51
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
52
|
Costa R, Alberola J, Olea B, Gozalbo-Rovira R, Giménez E, Cuevas-Ferrando E, Torres I, Albert E, Carbonell N, Ferreres J, Sánchez G, Rodríguez-Díaz J, Blasco ML, Navarro D. Combined kinetic analysis of SARS-CoV-2 RNAemia, N-antigenemia and virus-specific antibodies in critically ill adult COVID-19 patients. Sci Rep 2022; 12:8273. [PMID: 35585163 PMCID: PMC9114819 DOI: 10.1038/s41598-022-12461-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
Combined kinetic analysis of plasma SARS-CoV-2 RNAemia, Nucleocapsid (N)-antigenemia and virus-specific antibodies may help ascertain the role of antibodies in preventing virus dissemination in COVID-19 patients. We performed this analysis in a cohort of 71 consecutive critically ill COVID-19 patients (49 male; median age, 65 years) using RT-PCR assay, lateral flow immunochromatography method and receptor binding domain (RBD) and N-based immunoassays. A total of 338 plasma specimens collected at a median of 12 days after symptoms onset were available for analyses. SARS-CoV-2 RNAemia and N-antigenemia were detected in 37 and 43 specimens from 26 (36.5%) and 30 (42.2%) patients, respectively. Free RNA was the main biological form of SARS-CoV-2 found in plasma. The detection rate for both viral components was associated with viral load at the upper respiratory tract. Median time to SARS-CoV-2-RBD antibody detection was 14 days (range, 4–38) from onset of symptoms. Decreasing antibody levels were observed in parallel to increasing levels of both RNAemia and N-antigenemia, yet overall a fairly modest inverse correlation (Rho = −0.35; P < 0.001) was seen between virus RNAemia and SARS-CoV-2-RBD antibody levels. The data cast doubts on a major involvement of antibodies in virus clearance from the bloodstream within the timeframe examined.
Collapse
Affiliation(s)
- Rosa Costa
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Juan Alberola
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Beatriz Olea
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | | | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Nieves Carbonell
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - José Ferreres
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - María Luisa Blasco
- Medical Intensive Care Unit, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain. .,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
53
|
McCarthy MW. Outpatient treatment options to address the SARS-CoV-2 variant Omicron. Expert Rev Anti Infect Ther 2022; 20:1129-1133. [PMID: 35549623 DOI: 10.1080/14787210.2022.2077191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION : On November 26, 2021, the World Health Organization's Technical Advisory Group on SARS-CoV-2 Virus Evolution designated PANGO lineage B.1.1.529 a variant of concern and gave it the designation Omicron. The following day, the United Kingdom reported its first two cases of Omicron, a novel variant that was thought to be more transmissible than other variants such as Delta, Beta, and Alpha. AREAS COVERED : Omicron has since become the dominant variant around the world, accounting for unprecedented case counts and hospitalizations. Omicron's high rate of spread has been attributed to a variety of factors, including enhanced replication in the upper airways (bronchi) as well as immune evasion. EXPERT OPINION : These intrinsic factors have implications for the approach to treatment. Monoclonal antibody therapies, which were highly effective against prior SARS-CoV-2 variants, were rendered largely ineffective against Omicron, and other antiviral options remain severely limited due to supply issues. This manuscript reviews the landscape of Omicron therapeutics and looks ahead to examine how these treatments and others may be used in the future to address the expanding threat of the Omicron variant.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Division of General Internal Medicine, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
54
|
Borillo GA, Kagan RM, Marlowe EM. Rapid and Accurate Identification of SARS-CoV-2 Variants Using Real Time PCR Assays. Front Cell Infect Microbiol 2022; 12:894613. [PMID: 35619652 PMCID: PMC9127862 DOI: 10.3389/fcimb.2022.894613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Background Genomic surveillance efforts for SARS-CoV-2 are needed to understand the epidemiology of the COVID-19 pandemic. Viral variants may impact routine diagnostic testing, increase viral transmissibility, cause differences in disease severity, have decreased susceptibility to therapeutics, and/or confer the ability to evade host immunity. While viral whole-genome sequencing (WGS) has played a leading role in surveillance programs, many laboratories lack the expertise and resources for performing WGS. This study describes the performance of multiplexed real-time reverse transcription-PCR (RT-PCR) assays for identification of SARS-CoV-2 variants. Methods SARS-CoV-2 specimens were tested for spike-gene variants using a combination of allele-specific primer and allele-specific detection technology (PlexPrime® and PlexZyme®). Targeted detection of spike gene mutations by RT-PCR was compared to variant detection in positive specimens by WGS, including the recently emerged SARS-CoV-2 Omicron variant. Results A total of 398 SAR-CoV-2 RT-PCR positive and 39 negative specimens previously tested by WGS were re-tested by RT-PCR genotyping. PCR detection of spike gene mutations N501Y, E484K, and S982A correlated 100% with WGS for the 29 lineages represented, including Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Incorporating the P681R spike gene mutation also allowed screening for the SARS-CoV-2 Delta variant (B.1.617.2 and AY sublineages). Further sampling of 664 specimens that were screened by WGS between June and August 2021 and then re-tested by RT-PCR showed strong agreement for Delta variant positivity: 34.5% for WGS vs 32.9% for RT-PCR in June; 100% vs 97.8% in August. In a blinded panel of 16 Omicron and 16 Delta specimens, results of RT-PCR were 100% concordant with WGS results. Conclusions These data demonstrate that multiplexed real-time RT-PCR genotyping has strong agreement with WGS and may provide additional SARS-CoV-2 variant screening capabilities when WGS is unavailable or cost-prohibitive. RT-PCR genotyping assays may also supplement existing sequencing efforts while providing rapid results at or near the time of diagnosis to help guide patient management.
Collapse
|
55
|
Haskologlu IC, Erdag E, Sayiner S, Abacioglu N, Sehirli AO. Melatonin and REGN-CoV2 combination as a vaccine adjuvant for Omicron variant of SARS-CoV-2. Mol Biol Rep 2022; 49:4061-4068. [PMID: 35389130 PMCID: PMC8986966 DOI: 10.1007/s11033-022-07419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
The omicron variant (B.529) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2021, caused panic worldwide due to its contagiousness and multiple mutations in the spike protein compared to the Delta variant (B.617.2). There is currently no specific antiviral available to treat Coronavirus disease 2019 (COVID-19). However, studies on neutralizing monoclonal antibodies (mAb) developed to fight COVID-19 are growing and gaining traction. REGN-COV2 (Regeneron or imdevimab-casirivimab combination), which has been shown in recent studies to be less affected by Omicron's RBD (receptor binding domain) mutations among other mAb cocktails, plays an important role in adjuvant therapy against COVID-19. On the other hand, it is known that melatonin, which has antioxidant and immunomodulatory effects, can prevent a possible cytokine storm, and other severe symptoms that may develop in the event of viral invasion. Along with all these findings, we believe it is crucial to evaluate the use of melatonin with REGN-COV2, a cocktail of mAbs, as an adjuvant in the treatment and prevention of COVID-19, particularly in immunocompromised and elderly patients.
Collapse
Affiliation(s)
| | - Emine Erdag
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Near East University, Nicosia, Cyprus
| | - Serkan Sayiner
- Faculty of Veterinary Medicine, Department of Biochemistry, Near East University, Nicosia, Cyprus
- Diagnostic Laboratory, Animal Hospital, Near East University, Nicosia, Cyprus
| | - Nurettin Abacioglu
- Faculty of Pharmacy, Department of Pharmacology, Near East University, Nicosia, Cyprus
| | - Ahmet Ozer Sehirli
- Faculty of Dentistry, Department of Pharmacology, Near East University, Nicosia, Cyprus
| |
Collapse
|
56
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
57
|
Di Gennaro F, Petrosillo N. New endemic and pandemic pathologies with interhuman airborne transmission through ear, nose and throat anatomical sites. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2022; 42:S5-S13. [PMID: 35763270 PMCID: PMC9137375 DOI: 10.14639/0392-100x-suppl.1-42-2022-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has once again stigmatised the importance of airborne pathogens and their clinical, social and public health impact. Respiratory viruses are transmitted between individuals when the pathogen is released from the upper airways or from the lower respiratory tract of an infected individual. Airborne transmission is defined as the inhalation of the infectious aerosol, named droplet nuclei which size is smaller than 5 mm and that can be inhaled at a distance up to 2 metres. This route of transmission is relevant for viral respiratory pathogens, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS)-CoV, influenza virus, human rhinovirus, respiratory syncytial virus (RSV) and other respiratory virus families that differ in viral and genomic structures, susceptibility of a population to the infection, severity, transmissibility, ways of transmission and seasonal recurrence. Human respiratory viruses generally infect cells of the upper respiratory tract, eliciting respiratory signs and symptoms, sometimes without the possibility to differentiate them clinically. As seen by the current Coronavirus Disease 2019 (COVID-19) pandemic, human respiratory viruses can substantially contribute to increased morbidity and mortality, economic losses and, eventually, social disruption. In this article, we describe the structural, clinical and transmission aspects of the main respiratory viruses responsible for endemic, epidemic and pandemic infections.
Collapse
Affiliation(s)
| | - Nicola Petrosillo
- Infection Control & Infectious Disease Service, University Hospital Campus Bio-Medico, Rome, Italy
| |
Collapse
|
58
|
Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry 2022; 27:1898-1907. [PMID: 34997196 PMCID: PMC8739627 DOI: 10.1038/s41380-021-01432-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
59
|
Yan Y, Li Y, Fan C, Zhang Y, Zhang S, Wang Z, Huang T, Ding Z, Hu K, Li L, Ding H. A novel machine learning-based radiomic model for diagnosing high bleeding risk esophageal varices in cirrhotic patients. Hepatol Int 2022; 16:423-432. [PMID: 35366193 DOI: 10.1007/s12072-021-10292-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/15/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND AND AIM To develop and validate a novel machine learning-based radiomic model (RM) for diagnosing high bleeding risk esophageal varices (HREV) in patients with cirrhosis. METHODS A total of 796 qualified participants were enrolled. In training cohort, 218 cirrhotic patients with mild esophageal varices (EV) and 240 with HREV RM were included to training and internal validation groups. Additionally, 159 and 340 cirrhotic patients with mild EV and HREV RM, respectively, were used for external validation. Interesting regions of liver, spleen, and esophagus were labeled on the portal venous-phase enhanced CT images. RM was assessed by area under the receiver operating characteristic curves (AUROC), sensitivity, specificity, calibration and decision curve analysis (DCA). RESULTS The AUROCs for mild EV RM in training and internal validation were 0.943 and 0.732, sensitivity and specificity were 0.863, 0.773 and 0.763, 0.763, respectively. The AUROC, sensitivity, and specificity were 0.654, 0.773 and 0.632, respectively, in external validation. Interestingly, the AUROCs for HREV RM in training and internal validation were 0.983 and 0.834, sensitivity and specificity were 0.948, 0.916 and 0.977, 0.969, respectively. The related AUROC, sensitivity and specificity were 0.736, 0.690 and 0.762 in external validation. Calibration and DCA indicated RM had good performance. Compared with Baveno VI and its expanded criteria, HREV RM had a higher accuracy and net reclassification improvements that were as high as 49.0% and 32.8%. CONCLUSION The present study developed a novel non-invasive RM for diagnosing HREV in cirrhotic patients with high accuracy. However, this RM still needs to be validated by a large multi-center cohort.
Collapse
Affiliation(s)
- Yijie Yan
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China
| | - Yue Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chunlei Fan
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China
| | - Yuening Zhang
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China
| | - Shibin Zhang
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China
| | - Zhi Wang
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, 101200, China
| | - Tehui Huang
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, 101200, China
| | - Zhenjia Ding
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Keqin Hu
- Division of Gastroenterology and Hepatology, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Lei Li
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China.
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital Affiliated With Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
60
|
Alfano G, Morisi N, Frisina M, Ferrari A, Fontana F, Tonelli R, Franceschini E, Meschiari M, Donati G, Guaraldi G. Awaiting a cure for COVID-19: therapeutic approach in patients with different severity levels of COVID-19. LE INFEZIONI IN MEDICINA 2022; 30:11-21. [PMID: 35350263 DOI: 10.53854/liim-3001-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
COVID-19 is an unpredictable infectious disease caused by SARS-CoV-2. The development of effective anti-COVID-19 vaccines has enormously minimized the risk of severe illness in most immunocompetent patients. However, unvaccinated patients and non-responders to the COVID-19 vaccine are at risk of shortand long-term consequences. In these patients, the outcome of COVID-19 relies on an interplay of multiple factors including age, immunocompetence, comorbidities, inflammatory response triggered by the virus as well as the virulence of SARS-CoV-2 variants. Generally, COVID-19 is asymptomatic or mildly symptomatic in young people, but it may manifest with respiratory insufficiency requiring mechanical ventilation in certain susceptible groups of patients. Furthermore, severe SARS-CoV-2 infection induces multiorgan failure syndrome by affecting liver, kidney heart and nervous system. Since December 2019, multiple drugs have been tested to treat COVID-19, but only a few have been proven effective to mitigate the course of the disease that continues to cause death and comorbidity worldwide. Current treatment of COVID-19 patients is essentially based on the administration of supportive oxygen therapy and the use of specific drugs such as steroids, anticoagulants, antivirals, anti-SARS-CoV-2 antibodies and immunomodulators. However, the rapid spread of new variants and the release of new data coming from the numerous ongoing clinical trials have created the conditions for maintaining a continuous updating of the therapeutic management of COVID-19 patients. Furthermore, we believe that a well-established therapeutic strategy along with the continuum of medical care for all patients with COVID-19 is pivotal to improving disease outcomes and restoring healthcare care fragmentation caused by the pandemic. This narrative review, focusing on the therapeutic management of COVID-19 patients, aimed to provide an overview of current therapies for (i) asymptomatic or mildly/moderate symptomatic patients, (ii) hospitalized patients requiring low-flow oxygen, (iii) high-flow oxygen and (iv) mechanical ventilation.
Collapse
Affiliation(s)
- Gaetano Alfano
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy.,Nephrology Dialysis and Transplant Unit, University Hospital of Modena, Italy.,Clinical and Experimental Medicine, PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Morisi
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Frisina
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Annachiara Ferrari
- Internal and Emergency Medicine, Baggiovara Hospital, Baggiovara, Modena, Italy.,Department of Specialistic Medicine, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Francesco Fontana
- Nephrology Dialysis and Transplant Unit, University Hospital of Modena, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit and Center for Rare Lung Disease, Department of Surgical and Medical Sciences, University Hospital of Modena, Italy.,Clinical and Experimental Medicine, PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Gabriele Donati
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy.,Nephrology Dialysis and Transplant Unit, University Hospital of Modena, Italy
| | | |
Collapse
|
61
|
van der Straten K, van Gils MJ, de Taeye SW, de Bree GJ. Optimization of Anti-SARS-CoV-2 Neutralizing Antibody Therapies: Roadmap to Improve Clinical Effectiveness and Implementation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:867982. [PMID: 35419561 PMCID: PMC8996231 DOI: 10.3389/fmedt.2022.867982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
One of the major breakthroughs to combat the current Coronavirus Disease 2019 (COVID-19) pandemic has been the development of highly effective vaccines against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Still, alternatives are needed for individuals who are at high risk of developing severe COVID-19 and are not protected by vaccination. Monoclonal antibodies against the spike protein of SARS-CoV-2 have been shown to be effective as prophylaxis and treatment against COVID-19. However, the emergence of variants of concern (VOCs) challenges the efficacy of antibody therapies. This review describes the neutralization resistance of the clinically-approved monoclonal antibody therapies against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1), Delta (B.1.617.2), and the Omicron (B.1.1.529) variants. To guide the development of monoclonal antibody therapies and to anticipate on the continuous evolution of SARS-CoV-2, we highlight different strategies to broaden the antibody activity by targeting more conserved epitopes and/or simultaneously targeting multiple sites of vulnerability of the virus. This review further describes the contribution of antibody Fc effector functions to optimize the antibody efficacy. In addition, the main route of SARS-CoV-2 antibody administration is currently intravenously and dictates a monthly injection when used as prophylactic. Therefore, we discusses the concept of long-acting antibodies (LAABs) and non-intravenously routes of antibody administration in order to broaden the clinical applicability of antibody therapies.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
62
|
Boeckel GR, Hölscher SD, Bürger C, Jacob T, Krekeler C, Shumilov E, Reicherts C, Bleckmann A, Lenz G, Vollenberg R, Tepasse PR. Comprehensive Treatment of Hematological Patients with SARS-CoV-2 Infection Including Anti-SARS-CoV-2 Monoclonal Antibodies: A Single-Center Experience Case Series. Curr Oncol 2022; 29:2312-2325. [PMID: 35448162 PMCID: PMC9032833 DOI: 10.3390/curroncol29040188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with hematologic malignancies are at high risk of exacerbated condition and higher mortality from coronavirus disease 2019 (COVID-19). Bamlanivimab, casirivimab/imdevimab combination, and sotrovimab are monoclonal antibodies (mABs) that can reduce the risk of COVID-19-related hospitalization. Clinical effectiveness of bamlanivimab and casirivimab/imdevimab combination has been shown for the Delta variant (B.1.617.2), but the effectiveness of the latter treatment against the Omicron variant (B.1.1.529) has been suggested to be reduced. However, the tolerability and clinical usage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific mABs in patients with hematologic malignancies are less specified. We present a retrospective case series analysis of all SARS-CoV-2-infected patients with hematologic malignancies who received SARS-CoV-2-specific mABs at our facility between February and mid-December 2021. A total of 13 COVID-19 patients (pts) with at least one malignant hematologic diagnosis received SARS-CoV-2-specific mABs at our facility, with 3 pts receiving bamlanivimab and 10 pts receiving casirivimab/imdevimab combination. We observed SARS-CoV-2 clearance in five cases. Furthermore, we observed a reduction in the necessity for oxygen supplementation in five cases where the application was administered off-label. To the best of our knowledge, we present the largest collection of anecdotal cases of SARS-CoV-2-specific monoclonal antibody use in patients with hematological malignancies. Potential benefit of mABs may be reduced duration and/or clearance of persistent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Göran Ramin Boeckel
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (S.D.H.); (C.B.); (T.J.); (R.V.)
- Department of Medicine D for Nephrology and Rheumatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Silke Dorothea Hölscher
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (S.D.H.); (C.B.); (T.J.); (R.V.)
| | - Christin Bürger
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (S.D.H.); (C.B.); (T.J.); (R.V.)
| | - Torid Jacob
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (S.D.H.); (C.B.); (T.J.); (R.V.)
| | - Carolin Krekeler
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, 48149 Muenster, Germany; (C.K.); (E.S.); (C.R.); (A.B.); (G.L.)
| | - Evgenii Shumilov
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, 48149 Muenster, Germany; (C.K.); (E.S.); (C.R.); (A.B.); (G.L.)
| | - Christian Reicherts
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, 48149 Muenster, Germany; (C.K.); (E.S.); (C.R.); (A.B.); (G.L.)
| | - Annalen Bleckmann
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, 48149 Muenster, Germany; (C.K.); (E.S.); (C.R.); (A.B.); (G.L.)
| | - Georg Lenz
- Department of Medicine A (Hematology, Oncology, Hemostaseology and Pulmonology), University Hospital Muenster, 48149 Muenster, Germany; (C.K.); (E.S.); (C.R.); (A.B.); (G.L.)
| | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (S.D.H.); (C.B.); (T.J.); (R.V.)
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Muenster, Germany; (S.D.H.); (C.B.); (T.J.); (R.V.)
| |
Collapse
|
63
|
Griesel M, Wagner C, Mikolajewska A, Stegemann M, Fichtner F, Metzendorf MI, Nair AA, Daniel J, Fischer AL, Skoetz N. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev 2022; 3:CD015125. [PMID: 35262185 PMCID: PMC8905579 DOI: 10.1002/14651858.cd015125] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Inhaled corticosteroids are well established for the long-term treatment of inflammatory respiratory diseases such as asthma or chronic obstructive pulmonary disease. They have been investigated for the treatment of coronavirus disease 2019 (COVID-19). The anti-inflammatory action of inhaled corticosteroids might have the potential to reduce the risk of severe illness resulting from hyperinflammation in COVID-19. OBJECTIVES To assess whether inhaled corticosteroids are effective and safe in the treatment of COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (which includes CENTRAL, PubMed, Embase, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 7 October 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating inhaled corticosteroids for COVID-19, irrespective of disease severity, age, sex, or ethnicity. We included the following interventions: any type or dose of inhaled corticosteroids. We included the following comparison: inhaled corticosteroids plus standard care versus standard care (with or without placebo). We excluded studies examining nasal or topical steroids. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. For risk of bias assessment, we used the Cochrane RoB 2 tool. We rated the certainty of evidence using the GRADE approach for the outcomes of mortality, admission to hospital or death, symptom resolution, time to symptom resolution, serious adverse events, adverse events, and infections. MAIN RESULTS Inhaled corticosteroids plus standard care versus standard care (with/without placebo) - People with a confirmed diagnosis of moderate-to-severe COVID-19 We found no studies that included people with a confirmed diagnosis of moderate-to-severe COVID-19. - People with a confirmed diagnosis of asymptomatic SARS-CoV-2 infection or mild COVID-19 We included three RCTs allocating 3607 participants, of whom 2490 had confirmed mild COVID-19. We analysed a subset of the total number of participants recruited to the studies (2171, 52% female) as some trials had a platform design where not all participants were allocated to treatment groups simultaneously. The included studies were community-based, recruiting people who were able to use inhaler devices to deliver steroids and relied on remote assessment and self-reporting of outcomes. Most people were older than 50 years and had co-morbidities such as hypertension, lung disease, or diabetes. The studies were conducted in high-income countries prior to wide-scale vaccination programmes. A total of 1057 participants were analysed in the inhaled corticosteroid arm (budesonide: 860 participants; ciclesonide: 197 participants), and 1075 participants in the control arm. No studies included people with asymptomatic SARS-CoV-2 infection. With respect to the following outcomes, inhaled corticosteroids compared to standard care: - may result in little to no difference in all-cause mortality (at up to day 30) (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.22 to 1.67; 2132 participants; low-certainty evidence). In absolute terms, this means that for every nine deaths per 1000 people not receiving inhaled corticosteroids, there were six deaths per 1000 people who did receive the intervention (95% CI 2 to 16 per 1000 people); - probably reduces admission to hospital or death (at up to 30 days) (RR 0.72, 95% CI 0.51 to 0.99; 2025 participants; moderate-certainty evidence); - probably increases resolution of all initial symptoms at day 14 (RR 1.19, 95% CI 1.09 to 1.30; 1986 participants; moderate-certainty evidence); - may reduce the duration to symptom resolution (at up to day 30) (by -4.00 days, 95% CI -6.22 to -1.78 less than control group rate of 12 days; 139 participants; low-certainty evidence); - the evidence is very uncertain about the effect on serious adverse events (during study period) (RR 0.51, 95% CI 0.09 to 2.76; 1586 participants; very low-certainty evidence); - may result in little to no difference in adverse events (at up to day 30) (RR 0.78, 95% CI 0.47 to 1.31; 400 participants; low-certainty evidence); - may result in little to no difference in infections (during study period) (RR 0.88, 95% CI 0.30 to 2.58; 400 participants; low-certainty evidence). As studies did not report outcomes for subgroups (e.g. age, ethnicity, sex), we did not perform subgroup analyses. AUTHORS' CONCLUSIONS In people with confirmed COVID-19 and mild symptoms who are able to use inhaler devices, we found moderate-certainty evidence that inhaled corticosteroids probably reduce the combined endpoint of admission to hospital or death and increase the resolution of all initial symptoms at day 14. Low-certainty evidence suggests that corticosteroids make little to no difference in all-cause mortality up to day 30 and may decrease the duration to symptom resolution. We do not know whether inhaled corticosteroids increase or decrease serious adverse events due to heterogeneity in the way they were reported across the studies. There is low-certainty evidence that inhaled corticosteroids may decrease infections. The evidence we identified came from studies in high-income settings using budesonide and ciclesonide prior to vaccination roll-outs. We identified a lack of evidence concerning quality of life assessments, serious adverse events, and people with asymptomatic infection or with moderate-to-severe COVID-19. The 10 ongoing and four completed, unpublished RCTs that we identified in trial registries address similar settings and research questions as in the current body of evidence. We expect to incorporate the findings of these studies in future versions of this review. We monitor newly published results of RCTs on inhaled corticosteroids on a weekly basis and will update the review when the evidence or our certainty in the evidence changes.
Collapse
Affiliation(s)
- Mirko Griesel
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Carina Wagner
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Centre for Biological Threats and Special Pathogens (ZBS), Strategy and Incident Response, Clinical Management and Infection Control, Robert Koch Institute, Berlin, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Fichtner
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Avinash Anil Nair
- Department of Respiratory Medicine, Christian Medical College, Vellore, India
| | - Jefferson Daniel
- Department of Pulmonary Medicine, Christian Medical College, Vellore, India
| | - Anna-Lena Fischer
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
64
|
Fazio S, Affuso F, Bellavite P. A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Management of Mild-to-Moderate Symptomatic COVID-19. Med Sci Monit 2022; 28:e936292. [PMID: 35256581 PMCID: PMC8917781 DOI: 10.12659/msm.936292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has driven investigational studies and controlled clinical trials on antiviral treatments and vaccines that have undergone regulatory approval. Now that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants may become endemic over time, there remains a need to identify drugs that treat the symptoms of COVID-19 and prevent progression toward severe cases, hospitalization, and death. Understanding the molecular mechanisms of SARS-CoV-2 infection is extremely important for the development of effective therapies against COVID-19. This review outlines the key pathways involved in the host response to SARS-CoV-2 infection and discusses the potential role of antioxidant and anti-inflammatory pharmacological approaches for the management of early mild-to-moderate COVID-19, using the examples of combined indomethacin, low-dose aspirin, omeprazole, hesperidin, quercetin, and vitamin C. The pharmacological targets of these substances are described here for their possible synergism in counteracting SARS-CoV-2 replication and progression of the infection from the upper respiratory airways to the blood, avoiding vascular complications and cytokine and bradykinin storms.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine (retired professor), Medical School University Federico II, Naples, Italy
| | | | - Paolo Bellavite
- Physiopathology Chair, Homeopathic Medical School of Verona, Verona, Italy
| |
Collapse
|
65
|
Developing an Effective Peptide-Based Vaccine for COVID-19: Preliminary Studies in Mice Models. Viruses 2022; 14:v14030449. [PMID: 35336856 PMCID: PMC8954996 DOI: 10.3390/v14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused massive health and economic disasters worldwide. Although several vaccines have effectively slowed the spread of the virus, their long-term protection and effectiveness against viral variants are still uncertain. To address these potential shortcomings, this study proposes a peptide-based vaccine to prevent COVID-19. A total of 15 B cell epitopes of the wild-type severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein were selected, and their HLA affinities predicted in silico. Peptides were divided into two groups and tested in C57BL/6 mice with either QS21 or Al(OH)3 as the adjuvant. Our results demonstrated that the peptide-based vaccine stimulated high and durable antibody responses in mice, with the T and B cell responses differing based on the type of adjuvant employed. Using epitope mapping, we showed that our peptide-based vaccine produced antibody patterns similar to those in COVID-19 convalescent individuals. Moreover, plasma from vaccinated mice and recovered COVID-19 humans had the same neutralizing activity when tested with a pseudo particle assay. Our data indicate that this adjuvant peptide-based vaccine can generate sustainable and effective B and T cell responses. Thus, we believe that our peptide-based vaccine can be a safe and effective vaccine against COVID-19, particularly because of the flexibility of including new peptides to prevent emerging SARS-CoV-2 variants and avoiding unwanted autoimmune responses.
Collapse
|
66
|
Ameratunga R, Woon ST, Lea E, Steele R, Lehnert K, Leung E, Brooks AES. The (apparent) antibody paradox in COVID-19. Expert Rev Clin Immunol 2022; 18:335-345. [PMID: 35184669 PMCID: PMC8935454 DOI: 10.1080/1744666x.2022.2044797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
67
|
Castillo Almeida NE, Kalil AC. Molnupiravir: Is It Time to Move In or Move Out? NEJM EVIDENCE 2022; 1:EVIDe2100048. [PMID: 38319185 DOI: 10.1056/evide2100048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Molnupiravir: Is It Time to Move In or Move Out?With more than 250 million diagnosed cases and 5 million deaths, Covid-19 is our epoch-defining pandemic - and it is still ongoing. Despite the development of several effective Covid-19 vaccines, there are a limited number of antiviral treatments to reduce disease progression, risk of hospitalization, and death once the infection occurs. In this editorial, we examine the results of the phase 2 randomized, placebo-controlled, double-blind trials evaluating the safety and efficacy of molnupiravir, ...
Collapse
Affiliation(s)
- Natalia E Castillo Almeida
- Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha
| | - Andre C Kalil
- Division of Infectious Disease, Department of Internal Medicine, University of Nebraska Medical Center, Omaha
| |
Collapse
|
68
|
Köstenberger M, Hasibeder W, Dankl D, Eisenburger P, Germann R, Grander W, Hörmann C, Joannidis M, Markstaller K, Müller-Muttonen SO, Neuwersch-Sommeregger S, Pfausler B, Schindler O, Schittek G, Schaden E, Staudinger T, Ullrich R, Urban M, Valentin A, Likar R. Update SARS-CoV-2 Behandlungsempfehlungen für die Intensivmedizin. ANÄSTHESIE NACHRICHTEN 2022. [PMCID: PMC8856728 DOI: 10.1007/s44179-022-00019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Markus Köstenberger
- Klagenfurt, Österreich
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Österreich
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
O’Brien MP, Forleo-Neto E, Sarkar N, Isa F, Hou P, Chan KC, Musser BJ, Bar KJ, Barnabas RV, Barouch DH, Cohen MS, Hurt CB, Burwen DR, Marovich MA, Brown ER, Heirman I, Davis JD, Turner KC, Ramesh D, Mahmood A, Hooper AT, Hamilton JD, Kim Y, Purcell LA, Baum A, Kyratsous CA, Krainson J, Perez-Perez R, Mohseni R, Kowal B, DiCioccio AT, Geba GP, Stahl N, Lipsich L, Braunstein N, Herman G, Yancopoulos GD, Weinreich DM. Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA 2022; 327:432-441. [PMID: 35029629 PMCID: PMC8808333 DOI: 10.1001/jama.2021.24939] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022]
Abstract
Importance Easy-to-administer anti-SARS-CoV-2 treatments may be used to prevent progression from asymptomatic infection to symptomatic disease and to reduce viral carriage. Objective To evaluate the effect of combination subcutaneous casirivimab and imdevimab on progression from early asymptomatic SARS-CoV-2 infection to symptomatic COVID-19. Design, Setting, and Participants Randomized, double-blind, placebo-controlled, phase 3 trial of close household contacts of a SARS-CoV-2-infected index case at 112 sites in the US, Romania, and Moldova enrolled July 13, 2020-January 28, 2021; follow-up ended March 11, 2021. Asymptomatic individuals (aged ≥12 years) were eligible if identified within 96 hours of index case positive test collection. Results from 314 individuals positive on SARS-CoV-2 reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) testing are reported. Interventions Individuals were randomized 1:1 to receive 1 dose of subcutaneous casirivimab and imdevimab, 1200 mg (600 mg of each; n = 158), or placebo (n = 156). Main Outcomes and Measures The primary end point was the proportion of seronegative participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy end points were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10 copies/mL). Results Among 314 randomized participants (mean age, 41.0 years; 51.6% women), 310 (99.7%) completed the efficacy assessment period; 204 were asymptomatic and seronegative at baseline and included in the primary efficacy analysis. Subcutaneous casirivimab and imdevimab, 1200 mg, significantly prevented progression to symptomatic disease (29/100 [29.0%] vs 44/104 [42.3%] with placebo; odds ratio, 0.54 [95% CI, 0.30-0.97]; P = .04; absolute risk difference, -13.3% [95% CI, -26.3% to -0.3%]). Casirivimab and imdevimab reduced the number of symptomatic weeks per 1000 participants (895.7 weeks vs 1637.4 weeks with placebo; P = .03), an approximately 5.6-day reduction in symptom duration per symptomatic participant. Treatment with casirivimab and imdevimab also reduced the number of high viral load weeks per 1000 participants (489.8 weeks vs 811.9 weeks with placebo; P = .001). The proportion of participants receiving casirivimab and imdevimab who had 1 or more treatment-emergent adverse event was 33.5% vs 48.1% for placebo, including events related (25.8% vs 39.7%) or not related (11.0% vs 16.0%) to COVID-19. Conclusions and Relevance Among asymptomatic SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact, treatment with subcutaneous casirivimab and imdevimab antibody combination vs placebo significantly reduced the incidence of symptomatic COVID-19 over 28 days. Trial Registration ClinicalTrials.gov Identifier: NCT04452318.
Collapse
Affiliation(s)
| | | | - Neena Sarkar
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | - Flonza Isa
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | - Peijie Hou
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | | | - Katharine J. Bar
- Department of Medicine, University of Pennsylvania, Philadelphia
- Department of Microbiology, University of Pennsylvania, Philadelphia
| | - Ruanne V. Barnabas
- Department of Global Health, University of Washington, Seattle
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Myron S. Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Christopher B. Hurt
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Dale R. Burwen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Mary A. Marovich
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Elizabeth R. Brown
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
| | | | | | | | - Divya Ramesh
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | | | | | - Yunji Kim
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | - Alina Baum
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | | | | | | | - Bari Kowal
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | | | - Neil Stahl
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | - Leah Lipsich
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | - Gary Herman
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| | | | | |
Collapse
|
70
|
Malin JJ, Bunse T, Spinner CD, Protzer U. [Antiviral drugs : Potent agents, promising therapies for COVID‑19 and therapeutic limitations]. Internist (Berl) 2022; 63:118-128. [PMID: 34988607 PMCID: PMC8730307 DOI: 10.1007/s00108-021-01233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/03/2022]
Abstract
Antiviral drugs inhibit viral replication by interaction with specific elements of the viral replication cycle. Directly acting antiviral agents have revolutionized the therapeutic options for chronic infections with human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV). Pharmacological developments constantly improve therapeutic and prophylactic options for diseases caused by herpes viruses, which is of particular relevance for immunocompromised patients. While infections with persistent viruses, such as HIV, HBV or herpes viruses principally so far cannot be cured, complete elimination of viruses that cause acute infections is possible; however, acute infections, such as influenza or coronavirus disease 2019 (COVID-19) offer only a small therapeutic window for antiviral strategies due to their pathophysiological dynamics. The optimal time point for antiviral agents is immediately after exposure to the virus, which frequently limits its application in practice. An effective pre-exposure or postexposure prophylaxis has been established for infections with HIV and influenza A/B and also gains relevance for infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Jakob J Malin
- Klinik I für Innere Medizin, Universitätsklinikum Köln, Köln, Deutschland
| | - Till Bunse
- Institut für Virologie, Technische Universität München, München, Deutschland
| | - Christoph D Spinner
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Ulrike Protzer
- Institut für Virologie, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675, München, Deutschland.
| |
Collapse
|
71
|
Kluge S, J. Malin J, Fichtner F, J. Müller O, Skoetz N, Karagiannidis C. Clinical Practice Guideline: Recommendations on the In-hospital Treatment of Patients with COVID-19. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:865-871. [PMID: 34789365 PMCID: PMC8948341 DOI: 10.3238/arztebl.m2021.0374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mortality of COVID-19 patients who are admitted to a hospital because of the disease remains high. The implementation of evidence-based treatments can improve the quality of care. METHODS The new clinical practice guideline is based on publications retrieved by a systematic search in the Medline databases via PubMed and in the Cochrane COVID-19 trial registry, followed by a structured consensus process leading to the adoption of graded recommendations. RESULTS Therapeutic anticoagulation can be considered in patients who do not require intensive care and have an elevated risk of thromboembolism (for example, those with D-dimer levels ≥ 2 mg/L). For patients in intensive care, therapeutic anticoagulation has no benefit. For patients with hypoxemic respiratory insufficiency, prone positioning and an early therapy attempt with CPAP/noninvasive ventilation (CPAP, continuous positive airway pressure) or high-flow oxygen therapy is recommended. Patients with IgG-seronegativity and, at most, low-flow oxygen should be treated with SARS-CoV-2-specific monoclonal antibodies (at present, casirivimab and imdevimab). Patients needing no more than low-flow oxygen should additionally be treated with janus kinase (JAK) inhibitors. All patients who need oxygen (low-flow, high-flow, noninvasive ventilation/CPAP, invasive ventilation) should be given systemic corticosteroids. Tocilizumab should be given to patients with a high oxygen requirement and progressively severe COVID-19 disease, but not in combination with JAK inhibitors. CONCLUSION Noninvasive ventilation, high-flow oxygen therapy, prone positioning, and invasive ventilation are important elements of the treatment of hypoxemic patients with COVID-19. A reduction of mortality has been demonstrated for the administration of monoclonal antibodies, JAK inhibitors, corticosteroids, tocilizumab, and therapeutic anticoagulation to specific groups of patients.
Collapse
Affiliation(s)
- Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob J. Malin
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Falk Fichtner
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nicole Skoetz
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, Cologne, Germany
| | | |
Collapse
|
72
|
Reis S, Popp M, Schmid B, Stegemann M, Metzendorf MI, Kranke P, Meybohm P, Weibel S. Safety and Efficacy of Intermediate- and Therapeutic-Dose Anticoagulation for Hospitalised Patients with COVID-19: A Systematic Review and Meta-Analysis. J Clin Med 2021; 11:57. [PMID: 35011804 PMCID: PMC8745419 DOI: 10.3390/jcm11010057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND COVID-19 patients are at high thrombotic risk. The safety and efficacy of different anticoagulation regimens in COVID-19 patients remain unclear. METHODS We searched for randomised controlled trials (RCTs) comparing intermediate- or therapeutic-dose anticoagulation to standard thromboprophylaxis in hospitalised patients with COVID-19 irrespective of disease severity. To assess efficacy and safety, we meta-analysed data for all-cause mortality, clinical status, thrombotic event or death, and major bleedings. RESULTS Eight RCTs, including 5580 patients, were identified, with two comparing intermediate- and six therapeutic-dose anticoagulation to standard thromboprophylaxis. Intermediate-dose anticoagulation may have little or no effect on any thrombotic event or death (RR 1.03, 95% CI 0.86-1.24), but may increase major bleedings (RR 1.48, 95% CI 0.53-4.15) in moderate to severe COVID-19 patients. Therapeutic-dose anticoagulation may decrease any thrombotic event or death in patients with moderate COVID-19 (RR 0.64, 95% CI 0.38-1.07), but may have little or no effect in patients with severe disease (RR 0.98, 95% CI 0.86-1.12). The risk of major bleedings may increase independent of disease severity (RR 1.78, 95% CI 1.15-2.74). CONCLUSIONS Certainty of evidence is still low. Moderately affected COVID-19 patients may benefit from therapeutic-dose anticoagulation, but the risk for bleeding is increased.
Collapse
Affiliation(s)
- Stefanie Reis
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (S.R.); (M.P.); (B.S.); (P.K.); (P.M.)
| | - Maria Popp
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (S.R.); (M.P.); (B.S.); (P.K.); (P.M.)
| | - Benedikt Schmid
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (S.R.); (M.P.); (B.S.); (P.K.); (P.M.)
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany;
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine—University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Peter Kranke
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (S.R.); (M.P.); (B.S.); (P.K.); (P.M.)
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (S.R.); (M.P.); (B.S.); (P.K.); (P.M.)
| | - Stephanie Weibel
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany; (S.R.); (M.P.); (B.S.); (P.K.); (P.M.)
| |
Collapse
|
73
|
Estcourt LJ. Passive immune therapies: another tool against COVID-19. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:628-641. [PMID: 34889410 PMCID: PMC8791113 DOI: 10.1182/hematology.2021000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Passive immune therapy consists of several different therapies, convalescent plasma, hyperimmune globulin, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing monoclonal antibodies. Although these treatments were not part of any pandemic planning prior to coronavirus disease 2019 (COVID-19), due to the absence of high-quality evidence demonstrating benefit in other severe respiratory infections, a large amount of research has now been performed to demonstrate their benefit or lack of benefit in different patient groups. This review summarizes the evidence up to July 2021 on their use and also when they should not be used or when additional data are required. Vaccination against SARS-CoV-2 is the most important method of preventing severe and fatal COVID-19 in people who have an intact immune system. Passive immune therapy should only be considered for patients at high risk of severe or fatal COVID-19. The only therapy that has received full regulatory approval is the casirivimab/imdevimab monoclonal cocktail; all other treatments are being used under emergency use authorizations. In Japan, it has been licensed to treat patients with mild to moderate COVID-19, and in the United Kingdom, it has also been licensed to prevent infection.
Collapse
|
74
|
Quiros-Roldan E, Amadasi S, Zanella I, Degli Antoni M, Storti S, Tiecco G, Castelli F. Monoclonal Antibodies against SARS-CoV-2: Current Scenario and Future Perspectives. Pharmaceuticals (Basel) 2021; 14:1272. [PMID: 34959672 PMCID: PMC8707981 DOI: 10.3390/ph14121272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
Monoclonal antibodies (mAbs) have been known since the 1970s. However, their therapeutic potential in the medical field has recently emerged, with the advancement of manufacturing techniques. Initially exploited mainly in the oncology field, mAbs have become increasingly relevant in Infectious Diseases. Numerous mAbs have been developed against SARS-CoV 2 and have proven their effectiveness, especially in the management of the mild-to-moderate disease. In this review, we describe the monoclonal antibodies currently authorized for the treatment of the coronavirus disease 19 (COVID-19) and offer an insight into the clinical trials that led to their approval. We discuss the mechanisms of action and methods of administration as well as the prophylactic and therapeutic labelled indications (both in outpatient and hospital settings). Furthermore, we address the critical issues regarding mAbs, focusing on their effectiveness against the variants of concern (VoC) and their role now that a large part of the population has been vaccinated. The purpose is to offer the clinician an up-to-date overview of a therapeutic tool that could prove decisive in treating patients at high risk of progression to severe disease.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Silvia Amadasi
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Isabella Zanella
- Clinical Chemistry Laboratory, Diagnostic Department, Department of Molecular and Translational Medicine, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Melania Degli Antoni
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Samuele Storti
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (S.A.); (M.D.A.); (S.S.); (G.T.); (F.C.)
| |
Collapse
|
75
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59:100794. [PMID: 34991982 PMCID: PMC8654464 DOI: 10.1016/j.drup.2021.100794] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Jarosław Przybyciński
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Shahrokh Lorzadeh
- Department of Molecular Genetics, Science and Research Branch, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
76
|
Effectiveness of monoclonal antibody therapy for COVID-19 patients using a risk scoring system. J Infect Chemother 2021; 28:352-355. [PMID: 34863647 PMCID: PMC8629723 DOI: 10.1016/j.jiac.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022]
Abstract
Introduction Monoclonal antibody therapy has been reported to be highly effective for preventing hospitalisation and severe cases in patients with Coronavirus Disease 2019 (COVID-19). However, since the drug is not readily available, it is important to rapidly and appropriately identify high-risk patients who can benefit most from therapy. Therefore, we designed a risk scoring system to identify at-risk COVID-19 patients in our region during the largest surge of COVID-19, from July to September 2021. Methods According to the risk scores, confirmed COVID-19 patients were introduced to receive REGN-CoV-2 to our hospital by regional health centre from 18th August (Term 3). The primary outcome was the comparison of the number of hospitalisation and severe condition with other periods, the 4th wave (Term 1) and the early part of the 5th wave (Term 2) in Japan. Results During Term 3, 115 patients were stratified with the scoring system and administered REGN-COV-2. The number of hospitalisation vs severe cases were 60 (5.2%) vs 14 (1.2%), 8 (1.5%) vs 3 (0.6%) and 21 (1.2%) vs 2 (0.1%), in term 1, 2 and 3, respectively. Among those aged <60 years, compared with term 1, the relative risk of hospitalisation and severe condition were 0.25 (95% CI: 0.12–0.53) and 0.10 (95% CI: 0.01–0.80), respectively, in term 3. Drug adverse events were fever (3: 2.6%), headache (1: 0.9%) and neck rash (1: 0.9%), all events were resolved within 24 h wth no serious adverse event. Conclusions The administration of monoclonal antibody therapy using a risk scoring system significantly reduced the number of hospitalisation and disease severity of COVID-19 without any serious adverse events and avoided regional medical collapse.
Collapse
|
77
|
Abstract
Regdanvimab (Regkirona™) is a recombinant human monoclonal antibody targeted against the severe acute respiratory syndrome coronavirus 2. It is being developed by Celltrion Inc. for the treatment of coronavirus disease 2019 (COVID-19). In September 2021, regdanvimab received full approval in South Korea for the treatment of COVID-19 in elderly patients aged > 50 years with at least one underlying medical condition (obesity, cardiovascular disease, chronic lung disease, diabetes, chronic kidney disease, chronic liver disease, and patients on immunosuppressive agents) and mild symptoms of COVID-19 and in adult patients with moderate symptoms of COVID-19. This article summarizes the milestones in the development of regdanvimab leading to this first approval for COVID-19.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
78
|
Qin G, Liu S, Yang L, Yu W, Zhang Y. Myeloid cells in COVID-19 microenvironment. Signal Transduct Target Ther 2021; 6:372. [PMID: 34707085 PMCID: PMC8549428 DOI: 10.1038/s41392-021-00792-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Varying differentiation of myeloid cells is common in tumors, inflammation, autoimmune diseases, and metabolic diseases. The release of cytokines from myeloid cells is an important driving factor that leads to severe COVID-19 cases and subsequent death. This review briefly summarizes the results of single-cell sequencing of peripheral blood, lung tissue, and cerebrospinal fluid of COVID-19 patients and describes the differentiation trajectory of myeloid cells in patients. Moreover, we describe the function and mechanism of abnormal differentiation of myeloid cells to promote disease progression. Targeting myeloid cell-derived cytokines or checkpoints is essential in developing a combined therapeutic strategy for patients with severe COVID-19.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
79
|
Mikolajewska A, Fischer AL, Piechotta V, Mueller A, Metzendorf MI, Becker M, Dorando E, Pacheco RL, Martimbianco ALC, Riera R, Skoetz N, Stegemann M. Colchicine for the treatment of COVID-19. Cochrane Database Syst Rev 2021; 10:CD015045. [PMID: 34658014 PMCID: PMC8521385 DOI: 10.1002/14651858.cd015045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The development of severe coronavirus disease 2019 (COVID-19) and poor clinical outcomes are associated with hyperinflammation and a complex dysregulation of the immune response. Colchicine is an anti-inflammatory medicine and is thought to improve disease outcomes in COVID-19 through a wide range of anti-inflammatory mechanisms. Patients and healthcare systems need more and better treatment options for COVID-19 and a thorough understanding of the current body of evidence. OBJECTIVES To assess the effectiveness and safety of Colchicine as a treatment option for COVID-19 in comparison to an active comparator, placebo, or standard care alone in any setting, and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (comprising CENTRAL, MEDLINE (PubMed), Embase, ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, and medRxiv), Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index), and WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies without language restrictions to 21 May 2021. SELECTION CRITERIA We included randomised controlled trials evaluating colchicine for the treatment of people with COVID-19, irrespective of disease severity, age, sex, or ethnicity. We excluded studies investigating the prophylactic effects of colchicine for people without severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but at high risk of SARS-CoV-2 exposure. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. We used the Cochrane risk of bias tool (ROB 2) to assess bias in included studies and GRADE to rate the certainty of evidence for the following prioritised outcome categories considering people with moderate or severe COVID-19: all-cause mortality, worsening and improvement of clinical status, quality of life, adverse events, and serious adverse events and for people with asymptomatic infection or mild disease: all-cause mortality, admission to hospital or death, symptom resolution, duration to symptom resolution, quality of life, adverse events, serious adverse events. MAIN RESULTS We included three RCTs with 11,525 hospitalised participants (8002 male) and one RCT with 4488 (2067 male) non-hospitalised participants. Mean age of people treated in hospital was about 64 years, and was 55 years in the study with non-hospitalised participants. Further, we identified 17 ongoing studies and 11 studies completed or terminated, but without published results. Colchicine plus standard care versus standard care (plus/minus placebo) Treatment of hospitalised people with moderate to severe COVID-19 All-cause mortality: colchicine plus standard care probably results in little to no difference in all-cause mortality up to 28 days compared to standard care alone (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.93 to 1.08; 2 RCTs, 11,445 participants; moderate-certainty evidence). Worsening of clinical status: colchicine plus standard care probably results in little to no difference in worsening of clinical status assessed as new need for invasive mechanical ventilation or death compared to standard care alone (RR 1.02, 95% CI 0.96 to 1.09; 2 RCTs, 10,916 participants; moderate-certainty evidence). Improvement of clinical status: colchicine plus standard care probably results in little to no difference in improvement of clinical status, assessed as number of participants discharged alive up to day 28 without clinical deterioration or death compared to standard care alone (RR 0.99, 95% CI 0.96 to 1.01; 1 RCT, 11,340 participants; moderate-certainty evidence). Quality of life, including fatigue and neurological status: we identified no studies reporting this outcome. Adverse events: the evidence is very uncertain about the effect of colchicine on adverse events compared to placebo (RR 1.00, 95% CI 0.56 to 1.78; 1 RCT, 72 participants; very low-certainty evidence). Serious adverse events: the evidence is very uncertain about the effect of colchicine plus standard care on serious adverse events compared to standard care alone (0 events observed in 1 RCT of 105 participants; very low-certainty evidence). Treatment of non-hospitalised people with asymptomatic SARS-CoV-2 infection or mild COVID-19 All-cause mortality: the evidence is uncertain about the effect of colchicine on all-cause mortality at 28 days (Peto odds ratio (OR) 0.57, 95% CI 0.20 to 1.62; 1 RCT, 4488 participants; low-certainty evidence). Admission to hospital or death within 28 days: colchicine probably slightly reduces the need for hospitalisation or death within 28 days compared to placebo (RR 0.80, 95% CI 0.62 to 1.03; 1 RCT, 4488 participants; moderate-certainty evidence). Symptom resolution: we identified no studies reporting this outcome. Quality of life, including fatigue and neurological status: we identified no studies reporting this outcome. Adverse events: the evidence is uncertain about the effect of colchicine on adverse events compared to placebo . Results are from one RCT reporting treatment-related events only in 4412 participants (low-certainty evidence). Serious adverse events: colchicine probably slightly reduces serious adverse events (RR 0.78, 95% CI 0.61 to 1.00; 1 RCT, 4412 participants; moderate-certainty evidence). Colchicine versus another active treatment (e.g. corticosteroids, anti-viral drugs, monoclonal antibodies) No studies evaluated this comparison. Different formulations, doses, or schedules of colchicine No studies assessed this. AUTHORS' CONCLUSIONS Based on the current evidence, in people hospitalised with moderate to severe COVID-19 the use of colchicine probably has little to no influence on mortality or clinical progression in comparison to placebo or standard care alone. We do not know whether colchicine increases the risk of (serious) adverse events. We are uncertain about the evidence of the effect of colchicine on all-cause mortality for people with asymptomatic infection or mild disease. However, colchicine probably results in a slight reduction of hospital admissions or deaths within 28 days, and the rate of serious adverse events compared with placebo. None of the studies reported data on quality of life or compared the benefits and harms of colchicine versus other drugs, or different dosages of colchicine. We identified 17 ongoing and 11 completed but not published RCTs, which we expect to incorporate in future versions of this review as their results become available. Editorial note: due to the living approach of this work, we monitor newly published results of RCTs on colchicine on a weekly basis and will update the review when the evidence or our certainty in the evidence changes.
Collapse
Affiliation(s)
- Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna-Lena Fischer
- Department of Anaesthesia and Intensive care, Universitätsklinikum Leipzig, 04103 Leipzig, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anika Mueller
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marie Becker
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Dorando
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rafael L Pacheco
- Center of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Núcleo de Ensino e Pesquisa em Saúde Baseada em Evidências e Avaliação Tecnológica em Saúde (NEP-Sbeats), Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Affiliate Rio de Janeiro, Cochrane, Petrópolis, Brazil
| | - Ana Luiza C Martimbianco
- Center of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
- Cochrane Affiliate Rio de Janeiro, Cochrane, Petrópolis, Brazil
- Postgraduate Program in Health and Environment, Universidade Metropolitana de Santos (UNIMES), Santos, Brazil
- Núcleo de Ensino e Pesquisa em Saúde Baseada em Evidências e Avaliação de Tecnologias em Saúde (NEP-Sbeats), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rachel Riera
- Cochrane Affiliate Rio de Janeiro, Cochrane, Petrópolis, Brazil
- Núcleo de Ensino e Pesquisa em Saúde Baseada em Evidências e Avaliação de Tecnologias em Saúde (NEP-Sbeats), Universidade Federal de São Paulo, São Paulo, Brazil
- Centre of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
80
|
Kreuzberger N, Hirsch C, Chai KL, Tomlinson E, Khosravi Z, Popp M, Neidhardt M, Piechotta V, Salomon S, Valk SJ, Monsef I, Schmaderer C, Wood EM, So-Osman C, Roberts DJ, McQuilten Z, Estcourt LJ, Skoetz N. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. Cochrane Database Syst Rev 2021; 9:CD013825. [PMID: 34473343 PMCID: PMC8411904 DOI: 10.1002/14651858.cd013825.pub2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). OBJECTIVES To assess the effectiveness and safety of SARS-CoV-2-neutralising mAbs for treating patients with COVID-19, compared to an active comparator, placebo, or no intervention. To maintain the currency of the evidence, we will use a living systematic review approach. A secondary objective is to track newly developed SARS-CoV-2-targeting mAbs from first tests in humans onwards. SEARCH METHODS: We searched MEDLINE, Embase, the Cochrane COVID-19 Study Register, and three other databases on 17 June 2021. We also checked references, searched citations, and contacted study authors to identify additional studies. Between submission and publication, we conducted a shortened randomised controlled trial (RCT)-only search on 30 July 2021. SELECTION CRITERIA We included studies that evaluated SARS-CoV-2-neutralising mAbs, alone or combined, compared to an active comparator, placebo, or no intervention, to treat people with COVID-19. We excluded studies on prophylactic use of SARS-CoV-2-neutralising mAbs. DATA COLLECTION AND ANALYSIS Two authors independently assessed search results, extracted data, and assessed risk of bias using the Cochrane risk of bias tool (RoB2). Prioritised outcomes were all-cause mortality by days 30 and 60, clinical progression, quality of life, admission to hospital, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS We identified six RCTs that provided results from 17,495 participants with planned completion dates between July 2021 and December 2031. Target sample sizes varied from 1020 to 10,000 participants. Average age was 42 to 53 years across four studies of non-hospitalised participants, and 61 years in two studies of hospitalised participants. Non-hospitalised individuals with COVID-19 Four studies evaluated single agents bamlanivimab (N = 465), sotrovimab (N = 868), regdanvimab (N = 307), and combinations of bamlanivimab/etesevimab (N = 1035), and casirivimab/imdevimab (N = 799). We did not identify data for mortality at 60 days or quality of life. Our certainty of the evidence is low for all outcomes due to too few events (very serious imprecision). Bamlanivimab compared to placebo No deaths occurred in the study by day 29. There were nine people admitted to hospital by day 29 out of 156 in the placebo group compared with one out of 101 in the group treated with 0.7 g bamlanivimab (risk ratio (RR) 0.17, 95% confidence interval (CI) 0.02 to 1.33), 2 from 107 in the group treated with 2.8 g (RR 0.32, 95% CI 0.07 to 1.47) and 2 from 101 in the group treated with 7.0 g (RR 0.34, 95% CI 0.08 to 1.56). Treatment with 0.7 g, 2.8 g and 7.0 g bamlanivimab may have similar rates of AEs as placebo (RR 0.99, 95% CI 0.66 to 1.50; RR 0.90, 95% CI 0.59 to 1.38; RR 0.81, 95% CI 0.52 to 1.27). The effect on SAEs is uncertain. Clinical progression/improvement of symptoms or development of severe symptoms were not reported. Bamlanivimab/etesevimab compared to placebo There were 10 deaths in the placebo group and none in bamlanivimab/etesevimab group by day 30 (RR 0.05, 95% CI 0.00 to 0.81). Bamlanivimab/etesevimab may decrease hospital admission by day 29 (RR 0.30, 95% CI 0.16 to 0.59), may result in a slight increase in any grade AEs (RR 1.15, 95% CI 0.83 to 1.59) and may increase SAEs (RR 1.40, 95% CI 0.45 to 4.37). Clinical progression/improvement of symptoms or development of severe symptoms were not reported. Casirivimab/imdevimab compared to placebo Casirivimab/imdevimab may reduce hospital admissions or death (2.4 g: RR 0.43, 95% CI 0.08 to 2.19; 8.0 g: RR 0.21, 95% CI 0.02 to 1.79). We are uncertain of the effect on grades 3-4 AEs (2.4 g: RR 0.76, 95% CI 0.17 to 3.37; 8.0 g: RR 0.50, 95% CI 0.09 to 2.73) and SAEs (2.4 g: RR 0.68, 95% CI 0.19 to 2.37; 8.0 g: RR 0.34, 95% CI 0.07 to 1.65). Mortality by day 30 and clinical progression/improvement of symptoms or development of severe symptoms were not reported. Sotrovimab compared to placebo We are uncertain whether sotrovimab has an effect on mortality (RR 0.33, 95% CI 0.01 to 8.18) and invasive mechanical ventilation (IMV) requirement or death (RR 0.14, 95% CI 0.01 to 2.76). Treatment with sotrovimab may reduce the number of participants with oxygen requirement (RR 0.11, 95 % CI 0.02 to 0.45), hospital admission or death by day 30 (RR 0.14, 95% CI 0.04 to 0.48), grades 3-4 AEs (RR 0.26, 95% CI 0.12 to 0.60), SAEs (RR 0.27, 95% CI 0.12 to 0.63) and may have little or no effect on any grade AEs (RR 0.87, 95% CI 0.66 to 1.16). Regdanvimab compared to placebo Treatment with either dose (40 or 80 mg/kg) compared with placebo may decrease hospital admissions or death (RR 0.45, 95% CI 0.14 to 1.42; RR 0.56, 95% CI 0.19 to 1.60, 206 participants), but may increase grades 3-4 AEs (RR 2.62, 95% CI 0.52 to 13.12; RR 2.00, 95% CI 0.37 to 10.70). 80 mg/kg may reduce any grade AEs (RR 0.79, 95% CI 0.52 to 1.22) but 40 mg/kg may have little to no effect (RR 0.96, 95% CI 0.64 to 1.43). There were too few events to allow meaningful judgment for the outcomes mortality by 30 days, IMV requirement, and SAEs. Hospitalised individuals with COVID-19 Two studies evaluating bamlanivimab as a single agent (N = 314) and casirivimab/imdevimab as a combination therapy (N = 9785) were included. Bamlanivimab compared to placebo We are uncertain whether bamlanivimab has an effect on mortality by day 30 (RR 1.39, 95% CI 0.40 to 4.83) and SAEs by day 28 (RR 0.93, 95% CI 0.27 to 3.14). Bamlanivimab may have little to no effect on time to hospital discharge (HR 0.97, 95% CI 0.78 to 1.20) and mortality by day 90 (HR 1.09, 95% CI 0.49 to 2.43). The effect of bamlanivimab on the development of severe symptoms at day 5 (RR 1.17, 95% CI 0.75 to 1.85) is uncertain. Bamlanivimab may increase grades 3-4 AEs at day 28 (RR 1.27, 95% CI 0.81 to 1.98). We assessed the evidence as low certainty for all outcomes due to serious imprecision, and very low certainty for severe symptoms because of additional concerns about indirectness. Casirivimab/imdevimab with usual care compared to usual care alone Treatment with casirivimab/imdevimab compared to usual care probably has little or no effect on mortality by day 30 (RR 0.94, 95% CI 0.87 to 1.02), IMV requirement or death (RR 0.96, 95% CI 0.90 to 1.04), nor alive at hospital discharge by day 30 (RR 1.01, 95% CI 0.98 to 1.04). We assessed the evidence as moderate certainty due to study limitations (lack of blinding). AEs and SAEs were not reported. AUTHORS' CONCLUSIONS: The evidence for each comparison is based on single studies. None of these measured quality of life. Our certainty in the evidence for all non-hospitalised individuals is low, and for hospitalised individuals is very low to moderate. We consider the current evidence insufficient to draw meaningful conclusions regarding treatment with SARS-CoV-2-neutralising mAbs. Further studies and long-term data from the existing studies are needed to confirm or refute these initial findings, and to understand how the emergence of SARS-CoV-2 variants may impact the effectiveness of SARS-CoV-2-neutralising mAbs. Publication of the 36 ongoing studies may resolve uncertainties about the effectiveness and safety of SARS-CoV-2-neutralising mAbs for the treatment of COVID-19 and possible subgroup differences.
Collapse
Affiliation(s)
- Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Caroline Hirsch
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Eve Tomlinson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Zahra Khosravi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Popp
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Miriam Neidhardt
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne Salomon
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
81
|
Andreas M, Piechotta V, Skoetz N, Grummich K, Becker M, Joos L, Becker G, Meissner W, Boehlke C. Interventions for palliative symptom control in COVID-19 patients. Cochrane Database Syst Rev 2021; 8:CD015061. [PMID: 34425019 PMCID: PMC8406995 DOI: 10.1002/14651858.cd015061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Individuals dying of coronavirus disease 2019 (COVID-19) may experience distressing symptoms such as breathlessness or delirium. Palliative symptom management can alleviate symptoms and improve the quality of life of patients. Various treatment options such as opioids or breathing techniques have been discussed for use in COVID-19 patients. However, guidance on symptom management of COVID-19 patients in palliative care has often been derived from clinical experiences and guidelines for the treatment of patients with other illnesses. An understanding of the effectiveness of pharmacological and non-pharmacological palliative interventions to manage specific symptoms of COVID-19 patients is required. OBJECTIVES To assess the efficacy and safety of pharmacological and non-pharmacological interventions for palliative symptom control in individuals with COVID-19. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (including Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (PubMed), Embase, ClinicalTrials.gov, World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), medRxiv); Web of Science Core Collection (Science Citation Index Expanded, Emerging Sources); CINAHL; WHO COVID-19 Global literature on coronavirus disease; and COAP Living Evidence on COVID-19 to identify completed and ongoing studies without language restrictions until 23 March 2021. We screened the reference lists of relevant review articles and current treatment guidelines for further literature. SELECTION CRITERIA We followed standard Cochrane methodology as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We included studies evaluating palliative symptom management for individuals with a confirmed diagnosis of COVID-19 receiving interventions for palliative symptom control, with no restrictions regarding comorbidities, age, gender, or ethnicity. Interventions comprised pharmacological as well as non-pharmacological treatment (e.g. acupressure, physical therapy, relaxation, or breathing techniques). We searched for the following types of studies: randomized controlled trials (RCT), quasi-RCTs, controlled clinical trials, controlled before-after studies, interrupted time series (with comparison group), prospective cohort studies, retrospective cohort studies, (nested) case-control studies, and cross-sectional studies. We searched for studies comparing pharmacological and non-pharmacological interventions for palliative symptom control with standard care. We excluded studies evaluating palliative interventions for symptoms caused by other terminal illnesses. If studies enrolled populations with or exposed to multiple diseases, we would only include these if the authors provided subgroup data for individuals with COVID-19. We excluded studies investigating interventions for symptom control in a curative setting, for example patients receiving life-prolonging therapies such as invasive ventilation. DATA COLLECTION AND ANALYSIS: We used a modified version of the Newcastle Ottawa Scale for non-randomized studies of interventions (NRSIs) to assess bias in the included studies. We included the following outcomes: symptom relief (primary outcome); quality of life; symptom burden; satisfaction of patients, caregivers, and relatives; serious adverse events; and grade 3 to 4 adverse events. We rated the certainty of evidence using the GRADE approach. As meta-analysis was not possible, we used tabulation to synthesize the studies and histograms to display the outcomes. MAIN RESULTS: Overall, we identified four uncontrolled retrospective cohort studies investigating pharmacological interventions for palliative symptom control in hospitalized patients and patients in nursing homes. None of the studies included a comparator. We rated the risk of bias high across all studies. We rated the certainty of the evidence as very low for the primary outcome symptom relief, downgrading mainly for high risk of bias due to confounding and unblinded outcome assessors. Pharmacological interventions for palliative symptom control We identified four uncontrolled retrospective cohort studies (five references) investigating pharmacological interventions for palliative symptom control. Two references used the same register to form their cohorts, and study investigators confirmed a partial overlap of participants. We therefore do not know the exact number of participants, but individual reports included 61 to 2105 participants. Participants received multimodal pharmacological interventions: opioids, neuroleptics, anticholinergics, and benzodiazepines for relieving dyspnea (breathlessness), delirium, anxiety, pain, audible upper airway secretions, respiratory secretions, nausea, cough, and unspecified symptoms. Primary outcome: symptom relief All identified studies reported this outcome. For all symptoms (dyspnea, delirium, anxiety, pain, audible upper airway secretions, respiratory secretions, nausea, cough, and unspecified symptoms), a majority of interventions were rated as completely or partially effective by outcome assessors (treating clinicians or nursing staff). Interventions used in the studies were opioids, neuroleptics, anticholinergics, and benzodiazepines. We are very uncertain about the effect of pharmacological interventions on symptom relief (very low-certainty evidence). The initial rating of the certainty of evidence was low since we only identified uncontrolled NRSIs. Our main reason for downgrading the certainty of evidence was high risk of bias due to confounding and unblinded outcome assessors. We therefore did not find evidence to confidently support or refute whether pharmacological interventions may be effective for palliative symptom relief in COVID-19 patients. Secondary outcomes We planned to include the following outcomes: quality of life; symptom burden; satisfaction of patients, caregivers, and relatives; serious adverse events; and grade 3 to 4 adverse events. We did not find any data for these outcomes, or any other information on the efficacy and safety of used interventions. Non-pharmacological interventions for palliative symptom control None of the identified studies used non-pharmacological interventions for palliative symptom control. AUTHORS' CONCLUSIONS We found very low certainty evidence for the efficacy of pharmacological interventions for palliative symptom relief in COVID-19 patients. We found no evidence on the safety of pharmacological interventions or efficacy and safety of non-pharmacological interventions for palliative symptom control in COVID-19 patients. The evidence presented here has no specific implications for palliative symptom control in COVID-19 patients because we cannot draw any conclusions about the effectiveness or safety based on the identified evidence. More evidence is needed to guide clinicians, nursing staff, and caregivers when treating symptoms of COVID-19 patients at the end of life. Specifically, future studies ought to investigate palliative symptom control in prospectively registered studies, using an active-controlled setting, assess patient-reported outcomes, and clearly define interventions. The publication of the results of ongoing studies will necessitate an update of this review. The conclusions of an updated review could differ from those of the present review and may allow for a better judgement regarding pharmacological and non-pharmacological interventions for palliative symptom control in COVID-19 patients.
Collapse
Affiliation(s)
- Marike Andreas
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kathrin Grummich
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Marie Becker
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Joos
- Department of Palliative Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerhild Becker
- Department of Palliative Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Meissner
- Department for Anesthesiology and Intensive Care Medicine/ Department of Palliative Care, University Hospital of Jena, Jena, Germany
| | - Christopher Boehlke
- Department of Palliative Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|