, Zanconati F, Zidar N. Tumour budding and poorly differentiated clusters in colon cancer - different manifestations of partial epithelial-mesenchymal transition. J Pathol 2022; 258:278-288. [PMID: 36062412 PMCID: PMC9825925 DOI: 10.1002/path.5998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Morphological features including infiltrative growth, tumour budding (TB), and poorly differentiated clusters (PDCs) have a firmly established negative predictive value in colorectal cancer (CRC). Despite extensive research, the mechanisms underlying different tumour growth patterns remain poorly understood. The aim of this study was to investigate the involvement of epithelial-mesenchymal transition (EMT) in TB and PDCs in CRC. Using laser-capture microdissection, we obtained distinct parts of the primary CRC including TB, PDCs, expansive tumour front, and the central part of the tumour, and analysed the expression of EMT-related markers, i.e. the miR-200 family, ZEB1/2, RND3, and CDH1. In TB, the miR-200 family and CDH1 were significantly downregulated, while ZEB2 was significantly upregulated. In PDCs, miR-141, miR-200c, and CDH1 were significantly downregulated. No significant differences were observed in the expression of any EMT-related markers between the expansive tumour front and the central part of the tumour. Our results suggest that both TB and PDCs are related to partial EMT. Discrete differences in morphology and expression of EMT-related markers between TB and PDCs indicate that they represent different manifestations of partial EMT. TB seems to be closer to complete EMT than PDCs. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Rajko Kavalar
- Department of PathologyUniversity Medical Centre MariborMariborSlovenia
| | - Bojan Ilijevec
- Department of Abdominal and General SurgeryUniversity Medical Centre MariborMariborSlovenia
| | - Serena Bonin
- Department of Medical SciencesUniversity of TriesteTriesteItaly
| | | | - Nina Zidar
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
899
|
Sivakumar N, Warner HV, Peirce SM, Lazzara MJ. A computational modeling approach for predicting multicell spheroid patterns based on signaling-induced differential adhesion. PLoS Comput Biol 2022; 18:e1010701. [PMID: 36441822 PMCID: PMC9747056 DOI: 10.1371/journal.pcbi.1010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022] Open
Abstract
Physiological and pathological processes including embryogenesis and tumorigenesis rely on the ability of individual cells to work collectively to form multicell patterns. In these heterogeneous multicell systems, cell-cell signaling induces differential adhesion between cells that leads to tissue-level patterning. However, the sensitivity of pattern formation to changes in the strengths of signaling or cell adhesion processes is not well understood. Prior work has explored these issues using synthetically engineered heterogeneous multicell spheroid systems, in which cell subpopulations engage in bidirectional intercellular signaling to regulate the expression of different cadherins. While engineered cell systems provide excellent experimental tools to observe pattern formation in cell populations, computational models of these systems may be leveraged to explore more systematically how specific combinations of signaling and adhesion parameters can drive the emergence of unique patterns. We developed and validated two- and three-dimensional agent-based models (ABMs) of spheroid patterning for previously described cells engineered with a bidirectional signaling circuit that regulates N- and P-cadherin expression. Systematic exploration of model predictions, some of which were experimentally validated, revealed how cell seeding parameters, the order of signaling events, probabilities of induced cadherin expression, and homotypic adhesion strengths affect pattern formation. Unsupervised clustering was also used to map combinations of signaling and adhesion parameters to these unique spheroid patterns predicted by the ABM. Finally, we demonstrated how the model may be deployed to design new synthetic cell signaling circuits based on a desired final multicell pattern.
Collapse
Affiliation(s)
- Nikita Sivakumar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Helen V. Warner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew J. Lazzara
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
900
|
Yan J, Xie B, Zou S, Huang L, Tian Y, Li J, Peng Z, Liu Z, Ma B, Li L. Value of biomarkers in epithelial-mesenchymal transition models of liver cancer under different interventions: a meta-analysis. Future Oncol 2022; 18:4031-4045. [PMID: 36621837 DOI: 10.2217/fon-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: A meta-analysis was conducted to evaluate the effectiveness of crucial biomarkers in HepG2 cells during epithelial-mesenchymal transformation induced by multiple interventions. Methods: PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, Wan Fang Data and VIP databases were systematically searched from inception to 14 June 2020, by two independent reviewers. Results: A total of 58 studies were included in the meta-analysis. E-cadherin, N-cadherin and vimentin performed well under medicinal interventions. E-cadherin worked well under genetic interventions. E-cadherin and N-cadherin also performed significantly well under tumor microenvironment interventions. Under ncRNA interventions, the expression of E-cadherin significantly changed. Conclusion: Different sets of biomarkers should be selected under various interventions based on their performance.
Collapse
Affiliation(s)
- Jing Yan
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.,Evidence-Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.,Department of Clinical Laboratory Center, Gansu Provincial Maternity and Child-care Hospital (Gansu Province Central Hospital), Lanzhou, Gansu, 730000, China
| | - Bei Xie
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shuli Zou
- Department of medicine, Kingsbrook Jewish Medical Center, 585 Schenectady ave, Brooklyn, NY 11203, USA
| | - Li Huang
- Department of Pediatric Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ye Tian
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhiheng Peng
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhuan Liu
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bin Ma
- Evidence-Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|