99751
|
Application of Repetitive Transcranial Magnetic Stimulation in Neuropathic Pain: A Narrative Review. Life (Basel) 2023; 13:life13020258. [PMID: 36836613 PMCID: PMC9962564 DOI: 10.3390/life13020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain, affecting 6.9-10% of the general population, has a negative impact on patients' quality of life and potentially leads to functional impairment and disability. Repetitive transcranial magnetic stimulation (rTMS)-a safe, indirect and non-invasive technique-has been increasingly applied for treating neuropathic pain. The mechanism underlying rTMS is not yet well understood, and the analgesic effects of rTMS have been inconsistent with respect to different settings/parameters, causing insufficient evidence to determine its efficacy in patients with neuropathic pain. This narrative review aimed to provide an up-to-date overview of rTMS for treating neuropathic pain as well as to summarize the treatment protocols and related adverse effects from existing clinical trials. Current evidence supports the use of 10 Hz HF-rTMS of the primary motor cortex to reduce neuropathic pain, especially in patients with spinal cord injury, diabetic neuropathy and post-herpetic neuralgia. However, the lack of standardized protocols impedes the universal use of rTMS for neuropathic pain. rTMS was hypothesized to achieve analgesic effects by upregulating the pain threshold, inhibiting pain impulse, modulating the brain cortex, altering imbalanced functional connectivity, regulating neurotrophin and increasing endogenous opioid and anti-inflammatory cytokines. Further studies are warranted to explore the differences in the parameters/settings of rTMS for treating neuropathic pain due to different disease types.
Collapse
|
99752
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
99753
|
Jia E, Sheng Y, Shi H, Wang Y, Zhou Y, Liu Z, Qi T, Pan M, Bai Y, Zhao X, Ge Q. Spatial Transcriptome Profiling of Mouse Hippocampal Single Cell Microzone in Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24031810. [PMID: 36768134 PMCID: PMC9915078 DOI: 10.3390/ijms24031810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and cognitive functions. It is still unknown how gene expression changes in single-cell in different spatial locations of the hippocampus of Parkinson's disease. The purpose of this study was to analyze the gene expression features of single cells in different spatial locations of mouse hippocampus, and to explore the effects of gene expression regulation on learning and memory mechanisms. Here, we obtained 74 single-cell samples from different spatial locations in a mouse hippocampus through microdissection technology, and used single-cell RNA-sequencing and spatial transcriptome sequencing to visualize and quantify the single-cell transcriptome features of tissue sections. The results of differential expression analysis showed that the expression of Sv2b, Neurod6, Grp and Stk32b genes in a hippocampus single cell at different locations was significantly different, and the marker genes of CA1, CA3 and DG subregions were identified. The results of gene function enrichment analysis showed that the up-regulated differentially expressed genes Tubb2a, Eno1, Atp2b1, Plk2, Map4, Pex5l, Fibcd1 and Pdzd2 were mainly involved in neuron to neuron synapse, vesicle-mediated transport in synapse, calcium signaling pathway and neurodegenerative disease pathways, thus affecting learning and memory function. It revealed the transcriptome profile and heterogeneity of spatially located cells in the hippocampus of PD for the first time, and demonstrated that the impaired learning and memory ability of PD was affected by the synergistic effect of CA1 and CA3 subregions neuron genes. These results are crucial for understanding the pathological mechanism of the Parkinson's disease and making precise treatment plans.
Collapse
Affiliation(s)
- Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
- Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou 221006, China
| | - Yuqi Sheng
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
- Correspondence: (X.Z.); (Q.G.); Tel./Fax: +86-025-8379-2396 (Q.G.)
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
- Correspondence: (X.Z.); (Q.G.); Tel./Fax: +86-025-8379-2396 (Q.G.)
| |
Collapse
|
99754
|
Novick AM, Stoddard J, Johnson RL, Duffy KA, Berkowitz L, Costa VD, Sammel MD, Epperson CN. Adverse childhood experiences and hormonal contraception: Interactive impact on sexual reward function. PLoS One 2023; 18:e0279764. [PMID: 36649369 PMCID: PMC9844925 DOI: 10.1371/journal.pone.0279764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
The current literature suggests that some women are uniquely vulnerable to negative effects of hormonal contraception (HC) on affective processes. However, little data exists as to which factors contribute to such vulnerability. The present study evaluated the impact of prepubertal adverse childhood experiences (ACEs) on reward processing in women taking HC (N = 541) compared to naturally cycling women (N = 488). Participants completed an online survey assessing current and past HC use and exposure to 10 different adverse childhood experiences (ACEs) before puberty (ACE Questionnaire), with participants categorized into groups of low (0-1) versus high (≥2) prepubertal ACE exposure. Participants then completed a reward task rating their expected and experienced valence for images that were either erotic, pleasant (non-erotic), or neutral. Significant interactions emerged between prepubertal ACE exposure and HC use on expected (p = 0.028) and experienced (p = 0.025) valence ratings of erotic images but not pleasant or neutral images. Importantly, follow-up analyses considering whether women experienced HC-induced decreases in sexual desire informed the significant interaction for expected valence ratings of erotic images. For current HC users, prepubertal ACEs interacted with HC-induced decreased sexual desire (p = 0.008), such that high ACE women reporting decreased sexual desire on HC showed substantially decreased ratings for anticipated erotic images compared to both high prepubertal ACE women without decreased sexual desire (p < 0.001) and low prepubertal ACE women also reporting decreased sexual desire (p = 0.010). The interaction was not significant in naturally cycling women reporting previous HC use, suggesting that current HC use could be impacting anticipatory reward processing of sexual stimuli among certain women (e.g., high prepubertal ACE women reporting HC-induced decreases in sexual desire). The study provides rationale for future randomized, controlled trials to account for prepubertal ACE exposure to promote contraceptive selection informed by behavioral evidence.
Collapse
Affiliation(s)
- Andrew M. Novick
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Joel Stoddard
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Rachel L. Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado, United States of America
| | - Korrina A. Duffy
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Lily Berkowitz
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Vincent D. Costa
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Mary D. Sammel
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado, United States of America
| | - C. Neill Epperson
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
- Department of Family Medicine, School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| |
Collapse
|
99755
|
Artz O, Ackermann A, Taylor L, Koo PK, Pedmale UV. Light and temperature regulate m 6A-RNA modification to regulate growth in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524395. [PMID: 36711495 PMCID: PMC9882139 DOI: 10.1101/2023.01.17.524395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
N6-methyladenosine is a highly dynamic, abundant mRNA modification which is an excellent potential mechanism for fine tuning gene expression. Plants adapt to their surrounding light and temperature environment using complex gene regulatory networks. The role of m6A in controlling gene expression in response to variable environmental conditions has so far been unexplored. Here, we map the transcriptome-wide m6A landscape under various light and temperature environments. Identified m6A-modifications show a highly specific spatial distribution along transcripts with enrichment occurring in 5'UTR regions and around transcriptional end sites. We show that the position of m6A modifications on transcripts might influence cellular transcript localization and the presence of m6A-modifications is associated with alternative polyadenylation, a process which results in multiple RNA isoforms with varying 3'UTR lengths. RNA with m6A-modifications exhibit a higher preference for shorter 3'UTRs. These shorter 3'UTR regions might directly influence transcript abundance and localization by including or excluding cis-regulatory elements. We propose that environmental stimuli might change the m6A landscape of plants as one possible way of fine tuning gene regulation through alternative polyadenylation and transcript localization.
Collapse
Affiliation(s)
- Oliver Artz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Laura Taylor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Peter K. Koo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| |
Collapse
|
99756
|
Hale WD, Südhof TC, Huganir RL. Engineered adhesion molecules drive synapse organization. Proc Natl Acad Sci U S A 2023; 120:e2215905120. [PMID: 36638214 PMCID: PMC9934208 DOI: 10.1073/pnas.2215905120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/04/2022] [Indexed: 01/15/2023] Open
Abstract
In multicellular organisms, cell-adhesion molecules connect cells into tissues and mediate intercellular signaling between these cells. In vertebrate brains, synaptic cell-adhesion molecules (SAMs) guide the formation, specification, and plasticity of synapses. Some SAMs, when overexpressed in cultured neurons or in heterologous cells co-cultured with neurons, drive formation of synaptic specializations onto the overexpressing cells. However, genetic deletion of the same SAMs from neurons often has no effect on synapse numbers, but frequently severely impairs synaptic transmission, suggesting that most SAMs control the function and plasticity of synapses (i.e., organize synapses) instead of driving their initial establishment (i.e., make synapses). Since few SAMs were identified that mediate initial synapse formation, it is difficult to develop methods that enable experimental control of synaptic connections by targeted expression of these SAMs. To overcome this difficulty, we engineered novel SAMs from bacterial proteins with no eukaryotic homologues that drive synapse formation. We named these engineered adhesion proteins "Barnoligin" and "Starexin" because they were assembled from parts of Barnase and Neuroligin-1 or of Barstar and Neurexin3β, respectively. Barnoligin and Starexin robustly induce the formation of synaptic specializations in a specific and directional manner in cultured neurons. Synapse formation by Barnoligin and Starexin requires both their extracellular Barnase- and Barstar-derived interaction domains and their Neuroligin- and Neurexin-derived intracellular signaling domains. Our findings support a model of synapse formation whereby trans-synaptic interactions by SAMs drive synapse organization via adhesive interactions that activate signaling cascades.
Collapse
Affiliation(s)
- W. Dylan Hale
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
99757
|
Differential Effect of Fructose in the Presence or Absence of Fatty Acids on Circadian Metabolism in Hepatocytes. Metabolites 2023; 13:metabo13020138. [PMID: 36837757 PMCID: PMC9961817 DOI: 10.3390/metabo13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
We aimed to explore whether fructose in the absence or presence of fatty acids modulates circadian metabolism in AML-12 hepatocytes. Fructose treatment under steatosis conditions (FruFA) led to fat synthesis resulting in increased triglycerides and cholesterol content. Fructose led to reduced activity of the AMPK and mTOR-signaling pathway. However, FruFA treatment led to inhibition of the AMPK signaling pathway but activation of the mTOR pathway. Fructose also increased the expression of inflammatory markers, whereas the addition of fatty acids dampened their circadian expression. At the clock level, fructose or FruFA altered the expression of the core clock. More specifically, fructose led to altered expression of the BMAL1-RORα-REV-ERBα axis, together with reduced phosphorylated BMAL1 levels. In conclusion, our results show that hepatocytes treated with fructose respond differently if fatty acids are present, leading to a differential effect on metabolism and circadian rhythms. This is achieved by modulating BMAL1 activity and expression.
Collapse
|
99758
|
Roque PS, Thörn Perez C, Hooshmandi M, Wong C, Eslamizade MJ, Heshmati S, Brown N, Sharma V, Lister KC, Goyon VM, Neagu-Lund L, Shen C, Daccache N, Sato H, Sato T, Mogil JS, Nader K, Gkogkas CG, Iordanova MD, Prager-Khoutorsky M, McBride HM, Lacaille JC, Wykes L, Schricker T, Khoutorsky A. Parvalbumin inter neuron loss mediates repeated anesthesia-induced memory deficits in mice. J Clin Invest 2023; 133:159344. [PMID: 36394958 PMCID: PMC9843048 DOI: 10.1172/jci159344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Repeated or prolonged, but not short-term, general anesthesia during the early postnatal period causes long-lasting impairments in memory formation in various species. The mechanisms underlying long-lasting impairment in cognitive function are poorly understood. Here, we show that repeated general anesthesia in postnatal mice induces preferential apoptosis and subsequent loss of parvalbumin-positive inhibitory interneurons in the hippocampus. Each parvalbumin interneuron controls the activity of multiple pyramidal excitatory neurons, thereby regulating neuronal circuits and memory consolidation. Preventing the loss of parvalbumin neurons by deleting a proapoptotic protein, mitochondrial anchored protein ligase (MAPL), selectively in parvalbumin neurons rescued anesthesia-induced deficits in pyramidal cell inhibition and hippocampus-dependent long-term memory. Conversely, partial depletion of parvalbumin neurons in neonates was sufficient to engender long-lasting memory impairment. Thus, loss of parvalbumin interneurons in postnatal mice following repeated general anesthesia critically contributes to memory deficits in adulthood.
Collapse
Affiliation(s)
- Patricia Soriano Roque
- Department of Anesthesia and,School of Human Nutrition, McGill University, Montreal, Canada
| | | | | | | | - Mohammad Javad Eslamizade
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Canada.,Department of Biochemistry, McGill University, Montreal, Canada.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Vijendra Sharma
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | - Jeffrey S. Mogil
- Department of Anesthesia and,Department of Psychology, Faculty of Science, and,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Karim Nader
- Department of Psychology, Faculty of Science, and
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology–Hellas, University Campus, Ioannina, Greece
| | - Mihaela D. Iordanova
- Department of Psychology/Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Canada
| | | | | | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, Canada
| | - Linda Wykes
- School of Human Nutrition, McGill University, Montreal, Canada
| | | | - Arkady Khoutorsky
- Department of Anesthesia and,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
99759
|
Kong W, Zang Y. Alzheimer's disease biomarkers in patients with obstructive sleep apnea hypopnea syndrome and effects of surgery: A prospective cohort study. Front Aging Neurosci 2023; 14:959472. [PMID: 36733500 PMCID: PMC9887197 DOI: 10.3389/fnagi.2022.959472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background Obstructive sleep apnea hypopnea syndrome (OSAHS) may cause Alzheimer's disease (AD), t-tau, p-tau, Aβ42, and Aβ40 are important elements in the process of AD, and changes in the levels of these biomarkers may affect the cognitive functioning of patients. Our objective was to investigate whether uvulopalatopharyngoplasty could reduce the plasma levels of AD biomarkers in OSAHS patients and the potential correlations of AD biomarkers with cognitive impairment and sleepiness, and explore the independent influencing factors of cognitive function. Methods Alzheimer's disease biomarkers were measured in the plasma of 35 patients with severe OSAHS requiring surgical treatment and 16 healthy controls without OSAHS. The cognitive function and sleepiness of OSAHS patients was also evaluated. The case group was given uvulopalatopharyngoplasty and followed at the postoperative sixth month, the follow-up cases were 27, and plasma AD biomarker levels, cognitive function, and sleepiness were re-evaluated. The preoperative and postoperative AD biomarker levels OSAHS patients were compared with each other and those of the control group. Linear stepwise regression and lasso regression were used to explore the relationships of AD biomarkers with cognitive impairment and sleepiness. Results Significantly higher Aβ40, t-tau, p-tau in plasma were observed preoperatively in OSAHS patients comparing to controls (29.24 ± 32.52 vs. 13.18 ± 10.78, p = 0.049; 11.88 ± 7.05 vs. 7.64 ± 4.17, p = 0.037; 26.31 ± 14.41 vs. 17.34 ± 9.12, p = 0.027). The sixth month of postoperation, the plasma AD biomarkers (Aβ42, Aβ40, t-tau, p-tau) in plasma levels decreased significantly (0.23 ± 0.17 vs. 0.20 ± 0.16, p = 0.0001; 29.24 ± 32.52 vs. 23.52 ± 24.46, p = 0.0046; 11.88 ± 7.05 vs. 8.88 ± 6.21, p = 0.0001;26.31 ± 14.41 vs. 20.43 ± 10.50, p = 0.0001). A comparison of MMSE and ESS scores from before to after surgery revealed obvious differences (27.14 ± 1.65 vs. 29.07 ± 1.78, p = 0.0001; 11.91 ± 4.84 vs. 5.89 ± 2.83, p = 0.0001). Changes in cognitive function and sleepiness scores from before to after uvulopalatopharyngoplasty were significantly correlated with AD biomarkers. Body mass index and t-tau were potential influencing factors cognitive function. Conclusion Obstructive sleep apnea hypopnea syndrome can increase plasma AD biomarkers levels. Uvulopalatopharyngoplasty can improve patients' cognition and sleepiness, and the mechanism may be related to changes in plasma AD biomarkers. Higher AHI and higher t-tau level were identified as independent risk factors for cognitive decline.
Collapse
Affiliation(s)
- Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zang
- Department of Information Management, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China,*Correspondence: Yi Zang,
| |
Collapse
|
99760
|
Wang S, Lu T, Sun J, Huang L, Li R, Wang T, Yu C. Long-term trends in the incidence of depressive disorders in China, the United States, India and globally: A comparative study from 1990 to 2019. Front Psychol 2023; 13:1066706. [PMID: 36733872 PMCID: PMC9888314 DOI: 10.3389/fpsyg.2022.1066706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background Depressive disorders have become an increasingly significant public health issue. This study is intended to show the trend of the incidence of depressive disorders in China, the United States, India and the world from 1990 to 2019, as well as the impact of age, period and cohort on it. Methods Extracting incidence data from the Global Burden of Disease Study 2019, we determined trends in the age-standardized incidence rate (ASIR) using Joinpoint regression. An age-period-cohort analysis was implemented to describe the effects of age, period, and cohort, as well as the long-term tendencies. Results From 1990 to 2019, the ASIR of depressive disorders in China was lower than that in the United States; India is lower than the United States in the first 5 years, showing a downward trend. The incidence in India and the United States is higher than the global average. The ASIR of women in the three countries is higher than that of men. In China, the elderly, early period and people born around 1954 have a higher risk of depressive disorders. In the United States, young people born around 1999 have a higher risk of depressive disorders. India is similar to China. Conclusion From 1990 to 2019, the age effect of China as a whole increased, and the period became stable, and the cohort effect declined. The overall age and period effects of the United States reduced, while the cohort effect increased. The age effect in India increased, while the period and cohort effects decreased. Depressive disorders are becoming ever more serious worldwide, and we'd better take measures to reduce its incidence according to the cohort effect of each age group.
Collapse
|
99761
|
Ciardullo S, Muraca E, Bianconi E, Cannistraci R, Perra S, Zerbini F, Perseghin G. Diabetes Mellitus is Associated With Higher Serum Neurofilament Light Chain Levels in the General US Population. J Clin Endocrinol Metab 2023; 108:361-367. [PMID: 36196647 DOI: 10.1210/clinem/dgac580] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Serum neurofilament light chain (sNfL) levels are biomarkers of neuroaxonal injury in multiple neurological diseases. OBJECTIVE Given the paucity of data on the distribution of sNfL levels in the general population, in the present study we identified predictors of sNfL levels in a community setting and investigated the association between diabetes and sNfL. METHODS sNfL levels were measured in 2070 people aged 20 to 75 years from the general US population (275 with and 1795 without diabetes) that participated in the 2013-2014 cycle of the National Health and Nutrition Examination Survey. We evaluated the association between diabetes and sNfL levels after adjustment for age, sex, race-ethnicity, alcohol use, and kidney function using a multivariable linear regression model. Cognitive function was evaluated in a subset of participants aged 60 to 75 years using the Consortium to Establish a Registry for Alzheimer's Disease-Word Learning test, the Animal Fluency test, and the Digit Symbol Substitution test. RESULTS The weighted prevalence of diabetes was 10.4% (95% CI, 9.0-11.9). In each age stratum, patients with diabetes exhibited higher sNfL levels compared with nondiabetic participants. Age, proportion of males, prevalence of diabetes, and homeostatic model of insulin resistance increased progressively across quartiles of sNfL levels in the overall population, whereas estimated glomerular filtration rate (eGFR) showed an opposite trend. In the multivariable model, age, sex, eGFR, alcohol use and diabetes were significantly associated with sNfL levels. Moreover, higher sNfL levels were associated with worse performance in all 3 cognitive function tests. CONCLUSION Diabetes is associated with higher sNfL. Further large-scale and prospective studies are needed to replicate our results and evaluate the ability of sNfL to predict the incidence of neuropathy and dementia in this patient population.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| | - Emanuele Muraca
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
| | - Eleonora Bianconi
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
| | - Rosa Cannistraci
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| | - Silvia Perra
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
| | - Francesca Zerbini
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Policlinico di Monza, 20900 Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
99762
|
Matsuzono K, Suzuki M, Anan Y, Ozawa T, Mashiko T, Koide R, Tanaka R, Fujimoto S. Spontaneous Echo Contrast in the Left Atrium and Aortic-Arch Atheroma, Detected by Transesophageal Echocardiography, Was Negatively Correlated with Cognitive Function. J Alzheimers Dis 2023; 91:673-681. [PMID: 36463447 DOI: 10.3233/jad-220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND The relationship between transesophageal echocardiography findings and cognitive function. OBJECTIVE This study aimed to establish an association between transesophageal echocardiography findings and cognitive function in stroke survivors. METHODS A single-center study was conducted between April 1, 2017 and March 31, 2022. All subjects that were included had a past history of ischemic stroke and were admitted after >21 days from onset. The participants underwent cognitive function tests including a Mini-Mental State Examination, Revised Hasegawa Dementia Scale, Frontal Assessment Battery, and transesophageal echocardiography. RESULTS The results of 126 participants were analyzed. The cognitive function of participants with a spontaneous echo contrast (+) in the left atrium including appendage or of those with an aorta-arch plaque with a maximum thickness ≥4 mm significantly worse while neither the patent foramen ovale nor the branch extending plaque influenced cognitive function (The median cognitive scores of the spontaneous echo contrast (-) versus (+) were 26 versus 22, p < 0.01**, 26 versus 21, p < 0.001***, and 14 versus 11, p < 0.01**. Those of the aortic-arch plaque max thickness (<4 mm) versus (≥4 mm) were 26 versus 25, p < 0.05*, 27 versus 24, p < 0.05*, and 15 versus 13, p < 0.05*). CONCLUSION Our findings show that spontaneous echo contrast in the left atrium and aortic-arch atheroma detected by transesophageal echocardiography, were negatively associated with cognitive function.
Collapse
Affiliation(s)
- Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masayuki Suzuki
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuhei Anan
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadashi Ozawa
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takafumi Mashiko
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryota Tanaka
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
99763
|
Alich TC, Röderer P, Szalontai B, Golcuk K, Tariq S, Peitz M, Brüstle O, Mody I. Bringing to light the physiological and pathological firing patterns of human induced pluripotent stem cell-derived neurons using optical recordings. Front Cell Neurosci 2023; 16:1039957. [PMID: 36733665 PMCID: PMC9887032 DOI: 10.3389/fncel.2022.1039957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising approach to study neurological and neuropsychiatric diseases. Most methods to record the activity of these cells have major drawbacks as they are invasive or they do not allow single cell resolution. Genetically encoded voltage indicators (GEVIs) open the path to high throughput visualization of undisturbed neuronal activity. However, conventional GEVIs perturb membrane integrity through inserting multiple copies of transmembrane domains into the plasma membrane. To circumvent large add-ons to the plasma membrane, we used a minimally invasive novel hybrid dark quencher GEVI to record the physiological and pathological firing patterns of hiPSCs-derived sensory neurons from patients with inherited erythromelalgia, a chronic pain condition associated with recurrent attacks of redness and swelling in the distal extremities. We observed considerable differences in action potential firing patterns between patient and control neurons that were previously overlooked with other recording methods. Our system also performed well in hiPSC-derived forebrain neurons where it detected spontaneous synchronous bursting behavior, thus opening the path to future applications in other cell types and disease models including Parkinson's disease, Alzheimer's disease, epilepsy, and schizophrenia, conditions associated with disturbances of neuronal activity and synchrony.
Collapse
Affiliation(s)
- Therese C. Alich
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Pascal Röderer
- Institute of Reconstructive Neurobiology, Medical Faculty, University Hospital Bonn, Bonn, Germany,Cellomics Unit, LIFE & BRAIN GmbH, Bonn, Germany
| | - Balint Szalontai
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Kurt Golcuk
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Shahan Tariq
- Institute of Reconstructive Neurobiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Medical Faculty, University Hospital Bonn, Bonn, Germany,Cell Programming Core Facility, Medical Faculty, University of Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Istvan Mody
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University Hospital Bonn, Bonn, Germany,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States,*Correspondence: Istvan Mody,
| |
Collapse
|
99764
|
Ruiz-Reig N, García-Sánchez D, Schakman O, Gailly P, Tissir F. Inhibitory synapse dysfunction and epileptic susceptibility associated with KIF2A deletion in cortical inter neurons. Front Mol Neurosci 2023; 15:1110986. [PMID: 36733270 PMCID: PMC9887042 DOI: 10.3389/fnmol.2022.1110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Malformation of cortical development (MCD) is a family of neurodevelopmental disorders, which usually manifest with intellectual disability and early-life epileptic seizures. Mutations in genes encoding microtubules (MT) and MT-associated proteins are one of the most frequent causes of MCD in humans. KIF2A is an atypical kinesin that depolymerizes MT in ATP-dependent manner and regulates MT dynamics. In humans, single de novo mutations in KIF2A are associated with MCD with epileptic seizures, posterior pachygyria, microcephaly, and partial agenesis of corpus callosum. In this study, we conditionally ablated KIF2A in forebrain inhibitory neurons and assessed its role in development and function of inhibitory cortical circuits. We report that adult mice with specific deletion of KIF2A in GABAergic interneurons display abnormal behavior and increased susceptibility to epilepsy. KIF2A is essential for tangential migration of cortical interneurons, their positioning in the cerebral cortex, and for formation of inhibitory synapses in vivo. Our results shed light on how KIF2A deregulation triggers functional alterations in neuronal circuitries and contributes to epilepsy.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium,*Correspondence: Nuria Ruiz-Reig, Fadel Tissir, ;
| | | | - Olivier Schakman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fadel Tissir
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar,*Correspondence: Nuria Ruiz-Reig, Fadel Tissir, ;
| |
Collapse
|
99765
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
99766
|
Burglen L, Van Hoeymissen E, Qebibo L, Barth M, Belnap N, Boschann F, Depienne C, De Clercq K, Douglas AGL, Fitzgerald MP, Foulds N, Garel C, Helbig I, Held K, Horn D, Janssen A, Kaindl AM, Narayanan V, Prager C, Rupin-Mas M, Afenjar A, Zhao S, Ramaekers VT, Ruggiero SM, Thomas S, Valence S, Van Maldergem L, Rohacs T, Rodriguez D, Dyment D, Voets T, Vriens J. Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders. eLife 2023; 12:81032. [PMID: 36648066 PMCID: PMC9886277 DOI: 10.7554/elife.81032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.
Collapse
Affiliation(s)
- Lydie Burglen
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Developmental Brain Disorders Laboratory, Imagine InstituteParisFrance
| | - Evelien Van Hoeymissen
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| | - Leila Qebibo
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
| | - Magalie Barth
- Department of Genetics, University Hospital of AngersAngersFrance
| | - Newell Belnap
- Translational Genomics Research Institute (TGen), Neurogenomics Division, Center for Rare Childhood DisordersPhoenixUnited States
| | - Felix Boschann
- Charité – Universitäts medizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human GeneticsBerlinGermany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-EssenEssenGermany
| | - Katrien De Clercq
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| | - Andrew GL Douglas
- University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | | | - Nicola Foulds
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Catherine Garel
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne UniversitéParisFrance
| | - Ingo Helbig
- Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Katharina Held
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| | - Denise Horn
- Charité – Universitäts medizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human GeneticsBerlinGermany
| | - Annelies Janssen
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité - Universitäts medizin BerlinBerlinGermany
- Department of Pediatric Neurology, Charité - Universitäts medizin BerlinBerlinGermany
- Charité – Universitäts medizin Berlin, Center for Chronically Sick ChildrenBerlinGermany
| | - Vinodh Narayanan
- Translational Genomics Research Institute (TGen), Neurogenomics Division, Center for Rare Childhood DisordersPhoenixUnited States
| | - Christina Prager
- Department of Pediatric Neurology, Charité - Universitäts medizin BerlinBerlinGermany
- Charité – Universitäts medizin Berlin, Center for Chronically Sick ChildrenBerlinGermany
| | - Mailys Rupin-Mas
- Department of Neuropediatrics, University Hospital of AngersAngersFrance
| | - Alexandra Afenjar
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
| | - Siyuan Zhao
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New JerseyNewarkUnited States
| | | | | | - Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District HospitalSalisburyUnited Kingdom
| | - Stéphanie Valence
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau AP-HPParisFrance
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté BesançonBesanconFrance
- Center of Clinical Investigation 1431, National Institute of Health and Medical ResearchBesanconFrance
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New JerseyNewarkUnited States
| | - Diana Rodriguez
- Centre de référence des malformations et maladies congénitales du cervelet, Départementde Génétique, APHP, Sorbonne UniversityParisFrance
- Sorbonne Université, Service de Neuropédiatrie, Hôpital Trousseau AP-HPParisFrance
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaCanada
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of cellular and molecular medicine, University of LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, University of LeuvenLeuvenBelgium
| |
Collapse
|
99767
|
Warner JM, An D, Stratton BS, O'Shaughnessy B. A hemifused complex is the hub in a network of pathways to membrane fusion. Biophys J 2023; 122:374-385. [PMID: 36463406 PMCID: PMC9892611 DOI: 10.1016/j.bpj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane fusion is a critical step for many essential processes, from neurotransmission to fertilization. For over 40 years, protein-free fusion driven by calcium or other cationic species has provided a simplified model of biological fusion, but the mechanisms remain poorly understood. Cation-mediated membrane fusion and permeation are essential in their own right to drug delivery strategies based on cell-penetrating peptides or cation-bearing lipid nanoparticles. Experimental studies suggest calcium drives anionic membranes to a hemifused intermediate that constitutes a hub in a network of pathways, but the pathway selection mechanism is unknown. Here we develop a mathematical model that identifies the network hub as a highly dynamic hemifusion complex. Multivalent cations drive expansion of this high-tension hemifusion interface between interacting vesicles during a brief transient. The fate of this interface determines the outcome, either fusion, dead-end hemifusion, or vesicle lysis. The model reproduces the unexplained finding that calcium-driven fusion of vesicles with planar membranes typically stalls at hemifusion, and we show the equilibrated hemifused state is a novel lens-shaped complex. Thus, membrane fusion kinetics follow a stochastic trajectory within a network of pathways, with outcome weightings set by a hemifused complex intermediate.
Collapse
Affiliation(s)
- Jason M Warner
- Department of Chemical Engineering, Columbia University, New York, New York
| | - Dong An
- Department of Chemical Engineering, Columbia University, New York, New York
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, New York.
| |
Collapse
|
99768
|
Kaneko M, Stryker MP. Production of brain-derived neurotrophic factor gates plasticity in developing visual cortex. Proc Natl Acad Sci U S A 2023; 120:e2214833120. [PMID: 36634145 PMCID: PMC9934058 DOI: 10.1073/pnas.2214833120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
We have previously shown that recovery of visual responses to a deprived eye during the critical period in mouse primary visual cortex requires phosphorylation of the TrkB receptor for BDNF [M. Kaneko, J. L. Hanover, P. M. England, M. P. Stryker, Nat. Neurosci. 11, 497-504 (2008)]. We have now studied the temporal relationship between the production of mature BDNF and the recovery of visual responses under several different conditions. Visual cortical responses to an eye whose vision has been occluded for several days during the critical period and is then re-opened recover rapidly during binocular vision or much more slowly following reverse occlusion, when the previously intact fellow eye is occluded in a model of "patch therapy" for amblyopia. The time to recovery of visual responses differed by more than 18 h between these two procedures, but in each, the production of mature BDNF preceded the physiological recovery. These findings suggest that a spurt of BDNF production is permissive for the growth of connections serving the deprived eye to restore visual responses. Attenuation of recovery of deprived-eye responses by interference with TrkB receptor activation or reduction of BDNF production by interference with homeostatic synaptic scaling had effects consistent with this suggestion.
Collapse
Affiliation(s)
- Megumi Kaneko
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco94143
| | - Michael P. Stryker
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco94143
| |
Collapse
|
99769
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
99770
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
99771
|
García-Beltrán O, Urrutia PJ, Núñez MT. On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2023; 12:214. [PMID: 36829773 PMCID: PMC9952574 DOI: 10.3390/antiox12020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Pamela J. Urrutia
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Marco T. Núñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile
| |
Collapse
|
99772
|
Jin Y, Hu X, Meng F, Luo Q, Liu H, Yang Z. Sevoflurane Exposure of Clinical Doses in Pregnant Rats Induces Vcan Changes without Significant Neural Apoptosis in the Offspring. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020190. [PMID: 36837392 PMCID: PMC9965787 DOI: 10.3390/medicina59020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Background and Objectives: Sevoflurane is a commonly used inhalational anaesthetic in clinics. Prolonged exposure to sevoflurane can induce significant changes in lipid metabolism and neuronal damage in the developing brain. However, the effect of exposure of pregnant rats to clinical doses of sevoflurane remains unclear. Materials and Methods: Twenty-eight pregnant rats were randomly and equally divided into sevoflurane exposure (S) group, control (C) and a blank group at gestational day (G) 18; Rats in S group received 2% sevoflurane with 98% oxygen for 6 h in an anesthetizing chamber, while C group received 100% oxygen at an identical flow rate for 6 h in an identical chamber. Partial least squares discriminant analysis (PLS-DA), ultra performance liquid chromatography/time-of-flight mass spectrometry(UPLC/TOF-MS) and MetaboAnalyst were used to analysis acquire metabolomics profiles, and immunohistochemical changes of neuronalapoptosis in hippocampus and cortex of neonatal rats were also analyzed. Results: This study aimed to explore lipidomics and transcriptomics changes related to 2% sevoflurane exposure for 6 h in the developing brains of newborn offspring rats. Ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOF-MS) and RNA sequencing (RNA-seq) analyses were used to acquire metabolomics and transcriptomics profiles. We used RNA-seq to analyse the expression of the coding and non-coding transcripts in neural cells of the cerebral cortex. No significant differences in arterial oxygen tension (PaO2), arterial carbon dioxide tension (PaCO2), or arterial blood gas were found between the groups. The relative standard deviation (RSD) of retention times was <1.53%, and the RSDs of peak areas ranged from 2.13% to 8.51%. Base peak chromatogram (BPC) profiles showed no differences between the groups. We evaluated the partial least square-discriminant analysis (PLS-DA) model. In negative ion mode, R2X was over 70%, R2Y was over 93%, and Q2 (cum) was over 80%. Cell apoptosis was not remarkably enhanced by TUNEL and haematoxylin and eosin (HE) staining in the sevoflurane-exposed group compared to the control group (p > 0.05). Glycerophospholipid (GP) and sphingolipid metabolism disturbances might adversely influence neurodevelopment in offspring. The expression of mRNAs (Vcan gene, related to neuronal development, function and repair) of the sevoflurane group was significantly increased in the differential genes by qRT-PCR verification. Conclusions: GP and sphingolipid metabolism homeostasis may be potential therapeutic approaches against inhalational anaesthetic-induced neurodegenerative disorders. Meanwhile, sevoflurane-induced Vcan changes indicated some lipidomic and transcriptomic changes, even if neural cell apoptosis was not significantly changed in the usual clinical dose of sevoflurane exposure.
Collapse
Affiliation(s)
- Yi Jin
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200025, China
- Shanghai Municipal Key Clinical Specialty, Shanghai 200025, China
- Department of Anesthesiology, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200052, China
| | - Xiaoxue Hu
- Department of Anesthesiology, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200052, China
| | - Fanhua Meng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Luo
- Department of Anesthesiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Henry Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, The University of Pennsylvania, 3401 Spruce Street, Philadelphia, PA 19104, USA
- Correspondence: (H.L.); (Z.Y.)
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200025, China
- Shanghai Municipal Key Clinical Specialty, Shanghai 200025, China
- Correspondence: (H.L.); (Z.Y.)
| |
Collapse
|
99773
|
Yu J, Guo X, Zheng S, Zhang W. A dedicate sensorimotor circuit enables fine texture discrimination by active touch. PLoS Genet 2023; 19:e1010562. [PMID: 36649336 PMCID: PMC9882754 DOI: 10.1371/journal.pgen.1010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, taste) by constant probing with their proboscis. Here we identify a group of neurons (sd-L neurons) on the fly labellum that are mechanosensitive to labellum displacement and synapse onto the sugar-sensing neurons via axo-axonal synapses to induce preference to harder food. These neurons also feed onto the motor circuits that control proboscis extension and labellum spreading to provide on-line sensory feedback critical for controlling the probing processes, thus facilitating ingestion of less liquified food. Intriguingly, this preference was eliminated in mated female flies, reflecting an elevated need for softer food. Our results propose a sensorimotor circuit composed of mechanosensory, gustatory and motor neurons that enables the flies to select ripe yet not over-rotten food by active touch.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xuan Guo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shen Zheng
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
99774
|
Maiya R, Dey S, Ray K, Menon GI. The interplay of active and passive mechanisms in slow axonal transport. Biophys J 2023; 122:333-345. [PMID: 36502274 PMCID: PMC9892612 DOI: 10.1016/j.bpj.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila. Choline acetyltransferase is mainly present in soluble form in the axon and catalyzes the acetylation of choline at the synapse. It does not form particulate structures in axons and moves at rates characteristic of slow component b (≈ 1-10 mm/day or 0.01-0.1 μm/s). Using our model, which incorporates active transport with paused and/or diffusive states, we predict bleach recovery, transport rates, and cargo trajectories obtained through kymographs, comparing these with experimental observations at different developmental stages. We show that changes in the diffusive fraction of cargo during these developmental stages dominate bleach recovery and that a combination of active motion with a paused state alone cannot reproduce the data. We compared predictions of the model with results from photoactivation experiments. The importance of the diffusive state in reproducing the bleach recovery signal in the slow axonal transport of small soluble proteins is our central result.
Collapse
Affiliation(s)
- Reshma Maiya
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Swagata Dey
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Krishanu Ray
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.
| | - Gautam I Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Department of Physics, Ashoka University, Sonepat, India; Department of Biology, Ashoka University, Sonepat, India.
| |
Collapse
|
99775
|
Kumral E, Çetin FE, Özdemir HN. A Neuropsychiatric and Neuroimaging Study of Unilateral and Bilateral Striatal Ischemic Lesions. J Neuropsychiatry Clin Neurosci 2023; 35:48-58. [PMID: 35872616 DOI: 10.1176/appi.neuropsych.21030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Neuropsychiatric disorders after striatal territory stroke have not been studied systematically. The investigators aimed to study the spectrum of cognitive and behavioral disorders following striatal infarcts. METHODS Different aspects of cognitive functions, including executive, frontal lobe, memory, visuospatial, language, and semantic processing, were assessed among patients with striatal infarct. Structural MRI data sets were obtained 3 months after stroke to delineate affected territories of the striatum. MRIcroGL software was used to acquire multiple layers of images, generate volume renderings, and draw volumes of interest. To determine the brain locus most frequently affected in patients with distinct cognitive disorders, ischemic area distributions in patients with cognitive dysfunction versus those without cognitive impairment were contrasted. RESULTS Among 60 patients in this study, six different striatal infarction types were significantly associated with seven different cognitive categories (p<0.001). Unilateral caudate lesion was characterized by attention, planning, and executive disorders (38%), and unilateral lentiform infarct was characterized by executive (36%) and frontal (36%) dysfunctions. Bilateral caudate infarcts caused impairments in frontal and executive functions (75%), as well as in autobiographical (50%) and episodic (50%) memory. In those with bilateral caudate plus lentiform infarcts, all components of frontal and executive functions were dramatically impaired. The anteromedial striatum was affected more frequently in patients with language impairment compared with patients with other types of cognitive dysfunction (p<0.001). CONCLUSIONS Following striatal stroke, a wide range of frontal-like cognitive impairments occurred, along with impaired working memory, declarative memory, executive function, speech fluency, and motor function.
Collapse
Affiliation(s)
- Emre Kumral
- Neurology Department, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Psychology Department, Uskudar University, Istanbul, Turkey (Bayam)
| | - Fatma Ece Çetin
- Neurology Department, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Psychology Department, Uskudar University, Istanbul, Turkey (Bayam)
| | - Hüseyin Nezih Özdemir
- Neurology Department, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Psychology Department, Uskudar University, Istanbul, Turkey (Bayam)
| |
Collapse
|
99776
|
Han SH, Kim YH, Park SJ, Cho JG, Shin YK, Hong YB, Yun J, Han JY, Park HT, Park JI. COUP-TFII plays a role in cAMP-induced Schwann cell differentiation and in vitro myelination by up-regulating Krox20. J Neurochem 2023; 165:660-681. [PMID: 36648143 DOI: 10.1111/jnc.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Schwann cells (SCs) are known to produce myelin for saltatory nerve conduction in the peripheral nervous system (PNS). Schwann cell differentiation and myelination processes are controlled by several transcription factors including Sox10, Oct6/Pou3f1, and Krox20/Egr2. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan receptor that plays a role in the development and differentiation. However, the role of COUP-TFII in the transcriptional regulatory network of SC differentiation has not been fully identified yet. Thus, the objective of this study was to investigate the role and molecular hierarchy of COUP-TFII during cAMP-induced SC differentiation. Our results showed that dibutyryl-cAMP (db-cAMP) increased expression levels of COUP-TFII along with the expressions of Oct6, Krox20, and myelin-related genes known to be related to SC differentiation. Our mechanistic studies showed that COUP-TFII acted downstream of Hsp90/ErbB2/Gab1/ERK-AKT pathway during db-cAMP-induced SC differentiation. In addition, we found that COUP-TFII induced Krox20 expression by directly binding to Krox20-MSE8 as revealed by chromatin immunoprecipitation assay and promoter activity assay. In line with this, the expression of COUP-TFII was increased before up-regulation of Oct6, Krox20, and myelin-related genes in the sciatic nerves during early postnatal myelination period. Finally, COUP-TFII knockdown by COUP-TFII siRNA or via AAV-COUP-TFII shRNA in SCs inhibited db-cAMP-induced SC differentiation and in vitro myelination of sensory axons, respectively. Taken together, these findings indicate that COUP-TFII might be involved in postnatal myelination through induction of Krox20 in SCs. Our results present a new insight into the transcriptional regulatory mechanism in SC differentiation and myelination.
Collapse
Affiliation(s)
- Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Su-Jeong Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jun-Gi Cho
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Young Bin Hong
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jeanho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea.,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, South Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| |
Collapse
|
99777
|
Kubo Y, Chalmers E, Luczak A. Biologically-inspired neuronal adaptation improves learning in neural networks. Commun Integr Biol 2023; 16:2163131. [PMID: 36685291 PMCID: PMC9851208 DOI: 10.1080/19420889.2022.2163131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Since humans still outperform artificial neural networks on many tasks, drawing inspiration from the brain may help to improve current machine learning algorithms. Contrastive Hebbian learning (CHL) and equilibrium propagation (EP) are biologically plausible algorithms that update weights using only local information (without explicitly calculating gradients) and still achieve performance comparable to conventional backpropagation. In this study, we augmented CHL and EP with Adjusted Adaptation, inspired by the adaptation effect observed in neurons, in which a neuron's response to a given stimulus is adjusted after a short time. We add this adaptation feature to multilayer perceptrons and convolutional neural networks trained on MNIST and CIFAR-10. Surprisingly, adaptation improved the performance of these networks. We discuss the biological inspiration for this idea and investigate why Neuronal Adaptation could be an important brain mechanism to improve the stability and accuracy of learning.
Collapse
Affiliation(s)
- Yoshimasa Kubo
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada,CONTACT Yoshimasa Kubo
| | - Eric Chalmers
- Department of Mathematics & Computing, Mount Royal University, Calgary, AB, Canada
| | - Artur Luczak
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada,Artur Luczak Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
99778
|
Ruach R, Ratner N, Emmons SW, Zaslaver A. The synaptic organization in the Caenorhabditis elegans neural network suggests significant local compartmentalized computations. Proc Natl Acad Sci U S A 2023; 120:e2201699120. [PMID: 36630454 PMCID: PMC9934027 DOI: 10.1073/pnas.2201699120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023] Open
Abstract
Neurons are characterized by elaborate tree-like dendritic structures that support local computations by integrating multiple inputs from upstream presynaptic neurons. It is less clear whether simple neurons, consisting of a few or even a single neurite, may perform local computations as well. To address this question, we focused on the compact neural network of Caenorhabditis elegans animals for which the full wiring diagram is available, including the coordinates of individual synapses. We find that the positions of the chemical synapses along the neurites are not randomly distributed nor can they be explained by anatomical constraints. Instead, synapses tend to form clusters, an organization that supports local compartmentalized computations. In mutually synapsing neurons, connections of opposite polarity cluster separately, suggesting that positive and negative feedback dynamics may be implemented in discrete compartmentalized regions along neurites. In triple-neuron circuits, the nonrandom synaptic organization may facilitate local functional roles, such as signal integration and coordinated activation of functionally related downstream neurons. These clustered synaptic topologies emerge as a guiding principle in the network, presumably to facilitate distinct parallel functions along a single neurite, which effectively increase the computational capacity of the neural network.
Collapse
Affiliation(s)
- Rotem Ruach
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Jerusalem9190401, Israel
| | - Nir Ratner
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Jerusalem9190401, Israel
| | - Scott W. Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York10461, NY
- Department of Genetics, Albert Einstein College of Medicine, New York10461, NY
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Jerusalem9190401, Israel
| |
Collapse
|
99779
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/13/2024]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
99780
|
Muschol N, Koehn A, von Cossel K, Okur I, Ezgu F, Harmatz P, de Castro Lopez MJ, Couce ML, Lin SP, Batzios S, Cleary M, Solano M, Nestrasil I, Kaufman B, Shaywitz AJ, Maricich SM, Kuca B, Kovalchin J, Zanelli E. A phase I/II study on intracerebroventricular tralesinidase alfa in patients with Sanfilippo syndrome type B. J Clin Invest 2023; 133:165076. [PMID: 36413418 PMCID: PMC9843052 DOI: 10.1172/jci165076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundSanfilippo type B is a mucopolysaccharidosis (MPS) with a major neuronopathic component characterized by heparan sulfate (HS) accumulation due to mutations in the NAGLU gene encoding alfa-N-acetyl-glucosaminidase. Enzyme replacement therapy for neuronopathic MPS requires efficient enzyme delivery throughout the brain in order to normalize HS levels, prevent brain atrophy, and potentially delay cognitive decline.MethodsIn this phase I/II open-label study, patients with MPS type IIIB (n = 22) were treated with tralesinidase alfa administered i.c.v. The patients were monitored for drug exposure; total HS and HS nonreducing end (HS-NRE) levels in both cerebrospinal fluid (CSF) and plasma; anti-drug antibody response; brain, spleen, and liver volumes as measured by MRI; and cognitive development as measured by age-equivalent (AEq) scores.ResultsIn the Part 1 dose escalation (30, 100, and 300 mg) phase, a 300 mg dose of tralesinidase alfa was necessary to achieve normalization of HS and HS-NRE levels in the CSF and plasma. In Part 2, 300 mg tralesinidase alfa sustained HS and HS-NRE normalization in the CSF and stabilized cortical gray matter volume (CGMV) over 48 weeks of treatment. Resolution of hepatomegaly and a reduction in spleen volume were observed in most patients. Significant correlations were also established between the change in cognitive AEq score and plasma drug exposure, plasma HS-NRE levels, and CGMV.ConclusionAdministration of tralesinidase alfa i.c.v. effectively normalized HS and HS-NRE levels as a prerequisite for clinical efficacy. Peripheral drug exposure data suggest a role for the glymphatic system in altering tralesinidase alfa efficacy.Trial registrationClinicaltrials.gov NCT02754076.FUNDINGBioMarin Pharmaceutical Inc. and Allievex Corporation.
Collapse
Affiliation(s)
- Nicole Muschol
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Anja Koehn
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Katharina von Cossel
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Ilyas Okur
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Fatih Ezgu
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Paul Harmatz
- UCSF Benioff Children’s Hospital Oakland, Oakland, California, USA
| | - Maria J. de Castro Lopez
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | - Maria Luz Couce
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | | | | | | | | | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Kaufman
- CLB Consulting, Falls of Neuse, Raleigh, North Carolina, USA
| | | | | | - Bernice Kuca
- Allievex Corporation, Marblehead, Massachusetts, USA
| | | | - Eric Zanelli
- Allievex Corporation, Marblehead, Massachusetts, USA
| |
Collapse
|
99781
|
Rutherford MA, Bhattacharyya A, Xiao M, Cai HM, Pal I, Rubio ME. GluA3 subunits are required for appropriate assembly of AMPAR GluA2 and GluA4 subunits on cochlear afferent synapses and for presynaptic ribbon modiolar-pillar morphology. eLife 2023; 12:e80950. [PMID: 36648432 PMCID: PMC9891727 DOI: 10.7554/elife.80950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Cochlear sound encoding depends on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), but reliance on specific pore-forming subunits is unknown. With 5-week-old male C57BL/6J Gria3-knockout mice (i.e., subunit GluA3KO) we determined cochlear function, synapse ultrastructure, and AMPAR molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons. GluA3KO and wild-type (GluA3WT) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar auditory brainstem response (ABR) thresholds, wave-1 amplitudes, and latencies. Postsynaptic densities (PSDs), presynaptic ribbons, and synaptic vesicle sizes were all larger on the modiolar side of the IHCs from GluA3WT, but not GluA3KO, demonstrating GluA3 is required for modiolar-pillar synapse differentiation. Presynaptic ribbons juxtaposed with postsynaptic GluA2/4 subunits were similar in quantity, however, lone ribbons were more frequent in GluA3KO and GluA2-lacking synapses were observed only in GluA3KO. GluA2 and GluA4 immunofluorescence volumes were smaller on the pillar side than the modiolar side in GluA3KO, despite increased pillar-side PSD size. Overall, the fluorescent puncta volumes of GluA2 and GluA4 were smaller in GluA3KO than GluA3WT. However, GluA3KO contained less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3WT (threefold greater mean GluA4:GluA2 ratio). Thus, GluA3 is essential in development, as germline disruption of Gria3 caused anatomical synapse pathology before cochlear output became symptomatic by ABR. We propose the hearing loss in older male GluA3KO mice results from progressive synaptopathy evident in 5-week-old mice as decreased abundance of GluA2 subunits and an increase in GluA2-lacking, GluA4-monomeric Ca2+-permeable AMPARs.
Collapse
Affiliation(s)
- Mark A Rutherford
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of MedicineSt LouisUnited States
| | - Hou-Ming Cai
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Indra Pal
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Maria Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Otolaryngology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
99782
|
Sex-Specific Microglial Responses to Glucocerebrosidase Inhibition: Relevance to GBA1-Linked Parkinson's Disease. Cells 2023; 12:cells12030343. [PMID: 36766684 PMCID: PMC9913749 DOI: 10.3390/cells12030343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglia are heterogenous cells characterized by distinct populations each contributing to specific biological processes in the nervous system, including neuroprotection. To elucidate the impact of sex-specific microglia heterogenicity to the susceptibility of neuronal stress, we video-recorded with time-lapse microscopy the changes in shape and motility occurring in primary cells derived from mice of both sexes in response to pro-inflammatory or neurotoxic stimulations. With this morpho-functional analysis, we documented distinct microglia subpopulations eliciting sex-specific responses to stimulation: male microglia tended to have a more pro-inflammatory phenotype, while female microglia showed increased sensitivity to conduritol-B-epoxide (CBE), a small molecule inhibitor of glucocerebrosidase, the enzyme encoded by the GBA1 gene, mutations of which are the major risk factor for Parkinson's Disease (PD). Interestingly, glucocerebrosidase inhibition particularly impaired the ability of female microglia to enhance the Nrf2-dependent detoxification pathway in neurons, attenuating the sex differences observed in this neuroprotective function. This finding is consistent with the clinical impact of GBA1 mutations, in which the 1.5-2-fold reduced risk of developing idiopathic PD observed in female individuals is lost in the GBA1 carrier population, thus suggesting a sex-specific role for microglia in the etiopathogenesis of PD-GBA1.
Collapse
|
99783
|
Lester E, Van Alstyne M, McCann KL, Reddy S, Cheng LY, Kuo J, Pratt J, Parker R. Cytosolic condensates rich in polyserine define subcellular sites of tau aggregation. Proc Natl Acad Sci U S A 2023; 120:e2217759120. [PMID: 36626563 PMCID: PMC9934293 DOI: 10.1073/pnas.2217759120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Tau aggregates are a hallmark of multiple neurodegenerative diseases and can contain RNAs and RNA-binding proteins, including serine/arginine repetitive matrix protein 2 (SRRM2) and pinin (PNN). However, how these nuclear proteins mislocalize and their influence on the prion-like propagation of tau aggregates is unknown. We demonstrate that polyserine repeats in SRRM2 and PNN are necessary and sufficient for recruitment to tau aggregates. Moreover, we show tau aggregates preferentially grow in association with endogenous cytoplasmic assemblies-mitotic interchromatin granules and cytoplasmic speckles (CSs)-which contain SRRM2 and PNN. Polyserine overexpression in cells nucleates assemblies that are sites of tau aggregate growth. Further, modulating the levels of polyserine-containing proteins results in a corresponding change in tau aggregation. These findings define a specific protein motif, and cellular condensates, that promote tau aggregate propagation. As CSs form in induced pluripotent stem cell (iPSC) derived neurons under inflammatory or hyperosmolar stress, they may affect tau aggregate propagation in neurodegenerative disease.
Collapse
Affiliation(s)
- Evan Lester
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado, Boulder, CO80303
- HHMI, University of Colorado, Boulder, CO80303
| | - Kathleen L. McCann
- Department of Biochemistry, University of Colorado, Boulder, CO80303
- HHMI, University of Colorado, Boulder, CO80303
| | - Spoorthy Reddy
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Li Yi Cheng
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Jeff Kuo
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - James Pratt
- Department of Biochemistry, University of Colorado, Boulder, CO80303
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO80303
- HHMI, University of Colorado, Boulder, CO80303
| |
Collapse
|
99784
|
Xu A, Beyeler M. Retinal ganglion cells undergo cell typeâ€"specific functional changes in a biophysically detailed model of retinal degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523982. [PMID: 36711897 PMCID: PMC9882163 DOI: 10.1101/2023.01.13.523982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the retina in health and disease is a key issue for neuroscience and neuroengineering applications such as retinal prostheses. During degeneration, the retinal network undergoes complex and multi-stage neuroanatomical alterations, which drastically impact the retinal ganglion cell (RGC) response and are of clinical importance. Here we present a biophysically detailed in silico model of retinal degeneration that simulates the network-level response to both light and electrical stimulation as a function of disease progression. The model is not only able to reproduce common findings about RGC activity in the degenerated retina, such as hyperactivity and increased electrical thresholds, but also offers testable predictions about the underlying neuroanatomical mechanisms. Overall, our findings demonstrate how biophysical changes associated with retinal degeneration affect retinal responses to both light and electrical stimulation, which may further our understanding of visual processing in the retina as well as inform the design and application of retinal prostheses.
Collapse
|
99785
|
Karimi Abadchi J, Rezaei Z, Knöpfel T, McNaughton BL, Mohajerani MH. Inhibition is a prevalent mode of activity in the neocortex around awake hippocampal ripples in mice. eLife 2023; 12:79513. [PMID: 36645126 PMCID: PMC9876570 DOI: 10.7554/elife.79513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Coordinated peri-ripple activity in the hippocampal-neocortical network is essential for mnemonic information processing in the brain. Hippocampal ripples likely serve different functions in sleep and awake states. Thus, the corresponding neocortical activity patterns may differ in important ways. We addressed this possibility by conducting voltage and glutamate wide-field imaging of the neocortex with concurrent hippocampal electrophysiology in awake mice. Contrary to our previously published sleep results, deactivation and activation were dominant in post-ripple neocortical voltage and glutamate activity, respectively, especially in the agranular retrosplenial cortex (aRSC). Additionally, the spiking activity of aRSC neurons, estimated by two-photon calcium imaging, revealed the existence of two subpopulations of excitatory neurons with opposite peri-ripple modulation patterns: one increases and the other decreases firing rate. These differences in peri-ripple spatiotemporal patterns of neocortical activity in sleep versus awake states might underlie the reported differences in the function of sleep versus awake ripples.
Collapse
Affiliation(s)
- Javad Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
| | - Zahra Rezaei
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College LondonLondonUnited Kingdom
- Department of Physics, Hong Kong Baptist UniversityKowloon TongHong Kong
| | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
| |
Collapse
|
99786
|
Gordon-Fennell A, Barbakh JM, Utley M, Singh S, Bazzino P, Gowrishankar R, Bruchas MR, Roitman MF, Stuber GD. An Open-Source Platform for Head-Fixed Operant and Consummatory Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523828. [PMID: 36712040 PMCID: PMC9882199 DOI: 10.1101/2023.01.13.523828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Head-fixed behavioral experiments in rodents permit unparalleled experimental control, precise measurement of behavior, and concurrent modulation and measurement of neural activity. Here we present OHRBETS (Open-Source Head-fixed Rodent Behavioral Experimental Training System; pronounced 'Orbitz'), a low-cost, open-source ecosystem of hardware and software to flexibly pursue the neural basis of a variety of motivated behaviors. Head-fixed mice tested with OHRBETS displayed operant conditioning for caloric reward that replicates core behavioral phenotypes observed during freely moving conditions. OHRBETS also permits for optogenetic intracranial self-stimulation under positive or negative operant conditioning procedures and real-time place preference behavior, like that observed in freely moving assays. In a multi-spout brief-access consumption task, mice displayed licking as a function of concentration of sucrose, quinine, and sodium chloride, with licking modulated by homeostatic or circadian influences. Finally, to highlight the functionality of OHRBETS, we measured mesolimbic dopamine signals during the multi-spout brief-access task that display strong correlations with relative solution value and magnitude of consumption. All designs, programs, and instructions are provided freely online. This customizable ecosystem enables replicable operant and consummatory behaviors and can be incorporated with methods to perturb and record neural dynamics in vivo . Impact Statement A customizable open-source hardware and software ecosystem for conducting diverse head-fixed behavioral experiments in mice.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Joumana M. Barbakh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - MacKenzie Utley
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Shreya Singh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Paula Bazzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Michael R. Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Mitchell F. Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| |
Collapse
|
99787
|
Sustained therapeutic benefits by transient reduction of TDP-43 using ENA-modified antisense oligonucleotides in ALS/FTD mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:353-366. [PMID: 36817728 PMCID: PMC9925842 DOI: 10.1016/j.omtn.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
The abnormal aggregation of TDP-43 into cytoplasmic inclusions in affected neurons is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although how TDP-43 forms cytoplasmic aggregates and causes neurodegeneration in patients with ALS/FTD remains unclear, reducing cellular TDP-43 levels is likely to prevent aggregation and to rescue neurons from TDP-43 toxicity. To address this issue, here we developed gapmer-type antisense oligonucleotides (ASOs) against human TDP-43 using 2'-O,4'-C-ethylene nucleic acids (ENAs), which are modified nucleic acids with high stability, and tested the therapeutic potential of lowering TDP-43 levels using ENA-modified ASOs. We demonstrated that intracerebroventricular administration of ENA-modified ASOs into a mouse model of ALS/FTD expressing human TDP-43 results in the efficient reduction of TDP-43 levels in the brain and spinal cord. Surprisingly, a single injection of ENA-modified ASOs into TDP-43 mice led to long-lasting improvement of behavioral abnormalities and the suppression of cytoplasmic TDP-43 aggregation, even after TDP-43 levels had returned to the initial levels. Our results demonstrate that transient reduction of TDP-43 using ENA-modified ASOs leads to sustained therapeutic benefits in vivo, indicating the possibility of a disease-modifying therapy by lowering TDP-43 levels for the treatment of the TDP-43 proteinopathies, including ALS/FTD.
Collapse
|
99788
|
mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun 2023; 14:244. [PMID: 36646691 PMCID: PMC9842668 DOI: 10.1038/s41467-022-35680-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
The unique perisynaptic distribution of postsynaptic metabotropic glutamate receptors (mGluRs) at excitatory synapses is predicted to directly shape synaptic function, but mechanistic insight into how this distribution is regulated and impacts synaptic signaling is lacking. We used live-cell and super-resolution imaging approaches, and developed molecular tools to resolve and acutely manipulate the dynamic nanoscale distribution of mGluR5. Here we show that mGluR5 is dynamically organized in perisynaptic nanodomains that localize close to, but not in the synapse. The C-terminal domain of mGluR5 critically controlled perisynaptic confinement and prevented synaptic entry. We developed an inducible interaction system to overcome synaptic exclusion of mGluR5 and investigate the impact on synaptic function. We found that mGluR5 recruitment to the synapse acutely increased synaptic calcium responses. Altogether, we propose that transient confinement of mGluR5 in perisynaptic nanodomains allows flexible modulation of synaptic function.
Collapse
|
99789
|
PET imaging of animal models with depressive-like phenotypes. Eur J Nucl Med Mol Imaging 2023; 50:1564-1584. [PMID: 36642759 PMCID: PMC10119194 DOI: 10.1007/s00259-022-06073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/03/2022] [Indexed: 01/17/2023]
Abstract
Major depressive disorder is a growing and poorly understood pathology. Due to technical and ethical limitations, a significant proportion of the research on depressive disorders cannot be performed on patients, but needs to be investigated in animal paradigms. Over the years, animal studies have provided new insight in the mechanisms underlying depression. Several of these studies have used PET imaging for the non-invasive and longitudinal investigation of the brain physiology. This review summarises the findings of preclinical PET imaging in different experimental paradigms of depression and compares these findings with observations from human studies. Preclinical PET studies in animal models of depression can be divided into three main different approaches: (a) investigation of glucose metabolism as a biomarker for regional and network involvement, (b) evaluation of the availability of different neuroreceptor populations associated with depressive phenotypes, and (c) monitoring of the inflammatory response in phenotypes of depression. This review also assesses the relevance of the use of PET imaging techniques in animal paradigms for the understanding of specific aspects of the depressive-like phenotypes, in particular whether it might contribute to achieve a more detailed characterisation of the clinical depressive phenotypes for the development of new therapies for depression.
Collapse
|
99790
|
Zhu T, Guo J, Wu Y, Lei T, Zhu J, Chen H, Kala S, Wong KF, Cheung CP, Huang X, Zhao X, Yang M, Sun L. The mechanosensitive ion channel Piezo1 modulates the migration and immune response of microglia. iScience 2023; 26:105993. [PMID: 36798430 PMCID: PMC9926228 DOI: 10.1016/j.isci.2023.105993] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Microglia are the brain's resident immune cells, performing surveillance to promote homeostasis and healthy functioning. While microglial chemical signaling is well-studied, mechanical cues regulating their function are less well-understood. Here, we investigate the role of the mechanosensitive ion channel Piezo1 in microglia migration, pro-inflammatory cytokine production, and stiffness sensing. In Piezo1 knockout transgenic mice, we demonstrated the functional expression of Piezo1 in microglia and identified genes whose expression was consequently affected. Functional assays revealed that Piezo1 deficiency in microglia enhanced migration toward amyloid β-protein, and decreased levels of pro-inflammatory cytokines produced upon stimulation by lipopolysaccharide, both in vitro and in vivo. The phenomenon could be mimicked or reversed chemically using a Piezo1-specific agonist or antagonist. Finally, we also showed that Piezo1 mediated the effect of substrate stiffness-induced migration and cytokine expression. Altogether, we show that Piezo1 is an important molecular mediator for microglia, its activation modulating microglial migration and immune responses.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jinghui Guo
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Yong Wu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Ting Lei
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jiejun Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Hui Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shashwati Kala
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Kin Fung Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Chi Pong Cheung
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xiaohui Huang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xinyi Zhao
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Minyi Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Lei Sun
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China,Corresponding author
| |
Collapse
|
99791
|
Sun D, Mei L, Xiong WC. Dorsal Dentate Gyrus, a Key Regulator for Mood and Psychiatric Disorders. Biol Psychiatry 2023:S0006-3223(23)00009-4. [PMID: 36894487 DOI: 10.1016/j.biopsych.2023.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The dentate gyrus, a "gate" that controls the flow of information into the hippocampus, is critical for learning, memory, spatial navigation, and mood regulation. Several lines of evidence have demonstrated that deficits in dentate granule cells (DGCs) (e.g., loss of DGCs or genetic mutations in DGCs) contribute to the development of various psychiatric disorders, such as depression and anxiety disorders. Whereas ventral DGCs are believed to be critical for mood regulation, the functions of dorsal DGCs in this regard remain elusive. Here, we review the role of DGCs, in particular the dorsal DGCs, in the regulation of mood, their functional relationships with DGC development, and the contributions of dysfunctional DGCs to mental disorders.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
99792
|
Chen QY, Zhuo M. Glutamate acts as a key neurotransmitter for itch in the mammalian spinal cord. Mol Pain 2023; 19:17448069231152101. [PMID: 36604775 PMCID: PMC9846298 DOI: 10.1177/17448069231152101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Itch sensation is one of the major sensory experiences of humans and animals. Recent studies using genetic deletion techniques have proposed that gastrin-releasing peptide (GRP) is a key neurotransmitter for itch in the spinal cord. However, these studies are mainly based on behavioral responses and lack direct electrophysiological evidence that GRP indeed mediates itch information between primary afferent fibers and spinal dorsal horn neurons. In this review, we reviewed recent studies using different experimental approaches and proposed that glutamate but not GRP acts as the key neurotransmitter in the primary afferents in the transmission of itch. GRP is more likely to serve as an itch-related neuromodulator. In the cerebral cortex, we propose that the anterior cingulate cortex (ACC) plays a significant role in both itch and pain sensations. Only behavioral measurement of itch (scratching) is not sufficient for itch measurement, since scratching the itching area also produces pleasure. Integrative experimental approaches as well as better behavioral scoring models are needed to help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic diseases.
Collapse
Affiliation(s)
- Qi-Yu Chen
- Qingdao International Academician
Park, International Institute for Brain
Research, Qingdao, China,CAS Key Laboratory of Brain
Connectome and Manipulation, Interdisciplinary Center for Brain Information, The
Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of
Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of
Advanced Technology, Chinese Academy of Sciences Shenzhen
Institute of Advanced Technology, Shenzhen, China
| | - Min Zhuo
- Qingdao International Academician
Park, International Institute for Brain
Research, Qingdao, China,Department of Physiology, Faculty
of Medicine, University of Toronto, Toronto, ON, Canada,Min Zhuo, Institute of Brain Research,
Qingdao International Academician Park, Qingdao 266199, China.
| |
Collapse
|
99793
|
AmyP53 Prevents the Formation of Neurotoxic β-Amyloid Oligomers through an Unprecedent Mechanism of Interaction with Gangliosides: Insights for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:ijms24021760. [PMID: 36675271 PMCID: PMC9864847 DOI: 10.3390/ijms24021760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer's β-amyloid peptide (Aβ1-42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aβ1-42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aβ1-42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aβ1-42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.
Collapse
|
99794
|
D’Ambrosio C, Cigliano L, Mazzoli A, Matuozzo M, Nazzaro M, Scaloni A, Iossa S, Spagnuolo MS. Fructose Diet-Associated Molecular Alterations in Hypothalamus of Adolescent Rats: A Proteomic Approach. Nutrients 2023; 15:nu15020475. [PMID: 36678346 PMCID: PMC9862284 DOI: 10.3390/nu15020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.
Collapse
Affiliation(s)
- Chiara D’Ambrosio
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Monica Matuozzo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
99795
|
Bhaskar SMM. An Equity and Justice-Informed Ethical Framework to Guide Incidental Findings in Brain Imaging Research. Clin Pract 2023; 13:116-124. [PMID: 36648851 PMCID: PMC9890311 DOI: 10.3390/clinpract13010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The handling of incidental findings (IFs) in brain imaging studies has been a source of contention among scientists and bioethicists. A conceptual framework informed by diversity, equity, and inclusion (DEI) and distributive justice approaches, namely EUSTICE, is proposed for the ethical handling and reporting of IFs in brain imaging research. I argue that EUSTICE provides a systematic and inclusive approach to addressing the ethical conundrum around IF disclosure and managing IFs proportionately and sensitively in brain imaging research. The EUSTICE framework may have implications for the field of neurosciences or human studies broadly in guiding ethics of IFs in research.
Collapse
Affiliation(s)
- Sonu M. M. Bhaskar
- Global Health Neurology Lab, Sydney, NSW 2000, Australia; ; Tel.: +61-(02)-873-89179; Fax: +61-(02)-8738-3648
- Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital & South West Sydney Local Health District (SWSLHD), Liverpool, NSW 2170, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW 2170, Australia
- Stroke & Neurology Research Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| |
Collapse
|
99796
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on graded fibronectin cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524278. [PMID: 36711975 PMCID: PMC9882209 DOI: 10.1101/2023.01.16.524278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - M Brent Hawkins
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Greg Holmes
- Dept. of _Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sevan Hopyan
- Dept. of Developmental Biology, Hospital for Sick Kids, Toronto, Canada
| | - Matthew P Harris
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| |
Collapse
|
99797
|
Different Contacted Cell Types Contribute to Acquiring Different Properties in Brain Microglial Cells upon Intercellular Interaction. Int J Mol Sci 2023; 24:ijms24021774. [PMID: 36675286 PMCID: PMC9861207 DOI: 10.3390/ijms24021774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglial cells (MGs), originally derived from progenitor cells in a yolk sac during early development, are glial cells located in a physiological and pathological brain. Since the brain contains various cell types, MGs could frequently interact with different cells, such as astrocytes (ACs), pericytes (PCs), and endothelial cells (ECs). However, how microglial traits are regulated via cell-cell interactions by ACs, PCs, or ECs and how they are different depending on the contacted cell types is unclear. This study aimed to clarify these questions by coculturing MGs with ACs, PCs, or ECs using mouse brain-derived cells, and microglial phenotypic changes were investigated under culture conditions that enabled direct cell-cell contact. Our results showed that ACs or PCs dose-dependently increased the number of MG, while ECs decreased it. Microarray and gene ontology analysis showed that cell fate-related genes (e.g., cell cycle, proliferation, growth, death, and apoptosis) of MGs were altered after a cell-cell contact with ACs, PCs, and ECs. Notably, microarray analysis showed that several genes, such as gap junction protein alpha 1 (Gja1), were prominently upregulated in MGs after coincubation with ACs, PCs, or ECs, regardless of cell types. Similarly, immunohistochemistry showed that an increased Gja1 expression was observed in MGs after coincubation with ACs, PCs, or ECs. Immunofluorescent and fluorescence-activated cell sorting analysis also showed that calcein-AM was transferred into MGs after coincubation with ACs, PCs, or ECs, confirming that intercellular interactions occurred between these cells. However, while Gja1 inhibition reduced the number of MGs after coincubation with ACs and PCs, this was increased after coincubation with ECs; this indicates that ACs and PCs positively regulate microglial numbers via Gja1, while ECs decrease it. Results show that ACs, PCs, or ECs exert both common and specific cell type-dependent effects on MGs through intercellular interactions. These findings also suggest that brain microglial phenotypes are different depending on their surrounding cell types, such as ACs, PCs, or ECs.
Collapse
|
99798
|
The Dopamine D1 Receptor Attenuates Titanium Particle-Induced Inhibition of Osteogenesis by Activating the Wnt Signaling Pathway. Mediators Inflamm 2023; 2023:6331650. [PMID: 36700172 PMCID: PMC9870688 DOI: 10.1155/2023/6331650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, has become a major cause of joint replacement failure. Secondary surgery after joint replacement poses a serious threat to public health worldwide. Therefore, determining how to effectively inhibit wear particle-induced PPO has become an urgent issue. Recently, the interaction between osteogenic inhibition and wear particles at the biological interface of the implant has been found to be an important factor in the pathological process. Previous studies have found that the central nervous system plays an important role in the regulation of bone formation and bone remodeling. Dopamine (DA), an important catecholamine neurotransmitter, plays an integral role in the physiological and pathological processes of various tissues through its corresponding receptors. Our current study found that upregulation of dopamine first receptors could be achieved by activating the Wnt/β-catenin pathway, improving osteogenesis in vivo and in vitro, and significantly reducing the inhibition of titanium particle-induced osteogenesis. Overall, these findings suggest that dopamine first receptor (D1R) may be a plausible target to promote osteoblast function and resist wear particle-induced PPO.
Collapse
|
99799
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
99800
|
Monterrey DT, Benito-Arenas R, Revuelta J, García-Junceda E. Design of a biocatalytic cascade for the enzymatic sulfation of unsulfated chondroitin with in situ generation of PAPS. Front Bioeng Biotechnol 2023; 11:1099924. [PMID: 36726741 PMCID: PMC9885120 DOI: 10.3389/fbioe.2023.1099924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Sulfation of molecules in living organisms is a process that plays a key role in their functionality. In mammals, the sulfation of polysaccharides (glycosaminoglycans) that form the proteoglycans present in the extracellular matrix is particularly important. These polysaccharides, through their degree and sulfation pattern, are involved in a variety of biological events as signal modulators in communication processes between the cell and its environment. Because of this great biological importance, there is a growing interest in the development of efficient and sustainable sulfation processes, such as those based on the use of sulfotransferase enzymes. These enzymes have the disadvantage of being 3'-phosphoadenosine 5'-phosphosulfate (PAPS) dependent, which is expensive and difficult to obtain. In the present study, a modular multienzyme system was developed to allow the in situ synthesis of PAPS and its coupling to a chondroitin sulfation system. For this purpose, the bifunctional enzyme PAPS synthase 1 (PAPSS1) from Homo sapiens, which contains the ATP sulfurylase and APS kinase activities in a single protein, and the enzyme chondroitin 4-O-sulfotransferase (C4ST-1) from Rattus norvegicus were overexpressed in E. coli. The product formed after coupling of the PAPS generation system and the chondroitin sulfation module was analyzed by NMR.
Collapse
|