51
|
Complex T-cell receptor repertoire dynamics underlie the CD8+ T-cell response to HIV-1. J Virol 2014; 89:110-9. [PMID: 25320304 DOI: 10.1128/jvi.01765-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Although CD8(+) T cells are important for the control of HIV-1 in vivo, the precise correlates of immune efficacy remain unclear. In this study, we conducted a comprehensive analysis of viral sequence variation and T-cell receptor (TCR) repertoire composition across multiple epitope specificities in a group of antiretroviral treatment-naive individuals chronically infected with HIV-1. A negative correlation was detected between changes in antigen-specific TCR repertoire diversity and CD8(+) T-cell response magnitude, reflecting clonotypic expansions and contractions related to alterations in cognate viral epitope sequences. These patterns were independent of the individual, as evidenced by discordant clonotype-specific transitions directed against different epitopes in single subjects. Moreover, long-term asymptomatic HIV-1 infection was characterized by evolution of the TCR repertoire in parallel with viral replication. Collectively, these data suggest a continuous bidirectional process of adaptation between HIV-1 and virus-specific CD8(+) T-cell clonotypes orchestrated at the TCR-antigen interface. IMPORTANCE We describe a relation between viral epitope mutation, antigen-specific T-cell expansion, and the repertoire of responding clonotypes in chronic HIV-1 infection. This work provides insights into the process of coadaptation between the human immune system and a rapidly evolving lentivirus.
Collapse
|
52
|
Gold MC, McLaren JE, Reistetter JA, Smyk-Pearson S, Ladell K, Swarbrick GM, Yu YYL, Hansen TH, Lund O, Nielsen M, Gerritsen B, Kesmir C, Miles JJ, Lewinsohn DA, Price DA, Lewinsohn DM. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. ACTA ACUST UNITED AC 2014; 211:1601-10. [PMID: 25049333 PMCID: PMC4113934 DOI: 10.1084/jem.20140507] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, and the TCR repertoire is distinct within individuals, indicating that the MAIT cell repertoire is shaped by prior microbial exposure. Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)–like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usage is widely thought to indicate limited ligand presentation and discrimination within a pattern-like recognition system. Here, we evaluated the TCR repertoire of MAIT cells responsive to three classes of microbes. Substantial diversity and heterogeneity were apparent across the functional MAIT cell repertoire as a whole, especially for TCRβ chain sequences. Moreover, different pathogen-specific responses were characterized by distinct TCR usage, both between and within individuals, suggesting that MAIT cell adaptation was a direct consequence of exposure to various exogenous MR1-restricted epitopes. In line with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped by microbial exposure.
Collapse
Affiliation(s)
- Marielle C Gold
- Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239 Portland VA Medical Center, Portland, OR 97239
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | - Joseph A Reistetter
- Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239
| | - Sue Smyk-Pearson
- Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | - Gwendolyn M Swarbrick
- Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239
| | - Yik Y L Yu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | - Bram Gerritsen
- Theoretical Biology and Bioinformatics Group, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics Group, Utrecht University, 3584 CH Utrecht, Netherlands
| | - John J Miles
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Deborah A Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David M Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239Division of Pulmonary and Critical Care Medicine, Department of Molecular Microbiology and Immunology, and Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239 Portland VA Medical Center, Portland, OR 97239
| |
Collapse
|
53
|
Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung MW, Parsons JM, Steen MS, LaMadrid-Herrmannsfeldt MA, Williamson DW, Livingston RJ, Wu D, Wood BL, Rieder MJ, Robins H. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun 2014; 4:2680. [PMID: 24157944 DOI: 10.1038/ncomms3680] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/26/2013] [Indexed: 11/09/2022] Open
Abstract
T and B cell receptor loci undergo combinatorial rearrangement, generating a diverse immune receptor repertoire, which is vital for recognition of potential antigens. Here we use a multiplex PCR with a mixture of primers targeting the rearranged variable and joining segments to capture receptor diversity. Differential hybridization kinetics can introduce significant amplification biases that alter the composition of sequence libraries prepared by multiplex PCR. Using a synthetic immune receptor repertoire, we identify and minimize such biases and computationally remove residual bias after sequencing. We apply this method to a multiplex T cell receptor gamma sequencing assay. To demonstrate accuracy in a biological setting, we apply the method to monitor minimal residual disease in acute lymphoblastic leukaemia patients. A similar methodology can be extended to any adaptive immune locus.
Collapse
Affiliation(s)
- Christopher S Carlson
- 1] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington 98109, USA [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Koning D, Costa AI, Hasrat R, Grady BPX, Spijkers S, Nanlohy N, Keşmir C, van Baarle D. In vitro expansion of antigen-specific CD8(+) T cells distorts the T-cell repertoire. J Immunol Methods 2014; 405:199-203. [PMID: 24512815 DOI: 10.1016/j.jim.2014.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
Short-term in vitro expansion of antigen-specific T cells is an appreciated assay for the analysis of small memory T-cell populations. However, how well short-term expanded T cells represent the direct ex vivo situation remains to be elucidated. In this study we compared the clonality of Epstein-Barr virus (EBV) and cytomegalovirus (CMV)-specific CD8(+) T cells directly ex vivo and after in vitro stimulation with antigen. Our data show that the antigen-specific T cell repertoire significantly alters after in vitro culture. Clear shifts in clonotype hierarchy were observed, with the most dominant ex vivo clonotype decreasing after stimulation at the expense of several previously subdominant clonotypes. Notably, these alterations were more pronounced in polyclonal T-cell populations compared to mono- or oligoclonal repertoires. Furthermore, TCR diversity significantly increased after culture with antigen. These results suggest that the T-cell repertoire is highly subjective to variation after in vitro stimulation with antigen. Hence, although short-term expansion of T cells provides a simple and efficient tool to examine antigen-specific immune responses, caution is required if T-cell populations are expanded prior to detailed, clonotypic analyses or other repertoire-based investigations.
Collapse
Affiliation(s)
- Dan Koning
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raiza Hasrat
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart P X Grady
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Cluster of Infectious Diseases, Public Health Service, Amsterdam, The Netherlands
| | - Sanne Spijkers
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nening Nanlohy
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Can Keşmir
- Department of Theoretical Biology, Utrecht University, Utrecht, The Netherlands
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
55
|
Yu X, Almeida JR, Darko S, van der Burg M, DeRavin SS, Malech H, Gennery A, Chinn I, Markert ML, Douek DC, Milner JD. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development. J Allergy Clin Immunol 2014; 133:1109-15. [PMID: 24406074 DOI: 10.1016/j.jaci.2013.11.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human immunodeficiencies characterized by hypomorphic mutations in critical developmental and signaling pathway genes allow for the dissection of the role of these genes in the development of the T-cell receptor (TCR) repertoire and the correlation of alterations of the TCR repertoire with diverse clinical phenotypes. OBJECTIVE The presence of T cells in patients with Omenn syndrome (OS) and patients with atypical presentations of severe combined immunodeficiency gene mutations presents an opportunity to study the effects of the causal genes on TCR repertoires and provides a window into the clinical heterogeneity observed. METHODS We performed deep sequencing of TCRβ complementarity-determining region 3 (CDR3) regions in subjects with a series of immune dysregulatory conditions caused by mutations in recombination activating gene 1/2 (RAG 1/2), IL-2 receptor γ (IL2RG), and ζ chain-associated protein kinase 70 (ZAP70); a patient with atypical DiGeorge syndrome; and healthy control subjects. RESULTS We found that patients with OS had marked reductions in TCRβ diversity compared with control subjects, as expected. Patients with atypical presentations of RAG or IL2RG mutations associated with autoimmunity and granulomatous disease did not have altered overall diversity but instead had skewed V-J pairing and skewed CDR3 amino acid use. Although germline TCRs were more abundant and clonally expanded in patients with OS, nongermline sequences were expanded as well. TCRβ from patients with RAG mutations had less junctional diversity and smaller CDR3s than patients with OS caused by other gene mutations and healthy control subjects but relatively similar CDR3 amino acid use. CONCLUSIONS High-throughput TCR sequencing of rare immune disorders has demonstrated that quantitative TCR diversity can appear normal despite qualitative changes in repertoire and strongly suggests that in human subjects RAG enzymatic function might be necessary for normal CDR3 junctional diversity.
Collapse
Affiliation(s)
- Xiaomin Yu
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jorge R Almeida
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Harry Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew Gennery
- Department of Paediatric Immunology, Newcastle University, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ivan Chinn
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Mary Louise Markert
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
56
|
Estorninho M, Gibson VB, Kronenberg-Versteeg D, Liu YF, Ni C, Cerosaletti K, Peakman M. A Novel Approach to Tracking Antigen-Experienced CD4 T Cells into Functional Compartments via Tandem Deep and Shallow TCR Clonotyping. THE JOURNAL OF IMMUNOLOGY 2013; 191:5430-40. [DOI: 10.4049/jimmunol.1300622] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
La Gruta NL, Thomas PG. Interrogating the relationship between naïve and immune antiviral T cell repertoires. Curr Opin Virol 2013; 3:447-51. [PMID: 23849601 DOI: 10.1016/j.coviro.2013.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
Abstract
Understanding how naïve virus-specific CD8+ T cells influence the type of immune response generated after virus infection is critical for the development of enhanced therapeutic and vaccination strategies to exploit CD8+ T cell-mediated immunity. Recent technological advances in T cell isolation and T receptor sequencing have allowed for greater understanding of the basic structure of immune T cell repertoires, the diversity of responses within and between individuals, and changes in repertoires over time and in response to infection conditions. In this review, we discuss the current understanding of how T cell repertoires contribute to potent antiviral responses. Additionally we compare the state of the art in receptor sequencing, highlighting the advantages and disadvantages of the three most common approaches: next-generation sequencing, template-switch anchored RT-PCR, and multiplex single cell PCR. Finally, we describe how TCR sequencing has delineated the relationship between naïve and immune T cell repertoires.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC 3010, Australia.
| | | |
Collapse
|
58
|
Liu YC, Miles JJ, Neller MA, Gostick E, Price DA, Purcell AW, McCluskey J, Burrows SR, Rossjohn J, Gras S. Highly divergent T-cell receptor binding modes underlie specific recognition of a bulged viral peptide bound to a human leukocyte antigen class I molecule. J Biol Chem 2013; 288:15442-54. [PMID: 23569211 PMCID: PMC3668706 DOI: 10.1074/jbc.m112.447185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a “super-bulged” viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely “bypassing” the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with “bulged” pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.
Collapse
Affiliation(s)
- Yu Chih Liu
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Casazza JP, Bowman KA, Adzaku S, Smith EC, Enama ME, Bailer RT, Price DA, Gostick E, Gordon IJ, Ambrozak DR, Nason MC, Roederer M, Andrews CA, Maldarelli FM, Wiegand A, Kearney MF, Persaud D, Ziemniak C, Gottardo R, Ledgerwood JE, Graham BS, Koup RA. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J Infect Dis 2013; 207:1829-40. [PMID: 23482645 DOI: 10.1093/infdis/jit098] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The licensing of herpes zoster vaccine has demonstrated that therapeutic vaccination can help control chronic viral infection. Unfortunately, human trials of immunodeficiency virus (HIV) vaccine have shown only marginal efficacy. METHODS In this double-blind study, 17 HIV-infected individuals with viral loads of <50 copies/mL and CD4(+) T-cell counts of >350 cells/µL were randomly assigned to the vaccine or placebo arm. Vaccine recipients received 3 intramuscular injections of HIV DNA (4 mg) coding for clade B Gag, Pol, and Nef and clade A, B, and C Env, followed by a replication-deficient adenovirus type 5 boost (10(10) particle units) encoding all DNA vaccine antigens except Nef. Humoral, total T-cell, and CD8(+) cytotoxic T-lymphocyte (CTL) responses were studied before and after vaccination. Single-copy viral loads and frequencies of latently infected CD4(+) T cells were determined. RESULTS Vaccination was safe and well tolerated. Significantly stronger HIV-specific T-cell responses against Gag, Pol, and Env, with increased polyfunctionality and a broadened epitope-specific CTL repertoire, were observed after vaccination. No changes in single-copy viral load or the frequency of latent infection were observed. CONCLUSIONS Vaccination of individuals with existing HIV-specific immunity improved the magnitude, breadth, and polyfunctionality of HIV-specific memory T-cell responses but did not impact markers of viral control. CLINICAL TRIALS REGISTRATION NCT00270465.
Collapse
Affiliation(s)
- Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH),Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Koning D, Costa AI, Hoof I, Miles JJ, Nanlohy NM, Ladell K, Matthews KK, Venturi V, Schellens IMM, Borghans JAM, Keşmir C, Price DA, van Baarle D. CD8+ TCR Repertoire Formation Is Guided Primarily by the Peptide Component of the Antigenic Complex. THE JOURNAL OF IMMUNOLOGY 2012; 190:931-9. [DOI: 10.4049/jimmunol.1202466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
61
|
Humphreys IR, Clement M, Marsden M, Ladell K, McLaren JE, Smart K, Hindley JP, Bridgeman HM, van den Berg HA, Price DA, Ager A, Wooldridge L, Godkin A, Gallimore AM. Avidity of influenza-specific memory CD8+ T-cell populations decays over time compromising antiviral immunity. Eur J Immunol 2012; 42:3235-42. [PMID: 22965681 PMCID: PMC3657127 DOI: 10.1002/eji.201242575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/30/2012] [Accepted: 09/06/2012] [Indexed: 11/16/2022]
Abstract
Decline of cell-mediated immunity is often attributed to decaying T-cell numbers and their distribution in peripheral organs. This study examined the hypothesis that qualitative as well as quantitative changes contribute to the declining efficacy of CD8(+) T-cell memory. Using a model of influenza virus infection, where loss of protective CD8(+) T-cell immunity was observed 6 months postinfection, we found no decline in antigen-specific T-cell numbers or migration to the site of secondary infection. There was, however, a large reduction in antigen-specific CD8(+) T-cell degranulation, cytokine secretion, and polyfunctionality. A profound loss of high-avidity T cells over time indicated that failure to confer protective immunity resulted from the inferior functional capacity of remaining low avidity cells. These data imply that high-avidity central memory T cells wane with declining antigen levels, leaving lower avidity T cells with reduced functional capabilities.
Collapse
Affiliation(s)
- Ian R Humphreys
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Antrobus RD, Lillie PJ, Berthoud TK, Spencer AJ, McLaren JE, Ladell K, Lambe T, Milicic A, Price DA, Hill AVS, Gilbert SC. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years. PLoS One 2012; 7:e48322. [PMID: 23118984 PMCID: PMC3485192 DOI: 10.1371/journal.pone.0048322] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Current influenza vaccines have reduced immunogenicity and are of uncertain efficacy in older adults. We assessed the safety and immunogenicity of MVA-NP+M1, a viral-vectored influenza vaccine designed to boost memory T cell responses, in a group of older adults. METHODS Thirty volunteers (aged 50-85) received a single intramuscular injection of MVA-NP+M1 at a dose of 1·5×10(8) plaque forming units (pfu). Safety and immunogenicity were assessed over a period of one year. The frequency of T cells specific for nucleoprotein (NP) and matrix protein 1 (M1) was determined by interferon-gamma (IFN-γ) ELISpot, and their phenotypic and functional properties were characterized by polychromatic flow cytometry. In a subset of M1-specific CD8(+) T cells, T cell receptor (TCR) gene expression was evaluated using an unbiased molecular approach. RESULTS Vaccination with MVA-NP+M1 was well tolerated. ELISpot responses were boosted significantly above baseline following vaccination. Increases were detected in both CD4(+) and CD8(+) T cell subsets. Clonality studies indicated that MVA-NP+M1 expanded pre-existing memory CD8(+) T cells, which displayed a predominant CD27(+)CD45RO(+)CD57(-)CCR7(-) phenotype both before and after vaccination. CONCLUSIONS MVA-NP+M1 is safe and immunogenic in older adults. Unlike seasonal influenza vaccination, the immune responses generated by MVA-NP+M1 are similar between younger and older individuals. A T cell-inducing vaccine such as MVA-NP+M1 may therefore provide a way to circumvent the immunosenescence that impairs routine influenza vaccination. TRIAL REGISTRATION ClinicalTrials.gov NCT00942071.
Collapse
Affiliation(s)
| | | | | | | | - James E. McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Anita Milicic
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David A. Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Benichou J, Ben-Hamo R, Louzoun Y, Efroni S. Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 2012; 135:183-91. [PMID: 22043864 DOI: 10.1111/j.1365-2567.2011.03527.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent scientific discoveries fuelled by the application of next-generation DNA and RNA sequencing technologies highlight the striking impact of these platforms in characterizing multiple aspects in genomics research. This technology has been used in the study of the B-cell and T-cell receptor repertoire. The novelty of immunosequencing comes from the recent rapid development of techniques and the exponential reduction in cost of sequencing. Here, we describe some of the technologies, which we collectively refer to as Rep-Seq (repertoire sequencing), to portray achievements in the field and to present the essential and inseparable role of next-generation sequencing to the understanding of entities in immune response. The large Rep-Seq data sets that should be available in the near future call for new computational algorithms to segue the transition from 'classic' molecular-based analysis to system-wide analysis. The combination of new algorithms with high-throughput data will form the basis for possible new clinical implications in personalized medicine and deeper understanding of immune behaviour and immune response.
Collapse
Affiliation(s)
- Jennifer Benichou
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan
| | | | | | | |
Collapse
|
64
|
Virus inhibition activity of effector memory CD8(+) T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection. J Virol 2012; 86:5877-84. [PMID: 22419810 DOI: 10.1128/jvi.00315-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of an effective AIDS vaccine is to generate immunity that will prevent human immunodeficiency virus 1 (HIV-1) acquisition. Despite limited progress toward this goal, renewed optimism has followed the recent success of the RV144 vaccine trial in Thailand. However, the lack of complete protection in this trial suggests that breakthroughs, where infection occurs despite adequate vaccination, will be a reality for many vaccine candidates. We previously reported that neutralizing antibodies elicited by DNA prime-recombinant adenovirus serotype 5 (rAd5) boost vaccination with simian immunodeficiency virus strain mac239 (SIVmac239) Gag-Pol and Env provided protection against pathogenic SIVsmE660 acquisition after repeated mucosal challenge. Here, we report that SIV-specific CD8(+) T cells elicited by that vaccine lowered both peak and set-point viral loads in macaques that became infected despite vaccination. These SIV-specific CD8(+) T cells showed strong virus-inhibitory activity (VIA) and displayed an effector memory (EM) phenotype. VIA correlated with high levels of CD107a mobilization and perforin expression in SIV-specific CD8(+) T cells. Remarkably, both the frequency and the number of Gag CM9-specific public clonotypes were strongly correlated with VIA mediated by EM CD8(+) T cells. The ability to elicit such virus-specific EM CD8(+) T cells might contribute substantially to an efficacious HIV/AIDS vaccine, even after breakthrough infection.
Collapse
|
65
|
Cole DK, Gallagher K, Lemercier B, Holland CJ, Junaid S, Hindley JP, Wynn KK, Gostick E, Sewell AK, Gallimore AM, Ladell K, Price DA, Gougeon ML, Godkin A. Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4⁺ T-cell repertoire selection. Nat Commun 2012; 3:665. [PMID: 22314361 PMCID: PMC3293629 DOI: 10.1038/ncomms1665] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/05/2012] [Indexed: 02/01/2023] Open
Abstract
Human CD4(+) αβ T cells are activated via T-cell receptor recognition of peptide epitopes presented by major histocompatibility complex (MHC) class II (MHC-II). The open ends of the MHC-II binding groove allow peptide epitopes to extend beyond a central nonamer core region at both the amino- and carboxy-terminus. We have previously found that these non-bound C-terminal residues can alter T cell activation in an MHC allele-transcending fashion, although the mechanism for this effect remained unclear. Here we show that modification of the C-terminal peptide-flanking region of an influenza hemagglutinin (HA(305-320)) epitope can alter T-cell receptor binding affinity, T-cell activation and repertoire selection of influenza-specific CD4(+) T cells expanded from peripheral blood. These data provide the first demonstration that changes in the C-terminus of the peptide-flanking region can substantially alter T-cell receptor binding affinity, and indicate a mechanism through which peptide flanking residues could influence repertoire selection.
Collapse
Affiliation(s)
- David K. Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
- These authors contributed equally to this work
| | - Kathleen Gallagher
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
- These authors contributed equally to this work
| | - Brigitte Lemercier
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, rue du Dr. Roux, 75015 Paris, France
- These authors contributed equally to this work
| | - Christopher J. Holland
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Sayed Junaid
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - James P. Hindley
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Katherine K. Wynn
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Andrew K. Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Awen M. Gallimore
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - David A. Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
| | - Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Department of Infection and Epidemiology, rue du Dr. Roux, 75015 Paris, France
| | - Andrew Godkin
- Institute of Infection and Immunity, Cardiff University School of Medicine, The Henry Wellcome Building, Cardiff CF14 4XN, Wales, UK
- Department of Medicine, University Hospital of Wales, Cardiff CF14 4XW, Wales, UK
| |
Collapse
|
66
|
HLA B*5701-positive long-term nonprogressors/elite controllers are not distinguished from progressors by the clonal composition of HIV-specific CD8+ T cells. J Virol 2012; 86:4014-8. [PMID: 22278241 DOI: 10.1128/jvi.06982-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To better understand the qualitative features of effective human immunodeficiency virus (HIV)-specific immunity, we examined the TCR clonal composition of CD8(+) T cells recognizing conserved HIV p24-derived epitopes in HLA-B*5701-positive long-term nonprogressors/elite controllers (LTNP/EC) and HLA-matched progressors. Both groups displayed oligoclonal HLA-B5701-restricted p24-specific CD8(+) T-cell responses with similar levels of diversity and few public clonotypes. Thus, HIV-specific CD8(+) T-cell responses in LTNP/EC are not differentiated from those of progressors on the basis of clonal diversity or TCR sharing.
Collapse
|