51
|
Colizzi M, Ruggeri M, Bhattacharyya S. Unraveling the Intoxicating and Therapeutic Effects of Cannabis Ingredients on Psychosis and Cognition. Front Psychol 2020; 11:833. [PMID: 32528345 PMCID: PMC7247841 DOI: 10.3389/fpsyg.2020.00833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Research evidence suggests a dose–response relationship for the association between cannabis use and risk of psychosis. Such relationship seems to reflect an increased risk of psychosis not only as a function of frequent cannabis use, but also of high-potency cannabis use in terms of concentration of Δ-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive component. This finding would be in line with the evidence that Δ9-THC administration induces transient psychosis-like symptoms in otherwise healthy individuals. Conversely, low-potency varieties would be less harmful because of their lower amount of Δ9-THC and potential compresence of another cannabinoid, cannabidiol (CBD), which seems to mitigate Δ9-THC detrimental effects. A growing body of studies begins to suggest that CBD may have not only protective effects against the psychotomimetic effects of Δ9-THC but even therapeutic properties on its own, opening new prospects for the treatment of psychosis. Despite being more limited, evidence of the effects of cannabis on cognition seems to come to similar conclusions, with increasing Δ9-THC exposure being responsible for the cognitive impairments attributed to recreational cannabis use while CBD preventing such effects and, when administered alone, enhancing cognition. Molecular evidence indicates that Δ9-THC and CBD may interact with cannabinoid receptors with almost opposite mechanisms, with Δ9-THC being a partial agonist and CBD an inverse agonist/antagonist. With the help of imaging techniques, pharmacological studies in vivo have been able to show opposite effects of Δ9-THC and CBD also on brain function. Altogether, they may account for the intoxicating and therapeutic effects of cannabis on psychosis and cognition.
Collapse
Affiliation(s)
- Marco Colizzi
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
52
|
Seiler N, Nguyen T, Yung A, O'Donoghue B. Terminology and assessment tools of psychosis: A systematic narrative review. Psychiatry Clin Neurosci 2020; 74:226-246. [PMID: 31846133 DOI: 10.1111/pcn.12966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
AIM Phenomena within the psychosis continuum that varies in frequency/duration/intensity have been increasingly identified. Different terms describe these phenomena, however there is no standardization within the terminology. This review evaluated the definitions and assessment tools of seven terms - (i) 'psychotic experiences'; (ii) 'psychotic-like experiences'; (iii) 'psychotic-like symptoms'; (iv) 'attenuated psychotic symptoms'; (v) 'prodromal psychotic symptoms'; (vi) 'psychotic symptomatology'; and (vii) 'psychotic symptoms'. METHODS EMBASE, MEDLINE, and CINAHL were searched during February-March 2019. Inclusion criteria included 1989-2019, full text, human, and English. Papers with no explicit definition or assessment tool, duplicates, conference abstracts, systematic reviews, meta-analyses, or no access were excluded. RESULTS A total of 2238 papers were identified and of these, 627 were included. Definitions and assessment tools varied, but some trends were found. Psychotic experiences and psychotic-like experiences were transient and mild, found in the general population and those at-risk. Psychotic-like symptoms were subthreshold and among at-risk populations and non-psychotic mental disorders. Attenuated psychotic symptoms were subthreshold but associated with distress, risk, and help-seeking. Prodromal psychotic symptoms referred to the prodrome of psychotic disorders. Psychotic symptomatology included delusions and hallucinations within psychotic disorders. Psychotic symptoms was the broadest term, encompassing a range of populations but most commonly involving hallucinations, delusions, thought disorder, and disorganization. DISCUSSION A model for conceptualizing the required terms is proposed and future directions needed to advance this field of research are discussed.
Collapse
Affiliation(s)
- Natalie Seiler
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,The University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| | - Tony Nguyen
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,The University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| | - Alison Yung
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| | - Brian O'Donoghue
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia.,Centre for Youth Mental Health, University of Melbourne, Parkville, Melbourne, Australia.,Orygen Youth Health, Parkville, Melbourne, Australia
| |
Collapse
|
53
|
Hindley G, Beck K, Borgan F, Ginestet CE, McCutcheon R, Kleinloog D, Ganesh S, Radhakrishnan R, D'Souza DC, Howes OD. Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 2020; 7:344-353. [PMID: 32197092 PMCID: PMC7738353 DOI: 10.1016/s2215-0366(20)30074-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Approximately 188 million people use cannabis yearly worldwide, and it has recently been legalised in 11 US states, Canada, and Uruguay for recreational use. The potential for increased cannabis use highlights the need to better understand its risks, including the acute induction of psychotic and other psychiatric symptoms. We aimed to investigate the effect of the cannabis constituent Δ9-tetrahydrocannabinol (THC) alone and in combination with cannabidiol (CBD) compared with placebo on psychiatric symptoms in healthy people. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, and PsycINFO for studies published in English between database inception and May 21, 2019, with a within-person, crossover design. Inclusion criteria were studies reporting symptoms using psychiatric scales (the Brief Psychiatric Rating Scale [BPRS] and the Positive and Negative Syndrome Scale [PANSS]) following the acute administration of intravenous, oral, or nasal THC, CBD, and placebo in healthy participants, and presenting data that allowed calculation of standardised mean change (SMC) scores for positive (including delusions and hallucinations), negative (such as blunted affect and amotivation), and general (including depression and anxiety) symptoms. We did a random-effects meta-analysis to assess the main outcomes of the effect sizes for total, positive, and negative PANSS and BPRS scores measured in healthy participants following THC administration versus placebo. Because the number of studies to do a meta-analysis on CBD's moderating effects was insufficient, this outcome was only systematically reviewed. This study is registered with PROSPERO, CRD42019136674. FINDINGS 15 eligible studies involving the acute administration of THC and four studies on CBD plus THC administration were identified. Compared with placebo, THC significantly increased total symptom severity with a large effect size (assessed in nine studies, with ten independent samples, involving 196 participants: SMC 1·10 [95% CI 0·92-1·28], p<0·0001); positive symptom severity (assessed in 14 studies, with 15 independent samples, involving 324 participants: SMC 0·91 [95% CI 0·68-1·14], p<0·0001); and negative symptom severity with a large effect size (assessed in 12 studies, with 13 independent samples, involving 267 participants: SMC 0·78 [95% CI 0·59-0·97], p<0·0001). In the systematic review, of the four studies evaluating CBD's effects on THC-induced symptoms, only one identified a significant reduction in symptoms. INTERPRETATION A single THC administration induces psychotic, negative, and other psychiatric symptoms with large effect sizes. There is no consistent evidence that CBD induces symptoms or moderates the effects of THC. These findings highlight the potential risks associated with the use of cannabis and other cannabinoids that contain THC for recreational or therapeutic purposes. FUNDING UK Medical Research Council, Maudsley Charity, Brain and Behavior Research Foundation, Wellcome Trust, and the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Guy Hindley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cedric E Ginestet
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Kleinloog
- Department of Intensive Care Medicine, Leiden University Medical Hospital, Leiden, Netherlands
| | - Suhas Ganesh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Deepak Cyril D'Souza
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and the Maudsley NHS Foundation Trust, London, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
54
|
A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sci 2020; 10:brainsci10020102. [PMID: 32069958 PMCID: PMC7071506 DOI: 10.3390/brainsci10020102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabis has been associated with deficits in memory performance. However, the neural correlates that may underpin impairments remain unclear. We carried out a systematic review of functional magnetic resonance imaging (fMRI) studies investigating brain functional alterations in cannabis users (CU) compared to nonusing controls while performing memory tasks, complemented with focused narrative reviews of relevant preclinical and human studies. Twelve studies employing fMRI were identified finding functional brain activation during memory tasks altered in CU. Memory performance studies showed CU performed worse particularly during verbal memory tasks. Longitudinal studies suggest that cannabis use may have a causal role in memory deficits. Preclinical studies have not provided conclusive evidence of memory deficits following cannabinoid exposure, although they have shown evidence of cannabinoid-induced structural and histological alteration. Memory performance deficits may be related to cannabis use, with lower performance possibly underpinned by altered functional activation. Memory impairments may be associated with the level of cannabis exposure and use of cannabis during developmentally sensitive periods, with possible improvement following cessation of cannabis use.
Collapse
|
55
|
van der Steur SJ, Batalla A, Bossong MG. Factors Moderating the Association Between Cannabis Use and Psychosis Risk: A Systematic Review. Brain Sci 2020; 10:E97. [PMID: 32059350 PMCID: PMC7071602 DOI: 10.3390/brainsci10020097] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates a relationship between cannabis use and psychosis risk. Specific factors, such as determinants of cannabis use or the genetic profile of cannabis users, appear to moderate this association. The present systematic review presents a detailed and up-to-date literature overview on factors that influence the relationship between cannabis use and psychosis risk. A systematic search was performed according to the PRISMA guidelines in MEDLINE and Embase, and 56 studies were included. The results show that, in particular, frequent cannabis use, especially daily use, and the consumption of high-potency cannabis are associated with a higher risk of developing psychosis. Moreover, several genotypes moderate the impact of cannabis use on psychosis risk, particularly those involved in the dopamine function, such as AKT1. Finally, cannabis use is associated with an earlier psychosis onset and increased risk of transition in individuals at a clinical high risk of psychosis. These findings indicate that changing cannabis use behavior could be a harm reduction strategy employed to lower the risk of developing psychosis. Future research should aim to further develop specific biomarkers and genetic profiles for psychosis, thereby contributing to the identification of individuals at the highest risk of developing a psychotic disorder.
Collapse
Affiliation(s)
| | | | - Matthijs G. Bossong
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, 3584CX Utrecht, The Netherlands
| |
Collapse
|
56
|
Daniju Y, Bossong MG, Brandt K, Allen P. Do the effects of cannabis on the hippocampus and striatum increase risk for psychosis? Neurosci Biobehav Rev 2020; 112:324-335. [PMID: 32057817 DOI: 10.1016/j.neubiorev.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
Cannabis use is associated with increased risk of psychotic symptoms and in a small number of cases it can lead to psychoses. This review examines the neurobiological mechanisms that mediate the link between cannabis use and psychosis risk. We use an established preclinical model of psychosis, the methylazoxymethanol acetate (MAM) rodent model, as a framework to examine if psychosis risk in some cannabis users is mediated by the effects of cannabis on the hippocampus, and this region's role in the regulation of mesolimbic dopamine. We also examine how cannabis affects excitatory neurotransmission known to regulate hippocampal neural activity and output. Whilst there is clear evidence that cannabis/cannabinoids can affect hippocampal and medial temporal lobe function and structure, the evidence that cannabis/cannabinoids increase striatal dopamine function is less robust. There is limited evidence that cannabis use affects cortical and striatal glutamate levels, but there are currently too few studies to draw firm conclusions. Future work is needed to test the MAM model in relation to cannabis using multimodal neuroimaging approaches.
Collapse
Affiliation(s)
- Y Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - M G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands
| | - K Brandt
- Department of Psychology, University of Roehampton, London, UK
| | - P Allen
- Department of Psychology, University of Roehampton, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Icahn School of Medicine at Mount Sinai Hospital, New York, USA.
| |
Collapse
|
57
|
Halladay JE, Munn C, Boyle M, Jack SM, Georgiades K. Temporal Changes in the Cross-Sectional Associations between Cannabis Use, Suicidal Ideation, and Depression in a Nationally Representative Sample of Canadian Adults in 2012 Compared to 2002. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:115-123. [PMID: 31177831 PMCID: PMC6997972 DOI: 10.1177/0706743719854071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND With the recent legalization of nonmedical cannabis in Canada, it is important to document previous associations between cannabis use and major depressive episode and suicidal ideation, as well as the extent to which these associations have changed over time. METHODS This study uses pooled data from the 2002 and 2012 Canadian Community Health Survey's Mental Health Component, which are repeated cross-sectional surveys of nationally representative samples of Canadians 15 to 60 years of age (n = 43,466). Binary logistic regression was performed, applying weighting and bootstrapping, to examine the association between at least monthly use of cannabis and past 12-month suicidal ideation and major depressive episode (MDE). RESULTS At least monthly nonmedical cannabis use was associated with an increased odds of MDE and suicidal ideation, and both associations strengthened in 2012 compared to 2002. Canadians using cannabis at least once a month in 2012 had 1.59 (95% confidence interval [CI], 1.11 to 2.27) times the odds of experiencing suicidal ideation and 1.55 (95% CI, 1.12 to 2.13) times the odds of experiencing MDE compared to those who used cannabis at least once a month in 2002. This temporal change remained after controlling for other substance use. CONCLUSIONS Monthly cannabis use was consistently related to both suicidal ideation and MDE, and these associations were stronger in 2012 compared to 2002. The findings of this study provide a baseline for the association between cannabis use and suicide and depression in the Canadian population that should be reevaluated now that nonmedical cannabis has been legalized.
Collapse
Affiliation(s)
- Jillian E Halladay
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario
| | - Catharine Munn
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario.,Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton Ontario
| | - Michael Boyle
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario.,Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton Ontario.,Offord Centre for Child Studies, McMaster University, Hamilton, Ontario
| | - Susan M Jack
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario.,Offord Centre for Child Studies, McMaster University, Hamilton, Ontario.,School of Nursing, McMaster University, Hamilton, Ontario
| | - Katholiki Georgiades
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario.,Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton Ontario.,Offord Centre for Child Studies, McMaster University, Hamilton, Ontario
| |
Collapse
|
58
|
Gaughran F, Stahl D, Patel A, Ismail K, Smith S, Greenwood K, Atakan Z, Gardner-Sood P, Stringer D, Hopkins D, Lally J, Forti MD, Stubbs B, Lowe P, Arbuthnott M, Heslin M, David AS, Murray RM. A health promotion intervention to improve lifestyle choices and
health outcomes in people with psychosis: a research programme including the
IMPaCT RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2020. [DOI: 10.3310/pgfar08010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background
People with psychotic disorders have reduced life expectancy largely because
of physical health problems, especially cardiovascular disease, that are
complicated by the use of tobacco and cannabis.
Objectives
We set out to (1) chart lifestyle and substance use choices and the emergence
of cardiometabolic risk from the earliest presentation with psychosis, (2)
develop a pragmatic health promotion intervention integrated within the
clinical teams to improve the lifestyle choices and health outcomes of
people with psychosis and (3) evaluate the clinical effectiveness and
cost-effectiveness of that health promotion intervention.
Design
We performed a longitudinal cohort study of people presenting with their
first episode of psychosis in three mental health trusts and followed up
participants for 1 year [work package 1, physical health and substance use
measures in first episode of psychosis (PUMP)]. We used an iterative Delphi
methodology to develop and refine a modular health promotion intervention,
improving physical health and reducing substance use in psychosis (IMPaCT)
therapy, which was to be delivered by the patient’s usual care
co-ordinator and used motivational interviewing techniques and
cognitive–behavioural therapy to improve health choices of people
with psychosis (work package 2). We then conducted a multicentre, two-arm,
parallel-cluster, randomised controlled trial to determine the clinical
effectiveness and cost-effectiveness of using the intervention with people
with established psychosis (work package 3: IMPaCT randomised controlled
trial) in five UK mental health trusts. The work took place between 2008 and
2014.
Participants
All people aged between 16 and 65 years within 6 months of their first
presentation with a non-organic psychosis and who were proficient in English
were eligible for inclusion in the PUMP study. Participants in the work
package 2 training development were staff selected from a range of settings,
working with psychosis. Participants in the phase 3 Delphi consensus and
manual development comprised three expert groups of (1)
therapists/researchers recruited from the local and national community, (2)
clinicians and (3) service users, each of whom took part in two iterative
review and feedback sessions. For work package 3, IMPaCT randomised
controlled trial, care co-ordinators in participating community mental
health teams who were permanently employed and had a minimum of four
eligible patients (i.e. aged between 18 and 65 years with a diagnosis of a
psychotic disorder) on their caseload were eligible to participate. In
studies 1 and 3, patient participants were ineligible if they were pregnant
or had a major illness that would have had an impact on their metabolic
status or if they had a significant learning disability. All participants
were included in the study only after giving written confirmed consent.
Main outcome measures
Cardiometabolic risk markers, including rates of obesity and central obesity,
and levels of glycated haemoglobin (HbA1c) and lipids, were the
main outcomes in work package 1 (PUMP), with descriptive data presented on
substance use. Our primary outcome measure for the IMPaCT randomised
controlled trial was the physical or mental health component Short Form
questionnaire-36 items quality-of-life scores at 12 months.
Results
Obesity rates rose from 18% at first presentation with psychosis to 24% by 1
year, but cardiometabolic risk was not associated with baseline lifestyle
and substance use choices. Patterns of increase in the levels of
HbA1c over the year following first presentation showed
variation by ethnic group. We recruited 104 care co-ordinators, of whom 52
(with 213 patients) were randomised to deliver IMPaCT therapy and 52 (with
193 patients) were randomised to deliver treatment as usual, in keeping with
our power calculations. Of these 406 participants with established
psychosis, 318 (78%) and 301 (74%) participants, respectively, attended the
12- and 15-month follow-ups. We found no significant effect of IMPaCT
therapy compared with treatment as usual on the physical or mental health
component Short Form questionnaire-36 items scores at either time point in
an intention-to-treat analysis [physical health score (‘d’)
–0.17 at 12 months and –0.09 at 15 months; mental health score
(‘d’) 0.03 at 12 months and –0.05 at 15 months] or on
costs. Nor did we find an effect on other cardiovascular risk indicators,
including diabetes, except in the case of high-density lipoprotein
cholesterol, which showed a trend for greater benefit with IMPaCT therapy
than with treatment as usual (treatment effect 0.085, 95% confidence
interval 0.007 to 0.16; p = 0.034).
Limitations
Follow-up in work package 1 was challenging, with 127 out of 293 participants
attending; however, there was no difference in cardiometabolic measures or
demographic factors at baseline between those who attended for follow-up and
those who did not. In work package 3, the IMPaCT randomised controlled
trial, care co-ordinators struggled to provide additional time to their
patients that was devoted to the health promotion intervention on top of
their usual clinical care contact with them.
Conclusions
Cardiometabolic risk is prominent even soon after first presentation with
psychosis and increases over time. Lifestyle choices and substance use
habits at first presentation do not predict those who will be most
cardiometabolically compromised 1 year later. Training and supervising care
co-ordinators to deliver a health promotion intervention to their own
patients on top of routine care is not effective in the NHS for improving
quality of life or reducing cardiometabolic risk.
Future work
Further work is needed to develop and evaluate effective, cost-effective and
affordable ways of preventing the emergence of and reversing existing
cardiometabolic risk indicators in people with psychosis.
Trial registration
Current Controlled Trials ISRCTN58667926.
Funding
This project was funded by the National Institute for Health Research (NIHR)
Programme Grants for Applied Research programme and will be published in
full in Programme Grants for Applied Research; Vol. 8, No.
1. See the NIHR Journals Library website for further project
information.
Collapse
Affiliation(s)
- Fiona Gaughran
- National Psychosis Service, South London and Maudsley NHS
Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
| | - Daniel Stahl
- Department of Biostatistics and Health Informatics, Institute
of Psychiatry, Psychology & Neuroscience, King’s College
London, London, UK
| | - Anita Patel
- Anita Patel Health Economics Consulting Ltd, London, UK
- Centre for Primary Care and Public Health, Blizard Institute,
Queen Mary University of London, London, UK
| | - Khalida Ismail
- Department of Psychological Medicine, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
| | - Shubulade Smith
- Department of Forensic and Neurodevelopmental Science,
Institute of Psychiatry, Psychology & Neuroscience, King’s
College London, London, UK
- Forensic Services, South London and Maudsley NHS Foundation
Trust, London, UK
| | - Kathryn Greenwood
- Sussex Partnership NHS Foundation Trust, Worthing, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Zerrin Atakan
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
| | - Poonam Gardner-Sood
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
| | - Dominic Stringer
- Department of Biostatistics and Health Informatics, Institute
of Psychiatry, Psychology & Neuroscience, King’s College
London, London, UK
| | - David Hopkins
- Institute of Diabetes, Endocrinology and Obesity, King’s
Health Partners, London, UK
| | - John Lally
- National Psychosis Service, South London and Maudsley NHS
Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
- Department of Psychiatry, Royal College of Surgeons in Ireland,
Beaumont Hospital, Dublin, Ireland
| | - Marta Di Forti
- Social, Genetic & Developmental Psychiatry Centre,
Institute of Psychiatry, Psychology & Neuroscience, King’s
College, London, UK
- Department of Psychiatry, Experimental Biomedicine and Clinical
Neuroscience (BIONEC), University of Palermo, Palermo, Italy
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
- Physiotherapy Department, South London and Maudsley NHS
Foundation Trust, London, UK
| | | | | | - Margaret Heslin
- King’s Health Economics, Health Service & Population
Research Department, Institute of Psychiatry, Psychology &
Neuroscience, King’s College London, London, UK
| | - Anthony S David
- Institute of Mental Health, Division of Psychiatry, University
College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology & Neuroscience, King’s College
London, London, UK
- Department of Psychiatry, Experimental Biomedicine and Clinical
Neuroscience (BIONEC), University of Palermo, Palermo, Italy
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
59
|
Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Mol Psychiatry 2020; 25:3231-3240. [PMID: 30770892 PMCID: PMC7714685 DOI: 10.1038/s41380-019-0374-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 01/31/2023]
Abstract
The neurobiological mechanisms underlying the association between cannabis use and acute or long-lasting psychosis are not completely understood. While some evidence suggests altered striatal dopamine may underlie the association, direct evidence that cannabis use affects either acute or chronic striatal dopamine is inconclusive. In contrast, pre-clinical research suggests that cannabis may affect dopamine via modulation of glutamate signaling. A double-blind, randomized, placebo-controlled, crossover design was used to investigate whether altered striatal glutamate, as measured using proton magnetic resonance spectroscopy, underlies the acute psychotomimetic effects of intravenously administered delta-9-tetrahydrocannabinol (Δ9-THC; 1.19 mg/2 ml), the key psychoactive ingredient in cannabis, in a set of 16 healthy participants (7 males) with modest previous cannabis exposure. Compared to placebo, acute administration of Δ9-THC significantly increased Glutamate (Glu) + Glutamine (Gln) metabolites (Glx) in the left caudate head (P = 0.027). Furthermore, compared to individuals who were not sensitive to the psychotomimetic effects of Δ9-THC, individuals who developed transient psychotic-like symptoms (~70% of the sample) had significantly lower baseline Glx (placebo; P 7= 0.023) and a 2.27-times higher increase following Δ9-THC administration. Lower baseline Glx values (r = -0.55; P = 0.026) and higher previous cannabis exposure (r = 0.52; P = 0.040) were associated with a higher Δ9-THC-induced Glx increase. These results suggest that an increase in striatal glutamate levels may underlie acute cannabis-induced psychosis while lower baseline levels may be a marker of greater sensitivity to its acute psychotomimetic effects and may have important public health implications.
Collapse
|
60
|
Blest-Hopley G, Colizzi M, Giampietro V, Bhattacharyya S. Is the Adolescent Brain at Greater Vulnerability to the Effects of Cannabis? A Narrative Review of the Evidence. Front Psychiatry 2020; 11:859. [PMID: 33005157 PMCID: PMC7479242 DOI: 10.3389/fpsyt.2020.00859] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cannabis use during the critical neurodevelopmental period of adolescence, may lead to brain structural, functional, and histological alterations that may underpin some of the longer-term behavioral and psychological harms associated with it. The endocannabinoid system performs a key regulatory and homeostatic role, that undergoes developmental changes during adolescence making it potentially more susceptible to the effects of exposure to cannabis during adolescence. Here, we synthesize evidence from human studies of adolescent cannabis users showing alterations in cognitive performance as well as in brain structure and function with relevant preclinical evidence to summarize the current state of knowledge. We also focus on the limited evidence that speaks to the hypothesis that cannabis use during adolescence, may pose a greater risk than use during adulthood, identify gaps in current evidence and suggest directions for new research. Existing literature is consistent with the association of cannabis use during adolescence and neurological changes. Adolescence cannabis users show altered functional connectivity within known functional circuits, that may underlie inefficient recruitment of brain regions, as largely increased functional activation has been observed compared to controls. This disruption in some cases may contribute to the development of adverse mental health conditions; increasing the chances or accelerating the onset, of their development. Preclinical evidence, further supports disruption from cannabis use being specific to the developmental period. Future studies are required to better investigate adolescent cannabis use with more accuracy using better defined groups or longitudinal studies and examine the permanency of these changes following caseation of use. Furthermore, research is required to identify heritable risk factors to cannabis use. There is a need for caution when considering the therapeutic potential of cannabis for adolescence and particularly in public discourse leading to potential trivialization of possible harm from cannabis use in adolescence. Current evidence indicates that adolescence is a sensitive period during which cannabis use may result in adverse neurocognitive effects that appear to show a level of permanency into adulthood.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
61
|
Davies C, Bhattacharyya S. Cannabidiol as a potential treatment for psychosis. Ther Adv Psychopharmacol 2019; 9:2045125319881916. [PMID: 31741731 PMCID: PMC6843725 DOI: 10.1177/2045125319881916] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Psychotic disorders such as schizophrenia are heterogeneous and often debilitating conditions that contribute substantially to the global burden of disease. The introduction of dopamine D2 receptor antagonists in the 1950s revolutionised the treatment of psychotic disorders and they remain the mainstay of our treatment arsenal for psychosis. However, traditional antipsychotics are associated with a number of side effects and a significant proportion of patients do not achieve an adequate remission of symptoms. There is therefore a need for novel interventions, particularly those with a non-D2 antagonist mechanism of action. Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, has emerged as a potential novel class of antipsychotic with a unique mechanism of action. In this review, we set out the prospects of CBD as a potential novel treatment for psychotic disorders. We first review the evidence from the perspective of preclinical work and human experimental and neuroimaging studies. We then synthesise the current evidence regarding the clinical efficacy of CBD in terms of positive, negative and cognitive symptoms, safety and tolerability, and potential mechanisms by which CBD may have antipsychotic effects.
Collapse
Affiliation(s)
- Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, 6th Floor, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
62
|
Reid S, Bhattacharyya S. Antipsychotic treatment failure in patients with psychosis and co-morbid cannabis use: A systematic review. Psychiatry Res 2019; 280:112523. [PMID: 31450032 DOI: 10.1016/j.psychres.2019.112523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023]
Abstract
Whilst the effects of cannabis preceding psychosis onset are well established, an effect post-onset is less clear. Emerging evidence suggests that cannabis use is associated with increased relapse outcomes possibly because of determinants, antipsychotic treatment failure and medication adherence, that are not mutually exclusive. Due to the paucity of literature on antipsychotic treatment failure an association with cannabis remains conjectural. This review sought to summarise current evidence regarding the effect of cannabis use on antipsychotic treatment failure among users and non-users with psychosis. Ovid databases (Embase, Journals@Ovid Full Text, OvidMEDLINE® In-Process and Other Non-Indexed Citations and PsycINFO) were searched to identify relevant articles. Seven articles met eligibility criteria. Cannabis use was associated with the following deleterious outcomes increased: odds of non-remission, prescription of unique antipsychotic medications, cumulative prescription of Clozapine and poor treatment trajectories. One study reported similar life-time, but lower past-year, rates of cannabis use in those prescribed Clozapine. Another study reported differences between groups for chlorpromazine equivalent doses for long-term Olanzapine prescription. Improved methodologies are warranted due to a lack of well-designed prospective studies and heterogeneity of key variables. There remains, despite research paucity, the need to encourage early cannabis cessation and higher-quality research to inform clinical practice.
Collapse
Affiliation(s)
- Sam Reid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
63
|
Minichino A, Senior M, Brondino N, Zhang SH, Godwlewska BR, Burnet PW, Cipriani A, Lennox BR. Measuring Disturbance of the Endocannabinoid System in Psychosis: A Systematic Review and Meta-analysis. JAMA Psychiatry 2019; 76:914-923. [PMID: 31166595 PMCID: PMC6552109 DOI: 10.1001/jamapsychiatry.2019.0970] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE The endocannabinoid system (ECS) is a lipid-based endogenous signaling system. Its relevance to psychosis is through the association between cannabis use and the onset and course of illness and through the antipsychotic properties of cannabidiol, a potential ECS enhancer. OBJECTIVE To conduct a systematic review and meta-analysis of the blood and cerebrospinal fluid (CSF) measures of the ECS in psychotic disorders. DATA SOURCES Web of Science and PubMed were searched from inception through June 13, 2018. The articles identified were reviewed, as were citations to previous publications and the reference lists of retrieved articles. STUDY SELECTION Original articles were included that reported blood or CSF measures of ECS activity in patients with psychotic illnesses and in healthy controls. DATA EXTRACTION AND SYNTHESIS PRISMA guidelines, independent extraction by multiple observers, and random-effects meta-analysis were used. Heterogeneity was assessed with the I2 index. Sensitivity analyses tested the robustness of the results. MAIN OUTCOMES AND MEASURES The clinical relevance of ECS modifications in psychotic disorders was investigated by (1) a quantitative synthesis of the differences in blood and CSF markers of the ECS between patients and healthy controls, and (2) a qualitative synthesis of the association of these markers with symptom severity, stage of illness, and response to treatment. RESULTS A total of 18 studies were included. Three individual meta-analyses were performed to identify the differences in ECS markers between people with schizophrenia and healthy controls. Five studies, including 226 patients and 385 controls, reported significantly higher concentrations of anandamide in the CSF of patients than controls (standardized mean difference [SMD], 0.97; 95% CI, 0.67-1.26; P < .001; I2 = 54.8%). In 9 studies, with 344 patients and 411 controls, significantly higher anandamide levels in blood were found in patients, compared with controls (SMD, 0.55; 95% CI, 0.05-1.04; P = .03; I2 = 89.6%). In 3 studies, involving 88 patients and 179 controls, a significantly higher expression of type 1 cannabinoid receptors on peripheral immune cells was reported in patients compared with controls (SMD, 0.57; 95% CI, 0.31-0.84; P < .001; I2 = 0%). Higher ECS tone was found at an early stage of illness in individuals who were antipsychotic naïve or free, and it had an inverse association with symptom severity and was normalized after successful treatment. Moderate to high level of heterogeneity in methods was found between studies. CONCLUSIONS AND RELEVANCE Testing clinically relevant markers of the ECS in the blood and CSF of people with psychotic illness appears possible, and these markers provide useful biomarkers for the psychotic disorder; however, not all studies accounted for important variables, such as cannabis use. TRIAL REGISTRATION PROSPERO identifier: CRD42018099863.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Morwenna Senior
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Natascia Brondino
- Section of Psychiatry, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sam H Zhang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | | - Philip W.J Burnet
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Belinda R. Lennox
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
64
|
Bossong MG, van Hell HH, Schubart CD, van Saane W, Iseger TA, Jager G, van Osch MJP, Jansma JM, Kahn RS, Boks MP, Ramsey NF. Acute effects of ∆9-tetrahydrocannabinol (THC) on resting state brain function and their modulation by COMT genotype. Eur Neuropsychopharmacol 2019; 29:766-776. [PMID: 30975584 DOI: 10.1016/j.euroneuro.2019.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 01/07/2023]
Abstract
Cannabis produces a broad range of acute, dose-dependent psychotropic effects. Only a limited number of neuroimaging studies have mapped these effects by examining the impact of cannabis on resting state brain neurophysiology. Moreover, how genetic variation influences the acute effects of cannabis on resting state brain function is unknown. Here we investigated the acute effects of ∆9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, on resting state brain neurophysiology, and their modulation by catechol-methyl-transferase (COMT) Val158Met genotype. Thirty-nine healthy volunteers participated in a pharmacological MRI study, where we applied Arterial Spin Labelling (ASL) to measure perfusion and functional MRI to assess resting state connectivity. THC increased perfusion in bilateral insula, medial superior frontal cortex, and left middle orbital frontal gyrus. This latter brain area showed significantly decreased connectivity with the precuneus after THC administration. THC effects on perfusion in the left insula were significantly related to subjective changes in perception and relaxation. These findings indicate that THC enhances metabolism and thus neural activity in the salience network. Furthermore, results suggest that recruitment of brain areas within this network is involved in the acute effects of THC. Resting state perfusion was modulated by COMT genotype, indicated by a significant interaction effect between drug and genotype on perfusion in the executive network, with increased perfusion after THC in Val/Met heterozygotes only. This finding suggests that prefrontal dopamine levels are involved in the susceptibility to acute effects of cannabis.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Hendrika H van Hell
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Chris D Schubart
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Psychiatry, Tergooi Hospital, Van Riebeeckweg 212, 1213 XZ Hilversum, The Netherlands
| | - Wesley van Saane
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Tabitha A Iseger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom; Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands; Research Institute Brainclinics, Bijleveldsingel 32, 6524 AD Nijmegen, The Netherlands
| | - Gerry Jager
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Matthias J P van Osch
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - J Martijn Jansma
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029-6574, United States
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
65
|
Descriptive Psychopathology of the Acute Effects of Intravenous Delta-9-Tetrahydrocannabinol Administration in Humans. Brain Sci 2019; 9:brainsci9040093. [PMID: 31027219 PMCID: PMC6523579 DOI: 10.3390/brainsci9040093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/04/2022] Open
Abstract
Background: Cannabis use can increase the risk of psychosis, and the acute administration of its key psychoactive ingredient, delta-9-tetrahydrocannabinol (∆9-THC), can induce transient psychotomimetic symptoms. Methods: A double-blind, randomized, placebo-controlled crossover design was used to investigate the symptomatic effects of acute intravenous administration of ∆9-THC (1.19 mg/2 mL) in 16 healthy participants (seven males) with modest previous cannabis exposure. Results: In the 20 min following acute ∆9-THC administration, symptomatic effects of at least mild severity were present in 94% of the cohort, with moderate to severe symptoms having a much lower prevalence (19%). Nearly one-third (31%) of the volunteers were still experiencing protracted mild symptomatic effects 2.5 h after exposure to ∆9-THC. Compared to the Δ9-THC challenge, most of the study participants did not experience any symptomatic effects following placebo administration (62%). Acute physical reactions were 2.5 times more frequent after Δ9-THC (31%) than placebo (12%). Male and female participants differed in terms of acute Δ9-THC effects, with some negative symptoms occurring more frequently in female (56% to 89%) than male participants (0% to 29%), and acute physical reactions occurring exclusively in the female gender (56%). Conclusions: These results have implications for future research, also in light of cannabis being the most widely used illicit drug.
Collapse
|
66
|
Δ-9-Tetrahydrocannabinol and Cannabidiol produce dissociable effects on prefrontal cortical executive function and regulation of affective behaviors. Neuropsychopharmacology 2019; 44:817-825. [PMID: 30538288 PMCID: PMC6372719 DOI: 10.1038/s41386-018-0282-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 11/16/2018] [Indexed: 11/08/2022]
Abstract
The use of cannabis for therapeutic and recreational purposes is growing exponentially. Nevertheless, substantial questions remain concerning the potential cognitive and affective side-effects associated with cannabis exposure. In particular, the effects of specific marijuana-derived phytocannabinoids on neural regions such as the prefrontal cortex (PFC) are of concern, given the role of the PFC in both executive cognitive function and affective processing. The main biologically active phytocannabinoids, ∆-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), interact with multiple neurotransmitter systems important for these processes directly within the PFC. Considerable evidence has demonstrated that acute or chronic THC exposure may induce psychotomimetic effects, whereas CBD has been shown to produce potentially therapeutic effects for both psychosis and/or anxiety-related symptoms. Using an integrative combination of cognitive and affective behavioral pharmacological assays in rats, we report that acute intra-PFC infusions of THC produce anxiogenic effects while producing no impairments in executive function. In contrast, acute infusions of intra-PFC CBD impaired attentional set-shifting and spatial working memory, without interfering with anxiety or sociability behaviors. In contrast, intra-PFC CBD reversed the cognitive impairments induced by acute glutamatergic antagonism within the PFC, and blocked the anxiogenic properties of THC, suggesting that the therapeutic properties of CBD within the PFC may be present only during pathologically aberrant states within the PFC. Interestingly, the effects of PFC THC vs. CBD were found to be mediated through dissociable CB1 vs. 5-HT1A-dependent receptor signaling mechanisms, directly in the PFC.
Collapse
|
67
|
Spinella TC, Stewart SH, Barrett SP. Context matters: Characteristics of solitary versus social cannabis use. Drug Alcohol Rev 2019; 38:316-320. [PMID: 30779237 DOI: 10.1111/dar.12912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
INTRODUCTION AND AIMS Given the increase in cannabis availability and use in North America, identification of risk factors for cannabis use and dependence is paramount. One factor that may be associated with various cannabis-related adverse outcomes is the context in which it is used. This secondary analysis study sought to examine the extent to which the social context of cannabis use is related to patterns of use and associated harms. DESIGN AND METHODS One hundred and eighty-eight adult cannabis users were community-recruited in Halifax, Canada. Participants took part in a face-to-face structured interview where they provided information about the social context of their most recent cannabis-using occasion and about their patterns of, and motives for, cannabis use. RESULTS Compared to individuals reporting their most recent cannabis-using occasion as social, solitary users (n = 55) were significantly more likely to screen positive for psychosis, endorse more symptoms of cannabis abuse/dependence, report using cannabis to cope, and use cannabis on more days within the previous 30 days. On the other hand, social users were significantly more likely to report using alcohol in addition to cannabis during their most recent cannabis-using occasion (all P < 0.05). DISCUSSION AND CONCLUSIONS Results suggest that solitary cannabis use may be associated with specific motives for use and future adverse consequences. Findings from this study serve as a guide for future investigations which could ultimately inform public policy and the development of targeted harm-reduction strategies.
Collapse
Affiliation(s)
- Toni C Spinella
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| | - Sherry H Stewart
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Sean P Barrett
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Canada
| |
Collapse
|
68
|
Abstract
BACKGROUND Although alterations in medial temporal lobe structures have been previously associated with use of cannabis, one of the most widely used illicit drugs, whether such alterations are a cause or effect of cannabis use has been unclear. METHODS In this cross-sectional observational study involving 404 twins/siblings, we have compared cortical thickness and surface area between groups of gender-matched sibling-pairs (concordant cannabis unexposed, concordant exposed and discordant for cannabis exposure) using permutation tests after controlling for potential confounds. Bi-variate polygenic model was used to assess the genetic and environmental contributions underlying cortical morphological phenotypes and frequency of cannabis use. RESULTS Cortical thickness of the right entorhinal cortex was significantly lower in the concordant exposed siblings compared to both discordant unexposed and discordant exposed groups [false discovery rate (FDR)-corrected, q < 0.05]. The association between the right entorhinal cortex thickness and frequency of cannabis use is due to the contribution of significant shared additive genetic (ρg = -0.19 ± 0.08; p = 0.02) factors but not unique environment (ρe = 0.05 ± 0.09; p = 0.53). Significantly lower surface area of the right entorhinal cortex in discordant exposed group compared with the discordant unexposed group furnishes preliminary evidence in support of causal effect of cannabis use (FDR-corrected, q < 0.05). However, bi-variate polygenic model-based analysis did not show any significant effect. CONCLUSIONS Shared genetic liability may underlie the association between cannabis exposure and thinner right entorhinal cortex. Prospective longitudinal studies are necessary to definitively disentangle the cause-effect relationships of cannabis use.
Collapse
Affiliation(s)
- Subhadip Paul
- Institute of Psychiatry,Psychology & Neuroscience,King's College London,UK
| | | |
Collapse
|
69
|
Bhattacharyya S, Sainsbury T, Allen P, Nosarti C, Atakan Z, Giampietro V, Brammer M, McGuire PK. Increased hippocampal engagement during learning as a marker of sensitivity to psychotomimetic effects of δ-9-THC. Psychol Med 2018; 48:2748-2756. [PMID: 29502548 DOI: 10.1017/s0033291718000387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cannabis and its main psychoactive ingredient δ-9-tetrahydrocannibidiol (THC) can induce transient psychotic symptoms in healthy individuals and exacerbate them in those with established psychosis. However, not everyone experience these effects, suggesting that certain individuals are particularly susceptible. The neural basis of this sensitivity to the psychotomimetic effects of THC is unclear. METHODS We investigated whether individuals who are sensitive to the psychotomimetic effects of THC (TP) under experimental conditions would show differential hippocampal activation compared with those who are not (NP). We studied 36 healthy males under identical conditions under the influence of placebo or THC (10 mg) given orally, on two separate occasions, in a pseudo-randomized, double-blind, repeated measures, within-subject, cross-over design, using psychopathological assessments and functional MRI while they performed a verbal learning task. They were classified into those who experienced transient psychotic symptoms (TP; n = 14) following THC administration and those who did not (NP; n = 22). RESULTS Under placebo conditions, there was significantly greater engagement of the left hippocampus (p < 0.001) in the TP group compared with the NP group during verbal encoding, which survived leave-one-out analysis. The level of hippocampal activation was directly correlated (Spearman's ρ = 0.44, p = 0.008) with the severity of transient psychotic symptoms induced by THC. This difference was not present when we compared two subgroups from the same sample that were defined by sensitivity to anxiogenic effects of THC. CONCLUSIONS These results suggest that altered hippocampal activation during verbal encoding may serve as a marker of sensitivity to the acute psychotomimetic effects of THC.
Collapse
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies,King's College London, Institute of Psychiatry,De Crespigny Park, London, SE5 8AF,UK
| | - Thomas Sainsbury
- Department of Psychosis Studies,King's College London, Institute of Psychiatry,De Crespigny Park, London, SE5 8AF,UK
| | - Paul Allen
- Department of Psychology,University of Roehampton,UK
| | - Chiara Nosarti
- Department of Psychosis Studies,King's College London, Institute of Psychiatry,De Crespigny Park, London, SE5 8AF,UK
| | - Zerrin Atakan
- Department of Psychosis Studies,King's College London, Institute of Psychiatry,De Crespigny Park, London, SE5 8AF,UK
| | - Vincent Giampietro
- Department of Neuroimaging,King's College London, Institute of Psychiatry,PO Box 089, De Crespigny Park, London, SE5 8AF,UK
| | - Michael Brammer
- Department of Neuroimaging,King's College London, Institute of Psychiatry,PO Box 089, De Crespigny Park, London, SE5 8AF,UK
| | - P K McGuire
- Department of Psychosis Studies,King's College London, Institute of Psychiatry,De Crespigny Park, London, SE5 8AF,UK
| |
Collapse
|
70
|
Sagar KA, Gruber SA. Interactions between recreational cannabis use and cognitive function: lessons from functional magnetic resonance imaging. Ann N Y Acad Sci 2018; 1451:42-70. [PMID: 30426517 DOI: 10.1111/nyas.13990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
Abstract
Cannabis use is becoming increasingly popular as a growing number of states pass legislation to legalize cannabis and cannabis-derived products for recreational and/or medical purposes. Given the widespread use of cannabis, it is critical to understand the neural consequences related to cannabis use. In this review, we focus on evidence from functional magnetic resonance imaging studies that document acute and residual alterations in brain function during tasks spanning a variety of cognitive domains: executive function, attention and working memory, memory, motor skills, error monitoring, and reward and affective processing. Although it is clear that cannabis affects brain function, the findings are somewhat inconsistent; variables that potentially affect study outcomes are outlined, including a discussion of the impact of chronological age and age of cannabis onset as well as length of abstinence at the time of assessment, which are important considerations when measuring cannabis use patterns. Inherent differences between recreational/adult cannabis use versus use for medical purposes are also discussed, given their importance to public policy decisions.
Collapse
Affiliation(s)
- Kelly A Sagar
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Boston University School of Medicine, Boston, Massachusetts
| | - Staci A Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
71
|
Fonzo GA. Diminished positive affect and traumatic stress: A biobehavioral review and commentary on trauma affective neuroscience. Neurobiol Stress 2018; 9:214-230. [PMID: 30450386 PMCID: PMC6234277 DOI: 10.1016/j.ynstr.2018.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022] Open
Abstract
Post-traumatic stress manifests in disturbed affect and emotion, including exaggerated severity and frequency of negative valence emotions, e.g., fear, anxiety, anger, shame, and guilt. However, another core feature of common post-trauma psychopathologies, i.e. post-traumatic stress disorder (PTSD) and major depression, is diminished positive affect, or reduced frequency and intensity of positive emotions and affective states such as happiness, joy, love, interest, and desire/capacity for interpersonal affiliation. There remains a stark imbalance in the degree to which the neuroscience of each affective domain has been probed and characterized in PTSD, with our knowledge of post-trauma diminished positive affect remaining comparatively underdeveloped. This remains a prominent barrier to realizing the clinical breakthroughs likely to be afforded by the increasing availability of neuroscience assessment and intervention tools. In this review and commentary, the author summarizes the modest extant neuroimaging literature that has probed diminished positive affect in PTSD using reward processing behavioral paradigms, first briefly reviewing and outlining the neurocircuitry implicated in reward and positive emotion and its interrelationship with negative emotion and negative valence circuitry. Specific research guidelines are then offered to best and most efficiently develop the knowledge base in this area in a way that is clinically translatable and will exert a positive impact on routine clinical care. The author concludes with the prediction that the development of an integrated, bivalent theoretical and predictive model of how trauma impacts affective neurocircuitry to promote post-trauma psychopathology will ultimately lead to breakthroughs in how trauma treatments are conceptualized mechanistically and developed pragmatically.
Collapse
Affiliation(s)
- Gregory A. Fonzo
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, 401 Quarry Road, MC 5722, Stanford, CA, 94305, USA.
| |
Collapse
|
72
|
Bhattacharyya S, Wilson R, Appiah-Kusi E, O’Neill A, Brammer M, Perez J, Murray R, Allen P, Bossong MG, McGuire P. Effect of Cannabidiol on Medial Temporal, Midbrain, and Striatal Dysfunction in People at Clinical High Risk of Psychosis: A Randomized Clinical Trial. JAMA Psychiatry 2018; 75:1107-1117. [PMID: 30167644 PMCID: PMC6248101 DOI: 10.1001/jamapsychiatry.2018.2309] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Importance Cannabidiol (CBD) has antipsychotic effects in humans, but how these are mediated in the brain remains unclear. Objective To investigate the neurocognitive mechanisms that underlie the therapeutic effects of CBD in psychosis. Design, Setting, and Participants In this parallel-group, double-blind, placebo-controlled randomized clinical trial conducted at the South London and Maudsley NHS Foundation Trust in London, United Kingdom, 33 antipsychotic medication-naive participants at clinical high risk (CHR) of psychosis and 19 healthy control participants were studied. Data were collected from July 2013 to October 2016 and analyzed from November 2016 to October 2017. Interventions A total of 16 participants at CHR of psychosis received a single oral dose of 600 mg of CBD, and 17 participants at CHR received a placebo. Control participants were not given any drug. All participants were then studied using functional magnetic resonance imaging (fMRI) while performing a verbal learning task. Main Outcomes and Measures Brain activation during verbal encoding and recall, indexed using the blood oxygen level-dependent hemodynamic response fMRI signal. Results Of the 16 participants in the CBD group, 6 (38%) were female, and the mean (SD) age was 22.43 (4.95) years; of 17 in the placebo group, 10 (59%) were female, and the mean (SD) age was 25.35 (5.24) years; and of 19 in the control group, 8 (42%) were female, and the mean (SD) age was 23.89 (4.14) years. Brain activation (indexed using the median sum of squares ratio of the blood oxygen level-dependent hemodynamic response effects model component to the residual sum of squares) was analyzed in 15 participants in the CBD group, 16 in the placebo group, and 19 in the control group. Participants receiving placebo had reduced activation relative to controls in the right caudate during encoding (placebo: median, -0.027; interquartile range [IQR], -0.041 to -0.016; control: median, 0.020; IQR, -0.022 to 0.056; P < .001) and in the parahippocampal gyrus and midbrain during recall (placebo: median, 0.002; IQR, -0.016 to 0.010; control: median, 0.035; IQR, 0.015 to 0.039; P < .001). Within these 3 regions, activation in the CBD group was greater than in the placebo group but lower than in the control group (parahippocampal gyrus/midbrain: CBD: median, -0.013; IQR, -0.027 to 0.002; placebo: median, -0.007; IQR, -0.019 to 0.008; control: median, 0.034; IQR, 0.005 to 0.059); the level of activation in the CBD group was thus intermediate to that in the other 2 groups. There were no significant group differences in task performance. Conclusions and Relevance Cannabidiol may partially normalize alterations in parahippocampal, striatal, and midbrain function associated with the CHR state. As these regions are critical to the pathophysiology of psychosis, the influence of CBD at these sites could underlie its therapeutic effects on psychotic symptoms. Trial Registration isrctn.org Identifier: ISRCTN46322781.
Collapse
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Elizabeth Appiah-Kusi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Aisling O’Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Michael Brammer
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Jesus Perez
- CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Matthijs G. Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
73
|
Schuster RM, Gilman J, Schoenfeld D, Evenden J, Hareli M, Ulysse C, Nip E, Hanly A, Zhang H, Evins AE. One Month of Cannabis Abstinence in Adolescents and Young Adults Is Associated With Improved Memory. J Clin Psychiatry 2018; 79:17m11977. [PMID: 30408351 PMCID: PMC6587572 DOI: 10.4088/jcp.17m11977] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/01/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Associations between adolescent cannabis use and poor neurocognitive functioning have been reported from cross-sectional studies that cannot determine causality. Prospective designs can assess whether extended cannabis abstinence has a beneficial effect on cognition. METHODS Eighty-eight adolescents and young adults (aged 16-25 years) who used cannabis regularly were recruited from the community and a local high school between July 2015 and December 2016. Participants were randomly assigned to 4 weeks of cannabis abstinence, verified by decreasing 11-nor-9-carboxy-∆⁹-tetrahydrocannabinol urine concentration (MJ-Abst; n = 62), or a monitoring control condition with no abstinence requirement (MJ-Mon; n = 26). Attention and memory were assessed at baseline and weekly for 4 weeks with the Cambridge Neuropsychological Test Automated Battery. RESULTS Among MJ-Abst participants, 55 (88.7%) met a priori criteria for biochemically confirmed 30-day continuous abstinence. There was an effect of abstinence on verbal memory (P = .002) that was consistent across 4 weeks of abstinence, with no time-by-abstinence interaction, and was driven by improved verbal learning in the first week of abstinence. MJ-Abst participants had better memory overall and at weeks 1, 2, 3 than MJ-Mon participants, and only MJ-Abst participants improved in memory from baseline to week 1. There was no effect of abstinence on attention: both groups improved similarly, consistent with a practice effect. CONCLUSIONS This study suggests that cannabis abstinence is associated with improvements in verbal learning that appear to occur largely in the first week following last use. Future studies are needed to determine whether the improvement in cognition with abstinence is associated with improvement in academic and other functional outcomes. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03276221.
Collapse
Affiliation(s)
- Randi Melissa Schuster
- Center for Addiction Medicine, Massachusetts General Hospital, 101 Merrimac St, Ste 320, Boston, MA 02114. .,Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jodi Gilman
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David Schoenfeld
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Maya Hareli
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Christine Ulysse
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Emily Nip
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ailish Hanly
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA;,University of Massachusetts Medical School, Worcester, MA
| | - Haiyue Zhang
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - A. Eden Evins
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
74
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
75
|
Colizzi M, Burnett N, Costa R, De Agostini M, Griffin J, Bhattacharyya S. Longitudinal assessment of the effect of cannabis use on hospital readmission rates in early psychosis: A 6-year follow-up in an inpatient cohort. Psychiatry Res 2018; 268:381-387. [PMID: 30121541 DOI: 10.1016/j.psychres.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 11/25/2022]
Abstract
Cannabis is the most commonly used illicit drug in psychosis patients and has been identified as a risk factor for relapse and subsequent hospital readmission, having substantial economic implications. To clarify the contribution of cannabis consumption to hospital readmission, a consecutive inpatient cohort of 161 early psychosis patients was included into the study. Data on cannabis use at admission and number of hospital readmissions and length of stay (LOS, number of inpatient days) in a 6-year follow-up was extracted from clinical notes. 62.4% of the patients had lifetime cannabis use. Their admission lasted on average 54.3 ± 75 days and over the following 6 years patients had 2.2 ± 2.8 hospital readmissions, for a total of 197.4 ± 331.5 days. Cannabis use significantly predicted the number of hospital readmissions and LOS in the following 6 years, the latter remaining significant after adjusting for use of other substance. Cannabis-using patients of male gender and Black ethnicity had a longer LOS at follow-up compared to female patients and other ethnic groups, respectively. Having a history of cannabis use when admitted to an early intervention inpatient unit for psychosis is associated with a higher number of subsequent hospital readmissions and a longer LOS, especially in male and Black patients.
Collapse
Affiliation(s)
- Marco Colizzi
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Natoy Burnett
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Rosalia Costa
- Gender Identity Development Service, Tavistock and Portman NHS Foundation Trust, Tavistock Centre, London NW3 5BA, United Kingdom; Azienda Unità Sanitaria Locale Taranto, Dipartimento Salute Mentale, Centro Salute Mentale Taranto, Polo Centrale, Taranto 74123, Italy
| | - Mattia De Agostini
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy
| | - James Griffin
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Sagnik Bhattacharyya
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| |
Collapse
|
76
|
Kubilius RA, Kaplick PM, Wotjak CT. Highway to hell or magic smoke? The dose-dependence of Δ 9-THC in place conditioning paradigms. ACTA ACUST UNITED AC 2018; 25:446-454. [PMID: 30115766 PMCID: PMC6097764 DOI: 10.1101/lm.046870.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
The prerequisites for responsible cannabis use are at the heart of current inquiries into cannabis decriminalization by policy makers as well as academic and nonacademic stakeholders at a global scale. Δ9-tetrahydrocannabinol (Δ9-THC), the prime psychoactive compound of the cannabis sativa, as well as cannabimimetics that resemble the pharmacological properties and psychological effects of Δ9-THC, lend themselves handsomely to the preclinical scrutiny of reward-related behavior because they carry marked translational value. Although a functional dichotomy of the psychological effects of Δ9-THC (rewarding versus aversive) has been abundantly reported in place conditioning (PC) paradigms, and might be best attributed to a dose-dependence of Δ9-THC, most PC studies with Δ9-THC feature no significant effects at all. Therefore, after decades of rigorous research, it still remains undetermined whether Δ9-THC generally exerts rewarding or aversive effects in rodents. Here, we set out to extrapolate the commonly alleged dose-dependence of the rewarding and aversive effects of Δ9-THC from the existing literature, at the behavioral pharmacological level of analysis. Specifically, our meta-analysis investigated: (i) the alleged bidirectional effects and dose-dependence of Δ9-THC in the PC test; (ii) methodological inconsistencies between PC studies; and (iii) other pharmacological studies on cannabinoids (i.e., dopamine release, anxiety, stress, conditioned taste aversion, catalepsy) to substantiate the validity of PC findings. Our findings suggest that: (i) Δ9-THC dose-dependently generates rewarding (1 mg/kg) and aversive (5 mg/kg) effects in PC; (ii) an inconsistent use of priming injections hampers a clear establishment of the rewarding effects of Δ9-THC in PC tests and might explain the seemingly contradictory plethora of nonsignificant THC studies in the PC test; and (iii) other pharmacological studies on Δ9-THC substantiate the dose-dependent biphasic effects of Δ9-THC in PC. A standardized experimental design would advance evidence-based practice in future PC studies with Δ9-THC and facilitate the pointed establishment of rewarding and aversive effects of the substance.
Collapse
Affiliation(s)
- Rimas A Kubilius
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Paul M Kaplick
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.,Institute for Interdisciplinary Studies, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
77
|
Sami MB, Bhattacharyya S. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol 2018; 32:825-849. [PMID: 29591635 PMCID: PMC6058406 DOI: 10.1177/0269881118760662] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A substantial body of credible evidence has accumulated that suggest that cannabis use is an important potentially preventable risk factor for the development of psychotic illness and its worse prognosis following the onset of psychosis. Here we summarize the relevant evidence to argue that the time has come to investigate the neurobiological effects of cannabis in patients with psychotic disorders. In the first section we summarize evidence from longitudinal studies that controlled for a range of potential confounders of the association of cannabis use with increased risk of developing psychotic disorders, increased risk of hospitalization, frequent and longer hospital stays, and failure of treatment with medications for psychosis in those with established illness. Although some evidence has emerged that cannabis-using and non-using patients with psychotic disorders may have distinct patterns of neurocognitive and neurodevelopmental impairments, the biological underpinnings of the effects of cannabis remain to be fully elucidated. In the second and third sections we undertake a systematic review of 70 studies, including over 3000 patients with psychotic disorders or at increased risk of psychotic disorder, in order to delineate potential neurobiological and neurochemical mechanisms that may underlie the effects of cannabis in psychotic disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| |
Collapse
|
78
|
Abstract
The main goal of our study was to investigate the association between psychotic-like experiences, aberrant salience, and cannabis use in a nonclinical sample of Belgian students. The participants were asked to complete a self-report questionnaire on cannabis use. The Community Assessment of Psychic Experiences and the Aberrant Salience Inventory were used to assess psychotic-like experiences and aberrant salience. The final sample was of 257 students. Cannabis users showed significantly higher Aberrant Salience Inventory score and, concerning the Community Assessment of Psychic Experiences, higher total, positive, and negative dimension scores. Years of cannabis use and frequency of use showed a positive correlation with Aberrant Salience Inventory score. Our results support the evidence that cannabis use is associated with an increased rate of psychotic experiences in individuals without a clinical form of psychosis. Future studies are required to better investigate the meaning of the association between cannabis use, psychotic-like experiences, and aberrant salience.
Collapse
|
79
|
Modulation of acute effects of delta-9-tetrahydrocannabinol on psychotomimetic effects, cognition and brain function by previous cannabis exposure. Eur Neuropsychopharmacol 2018; 28:850-862. [PMID: 29935939 DOI: 10.1016/j.euroneuro.2018.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/31/2023]
Abstract
Cannabis use has been associated with psychosis and cognitive dysfunction. Some evidence suggests that the acute behavioral and neurocognitive effects of the main active ingredient in cannabis, (-)-trans-Δ9-tetrahydrocannabinol (∆9-THC), might be modulated by previous cannabis exposure. However, this has not been investigated either using a control group of non-users, or following abstinence in modest cannabis users, who represent the majority of recreational users. Twenty-four healthy men participated in a double-blind, randomized, placebo-controlled, repeated-measures, within-subject, ∆9-THC challenge study. Compared to non-users (N=12; <5 lifetime cannabis joints smoked), abstinent modest cannabis users (N=12; 24.5±9 lifetime cannabis joints smoked) showed worse performance and stronger right hemispheric activation during cognitive processing, independent of the acute challenge (all P≤0.047). Acute ∆9-THC administration produced transient anxiety and psychotomimetic symptoms (all P≤0.02), the latter being greater in non-users compared to users (P=0.040). Non-users under placebo (control group) activated specific brain areas to perform the tasks, while deactivating others. An opposite pattern was found under acute (∆9-THC challenge in non-users) as well as residual (cannabis users under placebo) effect of ∆9-THC. Under ∆9-THC, cannabis users showed brain activity patterns intermediate between those in non-users under placebo (control group), and non-users under ∆9-THC (acute effect) and cannabis users under placebo (residual effect). In non-users, the more severe the ∆9-THC-induced psychotomimetic symptoms and cognitive impairments, the more pronounced was the neurophysiological alteration (all P≤0.036). Previous modest cannabis use blunts the acute behavioral and neurophysiological effects of ∆9-THC, which are more marked in people who have never used cannabis.
Collapse
|
80
|
Grimm O, Löffler M, Kamping S, Hartmann A, Rohleder C, Leweke M, Flor H. Probing the endocannabinoid system in healthy volunteers: Cannabidiol alters fronto-striatal resting-state connectivity. Eur Neuropsychopharmacol 2018; 28:841-849. [PMID: 29887287 DOI: 10.1016/j.euroneuro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are two substances from cannabis sativa that have beenimplicated in the treatment of mental and neurological disorders. We concentrated on a previously validated neuroimaging phenotype, fronto-striatal connectivity across different striatal seeds, because of this loop's relevance to executive functioning, decision making, salience generation and motivation and its link to various neuropsychiatric conditions. Therefore, we studied the effect of THC and CBD on fronto-striatal circuitry by a seed-voxel connectivity approach using seeds from the caudate and the putamen. We conducted a cross-over pharmaco-fMRI study in 16 healthy male volunteers with placebo, 10 mg oral THC and 600 mg oral CBD. Resting state was measured in a 3 T scanner. CBD lead to an increase of fronto-striatal connectivity in comparison to placebo. In contrast to our expectation that THC and CBD show opposing effects, THC versus placebo did not show any significant effects, probably due to insufficient concentration of THC during scanning. The effect of CBD on enhancing fronto-striatal connectivity is of interest because it might be a neural correlate of its anti-psychotic effect in patients.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University, Frankfurt am Main, Germany
| | - Martin Löffler
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Sandra Kamping
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany; Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aljoscha Hartmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
81
|
Blest-Hopley G, Giampietro V, Bhattacharyya S. Residual effects of cannabis use in adolescent and adult brains - A meta-analysis of fMRI studies. Neurosci Biobehav Rev 2018. [PMID: 29535069 DOI: 10.1016/j.neubiorev.2018.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
While numerous studies have investigated the residual effects of cannabis use on human brain function, results of these studies have been inconsistent. Using meta-analytic approaches we summarize the effects of prolonged cannabis exposure on human brain function as measured using task-based functional MRI (fMRI) across studies employing a range of cognitive activation tasks comparing regular cannabis users with non-users. Separate meta-analyses were carried out for studies investigating adult and adolescent cannabis users. Systematic literature search identified 20 manuscripts (13 adult and 7 adolescent studies) meeting study inclusion criteria. Adult analyses compared 530 cannabis users to 580 healthy controls while adolescent analyses compared 219 cannabis users to 224 healthy controls. In adult cannabis users brain activation was increased in the superior and posterior transverse temporal and inferior frontal gyri and decreased in the striate area, insula and middle temporal gyrus. In adolescent cannabis users, activation was increased in the inferior parietal gyrus and putamen compared to healthy controls. Functional alteration in these areas may reflect compensatory neuroadaptive changes in cannabis users.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, PO Box 089, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, UK.
| |
Collapse
|
82
|
Abstract
OBJECTIVE The relationship between cannabis use and the onset of psychosis is well established. Aberrant salience processing is widely thought to underpin many of these symptoms. Literature explicitly investigating the relationship between aberrant salience processing and cannabis use is scarce; with those few studies finding that acute tetrahydrocannabinol (THC) administration (the main psychoactive component of cannabis) can result in abnormal salience processing in healthy cohorts, mirroring that observed in psychosis. Nevertheless, the extent of and mechanisms through which cannabis has a modulatory effect on aberrant salience, following both acute and chronic use, remain unclear. METHODS Here, we systematically review recent findings on the effects of cannabis use - either through acute THC administration or in chronic users - on brain regions associated with salience processing (through functional MRI data); and performance in cognitive tasks that could be used as either direct or indirect measures of salience processing. We identified 13 studies either directly or indirectly exploring salience processing. Three types of salience were identified and discussed - incentive/motivational, emotional/affective, and attentional salience. RESULTS The results demonstrated an impairment of immediate salience processing, following acute THC administration. Amongst the long-term cannabis users, normal salience performance appeared to be underpinned by abnormal neural processes. CONCLUSIONS Overall, the lack of research specifically exploring the effects of cannabis use on salience processing, weaken any conclusions drawn. Additional research explicitly focussed on salience processing and cannabis use is required to advance our understanding of the neurocognitive mechanisms underlying the association between cannabis use and development of psychosis.
Collapse
|
83
|
Batalla A, Lorenzetti V, Chye Y, Yücel M, Soriano-Mas C, Bhattacharyya S, Torrens M, Crippa JAS, Martín-Santos R. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users. Cannabis Cannabinoid Res 2018; 3:1-10. [PMID: 29404409 PMCID: PMC5797324 DOI: 10.1089/can.2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18–30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, The Netherlands
| | - Valentina Lorenzetti
- School of Psychological Sciences, Institute of Psychology Health and Society, The University of Liverpool, Liverpool, United Kingdom.,Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yann Chye
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM G-17, and Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Marta Torrens
- Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A S Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Rocío Martín-Santos
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| |
Collapse
|
84
|
|
85
|
Kose S, Cetin M. Cannabis-associated psychotic symptoms and neurocognitive effects at high risk psychosis patients. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2018.1403671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
| | - Mesut Cetin
- Psychiatry & Clinical Psychopharmacology and Journal of Mood Disorders, Istanbul, Turkey
| |
Collapse
|
86
|
Bhattacharyya S, Egerton A, Kim E, Rosso L, Riano Barros D, Hammers A, Brammer M, Turkheimer FE, Howes OD, McGuire P. Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors. Sci Rep 2017; 7:15025. [PMID: 29101333 PMCID: PMC5670208 DOI: 10.1038/s41598-017-14203-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022] Open
Abstract
Use of Cannabis, the most widely used illicit drug worldwide, is associated with acute anxiety, and anxiety disorders following regular use. The precise neural and receptor basis of these effects have not been tested in man. Employing a combination of functional MRI (fMRI) and positron emission tomography (PET), we investigated whether the effects of delta-9-tetrahydrocannabinol (delta-9-THC), the main psychoactive ingredient of cannabis, on anxiety and on amygdala response while processing fearful stimuli were related to local availability of its main central molecular target, cannabinoid-1 (CB1) receptors in man. Fourteen healthy males were studied with fMRI twice, one month apart, following an oral dose of either delta-9-THC (10 mg) or placebo, while they performed a fear-processing task. Baseline availability of the CB1 receptor was studied using PET with [11C]MePPEP, a CB1 inverse agonist radioligand. Relative to the placebo condition, delta-9-THC induced anxiety and modulated right amygdala activation while processing fear. Both these effects were positively correlated with CB1 receptor availability in the right amygdala. These results suggest that the acute effects of cannabis on anxiety in males are mediated by the modulation of amygdalar function by delta-9-THC and the extent of these effects are related to local availability of CB1 receptors.
Collapse
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK.
| | - Alice Egerton
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Lula Rosso
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK
| | | | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, 4th floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Michael Brammer
- Department of Neuroimaging, Centre for Neuroimaging Sciences, PO Box 089, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Centre for Neuroimaging Sciences, PO Box 089, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Oliver D Howes
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
87
|
Ranganathan M, Radhakrishnan R, Addy PH, Schnakenberg-Martin AM, Williams AH, Carbuto M, Elander J, Pittman B, Andrew Sewell R, Skosnik PD, D'Souza DC. Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28642081 DOI: 10.1016/j.pnpbp.2017.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Cannabis and agonists of the brain cannabinoid receptor (CB1R) produce acute memory impairments in humans. However, the extent to which cannabinoids impair the component processes of encoding and retrieval has not been established in humans. The objective of this analysis was to determine whether the administration of Δ9-Tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, impairs encoding and/or retrieval of verbal information. MATERIALS AND METHODS Healthy subjects were recruited from the community. Subjects were administered the Rey-Auditory Verbal Learning Test (RAVLT) either before administration of THC (experiment #1) (n=38) or while under the influence of THC (experiment #2) (n=57). Immediate and delayed recall on the RAVLT was compared. Subjects received intravenous THC, in a placebo-controlled, double-blind, randomized manner at doses known to produce behavioral and subjective effects consistent with cannabis intoxication. RESULTS Total immediate recall, short delayed recall, and long delayed recall were reduced in a statistically significant manner only when the RAVLT was administered to subjects while they were under the influence of THC (experiment #2) and not when the RAVLT was administered prior. CONCLUSIONS THC acutely interferes with encoding of verbal memory without interfering with retrieval. These data suggest that learning information prior to the use of cannabis or cannabinoids is not likely to disrupt recall of that information. Future studies will be necessary to determine whether THC impairs encoding of non-verbal information, to what extent THC impairs memory consolidation, and the role of other cannabinoids in the memory-impairing effects of cannabis. CLINICAL TRIAL INFORMATION Cannabinoids, Neural Synchrony, and Information Processing (THC-Gamma) http://clinicaltrials.gov/ct2/show/study/NCT00708994 NCT00708994 Pharmacogenetics of Cannabinoid Response http://clinicaltrials.gov/ct2/show/NCT00678730 NCT00678730.
Collapse
Affiliation(s)
- Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Peter H Addy
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Medical Informatics, VA Connecticut Healthcare System, West Haven, CT, USA; Substance Abuse Treatment Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ashley M Schnakenberg-Martin
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ashley H Williams
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Michelle Carbuto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Jacqueline Elander
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - R Andrew Sewell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
88
|
Shevlin M, McElroy E, Murphy J, Hyland P, Vallieres F, Elklit A, Christoffersen M. Cannabis and psychosis: the impact of polydrug use. DRUGS AND ALCOHOL TODAY 2017. [DOI: 10.1108/dat-03-2017-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose
While research has consistently identified an association between cannabis use and psychosis, few studies have examined this relationship in a polydrug context (i.e. combining cannabis with other illicit substances). The paper aims to discuss this issue.
Design/methodology/approach
The present study sought to examine the association between recreational drug use (cannabis only vs polydrug) and psychotic disorders. Analysis was conducted on a large, representative survey of young Danish people aged 24 (n=4,718). Participants completed self-report measures of lifetime drug use and this information was linked to the Danish psychiatric registry system.
Findings
Multivariate binary logistic regression analysis was used to examine the association between drug use (no drug use, cannabis only, cannabis and other drug) and ICD-10 psychotic disorders, while controlling for gender and parental history of psychosis. Compared with no drug use, the use of cannabis only did not increase the risk of psychosis while the odds ratio for cannabis and other drug were statistically significant.
Research limitations/implications
Psychosis risk may be associated with the cumulative effect of polydrug use.
Practical implications
Cannabis use may be a proxy for other drug use in research studies.
Originality/value
This study is innovative as it uses linked self-report and administrative data for a large sample. Administrative data were used to as an objective mental health status indicator.
Collapse
|
89
|
Schoeler T, Petros N, Di Forti M, Klamerus E, Foglia E, Murray R, Bhattacharyya S. Effect of continued cannabis use on medication adherence in the first two years following onset of psychosis. Psychiatry Res 2017; 255:36-41. [PMID: 28521146 DOI: 10.1016/j.psychres.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 11/17/2022]
Abstract
Uncertainty exists whether the use of non-prescription psychoactive substances following onset of a first episode of psychosis (FEP), in particular cannabis use, affects medication adherence. Data from FEP patients (N=233) obtained through prospective assessments measured medication adherence and pattern of cannabis and other substance use in the first two years following onset of psychosis. Multiple logistic regression analyses were employed to compare the different substance use groups with regard to risk of medication non-adherence, while controlling for confounders. The proportion of non-adherent patients was higher in those who continued using high-potency forms of cannabis (skunk-like) following the onset (83%) when compared to never regular users (51%), corresponding to an Odds Ratio (OR) of 5.26[95% Confidence Interval (CI) 1.91-15.68]. No significant increases in risk were present in those who used cannabis more sporadically or used milder forms of cannabis (hash-like). Other substances did not make an independent contribution in this model, including cigarette use ([OR 0.88, 95% CI 0.41-1.89]), alcohol use ([OR 0.66, 95% CI 0.27-1.64]) or regular use of other illicit drugs ([OR 1.03, 95% CI 0.34-3.15]) following the onset. These results suggest that continued use of high-potency cannabis following the onset of psychosis may adversely affect medication adherence.
Collapse
Affiliation(s)
- Tabea Schoeler
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Natalia Petros
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Marta Di Forti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ewa Klamerus
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Enrico Foglia
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
90
|
O’Neill A, Bhattacharyya S. Investigating the Role of the Endocannabinoid System in Early Psychosis. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:85-92. [DOI: 10.14218/jerp.2017.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
91
|
Nielsen SM, Toftdahl NG, Nordentoft M, Hjorthøj C. Association between alcohol, cannabis, and other illicit substance abuse and risk of developing schizophrenia: a nationwide population based register study. Psychol Med 2017; 47:1668-1677. [PMID: 28166863 DOI: 10.1017/s0033291717000162] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several studies have examined whether use of substances can cause schizophrenia. However, due to methodological limitations in the existing literature (e.g. selection bias and lack of adjustment of co-abuse) uncertainties still remain. We aimed to investigate whether substance abuse increases the risk of developing schizophrenia, addressing some of these limitations. METHOD The longitudinal, nationwide Danish registers were linked to establish a cohort of 3 133 968 individuals (105 178 673 person-years at risk), identifying 204 505 individuals diagnosed with substance abuse and 21 305 diagnosed with schizophrenia. Information regarding substance abuse was extracted from several registers and did not include psychotic symptoms caused by substance abuse in the definition. This resulted in a large, generalizable sample of exposed individuals. The data was analysed using Cox regression analyses, and adjusted for calendar year, gender, urbanicity, co-abuse, other psychiatric diagnosis, parental substance abuse, psychiatric history, immigration and socioeconomic status. RESULTS A diagnosis of substance abuse increased the overall risk of developing schizophrenia [hazard ratio (HR) 6.04, 95% confidence interval (CI) 5.84-6.26]. Cannabis (HR 5.20, 95% CI 4.86-5.57) and alcohol (HR 3.38, 95% CI 3.24-3.53) presented the strongest associations. Abuse of hallucinogens (HR 1.86, 95% CI 1.43-2.41), sedatives (HR 1.68, 95% CI 1.49-1.90), and other substances (HR 2.85, 95% CI 2.58-3.15) also increased the risk significantly. The risk was found to be significant even 10-15 years subsequent to a diagnosis of substance abuse. CONCLUSION Our results illustrate robust associations between almost any type of substance abuse and an increased risk of developing schizophrenia later in life.
Collapse
Affiliation(s)
- S M Nielsen
- Copenhagen University Hospital, Mental Health Center Copenhagen,Hellerup,Denmark
| | - N G Toftdahl
- Copenhagen University Hospital, Mental Health Center Copenhagen,Hellerup,Denmark
| | - M Nordentoft
- Copenhagen University Hospital, Mental Health Center Copenhagen,Hellerup,Denmark
| | - C Hjorthøj
- Copenhagen University Hospital, Mental Health Center Copenhagen,Hellerup,Denmark
| |
Collapse
|
92
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
93
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
94
|
Corroon JM, Mischley LK, Sexton M. Cannabis as a substitute for prescription drugs - a cross-sectional study. J Pain Res 2017; 10:989-998. [PMID: 28496355 PMCID: PMC5422566 DOI: 10.2147/jpr.s134330] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The use of medical cannabis is increasing, most commonly for pain, anxiety and depression. Emerging data suggest that use and abuse of prescription drugs may be decreasing in states where medical cannabis is legal. The aim of this study was to survey cannabis users to determine whether they had intentionally substituted cannabis for prescription drugs. Methods A total of 2,774 individuals were a self-selected convenience sample who reported having used cannabis at least once in the previous 90 days. Subjects were surveyed via an online anonymous questionnaire on cannabis substitution effects. Participants were recruited through social media and cannabis dispensaries in Washington State. Results A total of 1,248 (46%) respondents reported using cannabis as a substitute for prescription drugs. The most common classes of drugs substituted were narcotics/opioids (35.8%), anxiolytics/benzodiazepines (13.6%) and antidepressants (12.7%). A total of 2,473 substitutions were reported or approximately two drug substitutions per affirmative respondent. The odds of reporting substituting were 4.59 (95% confidence interval [CI], 3.87–5.43) greater among medical cannabis users compared with non-medical users and 1.66 (95% CI, 1.27–2.16) greater among those reporting use for managing the comorbidities of pain, anxiety and depression. A slightly higher percentage of those who reported substituting resided in states where medical cannabis was legal at the time of the survey (47% vs. 45%, p=0.58), but this difference was not statistically significant. Discussion These patient-reported outcomes support prior research that individuals are using cannabis as a substitute for prescription drugs, particularly, narcotics/opioids, and independent of whether they identify themselves as medical or non-medical users. This is especially true if they suffer from pain, anxiety and depression. Additionally, this study suggests that state laws allowing access to, and use of, medical cannabis may not be influencing individual decision-making in this area.
Collapse
Affiliation(s)
| | | | - Michelle Sexton
- Department of Medical Research, Center for the Study of Cannabis and Social Policy, Seattle, WA, USA
| |
Collapse
|
95
|
Allendorfer JB, Szaflarski JP. Neuroimaging studies towards understanding the central effects of pharmacological cannabis products on patients with epilepsy. Epilepsy Behav 2017; 70:349-354. [PMID: 28109780 DOI: 10.1016/j.yebeh.2016.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 02/04/2023]
Abstract
Recent interest for the use of cannabis-derived products as therapeutic agents in the treatment of epilepsies has necessitated a reevaluation of their effects on brain and behavior. Overall, prolonged cannabis use is thought to result in functional and structural brain alterations. These effects may be dependent on a number of factors: e.g., which phytocannabinoid is used (e.g., cannabidiol (CBD) vs. tetrahyrocannabinol (THC)), the frequency of use (occasional vs. heavy), and at what age (prenatal, childhood, adulthood) the use began. However, due to the fact that there are over seven hundred constituents that make up the Cannabis sativa plant, it is difficult to determine which compound or combination of compounds is responsible for specific effects when studying recreational users. Therefore, this review focuses only on the functional MRI studies investigating the effects of specific pharmacological preparations of cannabis compounds, specifically THC, tetrahydrocannabivarin (THCV), and CBD, on brain function in healthy individuals and persons with epilepsy with references to non-epilepsy studies only to underline the gaps in research that need to be filled before cannabis-derived products are considered for a wide use in the treatment of epilepsy. This article is part of a Special Issue entitled "Cannabinoids and Epilepsy".
Collapse
Affiliation(s)
- Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
96
|
Does Cannabis Composition Matter? Differential Effects of Delta-9-tetrahydrocannabinol and Cannabidiol on Human Cognition. CURRENT ADDICTION REPORTS 2017; 4:62-74. [PMID: 28580227 PMCID: PMC5435777 DOI: 10.1007/s40429-017-0142-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose of Review The lack of clarity about the effect of cannabis use on cognition may be attributable to the considerable heterogeneity among studies in terms of cannabis composition. This article selectively reviews studies examining the distinctive effects of cannabinoids on human cognition, particularly those of delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Recent Findings Research indicates that ∆9-THC administration acutely impairs cognition, particularly memory and emotional processing. Limited evidence suggests that CBD administration might improve cognition in cannabis users but not in individuals with neuropsychiatric disorders. Moreover, studies indicate that some acute Δ9-THC-induced cognitive impairments may be prevented if Δ9-THC is administered in combination or following CBD treatment. Δ9-THC and CBD have also shown opposite effects on cognition-related brain activation, possibly reflecting their antagonistic behavioral effects. Summary Research suggests greater cognitive impairments in individuals when exposed to high ∆9-THC or low CBD cannabis. It is unclear whether at specific concentrations CBD might outweigh any harmful effects of Δ9-THC on cognition.
Collapse
|
97
|
Sultan SR, Millar SA, England TJ, O'Sullivan SE. A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol. Front Pharmacol 2017; 8:81. [PMID: 28286481 PMCID: PMC5323388 DOI: 10.3389/fphar.2017.00081] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/08/2017] [Indexed: 11/13/2022] Open
Abstract
Despite cannabidiol (CBD) having numerous cardiovascular effects in vitro, its haemodynamic effects in vivo are unclear. Nonetheless, the clinical use of CBD (Epidiolex) is becoming more widespread. The aim of this systematic review was to establish whether CBD is associated with changes in haemodynamics in vivo. Twenty-five studies that assessed the haemodynamic effects of CBD (from PubMed, Medline and EMBASE) were systematically reviewed and meta-analyzed. Data on blood pressure (BP), heart rate (HR), and blood flow (BF) were extracted and analyzed using random effects models. Twenty-two publications assessed BP and HR among 6 species (BP n = 344 and HR n = 395), and 5 publications assessed BF in 3 species (n = 56) after acute dosing of CBD. Chronic dosing was assessed in 4 publications in 3 species (total subjects BP, n = 6; HR, n = 27; BF, n = 3). Acute CBD dosing had no effect on BP or HR under control conditions. Similarly, chronic dosing with CBD had no effect on HR. In models of stress, acute CBD administration significantly reduced the increase in BP and HR induced by stress (BP, mean difference (MD) −3.54, 95% CI −5.19, −1.9, p < 0.0001; HR, MD −16.23, 95% CI −26.44, −6.02, p = 0.002). In mouse models of stroke, CBD significantly increased cerebral blood flow (CBF, standardized mean difference (SMD) 1.62, 95% CI 0.41, 2.83, p = 0.009). Heterogeneity among the studies was present, there was no publication bias except in HR of control and stressful conditions after acute CBD dosing, and median study quality was 5 out of 9 (ranging from 1 to 8). From the limited data available, we conclude that acute and chronic administration of CBD had no effect on BP or HR under control conditions, but reduces BP and HR in stressful conditions, and increases cerebral blood flow (CBF) in mouse models of stroke. Further studies are required to fully understand the potential haemodynamic effects of CBD in humans under normal and pathological conditions.
Collapse
Affiliation(s)
- Salahaden R Sultan
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| | - Sophie A Millar
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| | - Timothy J England
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| | - Saoirse E O'Sullivan
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| |
Collapse
|
98
|
Soares VP, Campos AC. Evidences for the Anti-panic Actions of Cannabidiol. Curr Neuropharmacol 2017; 15:291-299. [PMID: 27157263 PMCID: PMC5412699 DOI: 10.2174/1570159x14666160509123955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/26/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Panic disorder (PD) is a disabling psychiatry condition that affects approximately 5% of the worldwide population. Currently, long-term selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PD; however, the common side-effect profiles and drug interactions may provoke patients to abandon the treatment, leading to PD symptoms relapse. Cannabidiol (CBD) is the major non-psychotomimetic constituent of the Cannabis sativa plant with anti-anxiety properties that has been suggested as an alternative for treating anxiety disorders. The aim of the present review was to discuss the effects and mechanisms involved in the putative anti-panic effects of CBD. METHODS electronic database was used as source of the studies selected selected based on the studies found by crossing the following keywords: cannabidiol and panic disorder; canabidiol and anxiety, cannabidiol and 5-HT1A receptor). RESULTS In the present review, we included both experimental laboratory animal and human studies that have investigated the putative anti-panic properties of CBD. Taken together, the studies assessed clearly suggest an anxiolytic-like effect of CBD in both animal models and healthy volunteers. CONCLUSION CBD seems to be a promising drug for the treatment of PD. However, novel clinical trials involving patients with the PD diagnosis are clearly needed to clarify the specific mechanism of action of CBD and the safe and ideal therapeutic doses of this compound.
Collapse
Affiliation(s)
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes avenue, Ribeirao Preto-SP, Brazil
| |
Collapse
|
99
|
Brañas A, Barrigón ML, Garrido-Torres N, Perona-Garcelán S, Rodriguez-Testal JF, Lahera G, Ruiz-Veguilla M. U-shaped curve of psychosis according to cannabis use: New evidence from a snowball sample. J Psychopharmacol 2016; 30:1331-1338. [PMID: 27539930 DOI: 10.1177/0269881116660712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study was to investigate the relationship between psychotic-like experiences (PLEs) assessed using the Community Assessment of Psychic Experience (CAPE) questionnaire and the pattern of cannabis use in a non-clinical sample collected by snowball sampling. METHODS Our sample was composed of 204 subjects, distributed into three groups by their cannabis use pattern: 68 were non-cannabis users, 40 were moderate cannabis users and 96 were daily cannabis users. We assessed the psychotic experiences in each group with the CAPE questionnaire; and then controlled for the effect of possible confounding factors like sex, age, social exclusion, age of onset of cannabis use, alcohol use and other drug use. RESULTS We found a significant quadratic association between the frequency of cannabis use and positive (β = -1.8; p = 0.004) and negative dimension scores (β = -1.2; p = 0.04). The first-rank and mania factors showed a significant quadratic association (p < 0.05), while the voices factor showed a trend (p = 0.07). Scores for the different groups tended to maintain a U-shape in their values for the different factors. When we adjusted for gender, age, social exclusion, age of onset of cannabis use, and use of alcohol and other drugs, only the first-rank experiences remained significant. CONCLUSIONS We found there was a U-shaped curve in the association between cannabis use and the positive and negative dimensions of the CAPE score. We also found this association in mania and first-rank experiences.
Collapse
Affiliation(s)
- Antía Brañas
- Department of Psychiatry, Hospital Universitario Príncipe de Asturias, Universidad de Alcalá de Henares, Madrid, Spain
| | - María L Barrigón
- Department of Psychiatry, Hospital Fundación Jiménez Díaz, Madrid, Huelva, Spain
| | | | | | - Juan F Rodriguez-Testal
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Lahera
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Miguel Ruiz-Veguilla
- Grupo Neurodesarrollo y Psicosis, Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Cientificas/Universidad de Sevilla/Unidad de Gestión Clínica (UGC) de Salud Mental Hospital Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
100
|
Rohleder C, Müller JK, Lange B, Leweke FM. Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence. Front Pharmacol 2016; 7:422. [PMID: 27877130 PMCID: PMC5099166 DOI: 10.3389/fphar.2016.00422] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds. The endocannabinoid system has been suggested to represent a potential new target in this indication. While the chronic use of cannabis itself has been considered a risk factor contributing to the development of schizophrenia, triggered by the phytocannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), cannabidiol, the second most important phytocannabinoid, appears to have no psychotomimetic potential. Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys. After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile. As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations. Although, a plethora of mechanisms of action has been suggested, their potential relevance for the antipsychotic effects of cannabidiol still needs to be investigated. The clarification of these mechanisms as well as the establishment of cannabidiol’s antipsychotic efficacy and its hopefully benign side-effect profile remains the subject of a number of previously started clinical trials.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - Juliane K Müller
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - Bettina Lange
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - F M Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| |
Collapse
|