51
|
Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. J Biol Chem 2014; 289:28539-53. [PMID: 25122770 DOI: 10.1074/jbc.m114.600031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners.
Collapse
Affiliation(s)
- John Jeff Alvarado
- From the Departments of Microbiology and Molecular Genetics and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Sreya Tarafdar
- From the Departments of Microbiology and Molecular Genetics and Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Joanne I Yeh
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | | |
Collapse
|
52
|
Sierecki E, Giles N, Polinkovsky M, Moustaqil M, Alexandrov K, Gambin Y. A cell-free approach to accelerate the study of protein-protein interactions in vitro. Interface Focus 2014; 3:20130018. [PMID: 24511386 DOI: 10.1098/rsfs.2013.0018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein-protein interactions are highly desirable targets in drug discovery, yet only a fraction of drugs act as binding inhibitors. Here, we review the different technologies used to find and validate protein-protein interactions. We then discuss how the novel combination of cell-free protein expression, AlphaScreen and single-molecule fluorescence spectroscopy can be used to rapidly map protein interaction networks, determine the architecture of protein complexes, and find new targets for drug discovery.
Collapse
Affiliation(s)
- E Sierecki
- Institute for Molecular Bioscience , University of Queensland , Saint Lucia, Queensland , Australia
| | - N Giles
- Institute for Molecular Bioscience , University of Queensland , Saint Lucia, Queensland , Australia
| | - M Polinkovsky
- Institute for Molecular Bioscience , University of Queensland , Saint Lucia, Queensland , Australia
| | - M Moustaqil
- Institute for Molecular Bioscience , University of Queensland , Saint Lucia, Queensland , Australia
| | - K Alexandrov
- Institute for Molecular Bioscience , University of Queensland , Saint Lucia, Queensland , Australia
| | - Y Gambin
- Institute for Molecular Bioscience , University of Queensland , Saint Lucia, Queensland , Australia
| |
Collapse
|
53
|
Alkylation of histidine residues of Bothrops jararacussu venom proteins and isolated phospholipases A2: a biotechnological tool to improve the production of antibodies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:981923. [PMID: 24901004 PMCID: PMC4034654 DOI: 10.1155/2014/981923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/02/2014] [Indexed: 01/29/2023]
Abstract
Crude venom of Bothrops jararacussu and isolated phospholipases A2 (PLA2) of this toxin (BthTX-I and BthTX-II) were chemically modified (alkylation) by p-bromophenacyl bromide (BPB) in order to study antibody production capacity in function of the structure-function relationship of these substances (crude venom and PLA2 native and alkylated). BthTX-II showed enzymatic activity, while BthTX-I did not. Alkylation reduced BthTX-II activity by 50% while this process abolished the catalytic and myotoxic activities of BthTX-I, while reducing its edema-inducing activity by about 50%. Antibody production against the native and alkylated forms of BthTX-I and -II and the cross-reactivity of antibodies to native and alkylated toxins did not show any apparent differences and these observations were reinforced by surface plasmon resonance (SPR) data. Histopathological analysis of mouse gastrocnemius muscle sections after injection of PBS, BthTX-I, BthTX-II, or both myotoxins previously incubated with neutralizing antibody showed inhibition of the toxin-induced myotoxicity. These results reveal that the chemical modification of the phospholipases A2 (PLA2) diminished their toxicity but did not alter their antigenicity. This observation indicates that the modified PLA2 may provide a biotechnological tool to attenuate the toxicity of the crude venom, by improving the production of antibodies and decreasing the local toxic effects of this poisonous substance in animals used to produce antivenom.
Collapse
|
54
|
Jordan RPC, Williams DW, Moran GP, Coleman DC, Sullivan DJ. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins. Med Mycol 2014; 52:254-63. [PMID: 24625677 DOI: 10.1093/mmy/myt032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P < 0.001). However, when the yeast cells were grown at 37°C, no significant difference between the adhesion of C. dubliniensis genotype 1 and C. albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P < 0.001). Using surface plasmon resonance analysis, C. dubliniensis isolates were found to adhere in significantly greater numbers than C. albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.
Collapse
Affiliation(s)
- Rachael P C Jordan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
55
|
Langellotti S, Romano M, Guarnaccia C, Granata V, Orrù S, Zagari A, Baralle FE, Salvatore F. A novel anti-aldolase C antibody specifically interacts with residues 85-102 of the protein. MAbs 2014; 6:708-17. [PMID: 24525694 PMCID: PMC4011915 DOI: 10.4161/mabs.28191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldolase C is a brain-specific glycolytic isozyme whose complete repertoire of functions are obscure. This lack of knowledge can be addressed using molecular tools that discriminate the protein from the homologous, ubiquitous paralog aldolase A. The anti-aldolase C antibodies currently available are polyclonal and not highly specific. We obtained the novel monoclonal antibody 9F against human aldolase C, characterized its isoform specificity and tested its performance. First, we investigated the specificity of 9F for aldolase C. Then, using bioinformatic tools coupled to molecular cloning and chemical synthesis approaches, we produced truncated human aldolase C fragments, and assessed 9F binding to these fragments by western blot and ELISA assays. This strategy revealed that residues 85–102 harbor the epitope-containing region recognized by 9F. The efficiency of 9F was demonstrated also for immunoprecipitation assays. Finally, surface plasmon resonance revealed that the protein has a high affinity toward the epitope-containing peptide. Taken together, our findings show that epitope recognition is sequence-driven and is independent of the three-dimensional structure. In conclusion, given its specific molecular interaction, 9F is a novel and powerful tool to investigate aldolase C’s functions in the brain.
Collapse
Affiliation(s)
- Simona Langellotti
- CEINGE-Biotecnologie Avanzate; Naples, Italy; International Centre for Genetic Engineering and Biotechnology; Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences; University of Trieste; Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology; Trieste, Italy
| | | | - Stefania Orrù
- Department of Sports Science and Wellness; University of Naples "Parthenope"; Naples, Italy; IRCCS SDN-Foundation; Naples, Italy
| | | | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology; Trieste, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate; Naples, Italy; IRCCS SDN-Foundation; Naples, Italy
| |
Collapse
|
56
|
Dai H, Ding H, Meng XW, Lee SH, Schneider PA, Kaufmann SH. Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance. Cancer Res 2013; 73:6998-7008. [PMID: 24097825 DOI: 10.1158/0008-5472.can-13-0940] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bcl-2 is phosphorylated on Ser(70) after treatment of cells with spindle poisons. On the basis of effects observed in cells overexpressing Bcl-2 S70E or S70A mutants, various studies have concluded that Ser(70) phosphorylation either enhances or diminishes Bcl-2 function. In the present study, the ability of phosphorylated Bcl-2, as well as the S70E and S70A mutants, to bind and neutralize proapoptotic Bcl-2 family members under cell-free conditions and in intact cells was examined in an attempt to resolve this controversy. Surface plasmon resonance indicated that phosphorylated Bcl-2, Bcl-2 S70E, and Bcl-2 S70A exhibit enhanced binding to Bim and Bak compared with unmodified Bcl-2. This enhanced binding reflected a readily detectable conformation change in the loop domain of Bcl-2. Furthermore, Bcl-2 S70E and S70A bound more Bak and Bim than wild-type Bcl-2 in pull-downs and afforded greater protection against several chemotherapeutic agents. Importantly, binding of endogenous Bcl-2 to Bim also increased during mitosis, when Bcl-2 is endogenously phosphorylated, and disruption of this mitotic Bcl-2/Bim binding with navitoclax or ABT-199, like Bcl-2 downregulation, enhanced the cytotoxicity of paclitaxel. Collectively, these results provide not only a mechanistic basis for the enhanced antiapoptotic activity of phosphorylated Bcl-2, but also an explanation for the ability of BH3 mimetics to enhance taxane sensitivity.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
57
|
Effector kinase coupling enables high-throughput screens for direct HIV-1 Nef antagonists with antiretroviral activity. ACTA ACUST UNITED AC 2013; 20:82-91. [PMID: 23352142 DOI: 10.1016/j.chembiol.2012.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022]
Abstract
HIV-1 Nef, a critical AIDS progression factor, represents an important target protein for antiretroviral drug discovery. Because Nef lacks intrinsic enzymatic activity, we developed an assay that couples Nef to the activation of Hck, a Src family member and Nef effector protein. Using this assay, we screened a large, diverse chemical library and identified small molecules that block Nef-dependent Hck activity with low micromolar potency. Of these, a diphenylpyrazolo compound demonstrated submicromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound binds directly to Nef via a pocket formed by the Nef dimerization interface and disrupts Nef dimerization in cells. Coupling of nonenzymatic viral accessory factors to host cell effector proteins amenable to high-throughput screening may represent a general strategy for the discovery of new antimicrobial agents.
Collapse
|
58
|
Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:43-55. [PMID: 23665295 DOI: 10.1016/j.bbamem.2013.04.028] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
|
59
|
Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, Freilino ML, Shi H, Li C, Ly D, Rapireddy S, Etter JP, Li PK, Wang L, Chiosea S, Seethala RR, Gooding WE, Chen X, Kaminski N, Pandit K, Johnson DE, Grandis JR. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2012; 2:694-705. [PMID: 22719020 DOI: 10.1158/2159-8290.cd-12-0191] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Despite evidence implicating transcription factors, including STAT3, in oncogenesis, these proteins have been regarded as "undruggable." We developed a decoy targeting STAT3 and conducted a phase 0 trial. Expression levels of STAT3 target genes were decreased in head and neck cancers following injection with the STAT3 decoy compared with tumors receiving saline control. Decoys have not been amenable to systemic administration due to instability. To overcome this barrier, we linked the oligonucleotide strands using hexaethylene glycol spacers. This cyclic STAT3 decoy bound with high affinity to STAT3 protein, reduced cellular viability, and suppressed STAT3 target gene expression in cancer cells. Intravenous injection of the cyclic STAT3 decoy inhibited xenograft growth and downregulated STAT3 target genes in the tumors. These results provide the first demonstration of a successful strategy to inhibit tumor STAT3 signaling via systemic administration of a selective STAT3 inhibitor, thereby paving the way for broad clinical development. SIGNIFICANCE This is the fi rst study of a STAT3-selective inhibitor in humans and the fi rst evidence that a transcription factor decoy can be modifi ed to enable systemic delivery. These findings have therapeutic implications beyond STAT3 to other “undruggable” targets in human cancers.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Label-free monitoring of apoptosis by surface plasmon resonance detection of morphological changes. Apoptosis 2012; 17:916-25. [DOI: 10.1007/s10495-012-0737-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. BMC CHEMICAL BIOLOGY 2012; 12:1. [PMID: 22420777 PMCID: PMC3328272 DOI: 10.1186/1472-6769-12-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/15/2012] [Indexed: 12/13/2022]
Abstract
Background Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK) strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association. Results To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the Km for ATP as well as enhanced inhibitor potency. Conclusions These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting.
Collapse
Affiliation(s)
- Teodora Pene-Dumitrescu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. ACTA ACUST UNITED AC 2011; 194:39-48. [PMID: 21727192 PMCID: PMC3135403 DOI: 10.1083/jcb.201102027] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak-BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein-protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
The use of optical biosensors for studying macromolecular interactions is gaining increasing popularity. In one study, 1,179 papers that involved the application of biosensor data were identified for the year 2007 alone (Rich and Myszka, J Mol Recognit 21:355-400, 2008), the sheer volume and variety of which present a daunting task for the burgeoning biosensor user to accumulate and decipher. This chapter is designed to provide the reader with the tools necessary to prepare, design, and efficiently execute a kinetic experiment on Biacore. It is written to guide the Biacore user through basic theory, system maintenance, and assay set-up while also offering some practical tips that we find useful for Biacore-based studies. Many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To highlight these procedures, this protocol describes the kinetic characterisation of single chain Fv (scFv) antibody fragments from crude bacterial lysates using an antibody affinity capture approach. Even though we specifically describe the capture of HA-tagged scFv antibody fragments to an anti-HA tag monoclonal antibody-immobilised surface prior to kinetic analysis, the same methodologies are universally applicable and can be used for practically any affinity pair and most Biacore systems.
Collapse
Affiliation(s)
- Paul Leonard
- School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
64
|
Glück JM, Koenig BW, Willbold D. Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal Biochem 2011; 408:46-52. [DOI: 10.1016/j.ab.2010.08.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/22/2010] [Accepted: 08/23/2010] [Indexed: 01/16/2023]
|
65
|
Massam-Wu T, Chiu M, Choudhury R, Chaudhry SS, Baldwin AK, McGovern A, Baldock C, Shuttleworth CA, Kielty CM. Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta. J Cell Sci 2010; 123:3006-18. [PMID: 20699357 DOI: 10.1242/jcs.073437] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of the bioavailability of the growth factor TGFbeta is essential for tissue formation and homeostasis, yet precisely how latent TGFbeta is incorporated into the extracellular matrix is unknown. Here, we show that deposition of a large latent TGFbeta complex (LLC), which contains latent TGFbeta-binding protein 1 (LTBP-1), is directly dependent on the pericellular assembly of fibrillin microfibrils, which interact with fibronectin during higher-order fibrillogenesis. LTBP-1 formed pericellular arrays that colocalized with microfibrils, whereas fibrillin knockdown inhibited fibrillar LTBP-1 and/or LLC deposition. Blocking alpha5beta1 integrin or supplementing cultures with heparin, which both inhibited microfibril assembly, disrupted LTBP-1 deposition and enhanced Smad2 phosphorylation. Full-length LTBP-1 bound only weakly to N-terminal pro-fibrillin-1, but this association was strongly enhanced by heparin. The microfibril-associated glycoprotein MAGP-1 (MFAP-2) inhibited LTBP-1 binding to fibrillin-1 and stimulated Smad2 phosphorylation. By contrast, fibulin-4, which interacted strongly with full-length LTBP-1, did not induce Smad2 phosphorylation. Thus, LTBP-1 and/or LLC deposition is dependent on pericellular microfibril assembly and is governed by complex interactions between LTBP-1, heparan sulfate, fibrillin-1 and microfibril-associated molecules. In this way, microfibrils control TGFbeta bioavailability.
Collapse
Affiliation(s)
- Teresa Massam-Wu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Petrou PS, Ricklin D, Zavali M, Raptis I, Kakabakos SE, Misiakos K, Lambris JD. Real-time label-free detection of complement activation products in human serum by white light reflectance spectroscopy. Biosens Bioelectron 2009; 24:3359-64. [PMID: 19481435 PMCID: PMC2742705 DOI: 10.1016/j.bios.2009.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
We present a label-free, real-time sensor based on white light reflectance spectroscopy for quantitating the complement activation product C3b and its metabolites as a biomarker in human serum. Our novel sensor allows real-time monitoring of biomolecular reactions (in this case, antigen-antibody reactions) taking place on a reflective surface within a flow cell. Detection was based on monitoring the increase in film thickness caused by its immunoreaction with a specific antibody; this reaction was seen as a shift in the wavelength at which constructive interference was observed. Quantitation of C3b was achieved by immobilizing a specific mouse monoclonal antibody onto the refractive surface and monitoring the rate of the signal changes occurring during the first 60s of the immunoreaction between the antibody and known concentrations of purified C3b or dilutions of complement-activated human serum. The lowest detectable concentration of purified C3b was 20 ng/mL, and complement activation products in human serum samples could be detected at dilutions as high as 6000-fold. The advantages of the method include its relatively low cost, short analysis time, and high assay sensitivity and reliability. Thus, this novel assay method can be used to monitor serum C3b produced as a result of complement activation in a variety of normal and pathologic conditions.
Collapse
Affiliation(s)
- Panagiota S. Petrou
- Immunoassay/Immunosensors Lab, Institute of Radioisotopes and Radiodiagnostic Products, NCSR “Demokritos”, GR-15310 Aghia Paraskevi, Greece
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Maria Zavali
- Microelectronics Institute, NCSR “Demokritos”, GR-15310 Aghia Paraskevi, Greece
| | - Ioannis Raptis
- Microelectronics Institute, NCSR “Demokritos”, GR-15310 Aghia Paraskevi, Greece
| | - Sotirios E. Kakabakos
- Immunoassay/Immunosensors Lab, Institute of Radioisotopes and Radiodiagnostic Products, NCSR “Demokritos”, GR-15310 Aghia Paraskevi, Greece
| | | | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
67
|
Schlaman HRM, Schmidt K, Ottenhof D, van Es MH, Oosterkamp TH, Spaink HP. Analysis of interactions of signaling proteins with phage-displayed ligands by fluorescence correlation spectroscopy. ACTA ACUST UNITED AC 2008; 13:766-76. [PMID: 18753688 DOI: 10.1177/1087057108323124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluorescent correlation spectroscopy (FCS) was used to measure binding affinities of ligands to ligates that are expressed by phage-display technology. Using this method we have quantified the binding of the 14-3-3 signaling protein to artificial peptide ligand. As a ligand we used the R18 artificial peptide expressed as a fusion in the cpIII coat protein that is present in 3 to 5 copies in an M13 phage. Comparisons of binding affinities were made with free R18 ligands using FCS. The result showed a relatively high binding affinity for the phage-displayed R18 peptide compared with binding to free fluorescently labeled R18. Quantification was supported by titration of the phage numbers using atomic force microscopy (AFM). AFM was shown to accurately determine phage numbers in solution as a good alternative for electron microscopy. It was shown to give reliable data that correlated perfectly with those of the viable phage numbers determined by classical bacterial infection studies. In conclusion, a very fast and sensitive method for the selection of new peptide ligands or ligates based on a quantitative assay in solution has been developed.
Collapse
Affiliation(s)
- Helmi R M Schlaman
- Institute of Biology Leiden, Leiden University, Clusius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|