51
|
Song J, Lv X, Gu J, Yam C, Meng L. Designing thermally activated delayed fluorescence emitters with through-space charge transfer: a theoretical study. Phys Chem Chem Phys 2024; 26:6420-6428. [PMID: 38317611 DOI: 10.1039/d3cp05495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recently, thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) features have been widely applied in developing organic light-emitting diodes with high luminescence efficiencies. The performance of TSCT-TADF molecules depends highly on their molecular structures. Therefore, theoretical investigation plays a significant role in designing novel highly efficient TSCT-TADF molecules. Herein, we theoretically investigate two recently reported TSCT-TADF molecules, 1'-(2,12-di-t-butyl[1,4]benzoxaborinino[2,3,4-kl]phenoxaborinin-7-yl)-10-phenyl-10H-spiro[acridine-9,9'-fluorene] (AC-BO) and 1-(2,12-di-t-butyl[1,4]benzoxaborinino[2,3,4-kl]phenoxaborinin-7-yl)-9',9'-dimethyl-9'H-spiro [fluorene-9,5'-quinolino[3,2,1-de]acridine](QAC-BO). The calculated photophysical properties (e.g. excited state energy levels and luminescence properties) for these two compounds are in good agreement with experimental data. Based on the systematic analysis of structure-performance relationships, we design three novel TSCT-TADF molecules with high molecular rigidity and evident TSCT features, i.e., DQAC-DBO, DQAC-SBO, and DQAC-NBO. They exhibit deep-blue light emissions and fast reverse intersystem crossing rates (KRISCs). Our calculations demonstrate that the nearly coplanar orientation of the donor and acceptor is critical to achieve remarkable KRISCs and fluorescence efficiencies in TSCT-TADF molecules.
Collapse
Affiliation(s)
- Jinhui Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xin Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Junjing Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - ChiYung Yam
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China.
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
52
|
Wang Z, Qu C, Liang J, Zhuang X, Liu Y, Wang Y. High-Efficiency and Narrowband Green Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes Based on Two Diverse Boron Multi-Resonant Skeletons. Molecules 2024; 29:841. [PMID: 38398593 PMCID: PMC10892125 DOI: 10.3390/molecules29040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Up to now, highly efficient narrowband thermally activated delayed fluorescence (TADF) molecules constructed by oxygen-bridged boron with an enhancing multiple resonance (MR) effect have been in urgent demand for solid-state lighting and full-color displays. In this work, a novel MR-TADF molecule, BNBO, constructed by the oxygen-bridged boron unit and boron-nitrogen core skeleton as an electron-donating moiety, is successfully designed and synthesized via a facile one-step synthesis. Based on BNBO as an efficient green emitter, the organic light-emitting diode (OLED) shows a sharp emission peak of 508 nm with a full-width at half-maximum (FWHM) of 36 nm and realizes quite high peak efficiency values, including an external quantum efficiency (EQEmax) of 24.3% and a power efficiency (PEmax) of 62.3 lm/W. BNBO possesses the intramolecular charge transfer (ICT) property of donor-acceptor (D-A) materials and multiple resonance characteristics, which provide a simple strategy for narrowband oxygen-boron materials.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (Z.W.); (C.Q.); (Y.W.)
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (Z.W.); (C.Q.); (Y.W.)
| | - Jie Liang
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, China; (J.L.); (X.Z.)
| | - Xuming Zhuang
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, China; (J.L.); (X.Z.)
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (Z.W.); (C.Q.); (Y.W.)
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (Z.W.); (C.Q.); (Y.W.)
| |
Collapse
|
53
|
Hua T, Li N, Huang Z, Zhang Y, Wang L, Chen Z, Miao J, Cao X, Wang X, Yang C. Narrowband Near-Infrared Multiple-Resonance Thermally Activated Delayed Fluorescence Emitters towards High-Performance and Stable Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202318433. [PMID: 38148704 DOI: 10.1002/anie.202318433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials are highly coveted for their high efficiency and narrowband emission in organic light-emitting diodes (OLEDs). Nevertheless, the development of near-infrared (NIR) MR-TADF emitters remains a formidable challenge. In this study, we design two new NIR MR-TADF emitters, PXZ-R-BN and BCz-R-BN, by embedding 10H-phenoxazine (PXZ) and 7H-dibenzo[c,g]carbazole (BCz) fragments to increase the electron-donating ability or extending π-conjugation on the framework of para-boron fusing polycyclic aromatic hydrocarbons (PAHs). Both compounds emit in the NIR region, with a full-width at half-maximum (FWHM) of 49 nm (0.13 eV) for PXZ-R-BN and 43 nm (0.11 eV) for BCz-R-BN in toluene. To sensitize the two NIR MR-TADF emitters in OLEDs, a new platinum complex, Pt-1, is designed as a sensitizer. The PXZ-R-BN-based sensitized OLEDs achieve a maximum external quantum efficiency (EQEmax ) of nearly 30 % with an emission band at 693 nm, and exceptional long operational stability with an LT97 (time to 97 % of the initial luminance) value of 39084 h at an initial radiance of 1000 mW sr-1 m-2 . The BCz-R-BN-based OLEDs reach EQEmax values of 24.2 % with an emission band at 713 nm, which sets a record value for NIR OLEDs with emission bands beyond 700 nm.
Collapse
Affiliation(s)
- Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Youming Zhang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Lian Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
54
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
55
|
Chen J, Liu Z, Chen L, Zou P, Tang BZ, Zhao Z. Exploring Robust Delayed Fluorescence Materials via Structural Rigidification for Realizing Organic Light-Emitting Diodes with High Efficiencies and Small Roll-Offs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306800. [PMID: 37823676 DOI: 10.1002/smll.202306800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have been widely studied for the fabrication of high-performance organic light-emitting diodes (OLEDs), but the serious efficiency roll-offs still remain unsolved in most cases. Herein, it is wish to report a series of robust green TADF compounds containing rigid xanthenone acceptor and acridine-based spiro donors. The enhancement in molecular rigidity not only endows the compounds with improved thermal stability but also results in reduced geometric vibrations and thus lowered reorganization energies. These compounds exhibit distinct merits of high thermal stabilities, excellent photoluminescence quantum efficiencies (96%-97%), large horizontal dipole orientation ratios (87.4%-92.1%) and fast TADF rates (1.4-1.5 × 106 s-1 ). The OLEDs using them as emitters furnish superb electroluminescence performances with outstanding external quantum efficiencies (ηext s) of up to 37.4% and very small efficiency roll-offs. Moreover, highly efficient hyperfluorescence OLEDs are obtained by using them as sensitizers for the green mutilresonance TADF emitter BN2, delivering excellent ηext s of up to 34.2% and improved color purity. These results disclose the high potential of these TADF compounds as emitters and sensitizers for OLEDs.
Collapse
Affiliation(s)
- Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zhangshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, Guangdong
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
56
|
Wang Q, Huang T, Qu Y, Song X, Xu Y, Wang Y. Frontier Molecular Orbital Engineering of Aromatic Donor Fusion: Modularly Constructing Highly Efficient Narrowband Yellow Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4948-4957. [PMID: 38235687 DOI: 10.1021/acsami.3c14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The development of high-performance multiple resonance thermally activated delayed fluorescence (MR-TADF) materials with narrowband yellow emission is highly critical for various applications in industries, such as the automotive, aerospace, and microelectronic industries. However, the modular construction approaches to expeditiously access narrowband yellow-emitting materials is relatively rare. Here, a unique molecular design concept based on frontier molecular orbital engineering (FMOE) of aromatic donor fusion is proposed to strategically address this issue. Donor fusion is a modular approach with a "leveraging effect"; through direct polycyclization of donor attached to the MR parent core, it is facile to achieve red-shifted emission by a large margin. As a result, two representative model molecules, namely BN-Cz and BN-Cb, have been constructed successfully. The BN-Cz- and BN-Cb-based sensitized organic light-emitting diodes (OLEDs) exhibit bright yellow emission with peaks of 560 and 556 nm, full-width at half-maxima (fwhm's) of 49 and 45 nm, Commission Internationale de L'Eclairage coordinates of (0.44, 0.55) and (0.43, 0.56), and maximum external quantum efficiencies (EQEs) of 32.9% and 29.7%, respectively. The excellent optoelectronic performances render BN-Cz and BN-Cb one of the most outstanding yellow-emitting MR-TADF materials.
Collapse
Affiliation(s)
- Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yupei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoxian Song
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, Guangdong Province, P. R. China
- Jihua Hengye Electronic Materials CO. LTD., Foshan 528200, Guangdong Province, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Jihua Hengye Electronic Materials CO. LTD., Foshan 528200, Guangdong Province, P. R. China
| |
Collapse
|
57
|
Liang L, Qu C, Fan X, Ye K, Zhang Y, Zhang Z, Duan L, Wang Y. Carbonyl- and Nitrogen-Embedded Multi-Resonance Emitter with Ultra-Pure Green Emission and High Electroluminescence Efficiencies. Angew Chem Int Ed Engl 2024; 63:e202316710. [PMID: 38061992 DOI: 10.1002/anie.202316710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11 eV (24 nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiangyu Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
58
|
Ye K, Li G, Li F, Shi C, Jiang Z, Zhang F, Li Q, Su J, Song D, Yuan A. B-embedded disulfide-bridged π-conjugated compounds: structures and optical tuning. Phys Chem Chem Phys 2024; 26:2395-2401. [PMID: 38168797 DOI: 10.1039/d3cp05304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two novel B-embedded disulfide-bridged π-conjugated compounds (BS-CZ and BS-N) bearing different electron donor groups (phenyl carbazole and triphenylamine) have been prepared and show different optical mechanisms. The compound BS-CZ exhibits significant multiple resonance thermal activation delayed fluorescence (MR-TADF) properties with a small singlet-triplet energy gap (ΔEST = 0.16 eV) and a narrow half-peak full width (FWHM = 33 nm), while the compound BS-N shows traditional fluorescence luminescence (FL) characteristics with a larger ΔEST (0.28 eV) and FWHM (57 nm). Time-dependent density functional theory (TD-DFT) calculations show that the lowest excited singlet state (S1) of the compound BS-CZ exhibits local excited (LE) state characteristics, while the charge transfer (CT) state characteristics can be found in S1 of the compound BS-N. Considering good optical performance, the compound BS-CZ is used as an emitting layer of the organic light-emitting diode device and achieved saturated blue emission (473 nm) with a narrow FWHM (39 nm), and CIE color coordinates of (0.12, 0.21). This work provides an important strategy for the optical mechanism regulation and photoelectric applications of B-embedded disulfide-bridged π-conjugated molecules.
Collapse
Affiliation(s)
- Kaishun Ye
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Gang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
- CSMC Technologies Fab2 Co., Ltd, Wuxi, 214028, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Zhen Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Fuzheng Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Jie Su
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China.
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
59
|
Li G, Xu K, Zheng J, Fang X, Lou W, Zhan F, Deng C, Yang YF, Zhang Q, She Y. High-Performance Ultraviolet Organic Light-Emitting Diodes Enabled by Double Boron-Oxygen-Embedded Benzo[ m]tetraphene Emitters. J Am Chem Soc 2024; 146:1667-1680. [PMID: 38175122 DOI: 10.1021/jacs.3c12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ultraviolet organic light-emitting diodes (UV OLEDs) have attracted increasing attention because of their promising applications in healthcare, industry, and agriculture; however, their development has been hindered by the shortage of robust UV emitters. Herein, we embedded double boron-oxygen units into nonlinear polycyclic aromatic hydrocarbons (BO-PAHs) to regulate their molecular configurations and excited-state properties, enabling novel bent BO-biphenyl (BO-bPh) and helical BO-naphthyl (BO-Nap) emitters with hybridized local and charge-transfer (HLCT) characteristics. They could be facilely synthesized in gram-scale amounts via a highly efficient two-step route. BO-bPh and BO-Nap showed strong UV and violet-blue photoluminescence in toluene with full width at half-maximum values of 25 and 37 nm, along with quantum efficiencies of 98 and 99%, respectively. A BO-bPh-based OLED showed high color purity UV electroluminescence peaking at 394 nm with Commission Internationale de l'Eclairage (CIE) coordinates of (0.166, 0.021). Moreover, the device demonstrated a record-high maximum external quantum efficiency (EQE) of 11.3%, achieved by successful hot exciton utilization. This work demonstrates the promising potential of double BO-PAHs as robust emitters for future UV OLEDs.
Collapse
Affiliation(s)
- Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianbing Zheng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaoli Fang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
60
|
Guo Y, Zhao Z, Hua L, Liu Y, Xu B, Zhang Y, Yan S, Ren Z. Adjusting the Electron-Withdrawing Ability of Acceptors in Thermally Activated Delayed Fluorescence Conjugated Polymers for High-Performance OLEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1225-1233. [PMID: 38112452 DOI: 10.1021/acsami.3c15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Constructing high-performance solution-processed organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) conjugated polymers remains a challenging issue. The electron-withdrawing ability of acceptors in TADF units significantly affects the TADF properties of the conjugated polymers. Herein, we have designed three TADF conjugated polymers, in which phenoxazine donors and anthracen-9(10H)-one acceptors are incorporated into the polymeric backbones and side chains, respectively, and the carbazole derivative is copolymerized as the host. By incorporating different heteroatoms, such as nitrogen, oxygen, or sulfur, with slightly different electronegativities into anthracen-9(10H)-one, the effect of the electron-withdrawing ability of the acceptor on the performance of conjugated TADF polymer-based OLEDs is thus systematically studied. It is found that the introduction of a nitrogen atom can enhance the spin-orbital coupling and RISC process due to the modulated energy levels and nature of the excited states. As a result, the solution-processed OLEDs based on the prepared polymer p-PXZ-XN display an excellent comprehensive performance with an EQEmax of 17.6%, a low turn-on voltage of 2.8 V, and a maximum brightness of 14750 cd m-2. Notably, the efficiency roll-off is quite low, maintaining 15.1% at 1000 cd m-2, 12.1% at 3000 cd m-2, and 6.1% at 10000 cd m-2, which ranks in the first tier among the reported TADF conjugated polymers. This work provides a guideline for constructing high-efficiency TADF polymers.
Collapse
Affiliation(s)
- Yumeng Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzhuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
61
|
Avula S, Jhun BH, Jo U, Heo S, Lee JY, You Y. Achieving Long-Wavelength Electroluminescence Using Two-Coordinate Gold(I) Complexes: Overcoming the Energy Gap Law. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305745. [PMID: 37953418 PMCID: PMC10767458 DOI: 10.1002/advs.202305745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/05/2023] [Indexed: 11/14/2023]
Abstract
Two-coordinate coinage metal complexes have emerged as promising emitters for highly efficient organic light-emitting devices (OLEDs). However, achieving efficient long-wavelength electroluminescence emission from these complexes remains as a daunting challenge. To address this challenge, molecular design strategies aimed at bolstering the photoluminescence quantum yield (Φ) of Au(I) complex emitters in low-energy emission regions are investigated. By varying amido ligands, a series of two-coordinate Au(I) complexes is developed that exhibit photoluminescence peak wavelengths over a broad range of 533-750 nm. These complexes, in particular, maintain Φ values up to 10% even in the near-infrared emission region, overcoming the constraints imposed by an energy gap. Quantum chemical calculations and photophysical analyses reveal the action of radiative control, which serves to overcome the energy gap law, becomes more pronounced as the overlap between hole and electron distributions (Sr (r)) in the excited state increases. It is further elucidated that Sr (r) increases with the distance between the hole-distribution centroid and the nitrogen atom in an amido ligand. Finally, multilayer OLEDs involving the Au(I) complex emitters exhibit performances beyond the borderline of the electroluminescence wavelength-external quantum efficiency space set by previous devices of coinage metal complexes.
Collapse
Affiliation(s)
- Sreenivas Avula
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Byung Hak Jhun
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Unhyeok Jo
- School of Chemical EngineeringSungkyunkwan UniversitySuwonGyeonggi‐do16419Republic of Korea
| | - Seunga Heo
- Division of Chemical Engineering and Materials ScienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Jun Yeob Lee
- School of Chemical EngineeringSungkyunkwan UniversitySuwonGyeonggi‐do16419Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
62
|
Ye Z, Wu H, Xu Y, Hua T, Chen G, Chen Z, Yin X, Huang M, Xu K, Song X, Huang Z, Lv X, Miao J, Cao X, Yang C. Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308314. [PMID: 37963185 DOI: 10.1002/adma.202308314] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.
Collapse
Affiliation(s)
- Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiufang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
63
|
Jing YY, Yang Y, Li N, Ye Z, Wang X, Cao X, Yang C. Indolo[3,2-b]indole-based multi-resonance emitters for efficient narrowband pure-green organic light-emitting diodes. LUMINESCENCE 2024; 39:e4624. [PMID: 37950413 DOI: 10.1002/bio.4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength. Consequently, a successful red shift from aquamarine to pure-green is realized for IDIDBN and tBuIDIDBN with photoluminescence maxima peaking at 529 and 532 nm, along with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.71) and (0.28, 0.70). Furthermore, both emitters revealed narrowband emission with small full width at half-maximum (FWHM) below 28 nm. Notably, the narrowband pure-green emission was effectively preserved in corresponding devices, which afford elevated maximum external quantum efficiencies of 16.3% and 18.3% for IDIDBN and tBuIDIDBN.
Collapse
Affiliation(s)
- Yan-Yun Jing
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
64
|
Wang J, Yang Y, Gu F, Zhai X, Yao C, Zhang J, Jiang C, Xi X. Molecular Engineering Modulating the Singlet-Triplet Energy Splitting of Indolocarbazole-Based TADF Emitters Exhibiting AIE Properties for Nondoped Blue OLEDs with EQE of Nearly 20. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59643-59654. [PMID: 38090754 DOI: 10.1021/acsami.3c14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of efficient blue thermally activated delayed fluorescence (TADF) emitters with an aggregation-induced emission (AIE) nature, for the construction of organic light-emitting diodes (OLEDs), is still insufficient. This can be attributed to the challenges encountered in molecular design, including the inherent trade-off between radiative decay and reverse intersystem crossing (RISC), as well as small singlet-triplet energy splitting (ΔEST) and the requirement for high photoluminescence quantum yields (ΦPL). Herein, we present the design of three highly efficient blue TADF molecules with AIE characteristics by combining π-extended donors with different acceptors to modulate the differences in the electron-donating and electron-withdrawing abilities. This approach not only ensures high emission efficiency by suppressing close π-π stacking, weakening nonradiative relaxation, and enhancing radiative transition but also maintains the equilibrium ratio between the triplet and singlet excitons by facilitating the process of RISC. These emitters exhibit AIE and TADF properties, featuring quick radiative rates and low nonradiative rates. The ΦPL of these emitters reached an impressive 88%. Based on their excellent comprehensive performance, nondoped PICzPMO and PICzPMO OLEDs achieved excellent electroluminescence performance, exhibiting maximum external quantum efficiency (EQEmax) of up to 19.5%, while the doped device achieved a higher EQEmax of 20.8%. This work demonstrated that by fusing π-extended large rigid donors with different acceptors, it is possible to regulate the difference in electron-donating and electron-withdrawing abilities, resulting in a small ΔEST, high ΦPL, and fast RISC process, which is a highly feasible strategy for designing efficient TADF molecules.
Collapse
Affiliation(s)
- Jinshan Wang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuguang Yang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fei Gu
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuesong Zhai
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chuang Yao
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China
| | - Jianfeng Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Cuifeng Jiang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xinguo Xi
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
65
|
Mahaan R, John Bosco A. Sulfur Oxidation State and Substituents Influenced Multifunctional Organic Luminophores in BTP Core for OLEDs: A Computational Study on RTP, TADF Emitter and Sensitizer. J Phys Chem A 2023; 127:10570-10582. [PMID: 38063023 DOI: 10.1021/acs.jpca.3c05259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The exploration of triplet excitons in thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) molecules has become a subject of significant attention and interest in recent studies. This study employed density functional theory (DFT) and time-dependent DFT theoretical methods to delve into the intricate relationship between the molecular structure and properties of molecules designed with the oxidation of sulfur atoms (S, SO, and SO2) in benzothiazinophenothiazine (BTP) core units. The calculations revealed that as the oxidation state of the sulfur atom increased, the BTP derivatives exhibited elevated ionization potentials (IPs), electron affinities (EAs), and triplet energies (ET), accompanied by reduced reorganization energies (λ), singlet energies (ES), and a S1-T1 energy gap (ΔEST). Additionally, the decrease in the exchange energy prompts a shift in the excited-state properties of molecules, transitioning them from hybridized local and charge transfer (HLCT) to charge transfer (CT) in the S1 state while maintaining their HLCT character in the T1 state. The sulfur oxidation process systematically decreases spin-orbit coupling magnitudes in the S1-T1 and T1-S0 pathways while increasing the KRISC rate, signifying a reduced propensity for phosphorescence radiative decay in oxidized molecules. Thorough investigations have explored the screening effect and orbital mixing of lone pair electrons in sulfur atoms, satisfying the desired criteria for a multifunctional RTP, TADF emitter and sensitizer.
Collapse
Affiliation(s)
- Ramalingam Mahaan
- Advanced Materials Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Aruljothy John Bosco
- Advanced Materials Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
66
|
Xu Y, Wang Q, Cai X, Li C, Jiang S, Wang Y. Frontier Molecular Orbital Engineering: Constructing Highly Efficient Narrowband Organic Electroluminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202312451. [PMID: 37724466 DOI: 10.1002/anie.202312451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/20/2023]
Abstract
It is of great strategic significance to develop highly efficient narrowband organic electroluminescent materials that can be utilized to manufacture ultra-high-definition (UHD) displays and meet or approach the requirements of Broadcast Television 2020 (B.T.2020) color gamut standards. This motif poses challenges for molecular design and synthesis, especially for developing generality, diversity, scalability, and robustness of molecular structures. The emergence of multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters has ingeniously solved the problems and demonstrated bright application prospects in the field of UHD displays, sparking a research boom. This Minireview summarizes the research endeavors of narrowband organic electroluminescent materials, with emphasis on the tremendous contribution of frontier molecular orbital engineering (FMOE) strategy. It combines the outstanding advantages of MR framework and donor-acceptor (D-A) structure, and can achieve red-shift and narrowband emission simultaneously, which is of great significance in the development of long-wavelength narrowband emitters with emission maxima especially exceeding 500 nm. We hope that this Minireview would provide some inspiration for what could transpire in the future.
Collapse
Affiliation(s)
- Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinliang Cai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| |
Collapse
|
67
|
Luo S, Wang J, Li N, Song XF, Wan X, Li K, Yang C. Regulation of Multiple Resonance Delayed Fluorescence via Through-Space Charge Transfer Excited State towards High-Efficiency and Stable Narrowband Electroluminescence. Angew Chem Int Ed Engl 2023; 62:e202310943. [PMID: 37851366 DOI: 10.1002/anie.202310943] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
B- and N-embedded multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters usually suffer from slow reverse intersystem crossing (RISC) process and aggregation-caused emission quenching. Here, we report the design of a sandwich structure by placing the B-N MR core between two electron-donating moieties, inducing through-space charge transfer (TSCT) states. The proper adjusting of the energy levels brings about a 10-fold higher RISC rate in comparison with the parent B-N molecule. In the meantime, a high photoluminescence quantum yield of 91 % and a good color purity were maintained. Organic light-emitting diodes based on the new MR emitter achieved a maximum external quantum efficiency of 31.7 % and small roll-offs at high brightness. High device efficiencies were also obtained for a wide range of doping concentrations of up to 20 wt % thanks to the steric shielding of the B-N core. A good operational stability with LT95 of 85.2 h has also been revealed. The dual steric and electronic effects resulting from the introduction of a TSCT state offer an effective molecular design to address the critical challenges of MR-TADF emitters.
Collapse
Affiliation(s)
- Sai Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Junjie Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Xintong Wan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| |
Collapse
|
68
|
Wang X, Wang A, Zhao M, Marom N. Inverted Lowest Singlet and Triplet Excitation Energy Ordering of Graphitic Carbon Nitride Flakes. J Phys Chem Lett 2023:10910-10919. [PMID: 38033187 DOI: 10.1021/acs.jpclett.3c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In organic light-emitting diodes (OLEDs), only 25% of electrically generated excitons are in a singlet state, S1, and the remaining 75% are in a triplet state, T1. In thermally activated delayed fluorescence (TADF) chromophores the transition from the nonradiative T1 state to the radiative S1 state can be thermally activated, which improves the efficiency of OLEDs. Chromophores with inverted energy ordering of S1 and T1 states, S1 < T1, are superior to TADF chromophores, thanks to the absence of an energy barrier for the transition from T1 to S1. We benchmark the performance of time-dependent density functional theory using different exchange-correlation functionals and find that scaled long-range corrected double-hybrid functionals correctly predict the inverted singlet-triplet gaps of N-substituted phenalene derivatives. We then show that the inverted energy ordering of S1 and T1 is an intrinsic property of graphitic carbon nitride flakes. A design strategy of new chromophores with inverted singlet-triplet gaps is proposed. The color of emitted light can be fine-tuned through flake size and amine substitution on flake vertices.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao 266114, China
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Aizhu Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Mingwen Zhao
- School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
69
|
Li P, Zhang Y, Li W, Zhou C, Chen R. Achieving narrowband emissions with tunable colors for multiple resonance-thermally activated delayed fluorescence materials: effect of boron/nitrogen number and position. Phys Chem Chem Phys 2023; 25:27877-27884. [PMID: 37815320 DOI: 10.1039/d3cp03781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The boron/nitrogen (B/N)-based multiple resonance-thermally activated delayed fluorescence (MR-TADF) materials with tunable colors have attracted widespread attention owing to their great potential in next-generation display, white lighting, and imaging applications. Numerous MR-TADF emitters with different B/N number and position have been reported to realize full-color narrowband emissions. To gain a better understanding of the effect of B/N number and position on the photo-electronic properties, geometric and electronic properties, Huang-Rhys factors and reorganization energies, charger transfer and absorption/emission properties were analyzed in detail to determine the structure-property relationship for the investigated molecules. The calculated results show that the molecules with para-atoms having the same electronic characteristics (para-B-π-B/para-N-π-N) exhibited smaller structural relaxations upon excitation, and the molecules with increased B/N atoms showed more obvious short-range charge transfer (SRCT) properties. Besides, the para-B-π-N and para-B-π-B/para-N-π-N substructures could reduce and enhance the donor and acceptor strengths, respectively, leading to tunable HOMO-LUMO gaps and emission colors. Such theoretical insights well rationalize the experimental results, revealing that the small reorganization energy and dominant SRCT property should be two key factors in realizing narrowband emissions of MR-TADF materials. These findings and understandings could give an in-depth insight into the structure-property relationship, providing molecular design strategies for the exploration of narrowband MR-TADF materials with tunable emission colors.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yewen Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wenjing Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Cefeng Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
70
|
Chen MY, Huang F, Wu H, Cheng YC, Wang H, Hu YN, Fan XC, Yu J, Wang K, Zhang XH. Integrating the atomically separated frontier molecular orbital distribution of two multiple resonance frameworks through a single bond for high-efficiency narrowband emission. MATERIALS HORIZONS 2023; 10:4224-4231. [PMID: 37538049 DOI: 10.1039/d3mh00881a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Atomically separated frontier molecular orbital (FMO) distribution plays a crucial role in achieving narrowband emissions for multiple resonance (MR)-type thermally activated delayed fluorescence emitters. Directly peripherally decorating a MR framework with donor or acceptor groups is a common strategy for developing MR emitters. However, this approach always induces bonding features and thus spectral broadening as a side effect. How direct donor/acceptor decoration enhances atomic FMO separation while avoiding bonding features has not been explored. For this aim, two MR derivatives are synthesized by integrating two MR frameworks at different sites. Following resonance alignment, DOBNA-m-CzBN avoids breaking nonbonding FMO features at the single connecting bond and shows enhanced MR characteristics, with a sharp emission at 491 nm and a full width at half maximum (FWHM) of 24 nm/118 meV. Conversely, DOBNA-p-CzBN emerges as a bonding feature due to its continuous π-conjugation extension, with a broadened FWHM of 26 nm/132 meV peaking at 497 nm. Impressively, both emitters exhibit outstanding external quantum efficiencies of 37.8-38.6% in organic light-emitting diodes (OLEDs), demonstrating improved performance with rigid acceptor decoration. Distinctly, the electroluminescence of DOBNA-m-CzBN shows a narrower FWHM than that of DOBNA-p-CzBN. This work for the first time reports the enhancement of atomic FMO separation for MR emitters via peripheral decoration through a single bond and provides a more comprehensive illustration for further development of MR emitters.
Collapse
Affiliation(s)
- Meng-Yuan Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Feng Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Ying-Chun Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Ya-Nan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
71
|
Wu C, Tong K, Shi K, Jin Z, Wu Y, Mu Y, Huo Y, Tang M, Yang C, Meng H, Kang F, Wei G. New [3+2+1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated-Blue Hyper-OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301112. [PMID: 37653609 PMCID: PMC10582407 DOI: 10.1002/advs.202301112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 09/02/2023]
Abstract
Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.
Collapse
Affiliation(s)
- Chengcheng Wu
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kai‐Ning Tong
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kefei Shi
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zhaoyun Jin
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yuan Wu
- PURI Materials, IncShenzhen518133China
| | - Yingxiao Mu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Man‐Chung Tang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Chen Yang
- PURI Materials, IncShenzhen518133China
| | - Hong Meng
- School of Advanced MaterialsShenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feiyu Kang
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Guodan Wei
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
72
|
Zhang T, Xiao Y, Wang H, Kong S, Huang R, Ka-Man Au V, Yu T, Huang W. Highly Twisted Thermally Activated Delayed Fluorescence (TADF) Molecules and Their Applications in Organic Light-Emitting Diodes (OLEDs). Angew Chem Int Ed Engl 2023; 62:e202301896. [PMID: 37288654 DOI: 10.1002/anie.202301896] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed.
Collapse
Affiliation(s)
- Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, 315103, Ningbo, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
- State Key Laboratory of Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China
| |
Collapse
|
73
|
Liu Q, Deng Y, Ren B, Lan X, Zhang Y, Guo R, Li C, Xiong G, Sun Y, Zhao Z. Unraveling the Position Effect of Spiroxanthene-Based n-Type Hosts for High-Performance TADF-OLEDs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2517. [PMID: 37764546 PMCID: PMC10537283 DOI: 10.3390/nano13182517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
For developing high-performance organic light-emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) emitters, the diphenyltriazine (TRZ) unit was introduced onto the 2'- and 3'-positions of xanthene moiety of spiro[fluorene-9,9'-xanthene] (SFX) to construct n-type host molecules, namely 2'-TRZSFX and 3'-TRZSFX. The outward extension of the TRZ unit, induced by the meta-linkage, resulted in a higher planarity between the TRZ unit and xanthene moiety in the corresponding 3'-TRZSFX. Additionally, this extension led to a perched T1 level, as well as a lower unoccupied molecular orbital (LUMO) level when compared with 2'-TRZSFX. Meanwhile, the 3'-TRZSFX molecules in the crystalline state presented coherent packing along with the interaction between TRZ units; the similar packing motif was spaced apart from xanthene moieties in the 2'-TRZSFX crystal. These endowed 3'-TRZSFX superior electron transport capacity in single-carrier devices relative to the 2'-TRZSFX-based device. Hence, the 3'-TRZSFX-based TADF-OLED showed remarkable electroluminescent (EL) performance under the operating luminance from turn-on to ca. 1000 cd·m-2 with a maximum external quantum efficiency (EQEmax) of 23.0%, thanks to its matched LUMO level with 4CzIPN emitter and better electron transport capacity. Interestingly, the 2'-TRZSFX-based device, with an EQEmax of 18.8%, possessed relatively low roll-off and higher efficiency when the operating luminance exceeded 1000 cd·m-2, which was attributed to the more balanced carrier transport under high operating voltage. These results were elucidated by the analysis of single-crystal structures and the measurements of single-carrier devices, combined with EL performance. The revealed position effect of the TRZ unit on xanthene moiety provides a more informed strategy to develop SFX-based hosts for highly efficient TADF-OLEDs.
Collapse
Affiliation(s)
- Qinglin Liu
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Yun Deng
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Baoyi Ren
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Xia Lan
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Yuehong Zhang
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Runda Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China;
| | - Chensheng Li
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Gang Xiong
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Yaguang Sun
- College of Science, Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China; (Q.L.); (X.L.); (Y.Z.); (C.L.); (G.X.); (Y.S.)
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
74
|
Bai W, Xuan T, Zhao H, Dong H, Cheng X, Wang L, Xie RJ. Perovskite Light-Emitting Diodes with an External Quantum Efficiency Exceeding 30. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302283. [PMID: 37246938 DOI: 10.1002/adma.202302283] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) are strong candidates for next-generation display and lighting technologies due to their high color purity and low-cost solution-processed fabrication. However, PeLEDs are not superior to commercial organic light-emitting diodes (OLEDs) in efficiency, as some key parameters affecting their efficiency, such as the charge carrier transport and light outcoupling efficiency, are usually overlooked and not well optimized. Here, ultrahigh-efficiency green PeLEDs are reported with quantum efficiencies surpassing a milestone of 30% by regulating the charge carrier transport and near-field light distribution to reduce electron leakage and achieve a high light outcoupling efficiency of 41.82%. Ni0.9 Mg0.1 Ox films are applied with a high refractive index and increased hole carrier mobility as the hole injection layer to balance the charge carrier injection and insert the polyethylene glycol layer between the hole transport layer and the perovskite emissive layer to block the electron leakage and reduce the photon loss. Therefore, with the modified structure, the state-of-the-art green PeLEDs achieve a world record external quantum efficiency of 30.84% (average = 29.05 ± 0.77%) at a luminance of 6514 cd m-2 . This study provides an interesting idea to construct super high-efficiency PeLEDs by balancing the electron-hole recombination and enhancing the light outcoupling.
Collapse
Affiliation(s)
- Wenhao Bai
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
- Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiyan Zhao
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haorui Dong
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xinru Cheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
- Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, 361005, P. R. China
| |
Collapse
|
75
|
Zou Y, He J, Li N, Hu Y, Luo S, Cao X, Yang C. Precisely regulating the double-boron-based multi-resonance framework towards pure-red emitters: high-performance OLEDs with CIE coordinates fully satisfying the BT. 2020 standard. MATERIALS HORIZONS 2023; 10:3712-3718. [PMID: 37403802 DOI: 10.1039/d3mh00800b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Here, we propose a new simple and effective strategy for designing pure-red multi-resonance (MR) emitters through precisely regulating the double-boron-based MR framework. The two designed emitters exhibit ultrapure red emission together with superb photophysical properties, and further enable high-performance, high color-purity red OLEDs.
Collapse
Affiliation(s)
- Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Jiawei He
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Sai Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
76
|
Xie FM, Li HZ, Zhang K, Wang HY, Li YQ, Tang JX. Rational Multidimensional Shielded Multiple Resonance Emitter Suppresses Concentration Quenching and Spectral Broadening for Solution-Processed Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39669-39676. [PMID: 37579002 DOI: 10.1021/acsami.3c07852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters based on multiple resonance (MR) effects are promising for high-definition organic light-emitting diodes (OLEDs) with narrowband emission and high efficiency. However, they still face the challenges of aggregation-caused quenching (ACQ) and spectral broadening. Solution-processable MR-TADF emitters with an external quantum efficiency (EQE) of >20% and a full width at half-maximum (fwhm) of <30 nm have rarely been reported. To construct ACQ-resistant emitters without sacrificing color purity, the aggregation-induced MR-TADF material 6TBN with a rigid B,N-containing polycyclic aromatic hydrocarbon core and four carbazole substituents as well as 12 tert-butyl groups on the periphery is designed. The multidimensional shielded effect largely limits the ACQ, intermolecular interactions, and spectral broadening. Consequently, solution-processed OLEDs based on 6TBN exhibit a maximum EQE of 23.0% and high color purity with a fwhm of 25 nm. Furthermore, the nondoped device achieves a high efficiency (12.3%) and merely a slight widening of the fwhm to 27 nm. This work provides a feasible strategy to achieve MR-TADF materials with resistance to concentration quenching and high color purity.
Collapse
Affiliation(s)
- Feng-Ming Xie
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Hao-Ze Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Han-Yang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
77
|
Hu J, Jiang S, Zhang D, Zhao T, Lin F, Meng L, Chen X, Lu C. Rational Design of Highly Efficient Orange-Red/Red Thermally Activated Delayed Fluorescence Emitters with Submicrosecond Emission Lifetimes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300808. [PMID: 37279379 PMCID: PMC10427351 DOI: 10.1002/advs.202300808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Indexed: 06/08/2023]
Abstract
The development of orange-red/red thermally activated delayed fluorescence (TADF) materials with both high emission efficiencies and short lifetimes is highly desirable for electroluminescence (EL) applications, but remains a formidable challenge owing to the strict molecular design principles. Herein, two new orange-red/red TADF emitters, namely AC-PCNCF3 and TAC-PCNCF3, composed of pyridine-3,5-dicarbonitrile-derived electron-acceptor (PCNCF3) and acridine electron-donors (AC/TAC) are developed. These emitters in doped films exhibit excellent photophysical properties, including high photoluminescence quantum yields of up to 0.91, tiny singlet-triplet energy gaps of 0.01 eV, and ultrashort TADF lifetimes of less than 1 µs. The TADF-organic light-emitting diodes employing the AC-PCNCF3 as emitter achieve orange-red and red EL with high external quantum efficiencies of up to 25.0% and nearly 20% at doping concentrations of 5 and 40 wt%, respectively, both accompanied by well-suppressed efficiency roll-offs. This work provides an efficient molecular design strategy for developing high-performance red TADF materials.
Collapse
Affiliation(s)
- Jia‐Xuan Hu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shanshan Jiang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
| | - Dong‐Hai Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
| | - Tianxiang Zhao
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
| | - Fu‐Lin Lin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
| | - Lingyi Meng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
| | - Xu‐Lin Chen
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Can‐Zhong Lu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth MaterialsHaixi InstitutesChinese Academy of SciencesXiamenFujian361021China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| |
Collapse
|
78
|
Jing YY, Li N, Cao X, Wu H, Miao J, Chen Z, Huang M, Wang X, Hu Y, Zou Y, Yang C. Precise modulation of multiple resonance emitters toward efficient electroluminescence with pure-red gamut for high-definition displays. SCIENCE ADVANCES 2023; 9:eadh8296. [PMID: 37506207 PMCID: PMC10381944 DOI: 10.1126/sciadv.adh8296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics. The proof-of-concept materials manifested emissions from orange-red to deep red, with bandwidths below 0.12 eV. The pure-red device based on CzIDBNO displayed superior color purity with CIE coordinates of (0.701, 0.298), approaching the Broadcast Television 2020 standard. In concert with high photoluminescence quantum yield and strong horizontal dipole orientation, CzIDBNO also achieved a maximum external quantum efficiency of 32.5% and a current efficiency of 20.2 cd A-1, outstripping prior reported organic light-emitting diodes (OLEDs) with CIEx exceeding 0.68. These findings offer a roadmap for designing high-performance emitters with exceptional color purity for future OLED material research advancements.
Collapse
Affiliation(s)
- Yan-Yun Jing
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoeletronic Engineering, Shenzhen University, Shenzhen, China
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
79
|
Ma B, Ding Z, Liu D, Zhou Z, Zhang K, Dang D, Zhang S, Su SJ, Zhu W, Liu Y. A Feasible Strategy for a Highly Efficient Thermally Activated Delayed Fluorescence Emitter Over 900 nm Based on Phenalenone Derivatives. Chemistry 2023; 29:e202301197. [PMID: 37154226 DOI: 10.1002/chem.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Near-infrared (NIR) organic light-emitting diodes (OLEDs) suffer from the low external electroluminescence (EL) quantum efficiency (EQE), which is a critical obstacle for potential applications. Herein, 1-oxo-1-phenalene-2,3-dicarbonitrile (OPDC) is employed as an electron-withdrawing aromatic ring, and by incorporating with triphenylamine (TPA) and biphenylphenylamine (BBPA) donors, two novel NIR emitters with thermally activated delayed fluorescence (TADF) characteristics, namely OPDC-DTPA and OPDC-DBBPA, are first developed and compared in parallel. Intense NIR emission peaks at 962 and 1003 nm are observed in their pure films, respectively. Contributed by the local excited (LE) characteristics in the triplet (T1 ) state in synergy with the charge transfer (CT) characteristics for the singlet (S1 ) state to activate TADF emission, the solution processable doped NIR OLEDs based on OPDC-DTPA and OPDC-DBBPA yield EL peaks at 834 and 906 nm, accompanied with maximum EQEs of 0.457 and 0.103 %, respectively, representing the state-of-the-art EL performances in the TADF emitter-based NIR-OLEDs in the similar EL emission regions so far. This work manifests a simple and effective strategy for the development of NIR TADF emitters with long wavelength and efficiency synchronously.
Collapse
Affiliation(s)
- Bin Ma
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhenming Ding
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongfeng Dang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
80
|
Gawale Y, Ansari R, Naveen KR, Kwon JH. Forthcoming hyperfluorescence display technology: relevant factors to achieve high-performance stable organic light emitting diodes. Front Chem 2023; 11:1211345. [PMID: 37377883 PMCID: PMC10291061 DOI: 10.3389/fchem.2023.1211345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Over the decade, there have been developments in purely organic thermally activated delayed fluorescent (TADF) materials for organic light-emitting diodes (OLEDs). However, achieving narrow full width at half maximum (FWHM) and high external quantum efficiency (EQE) is crucial for real display industries. To overcome these hurdles, hyperfluorescence (HF) technology was proposed for next-generation OLEDs. In this technology, the TADF material was considered a sensitizing host, the so-called TADF sensitized host (TSH), for use of triplet excitons via the reverse intersystem crossing (RISC) pathway. Since most of the TADF materials show bipolar characteristics, electrically generated singlet and triplet exciton energies can be transported to the final fluorescent emitter (FE) through Förster resonance energy transfer (FRET) rather than Dexter energy transfer (DET). This mechanism is possible from the S1 state of the TSH to the S1 state of the final fluorescent dopant (FD) as a long-range energy transfer. Considering this, some reports are available based on hyperfluorescence OLEDs, but the detailed analysis for highly efficient and stable devices for commercialization was unclear. So herein, we reviewed the relevant factors based on recent advancements to build a highly efficient and stable hyperfluorescence system. The factors include an energy transfer mechanism based on spectral overlapping, TSH requirements, electroluminescence study based on exciplex and polarity system, shielding effect, DET suppression, and FD orientation. Furthermore, the outlook and future positives with new directions were discussed to build high-performance OLEDs.
Collapse
Affiliation(s)
| | | | | | - Jang Hyuk Kwon
- *Correspondence: Kenkera Rayappa Naveen, ; Jang Hyuk Kwon,
| |
Collapse
|
81
|
Huang Z, Xie H, Miao J, Wei Y, Zou Y, Hua T, Cao X, Yang C. Charge Transfer Excited State Promoted Multiple Resonance Delayed Fluorescence Emitter for High-Performance Narrowband Electroluminescence. J Am Chem Soc 2023. [PMID: 37276361 DOI: 10.1021/jacs.3c01267] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising candidates for narrowband organic light-emitting diodes, but their electroluminescent performance is typically hindered by the slow reverse intersystem crossing rate (kRISC). Herein, we present an effective strategy to introduce a multichannel reverse intersystem crossing (RISC) pathway with large spin-orbit coupling by orthogonally linking an electron-donating unit to the MR framework. Through delicate manipulation of the excited-state energy levels, an additional intersegmental charge transfer triplet state could be "silently" induced without perturbing the MR character of the lowest excited singlet state. The proof-of-concept emitter CzBN3 not only affords 23-fold increase of kRISC compared with its prototypical MR skeleton but also realizes close-to-unity photoluminescence quantum yield, large radiative rate constant, and very narrow emission spectrum. These merits enable high maximum external quantum efficiency (EQEmax) of up to 37.1% and alleviated efficiency roll-off in the sensitizer-free device (EQE1000 = 30.4%), and a further boost of efficiency (EQEmax/1000 = 42.3/34.1%) is realized in the hyperfluorescent device. The state-of-the-art electroluminescent performance validates the superiority of our molecular design strategy.
Collapse
Affiliation(s)
- Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Honghui Xie
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
82
|
Liu H, Fu Y, Chen J, Tang BZ, Zhao Z. Energy-Efficient Stable Hyperfluorescence Organic Light-Emitting Diodes with Improved Color Purities and Ultrahigh Power Efficiencies Based on Low-Polar Sensitizing Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212237. [PMID: 36893769 DOI: 10.1002/adma.202212237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Indexed: 06/02/2023]
Abstract
Multi-resonance (MR) molecules with thermally activated delayed fluorescence (TADF) are emerging as promising candidates for high-definition displays because of their narrow emission spectra. However, the electroluminescence (EL) efficiencies and spectra of MR-TADF molecules are highly sensitive to hosts and sensitizers when applied to organic light-emitting diodes (OLEDs), and the highly polar environments in devices often lead to significantly broadened EL spectra. In this study, a proof-of-concept TADF sensitizer (BTDMAC-XT) with low polarity, high steric hindrance, and concentration-quenching free feature is constructed, which acts as a good emitter in doped and non-doped OLEDs with high external quantum efficiencies (ηext s) of 26.7% and 29.3%, respectively. By combining BTDMAC-XT with conventional low-polarity hosts, low-polarity sensitizing systems with a small carrier injection barrier and full exciton utilization are constructed for the MR-TADF molecule BN2. Hyperfluorescence (HF) OLEDs employing the low-polar sensitizing systems successfully improve the color quality of BN2 and afford an excellent ηext of 34.4%, a record-high power efficiency of 166.3 lm W-1 and a long operational lifetime (LT50 = 40309 h) at an initial luminance of 100 cd m-2 . These results provide instructive guidance for the sensitizer design and device optimization for energy-efficient and stable HF-OLEDs with high-quality light.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
83
|
Sano Y, Shintani T, Hayakawa M, Oda S, Kondo M, Matsushita T, Hatakeyama T. One-Shot Construction of BN-Embedded Heptadecacene Framework Exhibiting Ultra-narrowband Green Thermally Activated Delayed Fluorescence. J Am Chem Soc 2023; 145:11504-11511. [PMID: 37192399 DOI: 10.1021/jacs.3c02873] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BN-embedded nonacene, tridecacene, and heptadecacene frameworks were constructed using one-shot quadruple, sextuple, and octuple borylation reactions, respectively. The key to success is the judicious choice of borylating reagents and long-chain alkyl-substituted carbazolyl groups as boron-trapping groups, which suppressed the decrease in HOMO energy and insolubilization associated with borylation. Based on the product yields, each electrophilic C-H borylation proceeded in >99% yield, which is the best efficiency reported so far for C-H borylation reactions. Owing to the multiple resonance effects of boron and nitrogen, the prepared acenes exhibited ultra-narrowband green thermally activated delayed fluorescence with full-width at half-maximum of 12-16 nm; moreover, their kRISC values were in the order of 105 s-1. We fabricated an organic light-emitting diode by employing the nonacene as an emitter, which exhibited high external quantum efficiency (EQE) of 28.7%. The device also showed a minimum efficiency roll-off with an EQE of 25.8% at 1000 cd m-2.
Collapse
Affiliation(s)
- Yusuke Sano
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Toshiki Shintani
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Susumu Oda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masakazu Kondo
- JNC Corporation, 5-1, Goikaigan, Ichihara, Chiba 290-8551, Japan
| | | | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
84
|
Li C, Luo Y, Huang Y, Qiu H, Lu Z. A Low-Cost Test Method for Accurate Detection of Different Excited-State Species with a Lifetime Span over 5 Orders of Magnitude in One Time Window. Anal Chem 2023; 95:8150-8155. [PMID: 37155725 DOI: 10.1021/acs.analchem.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Accurate quantification on the quantum yields (φ) of both the prompt fluorescence (PF) and the delayed fluorescence (DF) species is quite essential for the clarification of molecular design rationales for thermally activated delayed fluorescence (TADF) luminogens. Currently, most φPF and φDF data of TADF fluorophores were acquired through time-correlated single-photon counting (TCSPC) lifetime measurement systems. However, because of their equal-time-channel working manner, so far all the commercially available TCSPC systems cannot render accurate measurement on φPF of TADF materials due to the lack of enough valid data points in the faster decay region of the corresponding photoluminescence (PL) decay curves. Although an intensified charge coupled device (ICCD) system equipped with a streak camera or an optical parametric oscillation laser has been proven to be a powerful tool for accurate determination of φPF and φDF of TADF fluorophores, the ultrahigh cost of these ICCD systems makes them inaccessible to most users. Herein, by replacing the timing module of a commercial TCSPC system with a low-cost and versatile time-to-digital converter (TDC) module, we developed a modified TCSPC system that can work in an unequal-time-channel manner. The resultant TDC-TCSPC system can not only concurrently determine the accurate lifetime of PF and DF species whose lifetime span even exceeds 5 orders of magnitude in just one time window but also render accurate measurements on φPF and φDF of TADF fluorophores. The reliability of the TDC-TCSPC method was verified through TCSPC- and ICCD-based comparative experiments on ACMPS, a known TADF fluorophore. Our results not only can provide a low-cost and convenient test method for accurate determination of key experimental data of TADF materials but also will facilitate deeper understanding of the molecular design principles for high-performance TADF materials.
Collapse
Affiliation(s)
- Chuan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hailin Qiu
- Orient KOJI Limited, Tianjin 300122, P. R. China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
85
|
Zhang YL, He TF, Zhao ZK, Shen A, Gao Q, Ren AM, Su ZM, Li H, Chu HY, Zou LY. Self-Consistent Quantum Mechanics/Embedded Charge Study on Aggregation-Enhanced Delayed Fluorescence of Cu(I) Complexes: Luminescence Mechanism and Molecular Design Strategy. Inorg Chem 2023; 62:7753-7763. [PMID: 37154416 DOI: 10.1021/acs.inorgchem.3c00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.
Collapse
Affiliation(s)
- Yun-Li Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- College of Chemistry, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350 Tianjin, China
| | - Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ao Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
86
|
Xiaofeng L, Dongdong Z, Lian D, Yuewei Z. Sterically wrapping of multi-resonant fluorophores: an effective strategy to suppress concentration quenching and spectral broadening. Front Chem 2023; 11:1198404. [PMID: 37214480 PMCID: PMC10196060 DOI: 10.3389/fchem.2023.1198404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Multiple resonance (MR) emitters are promising for the next-generation wide color gamut organic light-emitting diodes (OLEDs) with narrowband emissions; however, they still face intractable challenges such as concentration-induced emission quenching, exciton annihilation, and spectral broadening. In this concept, we focus on an advanced molecular design strategy called "sterically wrapping of MR fluorophores" to address the above issues. By isolating the MR emission core using bulky substituents, intermolecular interactions can be significantly suppressed to eliminate the formation of unfavorable species. Consequently, using the newly designed emitters, optimized MR-OLEDs can achieve high external quantum efficiencies of >40% while maintaining extremely small full width at half maxima (FWHMs) of <25 nm over a wide range of concentrations (1-20 wt%). This strategy may shed light on the design of efficient MR emitters, which provides more room for tuning the dopant concentrations under the premise of high-efficiencies and small FWHMs, accelerating the practical application of MR-OLEDs.
Collapse
Affiliation(s)
- Luo Xiaofeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhang Dongdong
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Duan Lian
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Zhang Yuewei
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|
87
|
Zheng Z, Yang T, Li D, Cao H, Gong J, Liu H, Zhou C, Liu L, Wei P, Gu X, Lu P, Qian J, Tang BZ. Molecular and Aggregate Synergistic Engineering of Aggregation-Induced Emission Luminogens to Manipulate Optical/Electronic Properties for Efficient and Diversified Functions. ACS NANO 2023; 17:8782-8795. [PMID: 37074290 DOI: 10.1021/acsnano.3c02134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The optical/electronic properties of organic luminescent materials can be regulated by molecular structure modification, which not only requires sophisticated and time-consuming synthesis but also is unable to accurately afford the optical properties of materials in the aggregate state. Herein, a facile strategy of molecular and aggregate synergistic engineering is proposed to manipulate the optical/electronic properties of a luminogen, ACIK, in the solid state for efficient and diversified functions. ACIK is facilely synthesized and exhibits three polymorphic states (ACIK-Y, ACIK-R, and ACIK-N) with a large emission difference of 102 nm from yellow to near-infrared (NIR). Their structure-property relationships were investigated by crystallographic analyses and computational studies. ACIK-Y, with the most twisted structure, exhibits an intriguing color-tuned fluorescence between yellow and NIR in the solid state in response to multiple stimuli. Shuttle-like ACIK-R microcrystals exhibit an optical waveguide property with a low optical loss coefficient of 19 dB mm-1. ACIK dots display bright NIR-I emission, large Stokes shift, and strong NIR-II two-photon absorption. ACIK dots show specific lipid droplets-targeting capability and can be successfully applied for two-photon fluorescence imaging of mouse brain vasculature with deep penetration and high spatial resolution. This study will inspire more insights in developing advanced optical/electronic materials based on a single chromophore for practical applications.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
- School of Optical and Electronic Information-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Cao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junyi Gong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Haixiang Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, China
| | - Peifa Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230093, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
88
|
Liu JP, Chen L, Zhao L, Tong CY, Wang SM, Shao SY, Wang LX. Carbazole-based Multiple Resonance Dendrimers with Narrowband Blue Emission for Solution-Processed OLEDs. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
89
|
Primrose WL, Mayder DM, Hojo R, Hudson ZM. Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep-Red Emission and Thermally Activated Delayed Fluorescence. J Org Chem 2023; 88:4224-4233. [PMID: 36920272 DOI: 10.1021/acs.joc.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of deep-red thermally activated delayed fluorescence (TADF) emitters is important for applications such as organic light-emitting diodes (OLEDs) and biological imaging. Design strategies for red-shifting emission include synthesizing rigid acceptor cores to limit nonradiative decay and employing strong electron-donating groups. In this work, three novel luminescent donor-acceptor compounds based on the dibenzo[a,c]dipyrido[3,2-h:20-30-j]-phenazine-12-yl (BPPZ) acceptor were prepared using dendritic carbazole-based donors 3,3″,6,6″-tetramethoxy-9'H-9,3':6',9″-tercarbazole (TMTC), N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC), and N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine (TMAC). Here, dimethoxycarbazole, ditolylamine, and bis(4-methoxyphenyl)amine were introduced at the 3,6-positions of carbazole to increase the strength of these donors and induce long-wavelength emission. Substituent effects were investigated with experiments and theoretical calculations. The emission maxima of these materials in toluene were found to be 562, 658, and 680 nm for BPPZ-2TMTC, BPPZ-2TTAC, and BPPZ-2TMAC, respectively, highlighting the exceptional strength of the TMAC donor, which pushes the emission into the deep-red region of the visible spectrum as well as into the biological transparency window (650-1350 nm). Long-lived emission lifetimes were observed in each emitter due to TADF in BPPZ-2TMC and BPPZ-2TTAC, as well as room-temperature phosphorescence in BPPZ-2TMAC. Overall, this work showcases deep-red emissive dendritic donor-acceptor materials which have potential as bioimaging agents with emission in the biological transparency window.
Collapse
Affiliation(s)
- William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
90
|
Cao C, Tan JH, Zhu ZL, Lin JD, Tan HJ, Chen H, Yuan Y, Tse MK, Chen WC, Lee CS. Intramolecular Cyclization: A Convenient Strategy to Realize Efficient BT.2020 Blue Multi-Resonance Emitter for Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2023; 62:e202215226. [PMID: 36593222 DOI: 10.1002/anie.202215226] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Rationally tuning the emission position and narrowing the full width at half-maximum (FWHM) of an emitter is of great importance for many applications. By synergistically improving rigidity, strengthening the resonant strength, inhibiting molecular bending and rocking, and destabilizing the HOMO energy level, a deep-blue emitter (CZ2CO) with a peak wavelength of 440 nm and an ultranarrow spectral FWHM of 16 nm (0.10 eV) was developed via intramolecular cyclization in a carbonyl/N resonant core (QAO). The dominant υ0-0 transition character of CZ2CO gives a Commission Internationale de I'Éclairage coordinates (CIE) of (0.144, 0.042), nicely complying with the BT.2020 standard. Moreover, a hyper-fluorescent device based on CZ2CO shows a high maximum external quantum efficiency (EQEmax ) of 25.6 % and maintains an EQE of 22.4 % at a practical brightness of 1000 cd m-2 .
Collapse
Affiliation(s)
- Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jiu-Dong Lin
- WISPO Advanced Materials (Suzhou) Co., Ltd., No. Building 12, 200 Xingpu Rd, SIP, Suzhou, P. R. China
| | - Hong-Ji Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yi Yuan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Man-Kit Tse
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
91
|
Matsuya M, Sasabe H, Sumikoshi S, Hoshi K, Nakao K, Kumada K, Sugiyama R, Sato R, Kido J. Highly Luminescent Aluminum Complex with β-Diketone Ligands Exhibiting Near-Unity Photoluminescence Quantum Yield, Thermally Activated Delayed Fluorescence, and Rapid Radiative Decay Rate Properties in Solution-Processed Organic Light-Emitting Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Misaki Matsuya
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shunsuke Sumikoshi
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Keigo Hoshi
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kohei Nakao
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kengo Kumada
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryo Sugiyama
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryoma Sato
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
92
|
Cao HT, Hou PF, Yu WJ, Gao Y, Li B, Feng QY, Zhang H, Wang SS, Su ZM, Xie LH. Enhanced Efficiency of Exciplex Emission from a 9-Phenylfluorene Derivative. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7236-7246. [PMID: 36700822 DOI: 10.1021/acsami.2c22266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The exciplex-thermally activated delayed fluorescence (exciplex-TADF) system is an excellent candidate for the fabrication of high-efficiency organic light-emitting diodes (OLEDs) because of its more easily achieved small singlet-triplet energy splitting (ΔEST) and doping control. However, exciplex-TADF is still faced with the problems of low external quantum efficiency (ηext) and unclear effect of structure modification in electron acceptors. Herein, we provide a steric hindrance increase strategy to obtain high-efficiency exciplex emissions. Through introducing a 9-phenylfluorene group into N-ethylcarbazole of the dicyano-substituted 9-phenylfluorene, an electron acceptor material with increased steric hindrance is obtained, which helps the exciplex harvest a larger driving force and higher emission efficiencies. Encouragingly, the obtained OLED displays a maximum ηext of 25.8%, which is one of the best efficiency values among reported exciplex-OLEDs, simultaneously possessing excellent current efficiency of 83.6 cd A-1 and power efficiency of 93.7 lm W-1. It is expected that this work will offer a new avenue for designing electron acceptors for highly efficient exciplex emissions.
Collapse
Affiliation(s)
- Hong-Tao Cao
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Peng-Fei Hou
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Wen-Jing Yu
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Ying Gao
- Institute of Biomass Functional Materials Interdisciplinary Studies, Jilin Engineering Normal University, 3050 Kaixuan Road, Changchun 130052, P.R. China
| | - Bo Li
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Quan-You Feng
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - He Zhang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Sha-Sha Wang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Zhong-Min Su
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P.R. China
| | - Ling-Hai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| |
Collapse
|
93
|
Xie Y, Hua L, Wang Z, Liu Y, Ying S, Liu Y, Ren Z, Yan S. Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
94
|
Liao XJ, Pu D, Yuan L, Tong J, Xing S, Tu ZL, Zuo JL, Zheng WH, Zheng YX. Planar Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2023; 62:e202217045. [PMID: 36517419 DOI: 10.1002/anie.202217045] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Chiral boron/nitrogen doped multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising for highly efficient and color-pure circularly polarized organic light-emitting diodes (CP-OLEDs). Herein, we report two pairs of MR-TADF materials (Czp-tBuCzB, Czp-POAB) based on planar chiral paracyclophane with photoluminescence quantum yields of up to 98 %. The enantiomers showed symmetric circularly polarized photoluminescence spectra with dissymmetry factors |gPL | of up to 1.6×10-3 in doped films. Meanwhile, the sky-blue CP-OLEDs with (R/S)-Czp-tBuCzB showed an external quantum efficiency of 32.1 % with the narrowest full-width at half-maximum of 24 nm among the reported CP-OLEDs, while the devices with (R/S)-Czp-POAB displayed the first nearly pure green CP electroluminescence with |gEL | factors at the 10-3 level. These results demonstrate the incorporation of planar chirality into MR-TADF emitter is a reliable strategy for constructing of efficient CP-OLEDs.
Collapse
Affiliation(s)
- Xiang-Ji Liao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongdong Pu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingjing Tong
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Xing
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen-Long Tu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
95
|
Zhang Y, Wei J, Wang L, Huang T, Meng G, Wang X, Zeng X, Du M, Fan T, Yin C, Zhang D, Duan L. Multiple Fusion Strategy for High-Performance Yellow OLEDs with Full Width at Half Maximums Down to 23 nm and External Quantum Efficiencies up to 37.4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209396. [PMID: 36435993 DOI: 10.1002/adma.202209396] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The pursuit of ideal narrowband yellow multiple resonance (MR) emitters is hampered by the mutual constraints of effective spectral redshift and maintaining a small full width at half maximum (FWHM) value. Here, a novel multiple fusion molecular design strategy is reported to break this trade-off. Compared with the selected narrowband parent core, the specific multiple MR effects in target molecules can simultaneously extend the π-conjugation length, increase the rigidity of the structure, and reduce the vibrational frequency. Proof-of-the-concept emitters BN-DICz and DBN-ICz show bright yellowish green to yellow emissions in dilute toluene solutions with peaks at 533-542 nm and extremely small FWHMs of ≤20 nm. Notably, BN-DICz-based electroluminescent device exhibits excellent efficiencies of 37.4%, 136.6 cd A-1 , and 119.2 lm W-1 with an FWHM of merely 23 nm, representing the best performance for yellow MR organic light-emitting diodes.
Collapse
Affiliation(s)
- Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Tianyu Huang
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Guoyun Meng
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Xiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Xuan Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Mingxu Du
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Tianjiao Fan
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Chen Yin
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Dongdong Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, 100190, P. R. China
| |
Collapse
|
96
|
Uemura S, Oda S, Hayakawa M, Kawasumi R, Ikeda N, Lee YT, Chan CY, Tsuchiya Y, Adachi C, Hatakeyama T. Sequential Multiple Borylation Toward an Ultrapure Green Thermally Activated Delayed Fluorescence Material. J Am Chem Soc 2023; 145:1505-1511. [PMID: 36547020 DOI: 10.1021/jacs.2c10946] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters have emerged as an important component of organic light-emitting diodes (OLEDs) because of their narrowband emission and high exciton utilization efficiency. However, the chemical space of MR-TADF emitters remains mostly unexplored because of the lack of suitable synthetic protocols. Herein, we demonstrate a sequential multiple borylation reaction that provides new synthetically accessible chemical space. ω-DABNA, the proof-of-concept material, exhibited narrowband green TADF with a full width at half-maximum of 22 nm and a small singlet-triplet energy gap of 13 meV. The OLED employing it as an emitter exhibited electroluminescence at 512 nm, with Commission International de l'Éclairage coordinates of (0.13, 0.73) and a high external quantum efficiency (EQE) of 31.1%. Moreover, the device showed minimum efficiency roll-off, with an EQE of 29.4% at 1000 cd m-2.
Collapse
Affiliation(s)
- Shigetada Uemura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto606-8502, Japan.,Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo669-1337, Japan
| | - Susumu Oda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo669-1337, Japan
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto606-8502, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd. 5-1 Goikaigan, Ichihara, Chiba290-8551, Japan
| | - Naoya Ikeda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo669-1337, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka819-0395, Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka819-0395, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto606-8502, Japan
| |
Collapse
|
97
|
Wang Q, Xu Y, Yang T, Xue J, Wang Y. Precise Functionalization of a Multiple-Resonance Framework: Constructing Narrowband Organic Electroluminescent Materials with External Quantum Efficiency over 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205166. [PMID: 36325646 DOI: 10.1002/adma.202205166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
It is of important strategic significance to develop high-efficiency narrowband organic electroluminescent materials that can be employed to fabricate ultrahigh-definition displays with wide color gamut. This topic implies a great challenge to molecular design and synthesis, especially for the development of universality, diversity, scalability, and robustness of molecular architectonics. In this work, a synthetic methodology is demonstrated for functionalizing brominated BN-containing multiple-resonance (MR) frameworks with multifarious functional groups, such as donors, acceptors, and moieties without obvious push-pull electron properties. The m-DPAcP-BNCz-based organic light-emitting diode (OLED) exhibits green emission with a full-width at half-maximum (FWHM) of 28 nm and a maximum external quantum efficiency (EQE) of 40.6%. The outstanding performance of m-DPAcP-BNCz is attributed to the perfect integration of the inherent advantages of the MR framework and the donor-acceptor configuration, which can not only achieve bathochromic shift and narrowband emission, but also obtain high photoluminescence (PL) quantum yield (ΦPL ) and horizontal emitting dipole orientation ratio (Θ// ). This straightforward and efficient approach provides insightful guidance for the construction and enrichment of more high-efficiency narrowband emitters.
Collapse
Affiliation(s)
- Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| |
Collapse
|
98
|
Gao Y, Sun C, Su T. Design of highly stable thermally activated delayed fluorescence emitters via the overlap degree of HOMO-LUMO distributions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
99
|
Huo Y, Lv J, Xie Y, Hua L, Liu Y, Ren Z, Li T, Ying S, Yan S. Structurally Regulated Carbazole-Pyridine Derivatives Based on Space-Crowded Theory for Efficient Narrowband Ultraviolet Nondoped Organic Light-Emitting Diodes from the High-Lying Reverse Intersystem Crossing Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57092-57101. [PMID: 36516406 DOI: 10.1021/acsami.2c20806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Achieving ultraviolet and narrowband emission simultaneously in nondoped organic light-emitting diodes (OLEDs) remains a tremendous challenge. Here, a "space-crowded donor-acceptor-donor" molecular design strategy is proposed for developing ultraviolet pure organic fluorophores by the nearby substituted positions at the phenyl linker between carbazole and pyridine units. Benefitting from the large steric hindrance effect, multiple intramolecular interactions, and low-frequency vibronic coupling dominated excited state property, all the emitters exhibit excellent fluorescence efficiencies at the solid state as well as the narrow full width at half maximums (FWHMs). Moreover, the effect of different substitution positions of pyridine on the structure-property relationship is also revealed. Consequently, the nondoped OLEDs exhibit an electroluminescence emission peak of 397 nm with FWHMs of 17 and 22 nm. Due to the high-lying reverse intersystem crossing process, external quantum and exciton utilization efficiencies of 3.6 and 54.55%, respectively, have been achieved based on the emitter with para-linkage. These findings may pave an avenue for the development of high-performance narrowband ultraviolet materials and OLEDs.
Collapse
Affiliation(s)
- Yumiao Huo
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong266590, P. R. China
| | - Jichen Lv
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Yanchao Xie
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Tingxi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong266590, P. R. China
| | - Shian Ying
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao, Shandong266042, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
100
|
Cao X, Pan K, Miao J, Lv X, Huang Z, Ni F, Yin X, Wei Y, Yang C. Manipulating Exciton Dynamics toward Simultaneous High-Efficiency Narrowband Electroluminescence and Photon Upconversion by a Selenium-Incorporated Multiresonance Delayed Fluorescence Emitter. J Am Chem Soc 2022; 144:22976-22984. [DOI: 10.1021/jacs.2c09543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu241000, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|