851
|
Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M. Elucidating reaction mechanisms on quantum computers. Proc Natl Acad Sci U S A 2017; 114:7555-7560. [PMID: 28674011 PMCID: PMC5530650 DOI: 10.1073/pnas.1619152114] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Collapse
Affiliation(s)
- Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zurich, 8093 Zurich, Switzerland
| | - Nathan Wiebe
- Station Q Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052
| | - Krysta M Svore
- Station Q Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052
| | - Dave Wecker
- Station Q Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052
| | - Matthias Troyer
- Station Q Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052;
- Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
852
|
Yan JA, Chen YS, Chang YH, Tsai CY, Lyu CL, Luo CG, Lee GH, Hsu HF. Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid–Base Chemistry of Thiol and Thiolate. Inorg Chem 2017; 56:9055-9063. [DOI: 10.1021/acs.inorgchem.7b01040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jyun-An Yan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Sen Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ho Chang
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Yun Tsai
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Ling Lyu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Gang Luo
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
853
|
Prokopchuk DE, Wiedner ES, Walter ED, Popescu CV, Piro NA, Kassel WS, Bullock RM, Mock MT. Catalytic N2 Reduction to Silylamines and Thermodynamics of N2 Binding at Square Planar Fe. J Am Chem Soc 2017; 139:9291-9301. [DOI: 10.1021/jacs.7b04552] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Demyan E. Prokopchuk
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box
999, Richland, Washington 99352, United States
| | - Eric S. Wiedner
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box
999, Richland, Washington 99352, United States
| | - Eric D. Walter
- Environmental Molecular Sciences Laboratory, Richland, Washington 99352, United States
| | - Codrina V. Popescu
- Department
of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Nicholas A. Piro
- Department
of Chemistry, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, United States
| | - W. Scott Kassel
- Department
of Chemistry, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, United States
| | - R. Morris Bullock
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box
999, Richland, Washington 99352, United States
| | - Michael T. Mock
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box
999, Richland, Washington 99352, United States
| |
Collapse
|
854
|
Sabenya G, Lázaro L, Gamba I, Martin-Diaconescu V, Andris E, Weyhermüller T, Neese F, Roithova J, Bill E, Lloret-Fillol J, Costas M. Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. J Am Chem Soc 2017; 139:9168-9177. [DOI: 10.1021/jacs.7b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerard Sabenya
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Laura Lázaro
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Ilaria Gamba
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Erik Andris
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thomas Weyhermüller
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jana Roithova
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007 Tarragona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| |
Collapse
|
855
|
Sickerman NS, Hu Y, Ribbe MW. Activation of CO
2
by Vanadium Nitrogenase. Chem Asian J 2017; 12:1985-1996. [DOI: 10.1002/asia.201700624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
856
|
Liu C, Sakimoto KK, Colón BC, Silver PA, Nocera DG. Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proc Natl Acad Sci U S A 2017; 114:6450-6455. [PMID: 28588143 PMCID: PMC5488957 DOI: 10.1073/pnas.1706371114] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We demonstrate the synthesis of NH3 from N2 and H2O at ambient conditions in a single reactor by coupling hydrogen generation from catalytic water splitting to a H2-oxidizing bacterium Xanthobacter autotrophicus, which performs N2 and CO2 reduction to solid biomass. Living cells of X. autotrophicus may be directly applied as a biofertilizer to improve growth of radishes, a model crop plant, by up to ∼1,440% in terms of storage root mass. The NH3 generated from nitrogenase (N2ase) in X. autotrophicus can be diverted from biomass formation to an extracellular ammonia production with the addition of a glutamate synthetase inhibitor. The N2 reduction reaction proceeds at a low driving force with a turnover number of 9 × 109 cell-1 and turnover frequency of 1.9 × 104 s-1⋅cell-1 without the use of sacrificial chemical reagents or carbon feedstocks other than CO2 This approach can be powered by renewable electricity, enabling the sustainable and selective production of ammonia and biofertilizers in a distributed manner.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | - Kelsey K Sakimoto
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Brendan C Colón
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
857
|
Katayama A, Inomata T, Ozawa T, Masuda H. Ionic liquid promotes N 2 coordination to titanocene(iii) monochloride. Dalton Trans 2017; 46:7668-7671. [PMID: 28574550 DOI: 10.1039/c7dt01063j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination of N2 to [(Cp2TiCl)2] in a non-coordinating ionic liquid, Pyr4FAP, was studied by UV-vis/NIR and EPR spectroscopies. [(Cp2TiCl)2] is in equilibrium between monomeric [Cp2TiCl] and dimeric species [(Cp2TiCl)2]. The frozen solution EPR spectrum revealed the coordination of N2 to [Cp2TiCl], suggesting that Pyr4FAP promotes N2 coordination to the Ti(iii) center.
Collapse
Affiliation(s)
- Akira Katayama
- Department of Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
858
|
Burén S, Young EM, Sweeny EA, Lopez-Torrejón G, Veldhuizen M, Voigt CA, Rubio LM. Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:1043-1055. [PMID: 28221768 PMCID: PMC5477005 DOI: 10.1021/acssynbio.6b00371] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transferring the prokaryotic enzyme nitrogenase into a eukaryotic host with the final aim of developing N2 fixing cereal crops would revolutionize agricultural systems worldwide. Targeting it to mitochondria has potential advantages because of the organelle's high O2 consumption and the presence of bacterial-type iron-sulfur cluster biosynthetic machinery. In this study, we constructed 96 strains of Saccharomyces cerevisiae in which transcriptional units comprising nine Azotobacter vinelandii nif genes (nifHDKUSMBEN) were integrated into the genome. Two combinatorial libraries of nif gene clusters were constructed: a library of mitochondrial leading sequences consisting of 24 clusters within four subsets of nif gene expression strength, and an expression library of 72 clusters with fixed mitochondrial leading sequences and nif expression levels assigned according to factorial design. In total, 29 promoters and 18 terminators were combined to adjust nif gene expression levels. Expression and mitochondrial targeting was confirmed at the protein level as immunoblot analysis showed that Nif proteins could be efficiently accumulated in mitochondria. NifDK tetramer formation, an essential step of nitrogenase assembly, was experimentally proven both in cell-free extracts and in purified NifDK preparations. This work represents a first step toward obtaining functional nitrogenase in the mitochondria of a eukaryotic cell.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo
UPM, 28223, Pozuelo
de Alarcón, Madrid, Spain
| | - Eric M. Young
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth A. Sweeny
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gema Lopez-Torrejón
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo
UPM, 28223, Pozuelo
de Alarcón, Madrid, Spain
| | - Marcel Veldhuizen
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo
UPM, 28223, Pozuelo
de Alarcón, Madrid, Spain
| | - Christopher A. Voigt
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo
UPM, 28223, Pozuelo
de Alarcón, Madrid, Spain
| |
Collapse
|
859
|
Doyle LR, Hill PJ, Wildgoose GG, Ashley AE. Teaching old compounds new tricks: efficient N2 fixation by simple Fe(N2)(diphosphine)2 complexes. Dalton Trans 2017; 45:7550-4. [PMID: 27075532 DOI: 10.1039/c6dt00884d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe(0) species Fe(N2)(dmpe)2 exists in equilibrium with the previously unreported dimer, [Fe(dmpe2)2(μ-N2)]. For the first time these complexes, alongside Fe(N2)(depe)2, are shown unambiguously to produce N2H4 and/or NH3 upon addition of triflic acid; for Fe(N2)(depe)2 this represents one of the highest electron conversion efficiencies for Fe complexes to date.
Collapse
Affiliation(s)
- Laurence R Doyle
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| | - Peter J Hill
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| | - Gregory G Wildgoose
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew E Ashley
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
860
|
Buscagan TM, Oyala PH, Peters JC. N 2 -to-NH 3 Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis. Angew Chem Int Ed Engl 2017; 56:6921-6926. [PMID: 28489303 PMCID: PMC5595421 DOI: 10.1002/anie.201703244] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 11/09/2022]
Abstract
Bridging iron hydrides are proposed to form at the active site of MoFe-nitrogenase during catalytic dinitrogen reduction to ammonia and may be key in the binding and activation of N2 via reductive elimination of H2 . This possibility inspires the investigation of well-defined molecular iron hydrides as precursors for catalytic N2 -to-NH3 conversion. Herein, we describe the synthesis and characterization of new P2P'Ph Fe(N2 )(H)x systems that are active for catalytic N2 -to-NH3 conversion. Most interestingly, we show that the yields of ammonia can be significantly increased if the catalysis is performed in the presence of mercury lamp irradiation. Evidence is provided to suggest that photo-elimination of H2 is one means by which the enhanced activity may arise.
Collapse
Affiliation(s)
- Trixia M. Buscagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 78457 1200 E California Blvd, Pasadena CA 91103 (USA)
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 78457 1200 E California Blvd, Pasadena CA 91103 (USA)
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 78457 1200 E California Blvd, Pasadena CA 91103 (USA)
| |
Collapse
|
861
|
Ni F, Kung A, Duan Y, Shah V, Amador CD, Guo M, Fan X, Chen L, Chen Y, McKenna CE, Zhang C. Remarkably Stereospecific Utilization of ATP α,β-Halomethylene Analogues by Protein Kinases. J Am Chem Soc 2017; 139:7701-7704. [PMID: 28535041 DOI: 10.1021/jacs.7b03266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ATP analogues containing a CXY group in place of the α,β-bridging oxygen atom are powerful chemical probes for studying ATP-dependent enzymes. A limitation of such probes has been that conventional synthetic methods generate a mixture of diastereomers when the bridging carbon substitution is nonequivalent (X ≠ Y). We report here a novel method based on derivatization of a bisphosphonate precursor with a d-phenylglycine chiral auxiliary that enables preparation of the individual diastereomers of α,β-CHF-ATP and α,β-CHCl-ATP, which differ only in the configuration at the CHX carbon. When tested on a dozen divergent protein kinases, these individual diastereomers exhibit remarkable diastereospecificity (up to over 1000-fold) in utilization by the enzymes. This high selectivity can be exploited in an enzymatic approach to obtain the otherwise inaccessible diastereomers of α,β-CHBr-ATP. The crystal structure of a tyrosine kinase Src bound to α,β-CHX-ADP establishes the absolute configuration of the CHX carbon and helps clarify the origin of the remarkable diastereospecificity observed. We further synthesized the individual diastereomers of α,β-CHF-γ-thiol-ATP and demonstrated their utility in labeling a wide spectrum of kinase substrates. The novel ATP substrate analogues afforded by these two complementary strategies should have broad application in the study of the structure and function of ATP-dependent enzymes.
Collapse
Affiliation(s)
- Feng Ni
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Loker Hydrocarbon Research Institute, University of Southern California , Los Angeles, California 90089, United States
| | - Alvin Kung
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Loker Hydrocarbon Research Institute, University of Southern California , Los Angeles, California 90089, United States
| | - Yankun Duan
- Department of Infectious Diseases & Hunan Key Laboratory of Viral Hepatitis, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China.,Molecular & Computational Biology Program, Department of Biological Sciences, University of Southern California , Los Angeles, California 90089, United States
| | - Vivek Shah
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Carolina D Amador
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Ming Guo
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China
| | - Xuegong Fan
- Department of Infectious Diseases & Hunan Key Laboratory of Viral Hepatitis, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Molecular & Computational Biology Program, Department of Biological Sciences, University of Southern California , Los Angeles, California 90089, United States
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University , Changsha, Hunan 410008, China
| | - Charles E McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Chao Zhang
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.,Loker Hydrocarbon Research Institute, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
862
|
Chen Y, Niu Y, Tian T, Zhang J, Wang Y, Li Y, Qin LC. Microbial reduction of graphene oxide by Azotobacter chroococcum. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
863
|
|
864
|
Connor GP, Holland PL. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal Today 2017; 286:21-40. [PMID: 28344387 PMCID: PMC5363757 DOI: 10.1016/j.cattod.2016.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N2 reduction, in the context of the growing knowledge about cooperative interactions between N2, transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N2. Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.
Collapse
Affiliation(s)
- Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, CT 06511 USA
| | | |
Collapse
|
865
|
Buscagan TM, Oyala PH, Peters JC. N2
-to-NH3
Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Trixia M. Buscagan
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 78457 1200 E California Blvd Pasadena CA 91103 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 78457 1200 E California Blvd Pasadena CA 91103 USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering; California Institute of Technology; 78457 1200 E California Blvd Pasadena CA 91103 USA
| |
Collapse
|
866
|
Cluster assembly in nitrogenase. Essays Biochem 2017; 61:271-279. [DOI: 10.1042/ebc20160071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The versatile enzyme system nitrogenase accomplishes the challenging reduction of N2and other substrates through the use of two main metalloclusters. For molybdenum nitrogenase, the catalytic component NifDK contains the [Fe8S7]-core P-cluster and a [MoFe7S9C-homocitrate] cofactor called the M-cluster. These chemically unprecedented metalloclusters play a critical role in the reduction of N2, and both originate from [Fe4S4] clusters produced by the actions of NifS and NifU. Maturation of P-cluster begins with a pair of these [Fe4S4] clusters on NifDK called the P*-cluster. An accessory protein NifZ aids in P-cluster fusion, and reductive coupling is facilitated by NifH in a stepwise manner to form P-cluster on each half of NifDK. For M-cluster biosynthesis, two [Fe4S4] clusters on NifB are coupled with a carbon atom in a radical-SAM dependent process, and concomitant addition of a ‘ninth’ sulfur atom generates the [Fe8S9C]-core L-cluster. On the scaffold protein NifEN, L-cluster is matured to M-cluster by the addition of Mo and homocitrate provided by NifH. Finally, matured M-cluster in NifEN is directly transferred to NifDK, where a conformational change locks the cofactor in place. Mechanistic insights into these fascinating biosynthetic processes are detailed in this chapter.
Collapse
|
867
|
Cui L, Yang K, Zhou G, Huang WE, Zhu YG. Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Monitor Nitrogen Assimilation at Both Bulk and Single-Cell Level. Anal Chem 2017; 89:5793-5800. [DOI: 10.1021/acs.analchem.6b04913] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Li Cui
- Key
Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department
of Engineering Science, University of Oxford, Oxford, OX1 3PJ, U.K
| | - Kai Yang
- Key
Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guowei Zhou
- Key
Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, Oxford, OX1 3PJ, U.K
| | - Yong-Guan Zhu
- Key
Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
868
|
Ohta S, Ohki Y. Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
869
|
Anderton KJ, Knight BJ, Rheingold AL, Abboud KA, García-Serres R, Murray LJ. Reactivity of hydride bridges in a high-spin [Fe 3(μ-H) 3] 3+ cluster: reversible H 2/CO exchange and Fe-H/B-F bond metathesis. Chem Sci 2017; 8:4123-4129. [PMID: 28603601 PMCID: PMC5443887 DOI: 10.1039/c6sc05583d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023] Open
Abstract
The triiron trihydride complex Fe3H3L (1) [where L3– is a tris(β-diketiminate)cyclophanate] reacts with CO and with BF3·OEt2 to afford (FeICO)2FeII(μ3-H)L (2) and Fe3F3L (3), respectively.
The triiron trihydride complex Fe3H3L (1) [where L3– is a tris(β-diketiminate)cyclophanate] reacts with CO and with BF3·OEt2 to afford (FeICO)2FeII(μ3-H)L (2) and Fe3F3L (3), respectively. Variable-temperature and applied-field Mössbauer spectroscopy support the assignment of two high-spin (HS) iron(i) centers and one HS iron(ii) ion in 2. Preliminary studies support a CO-induced reductive elimination of H2 from 1, rather than CO trapping a species from an equilibrium mixture. This complex reacts with H2 to regenerate 1 under a dihydrogen atmosphere, which represents a rare example of reversible CO/H2 exchange and the first to occur at high-spin metal centers, as well as the first example of a reversible multielectron redox reaction at a designed high-spin metal cluster. The formation of 3 proceeds through a previously unreported net fluoride-for-hydride substitution, and 3 is surprisingly chemically inert to Si–H bonds and points to an unexpectedly large difference between the Fe–F and Fe–H bonds in this high-spin system.
Collapse
Affiliation(s)
- Kevin J Anderton
- Center for Catalysis , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA .
| | - Brian J Knight
- Center for Catalysis , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA .
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, MC 0358 , La Jolla , CA 92093-0358 , USA
| | - Khalil A Abboud
- Department of Chemistry , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA
| | - Ricardo García-Serres
- Laboratoire de Chimie de Biologie des Métaux , UMR 5249 , Université Joseph Fourier , Grenoble-1, CNRS-CEA 17 Rue des Martyrs , 38054 Grenoble Cedex 9 , France
| | - Leslie J Murray
- Center for Catalysis , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA .
| |
Collapse
|
870
|
|
871
|
Geri JB, Shanahan JP, Szymczak NK. Testing the Push-Pull Hypothesis: Lewis Acid Augmented N 2 Activation at Iron. J Am Chem Soc 2017; 139:5952-5956. [PMID: 28414226 PMCID: PMC5965694 DOI: 10.1021/jacs.7b01982] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a systematic investigation of the structural and electronic changes that occur in an Fe(0)-N2 unit (Fe(depe)2(N2); depe = 1,2-bis(diethylphosphino)ethane) upon the addition of exogenous Lewis acids. Addition of neutral boranes, alkali metal cations, and an Fe2+ complex increases the N-N bond activation (Δ νNN up to 172 cm-1), decreases the Fe(0)-N2 redox potential, polarizes the N-N bond, and enables -N protonation at uncommonly anodic potentials. These effects were rationalized using combined experimental and theoretical studies.
Collapse
Affiliation(s)
- Jacob B. Geri
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - James P. Shanahan
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
872
|
Silantyev GA, Förster M, Schluschaß B, Abbenseth J, Würtele C, Volkmann C, Holthausen MC, Schneider S. Dinitrogen Splitting Coupled to Protonation. Angew Chem Int Ed Engl 2017; 56:5872-5876. [DOI: 10.1002/anie.201701504] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/24/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Gleb A. Silantyev
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Moritz Förster
- Insitut für Anorganische und Analytische Chemie; Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Josh Abbenseth
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian Würtele
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian Volkmann
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Insitut für Anorganische und Analytische Chemie; Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
873
|
Silantyev GA, Förster M, Schluschaß B, Abbenseth J, Würtele C, Volkmann C, Holthausen MC, Schneider S. Dinitrogen Splitting Coupled to Protonation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701504] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gleb A. Silantyev
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Moritz Förster
- Insitut für Anorganische und Analytische Chemie; Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Josh Abbenseth
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian Würtele
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian Volkmann
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| | - Max C. Holthausen
- Insitut für Anorganische und Analytische Chemie; Goethe-Universität; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
874
|
Lindley BM, Bruch QJ, White PS, Hasanayn F, Miller AJM. Ammonia Synthesis from a Pincer Ruthenium Nitride via Metal-Ligand Cooperative Proton-Coupled Electron Transfer. J Am Chem Soc 2017; 139:5305-5308. [PMID: 28383261 DOI: 10.1021/jacs.7b01323] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The conversion of metal nitride complexes to ammonia may be essential to dinitrogen fixation. We report a new reduction pathway that utilizes ligating acids and metal-ligand cooperation to effect this conversion without external reductants. Weak acids such as 4-methoxybenzoic acid and 2-pyridone react with nitride complex [(H-PNP)RuN]+ (H-PNP = HN(CH2CH2PtBu2)2) to generate octahedral ammine complexes that are κ2-chelated by the conjugate base. Experimental and computational mechanistic studies reveal the important role of Lewis basic sites proximal to the acidic proton in facilitating protonation of the nitride. The subsequent reduction to ammonia is enabled by intramolecular 2H+/2e- proton-coupled electron transfer from the saturated pincer ligand backbone.
Collapse
Affiliation(s)
- Brian M Lindley
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Quinton J Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Peter S White
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut , Beirut 1107 2020, Lebanon
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
875
|
Fourmond V, Léger C. N 2
-Reduktion: Verschaltung von Nitrogenase mit Elektroden. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université, CNRS, UMR7281; Marseille Frankreich
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université, CNRS, UMR7281; Marseille Frankreich
| |
Collapse
|
876
|
Araake R, Sakadani K, Tada M, Sakai Y, Ohki Y. [Fe4] and [Fe6] Hydride Clusters Supported by Phosphines: Synthesis, Characterization, and Application in N2 Reduction. J Am Chem Soc 2017; 139:5596-5606. [DOI: 10.1021/jacs.7b01965] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Yoichi Sakai
- Department
of Chemistry, Daido University, Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan
| | - Yasuhiro Ohki
- PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
877
|
Imayoshi R, Nakajima K, Nishibayashi Y. Vanadium-catalyzed Reduction of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions. CHEM LETT 2017. [DOI: 10.1246/cl.161165] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryuji Imayoshi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Kazunari Nakajima
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
878
|
Eizawa A, Arashiba K, Tanaka H, Kuriyama S, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nat Commun 2017; 8:14874. [PMID: 28374835 PMCID: PMC5382288 DOI: 10.1038/ncomms14874] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/10/2017] [Indexed: 12/24/2022] Open
Abstract
Intensive efforts for the transformation of dinitrogen using transition metal-dinitrogen complexes as catalysts under mild reaction conditions have been made. However, limited systems have succeeded in the catalytic formation of ammonia. Here we show that newly designed and prepared dinitrogen-bridged dimolybdenum complexes bearing N-heterocyclic carbene- and phosphine-based PCP-pincer ligands [{Mo(N2)2(PCP)}2(μ-N2)] (1) work as so far the most effective catalysts towards the formation of ammonia from dinitrogen under ambient reaction conditions, where up to 230 equiv. of ammonia are produced based on the catalyst. DFT calculations on 1 reveal that the PCP-pincer ligand serves as not only a strong σ-donor but also a π-acceptor. These electronic properties are responsible for a solid connection between the molybdenum centre and the pincer ligand, leading to the enhanced catalytic activity for nitrogen fixation.
Collapse
Affiliation(s)
- Aya Eizawa
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Arashiba
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Kuriyama
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Matsuo
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Nakajima
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
879
|
Dance I. New insights into the reaction capabilities of His195 adjacent to the active site of nitrogenase. J Inorg Biochem 2017; 169:32-43. [DOI: 10.1016/j.jinorgbio.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
|
880
|
|
881
|
Chalkley M, Del Castillo TJ, Matson BD, Roddy JP, Peters JC. Catalytic N 2-to-NH 3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. ACS CENTRAL SCIENCE 2017; 3:217-223. [PMID: 28386599 PMCID: PMC5364448 DOI: 10.1021/acscentsci.7b00014] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 05/10/2023]
Abstract
We have recently reported on several Fe catalysts for N2-to-NH3 conversion that operate at low temperature (-78 °C) and atmospheric pressure while relying on a very strong reductant (KC8) and acid ([H(OEt2)2][BArF4]). Here we show that our original catalyst system, P3BFe, achieves both significantly improved efficiency for NH3 formation (up to 72% for e- delivery) and a comparatively high turnover number for a synthetic molecular Fe catalyst (84 equiv of NH3 per Fe site), when employing a significantly weaker combination of reductant (Cp*2Co) and acid ([Ph2NH2][OTf] or [PhNH3][OTf]). Relative to the previously reported catalysis, freeze-quench Mössbauer spectroscopy under turnover conditions suggests a change in the rate of key elementary steps; formation of a previously characterized off-path borohydrido-hydrido resting state is also suppressed. Theoretical and experimental studies are presented that highlight the possibility of protonated metallocenes as discrete PCET reagents under the present (and related) catalytic conditions, offering a plausible rationale for the increased efficiency at reduced driving force of this Fe catalyst system.
Collapse
|
882
|
Martirez JMP, Carter EA. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au. J Am Chem Soc 2017; 139:4390-4398. [DOI: 10.1021/jacs.6b12301] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- John Mark P. Martirez
- Department
of Mechanical and Aerospace Engineering and ‡School of Engineering and Applied
Science, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Emily A. Carter
- Department
of Mechanical and Aerospace Engineering and ‡School of Engineering and Applied
Science, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|
883
|
Fourmond V, Léger C. Dinitrogen Reduction: Interfacing the Enzyme Nitrogenase with Electrodes. Angew Chem Int Ed Engl 2017; 56:4388-4390. [PMID: 28300341 DOI: 10.1002/anie.201701179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/09/2022]
Abstract
Potential for nitrogenase: Milton, Minteer, and co-workers report the first evidence for the bioelectrochemical reduction of N2 to ammonia by nitrogenase. This complex enzyme could be wired to an electrode by using the soluble mediator methyl viologen; this very simple approach makes it possible to develop a variety of biotechnological devices.
Collapse
Affiliation(s)
- Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, UMR7281, Marseille, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, UMR7281, Marseille, France
| |
Collapse
|
884
|
Bhattacharya P, Prokopchuk DE, Mock MT. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
885
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
886
|
Cammarota RC, Clouston LJ, Lu CC. Leveraging molecular metal–support interactions for H2 and N2 activation. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.06.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
887
|
Bhattacharya P, Heiden ZM, Wiedner ES, Raugei S, Piro NA, Kassel WS, Bullock RM, Mock MT. Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH3 Complex. J Am Chem Soc 2017; 139:2916-2919. [DOI: 10.1021/jacs.7b00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Papri Bhattacharya
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Zachariah M. Heiden
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Eric S. Wiedner
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Simone Raugei
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Nicholas A. Piro
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - W. Scott Kassel
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - R. Morris Bullock
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Michael T. Mock
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
888
|
Matsuoka M, Kumar A, Muddassar M, Matsuyama A, Yoshida M, Zhang KYJ. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum. J Chem Inf Model 2017; 57:203-213. [DOI: 10.1021/acs.jcim.6b00649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masaki Matsuoka
- Chemical
Genomics Research Group, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ashutosh Kumar
- Structural
Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Muhammad Muddassar
- Structural
Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akihisa Matsuyama
- Chemical
Genomics Research Group, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Chemical
Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical
Genomics Research Group, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Chemical
Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- CREST Research
Project, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kam Y. J. Zhang
- Structural
Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
889
|
Lukoyanov D, Khadka N, Dean DR, Raugei S, Seefeldt LC, Hoffman BM. Photoinduced Reductive Elimination of H 2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H 2 Intermediate. Inorg Chem 2017; 56:2233-2240. [PMID: 28177622 DOI: 10.1021/acs.inorgchem.6b02899] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E4(4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that, when E4(4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H2 to give a reactive doubly reduced intermediate, denoted E4(2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H2 preceded N2 binding. Experiments reported here establish that photoinduced re primarily occurs in two steps. Photolysis of E4(4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E4(2H)* + H2]. The experiments, supported by DFT calculations, indicate that the trapped intermediate is an H2 complex on the ground adiabatic potential energy suface that connects E4(4H) with [E4(2H)* + H2]. We suggest that this complex, denoted E4(H2; 2H), is a thermally populated intermediate in the catalytically central re of H2 by E4(4H) and that N2 reacts with this complex to complete the activated conversion of [E4(4H) + N2] into [E4(2N2H) + H2].
Collapse
Affiliation(s)
- Dmitriy Lukoyanov
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Nimesh Khadka
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech , 110 Fralin Hall, Blacksburg, Virginia 24061, United States
| | - Simone Raugei
- Pacific Northwestern National Laboratory , Richland, Washington 99352, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
890
|
Synthesis and characterization of a tetranickel complex supported by a dithiolate framework with pendant ether moieties. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
891
|
Li J, Li H, Zhan G, Zhang L. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides. Acc Chem Res 2017; 50:112-121. [PMID: 28009157 DOI: 10.1021/acs.accounts.6b00523] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
892
|
|
893
|
Sickerman NS, Tanifuji K, Lee CC, Ohki Y, Tatsumi K, Ribbe MW, Hu Y. Reduction of C1 Substrates to Hydrocarbons by the Homometallic Precursor and Synthetic Mimic of the Nitrogenase Cofactor. J Am Chem Soc 2017; 139:603-606. [DOI: 10.1021/jacs.6b11633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Kazuki Tanifuji
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yasuhiro Ohki
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuyuki Tatsumi
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Markus W. Ribbe
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
894
|
Abstract
Amyloid-like fibrils assembled from de novo designed peptides lock ligands in a conformation optimal for metal binding and catalysis in a manner similar to how metalloenzymes provide proper coordination environment through fold. These supramolecular assemblies efficiently catalyze p-nitrophenyl ester hydrolysis in the presence of zinc and phenol oxidation by dioxygen in the presence of copper. The resulting heterogeneous catalysts are inherently switchable, as addition and removal of the metal ions turns the catalytic activity on and off, respectively. The ease of peptide preparation and self-assembly makes amyloid-like fibrils an attractive platform for developing catalysts for a broad range of chemical reactions. Here, we present a detailed protocol for the preparation of copper-containing fibrils and for kinetic characterization of their abilities to oxidize phenols.
Collapse
Affiliation(s)
- Alex Sternisha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Olga Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
895
|
Tanaka H, Yoshizawa K. Computational Approach to Nitrogen Fixation on Molybdenum–Dinitrogen Complexes. TOP ORGANOMETAL CHEM 2017. [DOI: 10.1007/3418_2016_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
896
|
Functionalization of N2 by Mid to Late Transition Metals via N–N Bond Cleavage. TOP ORGANOMETAL CHEM 2017. [DOI: 10.1007/3418_2016_12] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
897
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
898
|
Jochum T, Fastnacht A, Trumbore SE, Popp J, Frosch T. Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity. Anal Chem 2016; 89:1117-1122. [PMID: 28043118 DOI: 10.1021/acs.analchem.6b03101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.
Collapse
Affiliation(s)
- Tobias Jochum
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany
| | - Agnes Fastnacht
- Max Planck Institute for Biogeochemistry , 07745 Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , 07745 Jena, Germany
| |
Collapse
|
899
|
Singh AR, Rohr BA, Schwalbe JA, Cargnello M, Chan K, Jaramillo TF, Chorkendorff I, Nørskov JK. Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03035] [Citation(s) in RCA: 521] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aayush R. Singh
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Brian A. Rohr
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Jay A. Schwalbe
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Matteo Cargnello
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Karen Chan
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT
Center
for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F. Jaramillo
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT
Center
for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ib Chorkendorff
- Department
of Physics, Technical University of Denmark, Building 311, Fysikvej, DK-2800 Kgs. Lyngby, Denmark
| | - Jens K. Nørskov
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT
Center
for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
900
|
The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway. Nat Commun 2016; 7:13641. [PMID: 27976719 PMCID: PMC5172229 DOI: 10.1038/ncomms13641] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
The vanadium (V)-nitrogenase of Azotobacter vinelandii catalyses the in vitro conversion of carbon monoxide (CO) to hydrocarbons. Here we show that an A. vinelandii strain expressing the V-nitrogenase is capable of in vivo reduction of CO to ethylene (C2H4), ethane (C2H6) and propane (C3H8). Moreover, we demonstrate that CO is not used as a carbon source for cell growth, being instead reduced to hydrocarbons in a secondary metabolic pathway. These findings suggest a possible role of the ancient nitrogenase as an evolutionary link between the carbon and nitrogen cycles on Earth and establish a solid foundation for biotechnological adaptation of a whole-cell approach to recycling carbon wastes into hydrocarbon products. Thus, this study has several repercussions for evolution-, environment- and energy-related areas.
Nitrogenases reduce inorganic nitrogen to organic ammonia in a crucial step of the nitrogen cycle. Here the authors show that the vanadium-nitrogenase of Azotobacter vinelandii can also catalyse the in vivo conversion of carbon monoxide to hydrocarbons in a secondary non-biosynthetic pathway.
Collapse
|