51
|
Dixon RV, Skaria E, Lau WM, Manning P, Birch-Machin MA, Moghimi SM, Ng KW. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm Sin B 2021; 11:2344-2361. [PMID: 34150486 PMCID: PMC8206489 DOI: 10.1016/j.apsb.2021.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.
Collapse
Key Words
- AC, alternating current
- APCs, antigen-presenting cells
- ASSURED, affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users
- Biomarker detection
- Biosensor
- CMOS, complementary metal-oxide semiconductor
- COVID, coronavirus disease
- COVID-19
- CSF, cerebrospinal fluid
- CT, computerised tomography
- CV, cyclic voltammetry
- DC, direct current
- DNA, deoxyribonucleic acid
- DPV, differential pulse voltammetry
- EBV, Epstein–Barr virus
- EDC/NHS, 1-ethyl-3-(3-dimethylaminoproply) carbodiimide/N-hydroxysuccinimide
- ELISA, enzyme-linked immunosorbent assay
- GOx, glucose oxidase
- HIV, human immunodeficiency virus
- HPLC, high performance liquid chromatography
- HRP, horseradish peroxidase
- IP, iontophoresis
- ISF, interstitial fluid
- IgG, immunoglobulin G
- Infectious disease
- JEV, Japanese encephalitis virus
- MN, microneedle
- Microneedle
- NA, nucleic acid
- OBMT, one-touch-activated blood multidiagnostic tool
- OPD, o-phenylenediamine
- PCB, printed circuit board
- PCR, polymerase chain reaction
- PDMS, polydimethylsiloxane
- PEDOT, poly(3,4-ethylenedioxythiophene)
- PNA, peptide nucleic acid
- PP, polyphenol
- PPD, poly(o-phenylenediamine)
- PoC, point-of-care
- Point-of-care diagnostics (PoC)
- SALT, skin-associated lymphoid tissue
- SAM, self-assembled monolayer
- SEM, scanning electron microscope
- SERS, surface-enhanced Raman spectroscopy
- SWV, square wave voltammetry
- Skin
- TB, tuberculosis
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- WHO, World Health Organisation
- cfDNA, cell-free deoxyribonucleic acid
Collapse
Affiliation(s)
- Rachael V. Dixon
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Eldhose Skaria
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Philip Manning
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mark A. Birch-Machin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - S. Moein Moghimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
52
|
Kim S, Lee MS, Yang HS, Jung JH. Enhanced extraction of skin interstitial fluid using a 3D printed device enabling tilted microneedle penetration. Sci Rep 2021; 11:14018. [PMID: 34234204 PMCID: PMC8263571 DOI: 10.1038/s41598-021-93235-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Interstitial fluid (ISF) is a body fluid that fills, surrounds cells and contains various biomarkers, but it has been challenging to extract ISF in a reliable and sufficient amount with high speed. To address the issues, we developed the tilted microneedle ISF collecting system (TMICS) fabricated by 3D printing. In this system, the microneedle (MN) was inserted at 66° to the skin by TMICS so that the MN length could be extended within a safe range of skin penetration. Moreover, TMICS incorporating three MN patches created reliable ISF collecting conditions by penetrating the skin at consistent angle and force, 4.9 N. Due to the MN length increase and the patch number expansion, the surface area of the penetrated tissue was increased, thereby confirming that ISF extraction efficiency was improved. Skin ISF was collected into the paper reservoir on the patch, and the absorbed area was converted into a volume. ISF extraction from the rat skin in vivo by TMICS was well tolerated, and the 2.9 μL of ISF was obtained within 30 s. Therefore, TMICS is promising to apply in the diagnosis of multiple biomarkers in ISF with high speed and stability.
Collapse
Affiliation(s)
- Sanha Kim
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jae Hwan Jung
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
53
|
Abstract
The application of microneedles (MNs) for minimally invasive biological fluid sampling is rapidly emerging, offering a user-friendly approach with decreased insertion pain and less harm to the tissues compared to conventional needles. Here, a finger-powered microneedle array (MNA) integrated with a microfluidic chip was conceptualized to extract body fluid samples. Actuated by finger pressure, the microfluidic device enables an efficient approach for the user to collect their own body fluids in a simple and fast manner without the requirement for a healthcare worker. The processes for extracting human blood and interstitial fluid (ISF) from the body and the flow across the device, estimating the amount of the extracted fluid, were simulated. The design in this work can be utilized for the minimally invasive personalized medical equipment offering a simple usage procedure.
Collapse
|
54
|
Brunmair J, Bileck A, Stimpfl T, Raible F, Del Favero G, Meier-Menches SM, Gerner C. Metabo-tip: a metabolomics platform for lifestyle monitoring supporting the development of novel strategies in predictive, preventive and personalised medicine. EPMA J 2021; 12:141-153. [PMID: 34188726 PMCID: PMC8192631 DOI: 10.1007/s13167-021-00241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Exposure to bioactive compounds from nutrition, pharmaceuticals, environmental contaminants or other lifestyle habits may affect the human organism. To gain insight into the effects of these influences, as well as the fundamental biochemical mechanisms behind them, individual molecular profiling seems to be a promising tool and may support the further development of predictive, preventive and personalised medicine. METHODS We developed an assay, called metabo-tip for the analysis of sweat, collected from fingertips, using mass spectrometry-by far the most comprehensive and sensitive method for such analyses. To evaluate this assay, we exposed volunteers to various xenobiotics using standardised protocols and investigated their metabolic response. RESULTS As early as 15 min after the consumption of a cup of coffee, 50 g of dark chocolate or a serving of citrus fruits, significant changes in the sweat composition of the fingertips were observed, providing relevant information in regard to the ingested substances. This included not only health-promoting bioactive compounds but also potential hazardous substances. Furthermore, the identification of metabolites from orally ingested medications such as metamizole indicated the applicability of this assay to observe specific enzymatic processes in a personalised fashion. Remarkably, we found that the sweat composition fluctuated in a diurnal rhythm, supporting the hypothesis that the composition of sweat can be influenced by endogenous metabolic activities. This was further corroborated by the finding that histamine was significantly increased in the metabo-tip assay in individuals with allergic reactions. CONCLUSION Metabo-tip analysis may have a large number of practical applications due to its analytical power, non-invasive character and the potential of frequent sampling, especially regarding the individualised monitoring of specific lifestyle and influencing factors. The extraordinarily rich individualised metabolomics data provided by metabo-tip offer direct access to individual metabolic activities and will thus support predictive preventive personalised medicine. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13167-021-00241-6.
Collapse
Affiliation(s)
- Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna, Austria
| |
Collapse
|
55
|
Abstract
Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.
Collapse
|
56
|
Freckmann G, Nichols JH, Hinzmann R, Klonoff DC, Ju Y, Diem P, Makris K, Slingerland RJ. Standardization process of continuous glucose monitoring: Traceability and performance. Clin Chim Acta 2021; 515:5-12. [DOI: 10.1016/j.cca.2020.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 12/15/2022]
|
57
|
García-Guzmán JJ, Pérez-Ràfols C, Cuartero M, Crespo GA. Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode. ACS Sens 2021; 6:1129-1137. [PMID: 33566575 PMCID: PMC8023800 DOI: 10.1021/acssensors.0c02397] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
We present herein the most complete characterization of microneedle (MN) potentiometric sensors for pH transdermal measurements for the time being. Initial in vitro assessment demonstrated suitable analytical performances (e.g., Nernstian slope, linear range of response from 8.5 to 5.0, and fast response time) in both buffer media and artificial interstitial fluid (ISF). Excellent repeatability and reproducibility together with adequate selectivity and resiliency facilitate the appropriateness of the new pH MN sensor for transdermal ISF analysis in healthcare. The ability to resist skin insertions was evaluated in several ex vivo setups using three different animal skins (i.e., chicken, pork, and rat). The developed pH MN sensor was able to withstand from 5 to 10 repetitive insertions in all the skins considered with a minimal change in the calibration graph (<3% variation in both slope and intercept after the insertions). Ex vivo pH measurements were validated by determining the pH with the MN sensor and a commercial pH electrode in chicken skin portions previously conditioned at several pH values, obtaining excellent results with an accuracy of <1% and a precision of <2% in all cases. Finally, pH MN sensors were applied for the very first time to transdermal measurements in rats together with two innovative validation procedures: (i) measuring subcutaneous pH directly with a commercial pH microelectrode and (ii) collecting ISF using hollow MNs and then the pH measurement of the sample with the pH microelectrode. The pH values obtained with pH MN sensors were statistically more similar to subcutaneous measurements, as inferred by a paired sample t-test at 95% of confidence level. Conveniently, the validation approaches could be translated to other analytes that are transdermally measured with MN sensors.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Clara Pérez-Ràfols
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - María Cuartero
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- Department of Chemistry, School of
Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
58
|
Zhang BL, Zhang XP, Chen BZ, Fei WM, Cui Y, Guo XD. Microneedle-assisted technology for minimally invasive medical sensing. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Affiliation(s)
- Youngeun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
60
|
Samant PP, Niedzwiecki MM, Raviele N, Tran V, Mena-Lapaix J, Walker DI, Felner EI, Jones DP, Miller GW, Prausnitz MR. Sampling interstitial fluid from human skin using a microneedle patch. Sci Transl Med 2020; 12:eaaw0285. [PMID: 33239384 PMCID: PMC7871333 DOI: 10.1126/scitranslmed.aaw0285] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Tissue interstitial fluid (ISF) surrounds cells and is an underutilized source of biomarkers that complements conventional sources such as blood and urine. However, ISF has received limited attention due largely to lack of simple collection methods. Here, we developed a minimally invasive, microneedle-based method to sample ISF from human skin that was well tolerated by participants. Using a microneedle patch to create an array of micropores in skin coupled with mild suction, we sampled ISF from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in ISF when compared to companion plasma samples based on mass spectrometry analysis. Many biomarkers used in research and current clinical practice were common to ISF and plasma. Because ISF does not clot, these biomarkers could be continuously monitored in ISF similar to current continuous glucose monitors but without requiring an indwelling subcutaneous sensor. Biomarkers distinct to ISF included molecules associated with systemic and dermatological physiology, as well as exogenous compounds from environmental exposures. We also determined that pharmacokinetics of caffeine in healthy adults and pharmacodynamics of glucose in children and young adults with diabetes were similar in ISF and plasma. Overall, these studies provide a minimally invasive method to sample dermal ISF using microneedles and demonstrate human ISF as a source of biomarkers that may enable research and translation for future clinical applications.
Collapse
Affiliation(s)
- Pradnya P Samant
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Megan M Niedzwiecki
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Raviele
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vilinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Juan Mena-Lapaix
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas I Walker
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eric I Felner
- Department of Pediatrics, Division of Endocrinology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health Science, Columbia University, New York, NY 10032, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
61
|
Zhu J, Zhou X, Libanori A, Sun W. Microneedle-based bioassays. NANOSCALE ADVANCES 2020; 2:4295-4304. [PMID: 36132929 PMCID: PMC9419780 DOI: 10.1039/d0na00543f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/23/2020] [Indexed: 05/07/2023]
Abstract
Disease diagnosis and therapeutic efficacy can be monitored via a number of established bioassays that sample body fluids to assess and monitor health conditions. Traditional bioassays generally include several steps and start with invasive body fluid extraction procedures. These steps are painful and often require specialized techniques and tailored equipment, as well as the supervision of professional medical personnel. Innovations in engineering alternative bioassays to address these shortcomings are thus desired. Microneedles (MNs) represent promising tools to sample body fluids, in view of their minimal invasiveness, painlessness, and uncomplicated implementation. Recent progress in microfabrication and materials engineering, including the development of hollow and solid MNs with uniquely optimized architectures and multi-functional materials, has positioned MN-based platforms as prime candidates for bioassay solutions. In this minireview, we summarize the studies of MN-based platforms for detection and diagnosis. We categorize the platforms based on three different mechanisms: MNs as body fluid reservoirs, MNs integrated with electrochemical assays, and MNs engineered with colorimetric analyses. A discussion of design principles for MN-based bioassay platforms is presented. We also discuss the challenges and opportunities associated with MN-based bioassays in future clinical applications.
Collapse
Affiliation(s)
- Jixiang Zhu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles Los Angeles CA 90095 USA
- Affiliated Stomatology Hospital of Guangzhou Medical University, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 China
| | - Xingwu Zhou
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles Los Angeles CA 90095 USA
| | - Alberto Libanori
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles Los Angeles CA 90095 USA
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles Los Angeles CA 90095 USA
- Terasaki Institute for Biomedical Innovation Los Angeles CA 90024 USA
| |
Collapse
|
62
|
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Ping Zan
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| |
Collapse
|
63
|
Liu GS, Kong Y, Wang Y, Luo Y, Fan X, Xie X, Yang BR, Wu MX. Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials 2020; 232:119740. [PMID: 31918227 PMCID: PMC7432994 DOI: 10.1016/j.biomaterials.2019.119740] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
Point-of-care testing (POCT), defined as the test performed at or near a patient, has been evolving into a complement to conventional laboratory diagnosis by continually providing portable, cost-effective, and easy-to-use measurement tools. Among them, microneedle-based POCT devices have gained increasing attention from researchers due to the glorious potential for detecting various analytes in a minimally invasive manner. More recently, a novel synergism between microneedle and wearable technologies is expanding their detection capabilities. Herein, we provide an overview on the progress in microneedle-based transdermal biosensors. It covers all the main aspects of the field, including design philosophy, material selection, and working mechanisms as well as the utility of the devices. We also discuss lessons from the past, challenges of the present, and visions for the future on translation of these state-of-the-art technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Yifei Kong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yensheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
64
|
Lee KJ, Jeong SS, Roh DH, Kim DY, Choi HK, Lee EH. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int J Pharm 2020; 573:118778. [DOI: 10.1016/j.ijpharm.2019.118778] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
|
65
|
Gill HS. Introduction to Editorial Board Member: Professor Mark R. Prausnitz. Bioeng Transl Med 2019. [PMCID: PMC6764798 DOI: 10.1002/btm2.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Harvinder S. Gill
- Department of Chemical EngineeringTexas Tech University Lubbock Texas
| |
Collapse
|
66
|
Sulaiman DA, Chang JYH, Bennett NR, Topouzi H, Higgins CA, Irvine DJ, Ladame S. Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid. ACS NANO 2019; 13:9620-9628. [PMID: 31411871 PMCID: PMC6746174 DOI: 10.1021/acsnano.9b04783] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Minimally invasive technologies that can sample and detect cell-free nucleic acid biomarkers from liquid biopsies have recently emerged as clinically useful for early diagnosis of a broad range of pathologies, including cancer. Although blood has so far been the most commonly interrogated bodily fluid, skin interstitial fluid has been mostly overlooked despite containing the same broad variety of molecular biomarkers originating from cells and surrounding blood capillaries. Emerging technologies to sample this fluid in a pain-free and minimally-invasive manner often take the form of microneedle patches. Herein, we developed microneedles that are coated with an alginate-peptide nucleic acid hybrid material for sequence-specific sampling, isolation, and detection of nucleic acid biomarkers from skin interstitial fluid. Characterized by fast sampling kinetics and large sampling capacity (∼6.5 μL in 2 min), this platform technology also enables the detection of specific nucleic acid biomarkers either on the patch itself or in solution after light-triggered release from the hydrogel. Considering the emergence of cell-free nucleic acids in bodily fluids as clinically informative biomarkers, platform technologies that can detect them in an automated and minimally invasive fashion have great potential for personalized diagnosis and longitudinal monitoring of patient-specific disease progression.
Collapse
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Jason Y. H. Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Nitasha R. Bennett
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Helena Topouzi
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Claire A. Higgins
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
- Ragon Institute of MIT, MGH, and Harvard, Boston MA 02139
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd., Chevy Chase, MD
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
67
|
Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. MICROSYSTEMS & NANOENGINEERING 2019; 5:41. [PMID: 31636931 PMCID: PMC6799813 DOI: 10.1038/s41378-019-0077-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 05/22/2023]
Abstract
Microneedle technologies have the potential for expanding the capabilities of wearable health monitoring from physiology to biochemistry. This paper presents the fabrication of silicon hollow microneedles by a deep-reactive ion etching (DRIE) process, with the aim of exploring the feasibility of microneedle-based in-vivo monitoring of biomarkers in skin fluid. Such devices shall have the ability to allow the sensing elements to be integrated either within the needle borehole or on the backside of the device, relying on capillary filling of the borehole with dermal interstitial fluid (ISF) for transporting clinically relevant biomarkers to the sensor sites. The modified DRIE process was utilized for the anisotropic etching of circular holes with diameters as small as 30 μm to a depth of >300 μm by enhancing ion bombardment to efficiently remove the fluorocarbon passivation polymer. Afterward, isotropic wet and/or dry etching was utilized to sharpen the needle due to faster etching at the pillar top, achieving tip radii as small as 5 μm. Such sharp microneedles have been demonstrated to be sufficiently robust to penetrate porcine skin without needing any aids such as an impact-insertion applicator, with the needles remaining mechanically intact after repetitive penetrations. The capillary filling of DRIE-etched through-wafer holes with water has also been demonstrated, showing the feasibility of use to transport the analyte to the target sites.
Collapse
Affiliation(s)
- Yan Li
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Hang Zhang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Ruifeng Yang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Yohan Laffitte
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Ulises Schmill
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | - Wenhan Hu
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Moufeed Kaddoura
- ExVivo Labs Inc., 3 Regina Street North, Waterloo, ON N2J 2Z7 Canada
| | | | - Bo Cui
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
68
|
Kolluru C, Gupta R, Jiang Q, Williams M, Gholami Derami H, Cao S, Noel RK, Singamaneni S, Prausnitz MR. Plasmonic Paper Microneedle Patch for On-Patch Detection of Molecules in Dermal Interstitial Fluid. ACS Sens 2019; 4:1569-1576. [PMID: 31070358 DOI: 10.1021/acssensors.9b00258] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Minimally invasive devices to detect molecules in dermal interstitial fluid (ISF) are desirable for point-of-care diagnostic and monitoring applications. In this study, we developed a microneedle (MN) patch that collects ISF for on-patch biomarker analysis by surface-enhanced Raman scattering (SERS). The micrometer-scale MNs create micropores in the skin surface, through which microliter quantities of ISF are collected onto plasmonic paper on the patch backing. The plasmonic paper was prepared by immobilizing poly(styrenesulfonate) (PSS) coated gold nanorods (AuNRs) on a thin strip of filter paper using plasmonic calligraphy. Negatively charged PSS was used to bind positively charged rhodamine 6G (R6G), which served as a model compound, and thereby localize R6G on AuNR surface. R6G bound on the AuNR surface was detected and quantified by acquiring SERS spectra from the plasmonic paper MN patch. This approach was used to measure pharmacokinetic profiles of R6G in ISF and serum from rats in vivo. This proof-of-concept study indicates that a plasmonic paper MN patch has the potential to enable on-patch measurement of molecules in ISF for research and future medical applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Rohit Gupta
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Qisheng Jiang
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Hamed Gholami Derami
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Sisi Cao
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Richard K. Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Srikanth Singamaneni
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|