51
|
Thomas RG, Kim S, Tran TAT, Kim YH, Nagareddy R, Jung TY, Kim SK, Jeong YY. Magnet-Guided Temozolomide and Ferucarbotran Loaded Nanoparticles to Enhance Therapeutic Efficacy in Glioma Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:939. [PMID: 38869565 PMCID: PMC11173836 DOI: 10.3390/nano14110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Background. The aim of the study was to synthesize liposomal nanoparticles loaded with temozolomide and ferucarbotran (LTF) and to evaluate the theranostic effect of LTF in the glioma model. Methods. We synthesized an LTF that could pass through the Blood Brain Barrier (BBB) and localize in brain tumor tissue with the help of magnet guidance. We examined the chemical characteristics. Cellular uptake and cytotoxicity studies were conducted in vitro. A biodistribution and tumor inhibition study was conduted using an in vivo glioma model. Results. The particle size and surface charge of LTF show 108 nm and -38 mV, respectively. Additionally, the presence of ferucarbotran significantly increased the contrast agent effect of glioma compared to the control group in MR imaging. Magnet-guided LTF significantly reduced the tumor size compared to control and other groups. Furthermore, compared to the control group, our results demonstrate a significant inhibition in brain tumor size and an increase in lifespan. Conclusions. These findings suggest that the LTF with magnetic guidance represents a novel approach to address current obstacles, such as BBB penetration of nanoparticles and drug resistance. Magnet-guided LTF is able to enhance therapeutic efficacy in mouse brain glioma.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
| | - Subin Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Thi-Anh-Thuy Tran
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea (T.-Y.J.)
| | - Young Hee Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea (T.-Y.J.)
| | - Raveena Nagareddy
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
| | - Tae-Young Jung
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea (T.-Y.J.)
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
52
|
Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier. ACS NANO 2024; 18:12716-12736. [PMID: 38718220 PMCID: PMC11112986 DOI: 10.1021/acsnano.3c08993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.
Collapse
Affiliation(s)
- Zih-An Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiung-Yin Huang
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Kuo-Chen Wei
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, New Taipei Municipal TuCheng
Hospital, New Taipei City 23652, Taiwan
| | - Yun Yen
- Center
for Cancer Translational Research, Tzu Chi
University, Hualien 970374, Taiwan
- Cancer
Center, Taipei Municipal WanFang Hospital, Taipei 116081, Taiwan
| | - I-Ting Chien
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sabiha Runa
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- SRS Medical Communications,
LLC, Cleveland, Ohio 44124, United States
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
53
|
Chen X, Zheng Y, Zhang Q, Chen Q, Chen Z, Wu D. Dual-targeted delivery of temozolomide by multi-responsive nanoplatform via tumor microenvironment modulation for overcoming drug resistance to treat glioblastoma. J Nanobiotechnology 2024; 22:264. [PMID: 38760771 PMCID: PMC11100207 DOI: 10.1186/s12951-024-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with low survival rate. Currently, temozolomide (TMZ) is the first-line drug for GBM treatment of which efficacy is unfortunately hindered by short circulation time and drug resistance associated to hypoxia and redox tumor microenvironment. Herein, a dual-targeted and multi-responsive nanoplatform is developed by loading TMZ in hollow manganese dioxide nanoparticles functionalized by polydopamine and targeting ligands RAP12 for photothermal and receptor-mediated dual-targeted delivery, respectively. After accumulated in GBM tumor site, the nanoplatform could respond to tumor microenvironment and simultaneously release manganese ion (Mn2+), oxygen (O2) and TMZ. The hypoxia alleviation via O2 production, the redox balance disruption via glutathione consumption and the reactive oxygen species generation, together would down-regulate the expression of O6-methylguanine-DNA methyltransferase under TMZ medication, which is considered as the key to drug resistance. These strategies could synergistically alleviate hypoxia microenvironment and overcome TMZ resistance, further enhancing the anti-tumor effect of chemotherapy/chemodynamic therapy against GBM. Additionally, the released Mn2+ could also be utilized as a magnetic resonance imaging contrast agent for monitoring treatment efficiency. Our study demonstrated that this nanoplatform provides an alternative approach to the challenges including low delivery efficiency and drug resistance of chemotherapeutics, which eventually appears to be a potential avenue in GBM treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
54
|
Ding Y, Xu Q, Chai Z, Wu S, Xu W, Wang J, Zhou J, Luo Z, Liu Y, Xie C, Lu L, Lu W. All-stage targeted red blood cell membrane-coated docetaxel nanocrystals for glioma treatment. J Control Release 2024; 369:325-334. [PMID: 38565395 DOI: 10.1016/j.jconrel.2024.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation. Moreover, the Y-shaped targeting ligand pV was modified by a mild avidin-biotin interaction, which endowed RBCm-NC(DTX) with superior barrier-crossing ability and therapeutic efficacy. The integration of nanocrystal technology, cell membrane coating, and the avidin-biotin insertion method into this active targeting biomimetic formulation represents a promising drug delivery strategy for glioma.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zhilan Chai
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd., Shanghai, 201314, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
55
|
Yin HT, Hui-Lu, Yang JH, Li Q, Li M, Zhao QQ, Wen ZP. Daurisoline suppress glioma progression by inhibiting autophagy through PI3K/AKT/mTOR pathway and increases TMZ sensitivity. Biochem Pharmacol 2024; 223:116113. [PMID: 38460907 DOI: 10.1016/j.bcp.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.
Collapse
Affiliation(s)
- Hai-Tang Yin
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Hui-Lu
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Ji-Hong Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China.
| | - Qin Li
- Centre of Clinical Trials, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Ming Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China.
| | - Qing-Qing Zhao
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China
| | - Zhi-Peng Wen
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, PR China; College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou Province, PR China.
| |
Collapse
|
56
|
He W, Wang N, Wang Y, Liu M, Qing Q, Su Q, Zou Y, Liu Y. Engineering Nanomedicine for Non-Viral RNA-Based Gene Therapy of Glioblastoma. Pharmaceutics 2024; 16:482. [PMID: 38675144 PMCID: PMC11054437 DOI: 10.3390/pharmaceutics16040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant tumor of the central nervous system, characterized by aggressiveness, genetic instability, heterogenesis, and unpredictable clinical behavior. Disappointing results from the current clinical therapeutic methods have fueled a search for new therapeutic targets and treatment modalities. GBM is characterized by various genetic alterations, and RNA-based gene therapy has raised particular attention in GBM therapy. Here, we review the recent advances in engineered non-viral nanocarriers for RNA drug delivery to treat GBM. Therapeutic strategies concerning the brain-targeted delivery of various RNA drugs involving siRNA, microRNA, mRNA, ASO, and short-length RNA and the therapeutical mechanisms of these drugs to tackle the challenges of chemo-/radiotherapy resistance, recurrence, and incurable stem cell-like tumor cells of GBM are herein outlined. We also highlight the progress, prospects, and remaining challenges of non-viral nanocarriers-mediated RNA-based gene therapy.
Collapse
Affiliation(s)
- Wenya He
- School of Pharmacy, Henan University, Kaifeng 475004, China; (W.H.)
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ningyang Wang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaping Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China; (W.H.)
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Mengyao Liu
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qian Qing
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qihang Su
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zou
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
57
|
Sun K, Yuan L, Chen S, Sun Y, Wei D. Alendronate Pt IV Prodrug Amphiphile for Enhanced Chemotherapy Targeting and Bone Destruction Inhibition in Osteosarcoma. Adv Healthc Mater 2024; 13:e2302746. [PMID: 37988194 DOI: 10.1002/adhm.202302746] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Chemotherapy remains the primary treatment method for osteosarcoma after surgery. However, the lack of selectivity of chemotherapy for osteosarcoma leads to unpredictable therapeutic effects, undesirable side effects, and drug resistance. A platinum(IV) (PtIV ) prodrug amphiphile (ALN-PtIV -Lipo) covalently bound to alendronate (ALN) and a lipid tail is designed to overcome these limitations. ALN-PtIV -Lipo can self-assemble into PtIV lipid nanoparticles (APtIV ) for osteosarcoma targeting chemotherapy and bone destruction inhibition. It is demonstrated that APtIV achieved an eightfold increase in the eradication of osteosarcoma cells compared to cisplatin and threefold selective inhibition of osteosarcoma cells over breast cancer cells via APtIV in vitro. After intravenous injection, APtIV effectively accumulates at the osteosarcoma site in vivo, resulting in significantly suppressed primary osteosarcoma growth, and alleviation of bone destruction. Therefore, APtIV delivers a promising solution for enhanced chemotherapy targeting and bone destruction inhibition in osteosarcoma.
Collapse
Affiliation(s)
- Kaichuang Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shen Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
58
|
Zuchegna C, Leone S, Romano A, Porcellini A, Messina S. KRAS is a molecular determinant of platinum responsiveness in glioblastoma. BMC Cancer 2024; 24:77. [PMID: 38225605 PMCID: PMC10789061 DOI: 10.1186/s12885-023-11758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND KRAS is the undisputed champion of oncogenes, and despite its prominent role in oncogenesis as mutated gene, KRAS mutation appears infrequent in gliomas. Nevertheless, gliomas are considered KRAS-driven cancers due to its essential role in mouse malignant gliomagenesis. Glioblastoma is the most lethal primary brain tumor, often associated with disturbed RAS signaling. For newly diagnosed GBM, the current standard therapy is alkylating agent chemotherapy combined with radiotherapy. Cisplatin is one of the most effective anticancer drugs and is used as a first-line treatment for a wide spectrum of solid tumors (including medulloblastoma and neuroblastoma) and many studies are currently focused on new delivery modalities of effective cisplatin in glioblastoma. Its mechanism of action is mainly based on DNA damage, inducing the formation of DNA adducts, triggering a series of signal-transduction pathways, leading to cell-cycle arrest, DNA repair and apoptosis. METHODS Long-term cultures of human glioblastoma, U87MG and U251MG, were either treated with cis-diamminedichloroplatinum (cisplatin, CDDP) and/or MEK-inhibitor PD98059. Cytotoxic responses were assessed by cell viability (MTT), protein expression (Western Blot), cell cycle (PI staining) and apoptosis (TUNEL) assays. Further, gain-of-function experiments were performed with cells over-expressing mutated hypervariable region (HVR) KRASG12V plasmids. RESULTS Here, we studied platinum-based chemosensitivity of long-term cultures of human glioblastoma from the perspective of KRAS expression, by using CDDP and MEK-inhibitor. Endogenous high KRAS expression was assessed at transcriptional (qPCR) and translational levels (WB) in a panel of primary and long-term glioblastoma cultures. Firstly, we measured immediate cellular adjustment through direct regulation of protein concentration of K-Ras4B in response to cisplatin treatment. We found increased endogenous protein abundance and involvement of the effector pathway RAF/MEK/ERK mitogen-activated protein kinase (MAPK) cascade. Moreover, as many MEK inhibitors are currently being clinically evaluated for the treatment of high-grade glioma, so we concomitantly tested the effect of the potent and selective non-ATP-competitive MEK1/2 inhibitor (PD98059) on cisplatin-induced chemosensitivity in these cells. Cell-cycle phase distribution was examined using flow cytometry showing a significant cell-cycle arrest in both cultures at different percentage, which is modulated by MEK inhibition. Cisplatin-induced cytotoxicity increased sub-G1 percentage and modulates G2/M checkpoint regulators cyclins D1 and A. Moreover, ectopic expression of a constitutively active KRASG12V rescued CDDP-induced apoptosis and different HVR point mutations (particularly Ala 185) reverted this phenotype. CONCLUSION These findings warrant further studies of clinical applications of MEK1/2 inhibitors and KRAS as 'actionable target' of cisplatin-based chemotherapy for glioblastoma.
Collapse
Affiliation(s)
- Candida Zuchegna
- Department of Biology, Federico II University of Naples, 80126, Naples, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Antonella Romano
- Department of Biology, Federico II University of Naples, 80126, Naples, Italy
| | - Antonio Porcellini
- Department of Biology, Federico II University of Naples, 80126, Naples, Italy
| | - Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
59
|
Verma P, Joshi H, Singh T, Sharma B, Sharma U, Ramniwas S, Rana R, Gupta M, Kaur G, Tuli HS. Temozolomide and flavonoids against glioma: from absorption and metabolism to exosomal delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:41-57. [PMID: 37566307 DOI: 10.1007/s00210-023-02660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Patients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines' side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 122016, India.
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
60
|
Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. NANOSCALE 2023; 16:97-109. [PMID: 38087978 DOI: 10.1039/d3nr05195a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Drug resistance has become an obstacle to successful cancer chemotherapies, with therapeutic agents effectively traversing the blood-brain barrier (BBB) remaining a great challenge. A microenvironment responsive and active targeting nanoparticle was constructed to enhance the penetration of drugs, leading to improved therapeutic effects. Dynamic light scattering demonstrated that the prepared nanoparticle had a uniform size. The cRGD modification renders the nanoparticle with active targeting capabilities to traverse the BBB for chemotherapy. The disulfide-bond-containing nanoparticle can be disintegrated in response to a high concentration of endogenous glutathione (GSH) within the tumor microenvironment (TME) for tumor-specific drug release, resulting in more effective accumulation. Notably, the released fisetin further increased the uptake of doxorubicin by glioma cells and exerted synergistic effects to promote apoptosis, induce cellular G2/M cycle arrest, and inhibit cell proliferation and migration in vitro. Moreover, the nanoparticle showed favorable anti-glioma effects in vivo. Our study provides a new strategy to overcome drug resistance by utilizing a natural product to sensitize conventional chemotherapeutics with well-designed targeted nanodelivery systems for cancer treatment.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Jian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Shi He
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Jiagang Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongzhong Cheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Songping Zheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhiyong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
61
|
Jia X, Wang L, Feng X, Liu W, Wang X, Li F, Liu X, Yu J, Yu B, Yu X. Cell Membrane-Coated Oncolytic Adenovirus for Targeted Treatment of Glioblastoma. NANO LETTERS 2023; 23:11120-11128. [PMID: 38032110 DOI: 10.1021/acs.nanolett.3c03516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
An oncolytic virus is a promising strategy for glioblastoma (GBM) therapy. However, there are still some challenges such as the blood-brain barrier (BBB) and preexisting immunity for targeted treatment of GBM with an oncolytic virus. In this study, two kinds of cell membrane-coated oncolytic adenoviruses (NCM-Ad and GCM-Ad) were prepared using neural stem cells (NSCs) and GBM cells as sources of membranes, respectively, and were shown to improve the targeted infectivity on GBM cells and avoid the immune clearance of preexisting neutralizing antibodies in vitro and in vivo. Specifically, NCM-Ad showed a strong ability to cross the BBB and target tumor cells in vivo. To improve the cytotoxicity to GBM, a capsid dual-modified oncolytic adenovirus (A4/k37) was also encapsulated, and NCM-A4/k37 showed outstanding tumor targeting and inhibition capacity in an orthotopic xenograft tumor model of GBM upon intravenous administration. This study provides a promising oncolytic virus-based targeted therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Xinyuan Jia
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinyao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiahao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
62
|
Malekpour MR, Hosseindoost S, Madani F, Kamali M, Khosravani M, Adabi M. Combination nanochemotherapy of brain tumor using polymeric nanoparticles loaded with doxorubicin and paclitaxel: An in vitro and in vivo study. Eur J Pharm Biopharm 2023; 193:175-186. [PMID: 37926270 DOI: 10.1016/j.ejpb.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
This study aims to overcome physiological barriers and increase the therapeutic index for the treatment of glioblastoma (GBM) tumors by using Paclitaxel (PTX) loaded Poly(lactic co-glycolic acid) nanoparticles (PTX-PLGA-NPs) and Doxorubicin (DOX) loaded Poly (lactic co-glycolic acid) nanoparticles (DOX-PLGA-NPs). The hydrodynamic diameter of nanoparticles (NPs) was characterized by dynamic light scattering (DLS) which was 94 ± 4 nm and 133 ± 6 nm for DOX-PLGA-NPs, and PTX-PLGA-NPs, respectively. The zeta potential for DOX-PLGA-NPs and PTX-PLGA-NPs were -15.2 ± 0.18 mV and -17.3 ± 0.34 mV, respectively. The cytotoxicity of PTX-PLGA-NPs and DOX-PLGA-NPs was augmented compared to DOX and PTX on C6 GBM cells. The Lactate dehydrogenase (LDH) tests for various formulations were carried out. The results indicated that the amount of released LDH was 262 ± 7.84 U.L-1 at the concentration of 2 mg/mL in the combination therapy, which was much higher than other groups (DOX-PLGA-NPs (210 ± 6.92 U.L-1), PTX-PLGA-NPs (201 ± 8.65 U.L-1), DOX (110 ± 9.81 U.L-1), PTX (95 ± 5.02 U.L-1) and PTX + DOX (67 ± 4.89 U.L-1)). MRI results of the combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs indicated that GBM tumor size decreased considerably compared to the other formulations. Also, combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs demonstrated a longer median survival of more than 80 days compared to PTX (38 days), DOX (37 days) and PTX + DOX (48 days), PTX-NPs (58 days) and DOX-NPs (62 days). The results of locomotion, body weight, rearing and grooming assays indicated that combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs had the most positive effect on the movements of rats compared to the other formulations.
Collapse
Affiliation(s)
- Mohammad Reza Malekpour
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Wang K, Zhao B, Ao Y, Zhu J, Zhao C, Wang W, Zou Y, Huang D, Zhong Y, Chen W, Qian H. Super-small zwitterionic micelles enable the improvement of blood-brain barrier crossing for efficient orthotopic glioblastoma combinational therapy. J Control Release 2023; 364:261-271. [PMID: 37839641 DOI: 10.1016/j.jconrel.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Glioblastoma multiforme (GBM) remains incurable in clinical, nanotechnology-based drug delivery strategies show promising perspective in alleviating GBM, while limited blood-brain-barrier (BBB) permeation, short blood half-live accompanied by the poor tumor accumulation and penetration, significantly restrict the therapeutic outcomes. Herein, a versatile super-small zwitterionic nano-system (MCB(S)) based on carboxybetaine (CB) zwitterion functionalized hyperbranched polycarbonate (HPCB) is developed to overcome the brain delivery challenges. After grafting with amino-functionalized IR780 (free IR780), the ultimate paclitaxel (PTX)-encapsulated micelles (MCB(S)-IR@PTX) are precisely activated by near-infrared (NIR) for accelerated drug release and effective combinational GBM therapy. Importantly, MCB(S)-IR@PTX with the crosslinked structure and CB zwitterion prolongs blood-circulation, and CB-zwitterion further facilitates BBB-traversing through betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) pathway. Combined with the benefit of super small-size, MCB(S)-IR@PTX highly accumulates at tumor sites and penetrates deeply, thus efficiently inhibiting tumor growth and strikingly improving survival time in U87MG orthotopic GBM-bearing mouse model. The ingenious nanoplatform furnishes a versatile strategy for delivering therapeutics into the brain and realizing efficient brain cancer therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuli Ao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jinyu Zhu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
64
|
Hang Z, Zhou L, Xing C, Wen Y, Du H. The blood-brain barrier, a key bridge to treat neurodegenerative diseases. Ageing Res Rev 2023; 91:102070. [PMID: 37704051 DOI: 10.1016/j.arr.2023.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
As a highly selective and semi-permeable barrier that separates the circulating blood from the brain and central nervous system (CNS), the blood-brain barrier (BBB) plays a critical role in the onset and treatment of neurodegenerative diseases (NDs). To delay or reverse the NDs progression, the dysfunction of BBB should be improved to protect the brain from harmful substances. Simultaneously, a highly efficient drug delivery across the BBB is indispensable. Here, we summarized several methods to improve BBB dysfunction in NDs, including knocking out risk geneAPOE4, regulating circadian rhythms, restoring the gut microenvironment, and activating the Wnt/β-catenin signaling pathway. Then we discussed the advances in BBB penetration techniques, such as transient BBB opening, carrier-mediated drug delivery, and nasal administration, which facilitates drug delivery across the BBB. Furthermore, various in vivo and in vitro BBB models and research methods related to NDs are reviewed. Based on the current research progress, the treatment of NDs in the long term should prioritize the integrity of the BBB. However, a treatment approach that combines precise control of transient BBB permeability and non-invasive targeted BBB drug delivery holds profound significance in improving treatment effectiveness, safety, and clinical feasibility during drug therapy. This review involves the cross application of biology, materials science, imaging, engineering and other disciplines in the field of BBB, aiming to provide multi-dimensional research directions and clinical ideas for the treating NDs.
Collapse
Affiliation(s)
- Zhongci Hang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
65
|
Zheng J, Ge H, Zhou D, Yao Q, Long S, Sun W, Fan J, Du J, Peng X. An Activatable Prodrug Nanosystem for Ultrasound-Driven Multimodal Tumor Therapy and Metastasis Inhibition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308205. [PMID: 37792315 DOI: 10.1002/adma.202308205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 10/05/2023]
Abstract
Ultrasound, featuring deep tissue penetration and noninvasiveness, offers a new opportunity to activate functional materials in a tumor-selective manner. However, very few direct ultrasound-responsive redox systems are applicable under therapeutic ultrasound (1 MHz). Herein, the investigations on nanoprodrug of DHE@PEG-SS-DSPE are reported, which exhibit glutathione-activated release of dihydroethidium (DHE) in tumor cells. DHE is stable with good biosafety and is transformed into cytotoxic ethidium to induce DNA damage under medical ultrasound irradiation, accompanied by the generation of reactive oxygen species. Further, DHE@PEG-SS-DSPE could effectively induce ferroptosis through glutathione depletion, lipid peroxide accumulation, and downregulation of glutathione peroxidase 4. In vivo studies confirmed that DHE@PEG-SS-DSPE nanoparticles effectively inhibit both the growth of solid tumors and the expression of metastasis-related proteins in mice, thus effectively inhibiting lung metastasis. This DHE-based prodrug nanosystem could lay a foundation for the design of ultrasound-driven therapeutic agents.
Collapse
Affiliation(s)
- Jiazhu Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Danhong Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
66
|
Song X, Qian H, Yu Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302613. [PMID: 37415556 DOI: 10.1002/smll.202302613] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Glioblastoma is one of the most aggressive central nervous system malignancies with high morbidity and mortality. Current clinical approaches, including surgical resection, radiotherapy, and chemotherapy, are limited by the difficulty of targeting brain lesions accurately, leading to disease recurrence and fatal outcomes. The lack of effective treatments has prompted researchers to continuously explore novel therapeutic strategies. In recent years, nanomedicine has made remarkable progress and expanded its application in brain drug delivery, providing a new treatment for brain tumors. Against this background, this article reviews the application and progress of nanomedicine delivery systems in brain tumors. In this paper, the mechanism of nanomaterials crossing the blood-brain barrier is summarized. Furthermore, the specific application of nanotechnology in glioblastoma is discussed in depth.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230011, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, 230011, China
| | - Yongqiang Yu
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| |
Collapse
|
67
|
Chen J, Pan J, Liu S, Zhang Y, Sha S, Guo H, Wang X, Hao X, Zhou H, Tao S, Wang Y, Fan JB. Fruit-Derived Extracellular-Vesicle-Engineered Structural Droplet Drugs for Enhanced Glioblastoma Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304187. [PMID: 37589312 DOI: 10.1002/adma.202304187] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Existing solid-nanoparticle-based drug delivery systems remain a great challenge for glioblastoma chemotherapy due to their poor capacities in crossing the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB). Herein, fruit-derived extracellular-vesicle (EV)-engineered structural droplet drugs (ESDDs) are demonstrated by programming the self-assembly of fruit-derived EVs at the DOX@squalene-PBS interface, greatly enhancing the antitumor efficacy against glioblastoma. The ESDDs experience a flexible delivery via deformation-amplified macropinocytosis and membrane fusion, enabling them to highly efficiently cross the BBB/BBTB and deeply penetrate glioblastoma tissues. As expected, the ESDDs exhibit approximately 2.5-fold intracellular uptake, 2.2-fold transcytosis, and fivefold membrane fusion higher than cRGD-modified EVs (REs), allowing highly efficient accumulation, deep penetration, and cellular internalization into the glioblastoma tissues, and thereby significantly extending the survival time of glioblastoma mice.
Collapse
Affiliation(s)
- Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Department of Radiotherapy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Sijia Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Suinan Sha
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Haoyan Guo
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xuejiao Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Houwang Zhou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Sijian Tao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jun-Bing Fan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
68
|
Peña Agudelo JA, Pidre ML, Garcia Fallit M, Pérez Küper M, Zuccato C, Nicola Candia AJ, Marchesini A, Vera MB, De Simone E, Giampaoli C, Amorós Morales LC, Gonzalez N, Romanowski V, Videla-Richardson GA, Seilicovich A, Candolfi M. Mitochondrial Peptide Humanin Facilitates Chemoresistance in Glioblastoma Cells. Cancers (Basel) 2023; 15:4061. [PMID: 37627089 PMCID: PMC10452904 DOI: 10.3390/cancers15164061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Humanin (HN) is a mitochondrial-derived peptide with robust cytoprotective effects in many cell types. Although the administration of HN analogs has been proposed to treat degenerative diseases, its role in the pathogenesis of cancer is poorly understood. Here, we evaluated whether HN affects the chemosensitivity of glioblastoma (GBM) cells. We found that chemotherapy upregulated HN expression in GBM cell lines and primary cultures derived from GBM biopsies. An HN analog (HNGF6A) boosted chemoresistance, increased the migration of GBM cells and improved their capacity to induce endothelial cell migration and proliferation. Chemotherapy also upregulated FPR2 expression, an HN membrane-bound receptor, and the HNGF6A cytoprotective effects were inhibited by an FPR2 receptor antagonist (WRW4). These effects were observed in glioma cells with heterogeneous genetic backgrounds, i.e., glioma cells with wild-type (wtIDH) and mutated (mIDH) isocitrate dehydrogenase. HN silencing using a baculoviral vector that encodes for a specific shRNA for HN (BV.shHN) reduced chemoresistance, and impaired the migration and proangiogenic capacity of GBM cells. Taken together, our findings suggest that HN boosts the hallmark characteristics of GBM, i.e., chemoresistance, migration and endothelial cell proliferation. Thus, strategies that inhibit the HN/FPR2 pathway may improve the response of GBM to standard therapy.
Collapse
Affiliation(s)
- Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Matias Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Melanie Pérez Küper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Camila Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Mariana B. Vera
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires C1121A6B, Argentina; (M.B.V.); (G.A.V.-R.)
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina; (E.D.S.); (C.G.)
| | - Carla Giampaoli
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina; (E.D.S.); (C.G.)
| | - Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires C1121A6B, Argentina; (M.B.V.); (G.A.V.-R.)
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| |
Collapse
|
69
|
Zhang Q, Yang L, Zheng Y, Wu X, Chen X, Fei F, Gong Y, Tan B, Chen Q, Wang Y, Wu D, Chen Z. Electro-responsive micelle-based universal drug delivery system for on-demand therapy in epilepsy. J Control Release 2023; 360:759-771. [PMID: 37460011 DOI: 10.1016/j.jconrel.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
A universal drug delivery system (DDS) with brain-targeted ability is demanded to enhance antiepileptic therapeutic efficacy and reduce side effects in multiple types of epileptic seizures. In this study, we reported a micelle-based DDS possessing the brain-targeted ability and electro-responsive feature for universal delivery of antiepileptic drugs (AEDs). The system is fabricated by ferrocene (Fc)-conjugated D-a-tocopherol polyethylene glycol succinate and amphiphilic block copolymer, which improve the drug encapsulation of different AEDs. Interestingly, the intrinsic nature of TPGS-Fc including transferrin receptor-mediated transcytosis and efflux pump inhibition endows the system with high permeability across the blood-brain barrier. Based on the hydrophobic-hydrophilic transition of Fc, the micelles can respond to epileptiform discharges and thus release the loaded AEDs. Improved antiepileptic efficacy of the micelles has been demonstrated in acute, continuous, and chronic epilepsy models. In summary, we have developed a universal micelle-based DDS for various AEDs delivery, which provides a promising approach to on-demand therapy of different epileptic seizures.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
70
|
Zheng C, Zhang D, Kong Y, Niu M, Zhao H, Song Q, Feng Q, Li X, Wang L. Dynamic regulation of drug biodistribution by turning tumors into decoys for biomimetic nanoplatform to enhance the chemotherapeutic efficacy of breast cancer with bone metastasis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220124. [PMID: 37933240 PMCID: PMC10624374 DOI: 10.1002/exp.20220124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/10/2023] [Indexed: 11/08/2023]
Abstract
Breast cancer with bone metastasis accounts for serious cancer-associated pain which significantly reduces the quality of life of affected patients and promotes cancer progression. However, effective treatment using nanomedicine remains a formidable challenge owing to poor drug delivery efficiency to multiple cancer lesions and inappropriate management of cancer-associated pain. In this study, using engineered macrophage membrane (EMM) and drugs loaded nanoparticle, we constructed a biomimetic nanoplatform (EMM@DJHAD) for the concurrent therapy of bone metastatic breast cancer and associated pain. Tumor tropism inherited from EMM provided the targeting ability for both primary and metastatic lesions. Subsequently, the synergistic combination of decitabine and JTC801 boosted the lytic and inflammatory responses accompanied by a tumoricidal effect, which transformed the tumor into an ideal decoy for EMM, resulting in prolonged troop migration toward tumors. EMM@DJHAD exerted significant effects on tumor suppression and a pronounced analgesic effect by inhibiting µ-opioid receptors in bone metastasis mouse models. Moreover, the nanoplatform significantly reduced the severe toxicity induced by chemotherapy agents. Overall, this biomimetic nanoplatform with good biocompatibility may be used for the effective treatment of breast cancer with bone metastasis.
Collapse
Affiliation(s)
- Cuixia Zheng
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
- Translational Medical Center of Huaihe HospitalHenan UniversityKaifengP. R. China
| | - Dandan Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Yueyue Kong
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Mengya Niu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Hongjuan Zhao
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Qingling Song
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Qianhua Feng
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
- Henan Key Laboratory Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouP. R. China
| | - Xingru Li
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
| | - Lei Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouP. R. China
- Henan Key Laboratory Targeting Therapy and Diagnosis for Critical DiseasesZhengzhouP. R. China
- GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
- Henan International Joint Laboratory of Ovarian Malignant TumorZhengzhouP. R. China
| |
Collapse
|
71
|
Zou Y, Sun Y, Wang Y, Zhang D, Yang H, Wang X, Zheng M, Shi B. Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment. Nat Commun 2023; 14:4557. [PMID: 37507371 PMCID: PMC10382535 DOI: 10.1038/s41467-023-40280-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) remains the most lethal malignant tumours. Gboxin, an oxidative phosphorylation inhibitor, specifically restrains GBM growth by inhibiting the activity of F0F1 ATPase complex V. However, its anti-GBM effect is seriously limited by poor blood circulation, the blood brain barrier (BBB) and non-specific GBM tissue/cell uptake, leading to insufficient Gboxin accumulation at GBM sites, which limits its further clinical application. Here we present a biomimetic nanomedicine (HM-NPs@G) by coating cancer cell-mitochondria hybrid membrane (HM) on the surface of Gboxin-loaded nanoparticles. An additional design element uses a reactive oxygen species responsive polymer to facilitate at-site Gboxin release. The HM camouflaging endows HM-NPs@G with unique features including good biocompatibility, improved pharmacokinetic profile, efficient BBB permeability and homotypic dual tumour cell and mitochondria targeting. The results suggest that HM-NPs@G achieve improved blood circulation (4.90 h versus 0.47 h of free Gboxin) and tumour accumulation (7.73% ID/g versus 1.06% ID/g shown by free Gboxin). Effective tumour inhibition in orthotopic U87MG GBM and patient derived X01 GBM stem cell xenografts in female mice with extended survival time and negligible side effects are also noted. We believe that the biomimetic Gboxin nanomedicine represents a promising treatment for brain tumours with clinical potential.
Collapse
Affiliation(s)
- Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yajing Sun
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Huiqing Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
72
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
73
|
Zeng Y, Zhao L, Li K, Ma J, Chen D, Liu C, Zhan W, Zhan Y. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia. NANO RESEARCH 2023; 16:9859-9872. [DOI: 10.1007/s12274-023-5742-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 01/03/2025]
|
74
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
75
|
Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv 2023; 20:1623-1642. [PMID: 38059646 DOI: 10.1080/17425247.2023.2292678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.
Collapse
Affiliation(s)
- Zhouyun Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Wang
- West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Haifeng Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
77
|
Zhen X, Jia L, Tang Q, Zhao Y, Li P, Li J, Xie X, Wang S. Hybrid biointerface engineering nanoplatform for dual-targeted tumor hypoxia relief and enhanced photodynamic therapy. J Colloid Interface Sci 2023; 647:211-223. [PMID: 37247484 DOI: 10.1016/j.jcis.2023.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The clinical application of photodynamic therapy (PDT) is limited by the lack of tumor selectivity of photosensitizer (PS) and the hypoxic tumor microenvironment (TME). To address these limitations of PDT, we developed a hybrid engineered biointerface nanoplatform that integrated anti-epidermal growth factor receptor (EGFR)-aptamer (EApt)-modified liposomes with tumor cell membranes (TMs) to create M/L-EApt. M/L-EApt exhibited enhanced stability and significant dual-targeting ability, enabling selectively accumulate in hypoxic tumor regions after systemic infusion. PHI@M/L-EApt, formed by M/L-EApt loaded with an oxygen carrier perfluorotributylamine (PFTBA) and IR780 (a PS), effectively promoted the therapeutic performance of PDT by reversing the hypoxic TME and increasing the accumulation of IR780 at the tumor sites, resulting in a robust anti-tumor efficacy. In vivo results showed that PHI@M/L-EApt treatment effectively suppressed the growth of triple-negative breast tumors in mice. Our findings demonstrated the synergistic effect of oxygen supply and PDT on tumor treatment using PHI@M/L-EApt. This study presented a biomimetic interface engineering strategy and dual-targeted hybrid nanoplatform for relieving hypoxic TME and potentially facilitating the clinical application of PDT.
Collapse
Affiliation(s)
- Xueyan Zhen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Qingyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Ying Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Peishan Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Jing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; School of Medicine, Tibet University, Lhasa 850000, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| |
Collapse
|
78
|
Alfonso-Triguero P, Lorenzo J, Candiota AP, Arús C, Ruiz-Molina D, Novio F. Platinum-Based Nanoformulations for Glioblastoma Treatment: The Resurgence of Platinum Drugs? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1619. [PMID: 37242036 PMCID: PMC10223043 DOI: 10.3390/nano13101619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Current therapies for treating Glioblastoma (GB), and brain tumours in general, are inefficient and represent numerous challenges. In addition to surgical resection, chemotherapy and radiotherapy are presently used as standards of care. However, treated patients still face a dismal prognosis with a median survival below 15-18 months. Temozolomide (TMZ) is the main chemotherapeutic agent administered; however, intrinsic or acquired resistance to TMZ contributes to the limited efficacy of this drug. To circumvent the current drawbacks in GB treatment, a large number of classical and non-classical platinum complexes have been prepared and tested for anticancer activity, especially platinum (IV)-based prodrugs. Platinum complexes, used as alkylating agents in the anticancer chemotherapy of some malignancies, are though often associated with severe systemic toxicity (i.e., neurotoxicity), especially after long-term treatments. The objective of the current developments is to produce novel nanoformulations with improved lipophilicity and passive diffusion, promoting intracellular accumulation, while reducing toxicity and optimizing the concomitant treatment of chemo-/radiotherapy. Moreover, the blood-brain barrier (BBB) prevents the access of the drugs to the brain and accumulation in tumour cells, so it represents a key challenge for GB management. The development of novel nanomedicines with the ability to (i) encapsulate Pt-based drugs and pro-drugs, (ii) cross the BBB, and (iii) specifically target cancer cells represents a promising approach to increase the therapeutic effect of the anticancer drugs and reduce undesired side effects. In this review, a critical discussion is presented concerning different families of nanoparticles able to encapsulate platinum anticancer drugs and their application for GB treatment, emphasizing their potential for increasing the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
79
|
Lim XY, Capinpin SM, Bolem N, Foo ASC, Yip WG, Kumar AP, Teh DBL. Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioeng Transl Med 2023; 8:e10483. [PMID: 37206213 PMCID: PMC10189489 DOI: 10.1002/btm2.10483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis and high mortality, with no curative treatment to date as limited trafficking across the blood-brain barrier (BBB) combined with tumor heterogeneity often leads to therapeutic failure. Although modern medicine poses a wide range of drugs that are otherwise efficacious in treating other tumors, they often do not achieve therapeutic concentrations in the brain, hence driving the need for more effective drug delivery strategies. Nanotechnology, an interdisciplinary field, has been gaining immense popularity in recent years for remarkable advancements such as nanoparticle (NP) drug carriers, which possess extraordinary versatility in modifying surface coatings to home in on target cells, including those beyond the BBB. In this review, we will be highlighting recent developments in biomimetic NPs in GBM therapy and how these allowed us to overcome the physiological and anatomical challenges that have long plagued GBM treatment.
Collapse
Affiliation(s)
- Xin Yuan Lim
- MBBS ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Sharah Mae Capinpin
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer ResearchYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Nagarjun Bolem
- Department of Surgery, Division of NeurosurgeryNational University HospitalSingaporeSingapore
| | - Aaron Song Chuan Foo
- MBBS ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Surgery, Division of NeurosurgeryNational University HospitalSingaporeSingapore
| | - Wai‐Cheong George Yip
- Department of AnatomyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer ResearchYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Daniel Boon Loong Teh
- Department of AnatomyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of OphthalmologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NeurobiologyLife Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
80
|
Dai X, Ye L, Li H, Dong X, Tian H, Gao P, Dong J, Cheng H. Crosstalk between microglia and neural stem cells influences the relapse of glioblastoma in GBM immunological microenvironment. Clin Immunol 2023; 251:109333. [PMID: 37088298 DOI: 10.1016/j.clim.2023.109333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Interactions between immunocytes and Neural Stem Cells (NSCs) in glioblastoma multiforme still remains unclear. Here, microglial cells and NSCs in peri-tumoral tissue were analyzed via single-cell whole-transcriptome sequencing. Results showed that two clusters of putative NSCs (the EGFR+BCAN+ cell cluster, and the FABPT+H19+ cell cluster) exhibited immune-related functions. Two clusters of putative microglia (the XIST+PDK4+ and APOC1+CCL3+ cell clusters) exhibited the function of glial cell activation. The results of ligand receptor network analysis disclosed significant interactions between the APOC1+CCL3+ microglia and the NSCs. Correlation analysis on the overall survival (OS) and relapse-free survival (RFS) with 102 potential molecular targets in the TCGA database showed that a much larger number of molecules were correlated with RFS than with OS (34.31% vs. 8.82%), nine of them were validated in clinical specimens. In conclusion, crosstalk between APOC1+CCL3+ microglia and multiple molecule-labeled NSCs distal to the tumor core play certain roles on the recurrence of GBM.
Collapse
Affiliation(s)
- Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Huaixu Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Xuchen Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Haotiao Tian
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Peng Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
81
|
Qu H, Chen H, Cheng W, Wang Y, Xia Y, Zhang L, Ma B, Hu R, Xue X. A Supramolecular Assembly Strategy for Hydrophilic Drug Delivery towards Synergistic Cancer Treatment. Acta Biomater 2023; 164:407-421. [PMID: 37088157 DOI: 10.1016/j.actbio.2023.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
To improve the drug loading, tumor targeting, and delivery simplicity of hydrophilic drugs, we propose a supramolecular assembly strategy that potentially benefits a wide range of hydrophilic drug delivery. Firstly, we choose a hydrophilic drug (tirapazamine) as a model drug to directly co-assemble with chlorin e6 (Ce6) at different molar ratios, and systematically evaluate the resultant Ce6-tirapazamine nanoparticles (CT NPs) in aspects of size distribution, polydispersity, morphology, optical properties and molecular dynamics simulation. Based on the assembling facts between Ce6 and tirapazamine, we summarize a plausible rule of the supramolecular assembly for hydrophilic drugs. To validate our findings, more drugs with increasing hydrophilicity, such as temozolomide, gemcitabine hydrochloride and 5-azacytidine, successfully co-assemble with Ce6 into nanostructures by following similar assembling behaviors, demonstrating that our assembling rule may guide a wide range of hydrophilic drug delivery. Next, the combination of Ce6 and tirapazamine was chosen as the representative to investigate the anti-tumor activities of the supramolecular assemblies. CT NPs showed synergistic anti-tumor efficacy, increased tumor accumulation and significant tumor progression and metastasis inhibition in tumor-bearing mice. We anticipate that the supramolecular assembly mechanism will provide broad guidance for developing easy-to-make but functional nanomedicines. STATEMENT OF SIGNIFICANCE: Although thousands of nanomedicines have been developed, only a few have been approved for clinical use. The manufacturing complexity significantly hinders the "bench-to-bed" translation of nanomedicines. Hence, we need to rethink how to conduct research on translational nanomedicines by avoiding more and more complex chemistry and complicated nanostructures. Here, we summarize a plausible rule according to multiple supramolecular assembly pairs and propose a supramolecular assembly strategy that can improve the drug loading, tumor targeting, and manufacturing simplicity of nanomedicine for hydrophilic drugs. The supramolecular assembly strategy would guide a broader range of drug delivery to provide a new paradigm for developing easy-to-make but multifunctional nanoformulations for synergistic cancer treatment.
Collapse
Affiliation(s)
- Haijing Qu
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Chen
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Cheng
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanjun Wang
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Centre for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, China
| | - Yangyang Xia
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Centre for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, China
| | - Linghao Zhang
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Buyong Ma
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rong Hu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Centre for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, China.
| | - Xiangdong Xue
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
82
|
Zhang H, Guan S, Wei T, Wang T, Zhang J, You Y, Wang Z, Dai Z. Homotypic Membrane-Enhanced Blood-Brain Barrier Crossing and Glioblastoma Targeting for Precise Surgical Resection and Photothermal Therapy. J Am Chem Soc 2023; 145:5930-5940. [PMID: 36867864 DOI: 10.1021/jacs.2c13701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The crossing of blood-brain barrier (BBB) is essential for glioblastoma (GBM) therapy, and homotypic targeting is an effective strategy to achieve BBB crossing. In this work, GBM patient-derived tumor cell membrane (GBM-PDTCM) is prepared to cloak gold nanorods (AuNRs). Relying on the high homology of the GBM-PDTCM to the brain cell membrane, GBM-PDTCM@AuNRs realize efficient BBB crossing and selective GBM targeting. Meanwhile, owing to the functionalization of Raman reporter and lipophilic fluorophore, GBM-PDTCM@AuNRs are able to generate fluorescence and Raman signals at GBM lesion, and almost all tumor can be precisely resected in 15 min by the guidance of dual signals, ameliorating the surgical treatment for advanced GBM. In addition, photothermal therapy for orthotopic xenograft mice is accomplished by intravenous injection of GBM-PDTCM@AuNRs, doubling the median survival time of the mice, which improves the nonsurgical treatment for early GBM. Therefore, benefiting from homotypic membrane-enhanced BBB crossing and GBM targeting, all-stage GBM can be treated with GBM-PDTCM@AuNRs in distinct ways, providing an alternative idea for the therapy of tumor in the brain.
Collapse
Affiliation(s)
- Hang Zhang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shujuan Guan
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianyou Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
83
|
Pei M, Liu K, Qu X, Wang K, Chen Q, Zhang Y, Wang X, Wang Z, Li X, Chen F, Qin H, Zhang Y. Enzyme-catalyzed synthesis of selenium-doped manganese phosphate for synergistic therapy of drug-resistant colorectal cancer. J Nanobiotechnology 2023; 21:72. [PMID: 36859296 PMCID: PMC9976439 DOI: 10.1186/s12951-023-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The development of multidrug resistance (MDR) during postoperative chemotherapy for colorectal cancer substantially reduces therapeutic efficacy. Nanostructured drug delivery systems (NDDSs) with modifiable chemical properties are considered promising candidates as therapies for reversing MDR in colorectal cancer cells. Selenium-doped manganese phosphate (Se-MnP) nanoparticles (NPs) that can reverse drug resistance through sustained release of selenium have the potential to improve the chemotherapy effect of colorectal cancer. RESULTS Se-MnP NPs had an organic-inorganic hybrid composition and were assembled from smaller-scale nanoclusters. Se-MnP NPs induced excessive ROS production via Se-mediated activation of the STAT3/JNK pathway and a Fenton-like reaction due to the presence of manganese ions (Mn2+). Moreover, in vitro and in vivo studies demonstrated Se-MnP NPs were effective drug carriers of oxaliplatin (OX) and reversed multidrug resistance and induced caspase-mediated apoptosis in colorectal cancer cells. OX@Se-MnP NPs reversed MDR in colorectal cancer by down-regulating the expression of MDR-related ABC (ATP binding cassette) transporters proteins (e.g., ABCB1, ABCC1 and ABCG2). Finally, in vivo studies demonstrated that OX-loaded Se-MnP NPs significantly inhibited proliferation of OX-resistant HCT116 (HCT116/DR) tumor cells in nude mice. CONCLUSIONS OX@Se-MnP NPs with simple preparation and biomimetic chemical properties represent promising candidates for the treatment of colorectal cancer with MDR.
Collapse
Affiliation(s)
- Manman Pei
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kaiyuan Liu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xiao Qu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kairuo Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Qian Chen
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Yuanyuan Zhang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyue Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Zheng Wang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyao Li
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Feng Chen
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Huanlong Qin
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Yang Zhang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China. .,Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
84
|
Cui J, Wang X, Li J, Zhu A, Du Y, Zeng W, Guo Y, Di L, Wang R. Immune Exosomes Loading Self-Assembled Nanomicelles Traverse the Blood-Brain Barrier for Chemo-immunotherapy against Glioblastoma. ACS NANO 2023; 17:1464-1484. [PMID: 36626296 DOI: 10.1021/acsnano.2c10219] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Effective drug delivery and prevention of postoperative recurrence are significant challenges for current glioblastoma (GBM) treatment. Poor drug delivery is mainly due to the presence of the blood-brain barrier (BBB), and postoperative recurrence is primarily due to the resistance of GBM cells to chemotherapeutic drugs and the presence of an immunosuppressive microenvironment. Herein, a biomimetic nanodrug delivery platform based on endogenous exosomes that could efficiently target the brain without targeting modifications and co-deliver pure drug nanomicelles and immune adjuvants for safe and efficient chemo-immunotherapy against GBM is prepared. Inspired by the self-assembly technology of small molecules, tanshinone IIA (TanIIA) and glycyrrhizic acid (GL), which are the inhibitors of signal transducers and activators of transcription 3 from traditional Chinese medicine (TCM), self-assembled to form TanIIA-GL nanomicelles (TGM). Endogenous serum exosomes are selected to coat the pure drug nanomicelles, and the CpG oligonucleotides, agonists of Toll-like receptor 9, are anchored on the exosome membrane to obtain immune exosomes loaded with TCM self-assembled nanomicelles (CpG-EXO/TGM). Our results demonstrate that CpG-EXO/TGM can bind free transferrin in blood, prolong blood circulation, and maintain intact structures when traversing the BBB and targeting GBM cells. In the GBM microenvironment, the strong anti-GBM effect of CpG-EXO/TGM is mainly attributed to two factors: (i) highly efficient uptake by GBM cells and sufficient intracellular release of drugs to induce apoptosis and (ii) stimulation of dendritic cell maturation and induction of tumor-associated macrophages polarization by CpG oligonucleotides to generate anti-GBM immune responses. Further research found that CpG-EXO/TGM can not only produce better efficacy in combination with temozolomide but also prevent a postoperative recurrence.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Xue Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Jinge Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Anran Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yingjiang Du
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Wei Zeng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yumiao Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| |
Collapse
|
85
|
Chen H, Zhang S, Fang Q, He H, Ren J, Sun D, Lai J, Ma A, Chen Z, Liu L, Liang R, Cai L. Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma. ACS NANO 2023; 17:421-436. [PMID: 36573683 DOI: 10.1021/acsnano.2c08861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glioblastoma (GBM) is the most devastating brain tumor and highly resistant to conventional chemotherapy. Herein, we introduce biomimetic nanosonosensitizer systems (MDNPs) combined with noninvasive ultrasound (US) actuation for orthotopic GBM-targeted delivery and sonodynamic-enhanced chemotherapy. MDNPs were fabricated with biodegradable and pH-sensitive polyglutamic acid (PGA) and the chemotherapeutic agent and sonosensitizer doxorubicin (DOX), camouflaged with human GBM U87 cell membranes. MDNPs presented homologous targeting accumulation and in vivo long-term circulation ability. They effectively passed through the blood-brain barrier (BBB) under US assistance and reached the orthotopic GBM site. MDNPs exhibited controllable US-elicited sonodynamic effect by generation of reactive oxygen species (ROS). ROS not only induced cancer cell apoptosis but also downregulated drug-resistance-related factors to disrupt chemoresistance and increase sensitivity to chemotherapy. The in vivo study of orthotopic GBM treatments further proved that MDNPs exhibited US-augmented synergistic antitumor efficacy and strongly prolonged the survival rate of mice. The use of low-dose DOX and the safety of US enabled repeated treatment (4 times) without obvious cardiotoxicity. This effective and safe US-enhanced chemotherapy strategy with the advantages of noninvasive brain delivery and high drug sensitivity holds great promise for deep-seated and drug-resistant tumors.
Collapse
Affiliation(s)
- Huaqing Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Shengping Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Quan Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Da Sun
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jiazheng Lai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, P.R. China
| |
Collapse
|
86
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
87
|
Martins C, Pacheco C, Moreira-Barbosa C, Marques-Magalhães Â, Dias S, Araújo M, Oliveira MJ, Sarmento B. Glioblastoma immuno-endothelial multicellular microtissue as a 3D in vitro evaluation tool of anti-cancer nano-therapeutics. J Control Release 2023; 353:77-95. [PMID: 36410614 DOI: 10.1016/j.jconrel.2022.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Despite being the most prevalent and lethal type of adult brain cancer, glioblastoma (GBM) remains intractable. Promising anti-GBM nanoparticle (NP) systems have been developed to improve the anti-cancer performance of difficult-to-deliver therapeutics, with particular emphasis on tumor targeting strategies. However, current disease modeling toolboxes lack close-to-native in vitro models that emulate GBM microenvironment and bioarchitecture, thus partially hindering translation due to poorly predicted clinical responses. Herein, human GBM heterotypic multicellular tumor microtissues (MCTMs) are generated through high-throughput 3D modeling of U-251 MG tumor cells, tissue differentiated macrophages isolated from peripheral monocytes, and brain microvascular primary endothelial cells. GBM MCTMs mimicked tumor spatial organization, extracellular matrix production and necrosis areas. The bioactivity of a model drug, docetaxel (DTX), and of tumor-targeted DTX-loaded polymeric NPs with a surface L-Histidine moiety (H-NPs), were assessed in the MCTMs. MCTMs cell uptake and anti-proliferative effect was 8- and 3-times higher for H-NPs, respectively, compared to the non-targeted NPs and to free DTX. H-NPs provided a decrease of MCTMs anti-inflammatory M2-macrophages, while increasing their pro-inflammatory M1 counterparts. Moreover, H-NPs showed a particular biomolecular signature through reduced secretion of an array of medium cytokines (IFN-γ, IL-1β, IL-1Ra, IL-6, IL-8, TGF-β). Overall, MCTMs provide an in vitro biomimetic model to recapitulate key cellular and structural features of GBM and improve in vivo drug response predictability, fostering future clinical translation of anti-GBM nano-therapeutic strategies.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Moreira-Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ângela Marques-Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
88
|
Xie Y, Lu X, Wang Z, Liu M, Liu L, Wang R, Yang K, Xiao H, Li J, Tang X, Liu H. A hypoxia-dissociable siRNA nanoplatform for synergistically enhanced chemo-radiotherapy of glioblastoma. Biomater Sci 2022; 10:6791-6803. [PMID: 36314541 DOI: 10.1039/d2bm01145j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glioblastoma (GBM), as the most aggressive adult brain tumor, seriously threatened people's lives with a low survival time. Standard postoperative treatment, chemotherapy combined with radiotherapy (RT), was the major therapeutic strategy for GBM. However, this therapeutic efficacy was hindered by chemoradiotherapy resistance of GBM. Herein, to sensitize temozolomide (TMZ)-based chemotherapy and RT, a hypoxia-radiosensitive nanoparticle for co-delivering TMZ and siMGMT (RDPP(Met)/TMZ/siMGMT) was synthesized in this study. Our nanoparticle could effectively release the encapsulated alkylating agent (TMZ) and small interfering O6-methylguanine-DNA-methyltransferase RNA (siMGMT) in the hypoxic GBM. DNA-damage repair was effectively inhibited by down-regulating MGMT expression and activating cell apoptosis, which obviously enhanced the sensitivity of TMZ as well as RT. In vitro and in vivo experiments showed that RDPP(Met)/TMZ/siMGMT could efficiently penetrate the blood-brain barrier (BBB), accurately target GBM cells and effectively inhibit GBM proliferation. Compared with traditional TMZ combined with RT, RDPP(Met)/TMZ/siMGMT remarkably improved the survival time of orthotopic GBM-bearing mice, which demonstrated that our nanoplatform was an efficient combinatorial GBM therapy.
Collapse
Affiliation(s)
- Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Xueying Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Zhen Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Mingxi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Xianglong Tang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
89
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|