51
|
Xie Y, Sun G, Mandl GA, Maurizio SL, Chen J, Capobianco JA, Sun L. Upconversion Luminescence through Cooperative and Energy-Transfer Mechanisms in Yb 3+ -Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216269. [PMID: 36437239 DOI: 10.1002/anie.202216269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980 nm irradiation. In contrast, only the 497 nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, 200444, Shanghai, China
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Jiabo Chen
- Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Lining Sun
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
52
|
Li H, Heydari E, Li Y, Xu H, Xu S, Chen L, Bai G. Multi-Mode Lanthanide-Doped Ratiometric Luminescent Nanothermometer for Near-Infrared Imaging within Biological Windows. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13010219. [PMID: 36616129 PMCID: PMC9824890 DOI: 10.3390/nano13010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 05/14/2023]
Abstract
Owing to its high reliability and accuracy, the ratiometric luminescent thermometer can provide non-contact and fast temperature measurements. In particular, the nanomaterials doped with lanthanide ions can achieve multi-mode luminescence and temperature measurement by modifying the type of doped ions and excitation light source. The better penetration of the near-infrared (NIR) photons can assist bio-imaging and replace thermal vision cameras for photothermal imaging. In this work, we prepared core-shell cubic phase nanomaterials doped with lanthanide ions, with Ba2LuF7 doped with Er3+/Yb3+/Nd3+ as the core and Ba2LaF7 as the coating shell. The nanoparticles were designed according to the passivation layer to reduce the surface energy loss and enhance the emission intensity. Green upconversion luminescence can be observed under both 980 nm and 808 nm excitation. A single and strong emission band can be obtained under 980 nm excitation, while abundant and weak emission bands appear under 808 nm excitation. Meanwhile, multi-mode ratiometric optical thermometers were achieved by selecting different emission peaks in the NIR window under 808 nm excitation for non-contact temperature measurement at different tissue depths. The results suggest that our core-shell NIR nanoparticles can be used to assist bio-imaging and record temperature for biomedicine.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Esmaeil Heydari
- Nanophotonic Sensors & Optofluidics Lab., Faculty of Physics, Kharazmi University, Tehran 15719-14911, Iran
| | - Yinyan Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
- Correspondence: (Y.L.); (L.C.); (G.B.)
| | - Hui Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Liang Chen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
- Correspondence: (Y.L.); (L.C.); (G.B.)
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
- Correspondence: (Y.L.); (L.C.); (G.B.)
| |
Collapse
|
53
|
Li C, Ye J, Yang X, Liu S, Zhang Z, Wang J, Zhang K, Xu J, Fu Y, Yang P. Fe/Mn Bimetal-Doped ZIF-8-Coated Luminescent Nanoparticles with Up/Downconversion Dual-Mode Emission for Tumor Self-Enhanced NIR-II Imaging and Catalytic Therapy. ACS NANO 2022; 16:18143-18156. [PMID: 36260703 DOI: 10.1021/acsnano.2c05152] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ZIF-8, as an important photoresponsive metal-organic framework (MOF), holds great promise in the field of cancer theranostics owing to its versatile physiochemical properties. However, its photocatalytic anticancer application is still restricted because of the wide bandgap and specific response to ultraviolet light. Herein, we developed lanthanide-doped nanoparticles (LDNPs) coated with Fe/Mn bimetal-doped ZIF-8 (LDNPs@Fe/Mn-ZIF-8) for second near-infrared (NIR-II) imaging-guided synergistic photodynamic/chemodynamic therapy (PDT/CDT). The LDNPs were synthesized by encapsulating an optimal Yb3+/Ce3+-doped active shell on the NaErF4:Tm core to achieve dual-mode red upconversion (UC) and NIR-II downconversion (DC) emission upon NIR laser irradiation. At the optimal doping concentration, the UC and DC NIR-II emission intensities of LDNPs were increased 30.2- and 13.2-fold above those of core nanoparticles, which endowed LDNPs@Fe/Mn-ZIF-8 with an outstanding capability to carry out UC-mediated PDT and NIR-II optical imaging. In addition, the dual doping of Fe2+/Mn2+ markedly decreased the bandgap of the ZIF-8 photosensitizer from 5.1 to 1.7 eV, expanding the excitation threshold of ZIF-8 to the visible light region (∼650 nm), which enabled Fe/Mn-ZIF-8 to be efficiently excited by UC photons to achieve photocatalytic-driven PDT. Furthermore, Fe2+/Mn2+ ions could be responsively released in the tumor microenvironment through degradation of Fe/Mn-ZIF-8, thereby producing hydroxyl radicals (·OH) by Fenton/Fenton-like reactions to realize CDT. Meanwhile, the degradation of Fe/Mn-ZIF-8 endowed the nanosystems with tumor self-enhanced NIR-II imaging function, providing precise guidance for CDT/PDT.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People's Republic of China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People's Republic of China
| | - Xing Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People's Republic of China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People's Republic of China
| | - Zhiyong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin150040, People's Republic of China
| | - Jun Wang
- Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou545000, People's Republic of China
| | - Kefen Zhang
- Guangxi University of Science and Technology, Liuzhou545006, People's Republic of China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People's Republic of China
- Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou545000, People's Republic of China
| | - Yujie Fu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing100083, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| |
Collapse
|
54
|
Meng J, Cui Y, Wang Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region. J Mater Chem B 2022; 10:8596-8615. [PMID: 36264053 DOI: 10.1039/d2tb01731h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rare earth-doped nanocrystals are widely used in medical diagnostics and bioimaging due to their narrow luminescence emission spectra (10-20 nm), long lifetime, and no photobleaching properties. Especially in the near-infrared (NIR) region, deeper tissue imaging can be achieved with low background luminescence and high spatial resolution. Further precise image-guided diagnosis and treatment can be achieved by using multimodal imaging such as MRI/CT/NIR/PA. Here, we focus on the construction of rare earth-doped nanocrystals, optical properties, and progress of such nanocomposites for bioimaging in the NIR region. In addition, the limitations at this stage in the field of bioimaging and the prospects for future technological development of rare earth-doped nanocrystals are present.
Collapse
Affiliation(s)
- Jiajia Meng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanyan Cui
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
55
|
Xu S, Li L, Lin D, Yang L, Wang Z, Jiang C. Rare-earth ions coordination enhanced ratiometric fluorescent sensing platform for quantitative visual analysis of antibiotic residues in real samples. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
56
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
57
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
59
|
Han T, Wang Y, Ma S, Li M, Zhu N, Tao S, Xu J, Sun B, Jia Y, Zhang Y, Zhu S, Yang B. Near-Infrared Carbonized Polymer Dots for NIR-II Bioimaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203474. [PMID: 36047633 PMCID: PMC9596834 DOI: 10.1002/advs.202203474] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2022] [Indexed: 05/19/2023]
Abstract
Carbon dots (CDs) or carbonized polymer dots (CPDs) are an emerging class of optical materials that have exceptional applications in optoelectronic devices, catalysis, detection, and bioimaging. Although cell studies of CPDs have produced impressive results, in vivo imaging requires available CPDs to fluoresce in the near-infrared-II (NIR-II) window (1000-1700 nm). Here, a two-step bottom-up strategy is developed to synthesize NIR-CPDs that provide bright emissions in both NIR-I and NIR-II transparent imaging windows. The designed strategy includes a hydrothermal reaction to form a stable carbon core with aldehyde groups, followed by the Knoevenagel reaction to tether the molecular emission centers. This procedure is labor-saving, cost-efficient, and produces a high yield. The NIR-CPDs enable high-performance NIR-II angiography and real-time imaging of the disease degree of colitis noninvasively. This technology may therefore provide a next-generation synthesis strategy for CPDs with rational molecular engineering that can accurately tune the absorption/emission properties of NIR-emissive CPDs.
Collapse
Affiliation(s)
- Tianyang Han
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yajun Wang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Shengjie Ma
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130021P. R. China
- Department of Gastrointestinal SurgeryThe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Mengfei Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Ningning Zhu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jiajun Xu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bin Sun
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Yunlong Jia
- School of Chemistry and Pharmaceutical EngineeringJilin Institute of Chemical TechnologyJilin132022P. R. China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical EngineeringJilin Institute of Chemical TechnologyJilin132022P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130021P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and ChemistryThe First Hospital of Jilin UniversityChangchun130021P. R. China
| |
Collapse
|
60
|
Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics. Proc Natl Acad Sci U S A 2022; 119:e2208830119. [PMID: 36122203 PMCID: PMC9522347 DOI: 10.1073/pnas.2208830119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.
Collapse
|
61
|
Wang D, Qin J, Zhang C, Li Y. Facile Synthesis of Black Phosphorus Nanosheet@NaReF 4 Nanocomposites for Potential Bioimaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3383. [PMID: 36234512 PMCID: PMC9565442 DOI: 10.3390/nano12193383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Black phosphorus nanomaterials (BPN) have been well developed in tumor therapy. However, lack of diagnostic function limits the development of BPN in biomedicine. Lanthanide-doped nanoparticles are considered as versatile materials for fluorescence or magnetic resonance imaging. Integration of BPN with lanthanide-doped nanoparticles was rarely reported owing to the complex synthesis processes and poor modification effect. Herein, we report a simple and general method for synthesizing BPN@NaReF4 (Re: Gd or Y, Yb, Er) nanocomposite. TEM and XRD characterization confirm efficient combination of BPN and NaGdF4 or NaYF4:Yb,Er (18.2 mol %) after one-step mixing. The FTIR and XPS spectra were used to prove the generation of PO43--Gd and P-Gd coordination bonds and clarify ligand exchange mechanism. The anchored nanoparticles on BPN were stable and become hydrophilic. The prepared BPN@NaGdF4 exhibit the signals of photoacoustic and magnetic resonance imaging. The obtained BPN@NaYF4:Yb,Er (18.2 mol %) have the potential in fluorescence bioimaging. We believe that this work will expand the applications of BPN in diagnosis and therapy together.
Collapse
Affiliation(s)
- Dongya Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Jingcan Qin
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| |
Collapse
|
62
|
Hu Q, Kong N, Chai Y, Xing Z, Wu Y, Zhang J, Li F, Zhu X. A lanthanide nanocomposite with cross-relaxation enhanced near-infrared emissions as a ratiometric nanothermometer. NANOSCALE HORIZONS 2022; 7:1177-1185. [PMID: 35968804 DOI: 10.1039/d2nh00283c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lanthanide luminescence nanothermometers (LNTs) provide microscopic, highly sensitive, and visualizable optical signals for reporting temperature information, which is particularly useful in biomedicine to achieve precise diagnosis and therapy. However, LNTs with efficient emissions at the long-wavelength region of the second and the third near-infrared (NIR-II/III) biological window, which is more favourable for in vivo thermometry, are still limited. Herein, we present a lanthanide-doped nanocomposite with Tm3+ and Nd3+ ions as emitters working beyond 1200 nm to construct a dual ratiometric LNT. The cross-relaxation processes among lanthanide ions are employed to establish a strategy to enhance the NIR emissions of Tm3+ for bioimaging-based temperature detection in vivo. The dual ratiometric probes included in the nanocomposite have potential in monitoring the temperature difference and heat transfer at the nanoscale, which would be useful in modulating the heating operation more precisely during thermal therapy and other biomedical applications. This work not only provides a powerful tool for temperature sensing in vivo but also proposes a method to build high-efficiency NIR-II/III lanthanide luminescent nanomaterials for broader bio-applications.
Collapse
Affiliation(s)
- Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| | - Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Yukai Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Jieying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| |
Collapse
|
63
|
Zhao J, Pan G, Zhu Y, Liu K, You W, Chen X, Song H, Mao Y. High-Efficiency and Wavelength-Tunable Near-Infrared Emission of Lanthanide Ions Doped Lead-Free Halide Double Perovskite Nanocrystals toward Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42215-42222. [PMID: 36093569 DOI: 10.1021/acsami.2c10350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Near-infrared (NIR) fluorescent materials show unique photophysical properties, which make them widely used in optical communication, night vision imaging, biomedicine, and other applications. However, the development of high-efficiency and wavelength-tunable NIR nanomaterials is still a challenge. Herein, a series of lanthanide ions doped Cs2AgIn0.99Bi0.01Cl6 double perovskite nanocrystals (DPNCs) with wavelength-tunable NIR light emission (800-1600 nm) have been synthesized. The optimal photoluminescence quantum yield (PLQY) of the DPNCs reaches 66.7%, which is a record value for DPNCs. It is mainly attributed to the contribution of NIR emission of lanthanide ions doped into DPNCs. More importantly, the series of NIR emission wavelengths of lanthanide ions doped Cs2AgIn0.99Bi0.01Cl6 DPNCs include not only shorter-wavelength NIR light (≤900 nm) but also longer-wavelength NIR light (>900 nm), which are more appropriate for foodstuff analysis and medical diagnosis applications. Furthermore, 11.2% Nd3+ doped Cs2AgIn0.99Bi0.01Cl6 DPNCs with the optimal PLQY were embedded in a polymethyl methacrylate (PMMA) polymer matrix (DPNCs@PMMA), and the stability of DPNCs modified by PMMA has been greatly improved. Finally, the 11.2% Nd3+ ions doped Cs2AgIn0.99Bi0.01Cl6 DPNCs@PMMA based NIR LEDs have demonstrated good night vision and human tissue penetration. This work indicates that lanthanide ions doped DPNCs have a potential in NIR light applications and could inspire future research to explore novel lanthanide ions doped semiconductor NCs based NIR LEDs.
Collapse
Affiliation(s)
- Jun Zhao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, PR China
| | - Gencai Pan
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, PR China
| | - Yaxian Zhu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, PR China
| | - Kunlun Liu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, PR China
| | - Wenwu You
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, PR China
| | - Xu Chen
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yanli Mao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
64
|
Coumarin derivative dye sensitized NaYGdF4:Yb,Er nanoparticles with enhanced NIR II luminescence for bio-vascular imaging. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Yu Q, Li J, Zhang X, Yang S, Zhou P, Xia J, Deng T, Yu C. Dual-Emission ZAISe/ZnS Quantum Dots for Multi-level Bio-Imaging: Foam Cells and Atherosclerotic Plaque Imaging. J Colloid Interface Sci 2022; 629:399-408. [DOI: 10.1016/j.jcis.2022.08.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
|
66
|
Ultra-Small and Metabolizable Near-Infrared Au/Gd Nanoclusters for Targeted FL/MRI Imaging and Cancer Theranostics. BIOSENSORS 2022; 12:bios12080558. [PMID: 35892455 PMCID: PMC9329954 DOI: 10.3390/bios12080558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Tumor accurate imaging can effectively guide tumor resection and accurate follow-up targeted therapy. The development of imaging-stable, safe, and metabolizable contrast agents is key to accurate tumor imaging. Herein, ultra-small and metabolizable dual-mode imaging probe Au/Gd@FA NCs is rationally engineered by a simple hydrothermal method to achieve accurate FL/MRI imaging of tumors. The probes exhibit ultra-small size (2.5–3.0 nm), near-infrared fluorescence (690 nm), high quantum yield (4.4%), and a better T1 nuclear magnetic signal compared to commercial MRI contrast agents. By modifying the folic acid (FA) molecules, the uptake and targeting of the probes are effectively improved, enabling specific fluorescence imaging of breast cancer. Au/Gd@FA NCs with good biosafety were found to be excreted in the feces after imaging without affecting the normal physiological metabolism of mice. Intracellular reactive oxygen species (ROS) increased significantly after incubation of Au/Gd@FA NCs with tumor cells under 660 nm laser irradiation, indicating that Au/Gd@FA NCs can promote intracellular ROS production and effectively induce cell apoptosis. Thus, metabolizable Au/Gd@FA NCs provide a potential candidate probe for multimodal imaging and tumor diagnosis in clinical basic research. Meanwhile, Au/Gd@FA NCs mediated excessive intracellular production of ROS that could help promote tumor cell death.
Collapse
|
67
|
Ding M, Cui S, Fang L, Lin Z, Lu C, Yang X. NIR-I-Responsive Single-Band Upconversion Emission through Energy Migration in Core-Shell-Shell Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202203631. [PMID: 35416381 DOI: 10.1002/anie.202203631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 01/04/2023]
Abstract
Here we report a new strategy to tune both excitation and emission peaks of upconversion nanoparticles (UCNPs) into the first infrared biowindow (NIR-I, 650-900 nm) with high NIR-I-to-NIR-I upconversion efficiency. By introducing the sensitizer Nd3+ , activator Er3+ , energy migrator Yb3+ and energy manipulator Mn2+ into specific region to construct proposed energy migration processes in the designed core-shell-shell nanoarchitecture, back energy transfer (BET) from activator to sensitizer or migrator can be greatly blocked and the NIR-to-red upconversion emission can be efficiently promoted. Consequently, BET-induced photon quenching and the undesired green-emitting radiative transition are entirely eliminated, leading to high-efficiency single-band red upconversion emission upon 808 nm NIR-I laser excitation. Our findings provide insights into fundamental lanthanide interactions and advance the development of UCNPs for bioapplications with techniques that overturn traditional limitations.
Collapse
Affiliation(s)
- Mingye Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Songsong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zixia Lin
- Testing center, Yangzhou University, Yangzhou, 225009, China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
68
|
Wen S, Li D, Liu Y, Chen C, Wang F, Zhou J, Bao G, Zhang L, Jin D. Power-Dependent Optimal Concentrations of Tm 3+ and Yb 3+ in Upconversion Nanoparticles. J Phys Chem Lett 2022; 13:5316-5323. [PMID: 35675531 DOI: 10.1021/acs.jpclett.2c01186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have enabled a broad range of emerging nanophotonics and biophotonics applications. Here, we provide a quantitative guide to the optimum concentrations of Yb3+ sensitizer and Tm3+ emitter ions, highly dependent on the excitation power densities. To achieve this, we fabricate the inert-core@active-shell@inert-shell architecture to sandwich the same volume of the optically active section. Our results show that highly doped UCNPs enable an approximately 18-fold enhancement in brightness over that of conventional ones. Increasing the Tm3+ concentration improves the brightness by 6 times and increases the NIR/blue ratio by 11 times, while the increase of Yb3+ concentration enhances the brightness by 3 times and only slightly affects the NIR/blue ratio. Moreover, the optimal doping concentration of Tm3+ varies from 2% to 16%, which is highly dependent on the excitation power density ranging from 102 to 107 W/cm2. This work provides a guideline for designing bright UCNPs under different excitation conditions.
Collapse
Affiliation(s)
- Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Du Li
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Fan Wang
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
69
|
Mangnus MJJ, Zom J, Welling TAJ, Meijerink A, Rabouw FT. Finite-Size Effects on Energy Transfer between Dopants in Nanocrystals. ACS NANOSCIENCE AU 2022; 2:111-118. [PMID: 35481224 PMCID: PMC9026268 DOI: 10.1021/acsnanoscienceau.1c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Many phosphor materials rely on energy transfer (ET) between optically active dopant ions. Typically, a donor species absorbs light of one color and transfers the energy to an acceptor species that emits light of a different color. For many applications, it is beneficial, or even crucial, that the phosphor is of nanocrystalline nature. Much unlike the widely recognized finite-size effects on the optical properties of quantum dots, the behavior of optically active ions is generally assumed to be independent of the size or shape of the optically inactive host material. Here, we demonstrate that ET between optically active dopants is also impacted by finite-size effects: Donor ions close to the surface of a nanocrystal (NC) are likely to have fewer acceptors in proximity compared to donors in a bulk-like coordination. As such, the rate and efficiency of ET in nanocrystalline phosphors are low in comparison to that of their bulk counterparts. Surprisingly, these undesired finite-size effects should be considered already for NCs with diameters as large as 12 nm. If we suppress radiative decay of the donor by embedding the NCs in media with low refractive indices, we can compensate for finite-size effects on the ET rate. Experimentally, we demonstrate these finite-size effects and how to compensate for them in YPO4 NCs co-doped with Tb3+ and Yb3+.
Collapse
Affiliation(s)
- Mark J J Mangnus
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Jeffrey Zom
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Tom A J Welling
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Andries Meijerink
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Freddy T Rabouw
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
70
|
Ding M, Cui S, Fang L, Lin Z, Lu C, Yang X. NIR‐I‐Responsive Single‐Band Upconversion Emission through Energy Migration in Core‐Shell‐Shell Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingye Ding
- Nanjing Forestry University College of Science CHINA
| | - Songsong Cui
- Nanjing Forestry University College of Science 159 Longpan Road, Nanjing Forestry University 210037 Nanjing CHINA
| | - Liang Fang
- Nanjing Tech University College of Materials Science and Engineering CHINA
| | - Zixia Lin
- Yangzhou University Testing Center CHINA
| | - Chunhua Lu
- Nanjing Tech University College of Materials Science and Engineering CHINA
| | - Xiaofei Yang
- Nanjing Forestry University School of Science 159 Longpan Road 210037 Nanjing CHINA
| |
Collapse
|
71
|
Liu Y, Zhou M, Zhou MT, Wei HL, Su Y, Su Q. Simultaneous ultraviolet-C and near-infrared enhancement in heterogeneous lanthanide nanocrystals. NANOSCALE 2022; 14:4595-4603. [PMID: 35255115 DOI: 10.1039/d1nr07329j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide-doped nanocrystals that simultaneously convert near-infrared (NIR) irradiation into emission of shorter (ultraviolet-C, UVC) and longer wavelengths (NIR) offer many exciting opportunities for application in drug release, photodynamic therapy, deep-tissue bioimaging, and solid-state lasing. However, a formidable challenge is the development of lanthanide-doped nanocrystals with efficient UVC and NIR emissions simultaneously due to their low conversion efficiency. Here, we report a dye-sensitized heterogeneous core-multishell architecture with enhanced UVC emission and NIR emission under 793 nm excitation. This nanocrystal design efficiently suppresses energy trapping induced by interior lattice defects and promotes upconverted UVC emission from Gd3+. Moreover, a significant downshifting emission from Yb3+ at 980 nm was also observed owing to an efficient energy transfer from Nd3+ to Yb3+. Furthermore, by taking advantage of ICG sensitization, we realized a largely enhanced emission from the UVC to NIR spectral region. This study provides a mechanistic understanding of the upconversion and downshifting processes within a heterogeneous architecture while offering exciting opportunities for important biological and energy applications.
Collapse
Affiliation(s)
- Yachong Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Meng-Tao Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Han-Lin Wei
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672, Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
72
|
Jethva P, Momin M, Khan T, Omri A. Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2374. [PMID: 35407706 PMCID: PMC8999924 DOI: 10.3390/ma15072374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Upconverting luminescent nanoparticles (UCNPs) are "new generation fluorophores" with an evolving landscape of applications in diverse industries, especially life sciences and healthcare. The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission bands, and good photostability, enables background-free and multiplexed detection in deep tissues for enhanced imaging contrast. Their properties such as high color purity, high resistance to photobleaching, less photodamage to biological samples, attractive physical and chemical stability, and low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion (Ln3+) types have been used to control the luminescent properties of nanosystems. By modification of these properties, the performance of UCNPs can be designed for anticipated end-use applications such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug delivery. The application landscape of inorganic nanomaterials in biological environments can be expanded by bridging the gap between nanoparticles and biomolecules via surface modifications and appropriate functionalization. This review highlights the synthesis, surface modification, and biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope and future perspective on Ln-doped UCNPs in biomedical applications.
Collapse
Affiliation(s)
- Palak Jethva
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
73
|
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Anal Bioanal Chem 2022; 414:4291-4310. [PMID: 35312819 DOI: 10.1007/s00216-022-03999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.
Collapse
|
74
|
Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J. Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104473. [PMID: 34699648 DOI: 10.1002/adma.202104473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
This review addresses the reconstruction of structural plant components (cellulose, lignin, and hemicelluloses) into materials displaying advanced optical properties. The strategies to isolate the main building blocks are discussed, and the effects of fibrillation, fibril alignment, densification, self-assembly, surface-patterning, and compositing are presented considering their role in engineering optical performance. Then, key elements that enable lignocellulosic to be translated into materials that present optical functionality, such as transparency, haze, reflectance, UV-blocking, luminescence, and structural colors, are described. Mapping the optical landscape that is accessible from lignocellulosics is shown as an essential step toward their utilization in smart devices. Advanced materials built from sustainable resources, including those obtained from industrial or agricultural side streams, demonstrate enormous promise in optoelectronics due to their potentially lower cost, while meeting or even exceeding current demands in performance. The requirements are summarized for the production and application of plant-based optically functional materials in different smart material applications and the review is concluded with a perspective about this active field of knowledge.
Collapse
Affiliation(s)
- Joice Jaqueline Kaschuk
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16300, Aalto, Espoo, 00076, Finland
| | - Yazan Al Haj
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Box 16300, Aalto, Espoo, 00076, Finland
- Bioproducts Institute, Departments of Chemical Engineering, Department of Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kati Miettunen
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, FI-20500, Finland
| | - Tiffany Abitbol
- RISE Research Institutes of Sweden, Stockholm, SE-114 28, Sweden
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| |
Collapse
|
75
|
Theoretical computation of interaction parameters for the complexation of GSH with Pr(III) and Mg(II) in solution: Analysis of their reaction dynamics and thermodynamic characters. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
77
|
Ortiz-Rivero E, Prorok K, Martín IR, Lisiecki R, Haro-González P, Bednarkiewicz A, Jaque D. Laser Refrigeration by an Ytterbium-Doped NaYF 4 Microspinner. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103122. [PMID: 34590416 DOI: 10.1002/smll.202103122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Thermal control of liquids with high (micrometric) spatial resolution is required for advanced research such as single molecule/cell studies (where temperature is a key factor) or for the development of advanced microfluidic devices (based on the creation of thermal gradients at the microscale). Local and remote heating of liquids is easily achieved by focusing a laser beam with wavelength adjusted to absorption bands of the liquid medium or of the embedded colloidal absorbers. The opposite effect, that is highly localized cooling, is much more difficult to achieve. It requires the use of a refrigerating micro-/nanoparticle which should overcome the intrinsic liquid heating. Remote monitoring of such localized cooling, typically of a few degrees, is even more challenging. In this work, a solution to both problems is provided. Remote cooling in D2 O is achieved via anti-Stokes emission by using an optically driven ytterbium-doped NaYF4 microparticle. Simultaneously, the magnitude of cooling is determined by mechanical thermometry based on the analysis of the spinning dynamics of the same NaYF4 microparticle. The angular deceleration of the NaYF4 particle, caused by the cooling-induced increase of medium viscosity, reveals liquid refrigeration by over -6 K below ambient conditions.
Collapse
Affiliation(s)
- Elisa Ortiz-Rivero
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw, 50-422, Poland
| | - Inocencio Rafael Martín
- Departamento de Física, Universidad de La Laguna, Apdo. 456, San Cristóbal de La Laguna, E-38200, Spain
- Instituto Universitario de Materiales y Nanotecnología (IMN), Universidad de La Laguna, Apdo. 456, San Cristóbal de La Laguna, E-38200, Spain
| | - Radosław Lisiecki
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw, 50-422, Poland
| | - Patricia Haro-González
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw, 50-422, Poland
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
78
|
Cao C, Xie Y, Li SW, Hong C. Er 3+-Ions-Doped Multiscale Nanoprobes for Fluorescence Imaging in Cellular and Living Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2676. [PMID: 34685116 PMCID: PMC8539509 DOI: 10.3390/nano11102676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/29/2022]
Abstract
With the development of biotechnology, luminescent nanoprobes for biological disease detection are widely used. However, the further application in clinic is limited by the reduced penetration depth in the tissues and light scattering. In this work, we have synthesized NaYF4:Yb,Er,Ce@SiO2-OAlg nanomaterials, which have both upconversion and near-infrared (NIR) luminescence. The optimized probes were determined to achieve cell imaging by its upconversion (UCL) luminescence and in vivo imaging through collection of NIR fluorescence signals simultaneously. The research is conducive to developing accurate diagnostic techniques based on UCL and NIR fluorescence imaging by a single nanoparticle.
Collapse
Affiliation(s)
- Cong Cao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.X.); (S.-W.L.); (C.H.)
| | | | | | | |
Collapse
|
79
|
Zhang Y, Zhang X, Chen W, He Y, Liu Y, Ju H. Self-assembled micelle responsive to quick NIR light irradiation for fast drug release and highly efficient cancer therapy. J Control Release 2021; 336:469-479. [PMID: 34174351 DOI: 10.1016/j.jconrel.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 01/06/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been used for designing near infrared (NIR) light-responsive nanocarriers and controllable drug release. However, the need for long-term NIR light irradiation over hours impaired their application efficiency. Here we develop a self-assembled micelle of amphipathic polymer P-DASA which degrades via quick NIR light irradiation. UCNPs and DOX are also encapsulated in the micelle for quick drug release. P-DASA is composed of hydrophilic polyethylene glycol segment and photo-responsive hydrophobic donor-acceptor Stenhouse adduct (DASA). Only 5-min NIR irradiation causes the hydrophilicity conversion of P-DASA and the complete disruption of micelle with DOX fast release of 83.7% in 30 min to achieve highly efficient therapy. Moreover, the P-glycoprotein mediated DOX efflux is also diminished by concomitantly producing NO intracellularly. This micelle demonstrates impressive in vivo therapeutic effect, and thus provides an avenue for highly efficient cancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
80
|
Hao M, Miao P, Wang Y, Wang W, Ge S, Yu X, Hu XX, Ding B, Zhang J, Yan M. Near-Infrared Light-Initiated Photoelectrochemical Biosensor Based on Upconversion Nanorods for Immobilization-Free miRNA Detection with Double Signal Amplification. Anal Chem 2021; 93:11251-11258. [PMID: 34369163 DOI: 10.1021/acs.analchem.1c02160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoelectrochemical (PEC) sensors are relatively new sensing platforms with high detection sensitivity and low cost. However, the current PEC biosensors dependent on ultraviolet or visible light as the exciting resource cause injuries to biological samples and systems, which restrains the applications in complicated matrixes. Herein, a near-infrared light (NIR)-initiated PEC biosensor based on NaYF4:Yb,Tm@NaYF4@TiO2@CdS (csUCNRs@TiO2@CdS) was constructed for sensitive detection of acute myocardial infarction (AMI)-related miRNA-133a in an immobilization-free format coupled with a hybridization chain reaction and a redox circle signal amplification strategy. A low-energy 980 nm NIR incident laser was converted to 300-480 nm light to excite the adjacent TiO2@CdS photosensitive shell to generate photocurrent by NaYF4:Yb,Tm@NaYF4 upconversion nanorods. Also, magnetic beads were employed for the homogeneous determination of target miRNA-133a to reduce the recognition steric hindrance and improve the detection sensitivity. The photocurrent response was positively correlated with the level of ascorbic acid as the energy donor to consume photoacoustic holes produced on the surface of csUCNRs@TiO2@CdS, which was generated by alkaline phosphatase catalyzation and regenerated by tris(2-carboxyethyl) phosphine reduction upon the appearance of miRNA-133a. Exerting a NIR-light-driven and immobilization-free strategy, the as-constructed biosensor displayed linearly sensitive and selective determination of miRNA-133a with a detection limit of 36.12 aM. More significantly, the assay method provided a new concept of the PEC sensing strategy driven by NIR light to detect diverse biomarkers with pronounced sensitivity, light stability, and low photodamage.
Collapse
Affiliation(s)
- Mengjiao Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Xinyan Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiao-Xiao Hu
- College of Life Sciences, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Biyan Ding
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
81
|
Liu Y, Cheng S, Zhan S, Wu X. Manipulating Energy Transfer in UCNPs@SiO 2@Ag Nanoparticles for Efficient Infrared Photocatalysis. Inorg Chem 2021; 60:5704-5710. [PMID: 33787230 DOI: 10.1021/acs.inorgchem.0c03759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Conventional photocatalysts must be activated by ultraviolet or visible light to meet the energy requirement of populating an initial excited state, while infrared light has a high penetration depth to reaction media but does not have enough photon energy to activate conventional photocatalysts. Here, we report the activation of Ag nanoparticles by upconversion nanoparticles (UCNPs) in UCNPs@SiO2@Ag with manipulated energy transfer for infrared photocatalysis. UCNPs can efficiently convert infrared light to visible and ultraviolet light and are very ideal candidates for bridging the advantage of infrared light and the activation energy requirement of conventional photocatalysts. In the UCNPs@SiO2@Ag nanosystem, we employ the UCNPs to activate conventional Ag nanoparticles under infrared light irradiation. The evanescent field of UCNPs is confined for enhancing the near-field energy-transfer efficiency using a designed core/shell heterostructure, while a SiO2 layer is used for blocking the phonon exchange of thermal vibration between photon upconverters and Ag nanoparticles. Based on the manipulated energy transfer, UCNPs@SiO2@Ag nanoparticles exhibit efficient photocatalytic activity under the irradiation of 980 nm infrared light, while single Ag nanoparticles have negligible catalytic activity under infrared irradiation.
Collapse
Affiliation(s)
- Yunxin Liu
- College of Computer and Information Engineering, Hunan University of Technology and Business, Changsha 410205, China
| | - Shengbin Cheng
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shiping Zhan
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaofeng Wu
- College of Computer and Information Engineering, Hunan University of Technology and Business, Changsha 410205, China
| |
Collapse
|
82
|
Khlifi S, Taupier G, Amela-Cortes M, Dumait N, Freslon S, Cordier S, Molard Y. Expanding the Toolbox of Octahedral Molybdenum Clusters and Nanocomposites Made Thereof: Evidence of Two-Photon Absorption Induced NIR Emission and Singlet Oxygen Production. Inorg Chem 2021; 60:5446-5451. [DOI: 10.1021/acs.inorgchem.1c00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumaya Khlifi
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Gregory Taupier
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Maria Amela-Cortes
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Noée Dumait
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Stéphane Freslon
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Stéphane Cordier
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Yann Molard
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| |
Collapse
|
83
|
|
84
|
Casar JR, McLellan CA, Siefe C, Dionne JA. Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS PHOTONICS 2021; 8:3-17. [PMID: 34307765 PMCID: PMC8297747 DOI: 10.1021/acsphotonics.0c00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanthanide nanoparticles (LNPs) are promising sensors of chemical, mechanical, and temperature changes; they combine the narrow-spectral emission and long-lived excited states of individual lanthanide ions with the high spatial resolution and controlled energy transfer of nanocrystalline architectures. Despite considerable progress in optimizing LNP brightness and responsiveness for dynamic sensing, detection of stimuli with a spatial resolution approaching that of individual nanoparticles remains an outstanding challenge. Here, we highlight the existing capabilities and outstanding challenges of LNP sensors, en-route to nanometer-scale, single particle sensor resolution. First, we summarize LNP sensor read-outs, including changes in emission wavelength, lifetime, intensity, and spectral ratiometric values that arise from modified energy transfer networks within nanoparticles. Then, we describe the origins of LNP sensor imprecision, including sensitivity to competing conditions, interparticle heterogeneities, such as the concentration and distribution of dopant ions, and measurement noise. Motivated by these sources of signal variance, we describe synthesis characterization feedback loops to inform and improve sensor precision, and introduce noise-equivalent sensitivity as a figure of merit of LNP sensors. Finally, we project the magnitudes of chemical and pressure stimulus resolution achievable with single LNPs at nanoscale resolution. Our perspective provides a roadmap for translating ensemble LNP sensing capabilities to the single particle level, enabling nanometer-scale sensing in biology, medicine, and sustainability.
Collapse
Affiliation(s)
- Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering and Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|